STATE OF MARYLAND NATIONAL HIGHWAY SYSTEM 1995

1995
 NATIONAL HIGHWAY SYSTEM

MILES BY COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND
HIGHWAY INFORMATION SERVICES DIVISION
1995 NATIONAL HIGHWAY SYSTEM MILEAGE
ALL SYSTEMS

FUNCTIONAL CLASS	1	2	6	7	8	9	TOTAL RURAL	11	12	14	16	17	19	TOTAL URBAN	GRAND TOTAL
ALLEGANY	31.31	11.78	0.00	0.00	0.00	0.00	43.09	8.96	0.00	9.75	0.00	0.00	0.00	18.71	61.80
ANNE ARUNDEL	13.41	8.23	0.00	0.00	0.00	0.00	21.64	21.19	49.45	14.34	0.00	0.00	0.00	84.98	106.62
BALTIMORE	19.56	11.37	0.00	0.00	0.00	0.00	30.93	69.11	17.62	11.13	0.00	0.00	0.00	97.86	128.79
Calvert	0.00	41.99	0.00	0.00	0.00	0.00	41.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.99
CAROLINE	0.00	17.37	0.00	0.00	0.00	0.00	17.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.37
CARROLL	1.61	30.42	0.00	0.00	0.00	0.00	32.03	0.00	0.00	5.63	0.00	0.00	0.00	5.63	37.66
CECIL	17.16	15.98	0.00	0.00	0.00	0.00	33.14	1.34	0.00	0.00	0.00	0.00	0.00	1.34	34.48
CHARLES	0.00	37.76	0.00	0.00	0.00	0.00	37.76	0.00	0.00	16.55	0.00	0.00	0.00	16.55	54.31
DORCHESTER	0.00	15.22	0.00	0.00	0.00	0.00	15.22	0.00	0.00	1.68	0.00	0.00	0.00	1.68	16.90
FREDERICK	32.60	46.72	0.00	0.00	0.00	0.00	79.32	6.86	6.42	0.00	0.00	0.48	0.00	13.76	93.08
GARRETT	31.78	28.49	11.47	0.00	0.00	0.00	71.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	71.74
HARFORD	13.06	15.37	0.00	0.00	0.00	0.00	28.43	5.33	9.57	4.75	0.00	0.00	0.00	19.65	48.08
HOWARD	13.59	9.07	0.00	0.00	0.00	0.00	22.66	17.47	28.30	0.00	0.00	0.00	0.00	45.77	68.43
KENT	0.00	8.79	0.00	0.00	0.00	0.00	8.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.79
MONTGOMERY	5.93	0.00	0.00	0.00	0.00	0.00	5.93	35.89	5.92	10.16	0.00	0.00	0.00	51.97	57.90
PRINCE GEORGE'S	1.27	18.24	0.00	0.00	0.00	0.00	19.51	45.69	52.77	18.18	0.00	0.00	0.00	116.64	136.15
QUEEN ANNE'S	0.00	47.92	9.63	0.00	0.00	0.00	57.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	57.55
ST. MARY'S	0.00	21.15	0.00	0.00	0.00	0.00	21.15	0.00	0.00	7.80	0.00	0.00	0.00	7.80	28.95
SOMERSET	0.00	20.28	0.00	0.00	0.00	0.00	20.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.28
TALBOT	0.00	25.06	0.00	0.00	0.00	0.00	25.06	0.00	0.00	5.15	0.00	0.00	0.00	5.15	30.21
WASHINGTON	45.70	2.27	0.00	0.00	0.00	0.63	48.60	13.75	0.00	0.00	0.00	0.00	0.00	13.75	62.35
WICOMICO	0.00	40.96	0.00	0.00	0.00	0.00	40.96	0.00	4.93	1.09	0.00	0.00	0.00	6.02	46.98
WORCESTER	0.00	62.08	0.00	0.00	0.00	0.00	62.08	0.00	5.82	7.01	0.00	0.00	0.07	12.90	74.98
BALTIMORE CITY	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.55	7.47	17.26	0.76	0.00	0.00	54.04	54.04
TOTAL	226.98	536.52	21.10	0.00	0.00	0.63	785.23	254.14	188.27	130.48	0.76	0.48	0.07	574.20	1,359.43

FUNCTIONAL CLASSIFICATION CODES
RURAL
1- INTERSTATE
2- OTHER PRINCIPAL ARTERIAL
6-MINOR ARTERIAL
7 - MAJOR COLLECTOR
8 - MINOR COLLECTOR
9 - LOCAL

URBAN
11- INTERSTATE
12. OTHER FREEWAYS \& EXPRESSWAYS

14 - OTHER PRINCIPAL ARTERIAL
16 - MINOR ARTERIAL
17. COLLECTOR
19. LOCAL

STATE HIGHWAY ADMINISTRATION OF MARYLAND HIGHWAY INFORMATION SERVICES DIVISION 1995 NATIONAL HIGHWAY SYSTEM MILEAGE STATE HIGHWAY SYSTEM

FUNCTIONAL CLASS	1	2	6	7	8	9	TOTAL RURAL	11	12	14	16	17	19.	TOTAL URBAN	GRAND TOTAL
ALLEGANY	31.31	11.78	0.00	0.00	0.00	0.00	43.09	8.96	0.00	9.75	0.00	0.00	0.00	18.71	61.80
ANNE ARUNDEL	13.41	8.23	0.00	0.00	0.00	0.00	21.64	20.39	37.59	13.48	0.00	0.00	0.00	71.46	93.10
BALTIMORE	17.32	11.37	0.00	0.00	0.00	0.00	28.69	57.59	10.35	10.46	0.00	0.00	0.00	78.40	107.09
CALVERT	0.00	41.99	0.00	0.00	0.00	0.00	41.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.99
CAROLINE	0.00	17.37	0.00	0.00	0.00	0.00	17.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.37
CARROLL	1.61	30.42	0.00	0.00	0.00	0.00	32.03	0.00	0.00	5.63	0.00	0.00	0.00	5.63	37.66
CECIL	0.00	15.98	0.00	0.00	0.00	0.00	15.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.98
CHARLES	0.00	35.59	0.00	0.00	0.00	0.00	35.59	0.00	0.00	16.55	0.00	0.00	0.00	16.55	52.14
DORCHESTER	0.00	15.22	0.00	0.00	0.00	0.00	15.22	0.00	0.00	1.68	0.00	0.00	0.00	1.68	16.90
FREDERICK	32.60	46.72	0.00	0.00	0.00	0.00	79.32	6.86	6.42	0.00	0.00	0.00	0.00	13.28	92.60
GARRETT	31.78	28.49	11.47	0.00	0.00	0.00	71.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	71.74
HARFORD	0.00	15.37	0.00	0.00	0.00	0.00	15.37	0.00	9.57	4.75	0.00	0.00	0.00	14.32	29.69
HOWARD	13.59	9.07	0.00	0.00	0.00	0.00	22.66	17.47	27.28	0.00	0.00	0.00	0.00	44.75	67.41
KENT	0.00	8.79	0.00	0.00	0.00	0.00	8.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.79
MONTGOMERY	5.93	0.00	0.00	0.00	0.00	0.00	5.93	35.89	5.92	10.16	0.00	0.00	0.00	51.97	57.90
PRINCE GEORGES	1.27	18.24	0.00	0.00	0.00	0.00	19.51	45.69	38.81	13.84	0.00	0.00	0.00	98.34	117.85
QUEEN ANNES	0.00	45.39	9.63	0.00	0.00	0.00	55.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	55.02
ST MARYS	0.00	21.15	0.00	0.00	0.00	0.00	21.15	0.00	0.00	7.80	0.00	0.00	0.00	7.80	28.95
SOMERSET	0.00	20.28	0.00	0.00	0.00	0.00	20.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.28
TALBOT	0.00	25.06	0.00	0.00	0.00	0.00	25.06	0.00	0.00	5.15	0.00	0.00	0.00	5.15	30.21
WASHINGTON	45.70	2.27	0.00	0.00	0.00	0.00	47.97	13.75	0.00	0.00	0.00	0.00	0.00	13.75	61.72
WICOMICO	0.00	40.96	0.00	0.00	0.00	0.00	40.96	0.00	4.93	1.09	0.00	0.00	0.00	6.02	46.98
WORCESTER	0.00	62.08	0.00	0.00	0.00	0.00	62.08	0.00	5.82	7.01	0.00	0.00	0.07	12.90	74.98
TOTAL	194.52	531.82	21.10	0.00	0.00	0.00	747.44	206.60	146.69	107.35	0.00	0.00	0.07	460.71	1,208.15

FUNCTIONAL CLASSIFICATION CODES

RURAL	URBAN
1-INTERSTATE	11-INTERSTATE
2- OTHER PRINCIPAL ARTERIAL	12 - OTHER FREEWAYS \& EXPRESSWAYS
6 - MINOR ARTERIAL	$14-$ OTHER PRINCIPAL ARTERIAL
7 - MAJOR COLLECTOR	$16-$ MINOR ARTERIAL
8 - MINOR COLLECTOR	$17-$ COLLECTOR
9 - LOCAL	$19-$ LOCAL

STATE HIGHWAY ADMINISTRATION OF MARYLAND HIGHWAY INFORMATION SERVICES DIVISION
1995 NATIONAL HIGHWAY SYSTEM MILEAGE STATE TOLL

STATE HIGHWAY ADMINISTRATION OF MARYLAND

HIGHWAY INFORMATION SERVICES DIVISION
1995 NATIONAL HIGHWAY SYSTEM MILEAGE
COUNTY, MUNICIPAL, NATIONAL PARK SERVICE, AND MILITARY RESERVATION

1995
 NATIONAL HIGHWAY SYSTEM

LANE MILES BY COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION 1995 NATIONAL HIGHWAY SYSTEM LANE MILEAGE

ALL SYSTEMS

FUNCTIONAL CLASS	1	2	6	7	8	9	TOTAL RURAL	11	12	14	6	17	19	TOTAL URBAN	GRAND TOTAL
ALLEGANY	145.78	25.74	0.00	0.00	0.00	0.00	171.52	42.22	0.00	21.12	0.00	0.00	0.00	63.34	234.86
ANNE ARUNDEL	65.46	32.92	0.00	0.00	0.00	0.00	98.38	110.24	220.84	61.31	0.00	0.00	0.00	392.39	490.77
baltimore	88.34	35.51	0.00	0.00	0.00	0.00	123.85	425.32	67.81	40.98	0.00	0.00	0.00	534.11	657.96
Calvert	0.00	155.53	0.00	0.00	0.00	0.00	155.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	155.53
CAROLINE	0.00	44.64	0.00	0.00	0.00	0.00	44.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	44.64
CARROLL	9.66	73.08	0.00	0.00	0.00	0.00	82.74	0.00	0.00	21.85	0.00	0.00	0.00	21.85	104.59
CECIL	102.96	38.03	0.00	0.00	0.00	0.00	140.99	8.04	0.00	0.00	0.00	0.00	0.00	8.04	149.03
CHARLES	0.00	129.86	0.00	0.00	0.00	0.00	129.86	0.00	0.00	69.10	0.00	0.00	0.00	69.10	198.96
DORCHESTER	0.00	60.88	0.00	0.00	0.00	0.00	60.88	0.00	0.00	8.82	0.00	0.00	0.00	8.82	69.70
FREDERICK	163.67	163.22	0.00	0.00	0.00	0.00	326.89	30.32	25.68	0.00	0.00	1.14	0.00	57.14	384.03
GARRETT	154.82	64.31	22.94	0.00	0.00	0.00	242.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	242.07
HARFORD	84.92	39.11	0.00	0.00	0.00	0.00	124.03	33.53	37.34	10.66	0.00	0.00	0.00	81.53	205.56
HOWARD	78.80	19.95	0.00	0.00	0.00	0.00	98.75	119.36	118.31	0.00	0.00	0.00	0.00	237.67	336.42
KENT	0.00	35.16	0.00	0.00	0.00	0.00	35.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	35.16
MONTGOMERY	23.72	0.00	0.00	0.00	0.00	0.00	23.72	281.45	35.18	58.02	0.00	0.00	0.00	374.65	398.37
PRINCE GEORGE'S	7.62	78.82	0.00	0.00	0.00	0.00	86.44	342.99	243.65	68.25	0.00	0.00	0.00	654.89	741.33
QUEEN ANN'S	0.00	209.41	19.26	0.00	0.00	0.00	228.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	228.67
ST. MARY'S	0.00	82.94	0.00	0.00	0.00	0.00	82.94	0.00	0.00	26.34	0.00	0.00	0.00	26.34	109.28
SOBEREST	0.00	81.12	0.00	0.00	0.00	0.00	81.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	81.12
TALBOT	0.00	91.00	0.00	0.00	0.00	0.00	91.00	0.00	0.00	20.60	0.00	0.00	0.00	20.60	111.60
WASHINGTON	192.67	7.71	0.00	0.00	0.00	1.26	201.64	55.00	0.00	0.00	0.00	0.00	0.00	55.00	256.64
WICOMICO	0.00	164.18	0.00	0.00	0.00	0.00	164.18	0.00	22.02	5.45	0.00	0.00	0.00	27.47	191.65
WORCESTER	0.00	188.13	0.00	0.00	0.00	0.00	188.13	0.00	12.03	32.56	0.00	0.00	0.14	44.73	232.86
BALTIMORE CITY	0.00	0.00	0.00	0.00	0.00	0.00	0.00	166.27	36.51	83.86	3.64	0.00	0.00	290.28	290.28
TOTAL	1,118.42	1,821.25	42.20	0.00	0.00	1.26	2,983.13	1,614.74	819.37	528.92	3.64	1.14	0.14	2,967.95	5,951.08

FUNCTIONAL CLASSIFICATION CODES

RURAL	URBAN
1- INTERSTATE	11-INTERSTATE
2- OTHER PRINCIPAL ARTERIAL	12 - OTHER FREEWAYS \& EXPRESSWAYS
6 - MINOR ARTERIAL	14 - OTHER PRINCIPAL ARTERIAL
7 - MAJOR COLLECTOR	16 - MINOR ARTERIAL
8 - MINOR COLLECTOR	17 -COLLECTOR
9 - LOCAL	$19-$ LOCAL

STATE HIGHWAY ADMINISTRATION OF MARYLAND HIGHWAY INFORMATION SERVICES DIVISION
 1995 NATIONAL HIGHWAY SYSTEM LANE MILEAGE STATE HIGHWAY SYSTEM

STATE HIGHWAY ADMINISTRATION OF MARYLAND
HIGHWAY INFORMATION SERVICES DIVISION
1995 NATIONAL HIGHWAY SYSTEM LANE MILEAGE STATE TOLL

FUNCTIONAL CLASS	1	2	6	7	8	9	TOTAL RURAL	11	12	14	16	17	19	TOTAL URBAN	GRAND TOTAL
ANNE ARUNDEL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.20	24.30	0.00	0.00	0.00	0.00	27.50	27.50
BALTIMORE	17.92	0.00	0.00	0.00	0.00	0.00	17.92	77.12	23.93	1.34	0.00	0.00	0.00	102.39	120.31
CECIL	102.96	0.00	0.00	0.00	0.00	0.00	102.96	8.04	0.00	0.00	0.00	0.00	0.00	8.04	111.00
CHARLES	0.00	4.61	0.00	0.00	0.00	0.00	4.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.61
HARFORD	84.92	0.00	0.00	0.00	0.00	0.00	84.92	33.53	0.00	0.00	0.00	0.00	0.00	33.53	118.45
HOWARD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.75	0.00	0.00	0.00	0.00	3.75	3.75
QUEEN ANNE'S	0.00	12.76	0.00	0.00	0.00	0.00	12.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.76
BALTIMORE CITY	0.00	0.00	0.00	0.00	0.00	0.00	0.00	125.77	12.92	0.00	0.00	0.00	0.00	138.69	138.69
TOTAL	205.80	17.37	0.00	0.00	0.00	0.00	223.17	247.66	64.90	1.34	0.00	0.00	0.00	313.90	537.07

FUNCTIONAL CLASSIFICATION CODES

RURAL

1 - INTERSTATE
2- OTHER PRINCIPAL ARTERIAL
6 - MINOR ARTERIAL
7 -MAJOR COLLECTOR
8 - MINOR COLLECTOR
9 - LOCAL

URBAN
11- INTERSTATE
12 - OTHER FREEWAYS \& EXPRESSWAYS
14 - OTHER PRINCIPAL ARTERIAL
16 - MINOR ARTERIAL
17 -COLLECTOR
19 - LOCAL

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION

1995 NATIONAL HIGHWAY SYSTEM LANE MILEAGE
COUNTY, MUNICIPAL, NATIONAL PARK SERVICE, AND MILITARY RESERVATION

1995
 NATIONAL HIGHWAY SYSTEM

MILLIONS OF ANNUAL VEHICLE MILES OF TRAVEL BY COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 1995 NATIONAL HIGHWAY SYSTEM TRAVEL - MILLIONS OF ANNUAL VEHICLE MILES
 ALL SYSTEMS

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 1995 NATIONAL HIGHWAY SYSTEM TRAVEL - MILLIONS OF ANNUAL VEHICLE MILES
 STATE HIGHWAY SYSTEM

FUNCTIONAL CLASS	1	2	6	7	8	9	TOTAL RURAL	11	12	14	16	17	19	total URBAN	GRAND TOTAL
ALLEGANY	156	31	0	0	0	0	187	81	0	38	0	0	0	119	306
ANNE ARUNDEL	250	120	0	0	0	0	370	586	741	261	0	0	0	1,588	1,958
BALTIMORE	214	88	0	0	0	0	302	2,407	186	93	0	0	0	2,686	2,988
CALVERT	0	314	0	0	0	0	314	0	0	0	0	0	0	0	314
CAROLINE	0	54	0	0	0	0	54	0	0	0	0	0	0	0	54
CARROLL	21	194	0	0	0	0	215	0	0	75	0	0	0	75	290
CECIL	0	38	0	0	0	0	38	0	0	0	0	0	0	0	38
CHARLES	0	279	0	0	0	0	279	0	0	210	0	0	0	210	489
DORCHESTER	0	102	0	0	0	0	102	0	0	14	0	0	0	14	116
FREDERICK	538	304	0	0	0	0	842	135	126	0	0	0	0	261	1,103
GARRETT	139	58	12	0	0	0	209	0	0	0	0	0	0	0	209
HARFORD	0	62	0	0	0	0	62	0	89	30	0	0	0	119	181
HOWARD	216	44	0	0	0	0	260	807	428	0	0	0	0	1,235	1,495
KENT	0	28	0	0	0	0	28	0	0	0	0	0	0	0	28
MONTGOMERY	132	0	0	0	0	0	132	2,000	102	167	0	0	0	2,269	2,401
PRINCE GEORGE'S	27	236	0	0	0	0	263	2,421	679	157	0	0	0	3,257	3,520
QUEEN ANNE'S	0	345	7	0	0	0	352	0	0	0	0	0	0	0	352
ST. MARY'S	0	130	0	0	0	0	130	0	0	72	0	0	0	72	202
SOMERSET	0	129	0	0	0	0	129	0	0	0	0	0	0	0	129
TALBOT	0	183	0	0	0	0	183	0	0	54	0	0	0	54	237
WASHINGTON	435	13	0	0	0	0	448	200	0	0	0	0	0	200	648
WICOMICO	0	256	0	0	0	0	256	0	42	13	0	0	0	55	311
WORCESTER	0	210	0	0	0	0	210	0	28	56	0	0	0	84	294
TOTAL	2,128	3,218	19	0	0	0	5,365	8,637	2,421	1,240	0	0	0.0	12,298	17,663
FUNCTIONAL CLASSIFICATION CODES															
					RURAL					URBAN					
					1- INTERSTATE 2 - OTHER PRINCIPAL ARTERIAL					11- INTERSTATE					
										12 - OTHER FREEWAYS \& EXPRESSWAYS					
					2 - OTHER PRINCIPAL ARTERIAL					14 - OTHER PRINCIPAL ARTERIAL					
					6 - MINOR ARTERIAL					16 - MINOR ARTERIAL					
					7 - MAJOR COLLECTOR					17 - COLLECTOR					
					9-LOCAL					19-LOCAL					

STATE HIGHWAY ADMINISTRATION OF MARYLAND

HIGHWAY INFORMATION SERVICES DIVISION

1995 NATIONAL HIGHWAY SYSTEM TRAVEL - MILLIONS OF ANNUAL VEHICLE MILES
STATE TOLL

1995
 NATIONAL HIGHWAY SYSTEM

ALLEGANY COUNTY

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

1995

KEY
National Highway System
Proposed National Highway System $-=-=-=-=-=-=-2$

STATE HIGHWAY ADMINISTRATION OF MARYLAND
NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995
ALLEGANY COUNTY

ROUTE	BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
MD 53	0.19	IS 68	3.33	US 220	3.14
IS 68	0.00	GARRETT CO/L	40.27	WASHINGTON CO/L	40.27
US 220	0.00	WEST VIRGINIA ST/L	14.03	MD 53	14.03
US 220	23.01	IS 68	27.37	PENNSYLVANIA ST/L	4.36

1995
 NATIONAL HIGHWAY SYSTEM

ANNE ARUNDEL COUNTY

ANNE ARUNDEL

STATE OF MARYLAND
STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

highway information services division OATA SUPPORT TEAM (410) 548-5511

ANNE ARUNDEL COUNTY

1995
 NATIONAL HIGHWAY SYSTEM

BALTIMORE COUNTY

BALTIMORE

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND

BALTIMORE COUNTY

ROU		BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL
US	1	17.00	IS 695	26.52	HARFORD COIL	9.52
MD	30	0.00	MD 140	7.40	CARROLL CO/L	7.40
US	40	2.44	IS 695	3.98	SOUTHWEST BALTO CITY LINE	1.54
IS	70	0.00	HOWARD CO/L	4.70	BALTO CITY LINE	4.70
IS	83	0.00	BALTO CITY LINE	27.80	PENNSYLVANIA ST/L	27.80
IS	95	0.00	HOWARD CO/L	3.62	SOUTHWEST BALTO CITY LINE	3.62
IS	95	14.91	NORTHEAST BALTO CITY LINE	26.47	HARFORD CO/L	11.56
MD	140	10.36	IS 795	12.47	CARROLL CO/L	2.11
IS	195	0.00	ANNE ARUNDEL CO/L	2.15	MD 166 (AHEAD)	2.15
MD	295	0.00	ANNE ARUNDEL CO/L	1.42	BALTO CITY LINE	1.42
IS	695	0.00	ANNE ARUNDEL COIL	17.34	IS 83 (AHEAD)	17.34
IS	695	18.86	IS 83 (BACK)	29.17	MD 695	10.31
MD	695	0.00	IS 695 (BACK)	13.79	BALTO CITY LINE	13.79
MD	695 A	0.00	BALTO CITY LINE	1.93	MD 695	1.93
IS	795	0.00	IS 695	8.99	MD 140	8.99
IS	895	0.00	HOWARD COIL	4.61	ANNE ARUNDEL CO/L	4.61

1995
 NATIONAL HIGHWAY SYSTEM

CALVERT COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND

NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

CALVERT COUNTY

ROUTE	BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION.	TOTAL MILEAGE
MD 2	1.49	MD 4	28.89	MD 4	27.40
MD 4	0.00	ST MARYS COIL	0.71	MD 2 (AHEAD)	0.71
MD 4	28.11	MD 2 (BACK)	36.43	ANNE ARUNDEL CO/L	8.32
MD 231	0.00	CHARLES CO/L	5.56	MD 2	5.56
				TOTAL N.H.S. MILEAGE FOR COUNTY	41.99

1995
 NATIONAL HIGHWAY SYSTEM

CAROLINE COUNTY

CAROLINE

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

hIghWAY INFORMATION SERVICES DIVISION DATA SUPPORT TEAM (410) 545 - 5511
National Highway System

STATE HIGHWAY ADMINISTRATION OF MARYLAND
NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995
CAROLINE COUNTY

ROUTE

MD 404

BEGIN MILEPOINT
0.00
begin description

END
MILEPOINT
17.37

END DESCRIPTION	TOTAL MILEAGE
DELAWARE ST/L	17.37

$$
\begin{gathered}
1995 \\
\text { NATIONAL HIGHWAY } \\
\text { SYSTEM }
\end{gathered}
$$

CARROLL COUNTY

CARROLL

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND
NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995
CARROLL COUNTY

ROUTE	BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION.	$\begin{aligned} & \text { TOTAL } \\ & \text { MILEAGE } \end{aligned}$
MD 30	0.00	BALTIMORE CO/L	11.12	PENNSYLVANIA STIL	11.12
IS 70	0.00	FREDERICK CO/L	1.61	HOWARD CO/L	1.61
MD 140	0.00	BALTIMORE CO/L	24.93	FREDERICK CO/L	24.93

1995
 NATIONAL HIGHWAY SYSTEM

CECIL COUNTY

KEY

National Highway System

CECIL
STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

> STATE HIGHWAY ADMINISTRATION OF MARYLAND HIGHWAY INFORMATION SERVICES DIVISION
> NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31,1995

1995
 NATIONAL HIGHWAY SYSTEM

CHARLES
COUNTY

CHARLES

STATE OF MARYLAND
STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31,1995
CHARLES COUNTY

ROUTE	BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
MD 5	0.00	ST MARYS CO/L	12.25	US 301	12.25
MD 205	0.00	MD 5	3.16	US 301	3.16
MD 228	0.00	PRINCE GEORGES COIL	5.51	US 301	5.51
MD 231	3.40	MD 5	10.52	CALVERT CO/L	7.12
US 301	0.00	VIRGINIA ST/L	26.27	PRINCE GEORGES COIL	26.27
				TOTAL N.H.S. MILEAGE FOR COUNTY	54.31

1995
 NATIONAL HIGHWAY SYSTEM

DORCHESTER COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND

NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

1995
 NATIONAL HIGHWAY SYSTEM

FREDERICK COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND

 HIGHWAY INFORMATION SERVICES DIVISION

 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

FREDERICK COUNTY

ROUTE		BEGIN MILEPOINT		END MILEPOINT		total
		MILEPOINT	BEGIN DESCRIPTION	MILEPOINT	END DESCRIPTION	MILEAGE
US	15	0.00	VIRGINIA ST/L	11.93	US 40	11.93
US	15	12.63	US 40	37.85	PENNSYLVANIA ST/L	25.22
US	40	13.17	US 15	14.52	IS 70	1.35
IS	70	0.00	WASHINGTON CO/L	29.37	CARROLL CO/L	29.37
MD	140	0.00	CARROLL COIL	4.61	US 15	4.61
	270	0.00	MONTGOMERY CO/L	10.09	IS 70	10.09
	340	0.00	WASHINGTON CO/L	10.03	US 15	10.03
7th St		1.03	US 15	1.51	FORT DETRICK	0.48
					TOTAL N.H.S. MILEAGE FOR COUNTY	93.08

1995
 NATIONAL HIGHWAY SYSTEM

GARRETT COUNTY

GARRETT

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND

NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

GȦRRETT COUNTY

1995
 NATIONAL HIGHWAY SYSTEM

HARFORD COUNTY

KEY
National Highway System

HARFORD
STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND

NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

HARFORD COUNTY

1995
 NATIONAL HIGHWAY SYSTEM

HOWARD COUNTY

HOWARD

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

HOWARD COUNTY

1995
 NATIONAL HIGHWAY SYSTEM

KENT COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND

1995
 NATIONAL HIGHWAY SYSTEM

MONTGOMERY COUNTY

MONTGOMERY

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

9/17/96

ROUTE		BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
US	29	0.00	MD 384	11.56	HOWARD CO/L	11.56
IS	270	0.00	IS 495	22.51	FREDERICK CO/L	22.51
IS	270 Y	0.00	IS 495	1.80	IS 270	1.80
MD	355	0.00	WASH DC LINE	3.99	IS 495	3.99
IS	370	0.00	.43 MILES W. OF IS 270	3.13	SHADY GROVE METRO	3.13
MD	384	0.00	WASH DC LINE	0.53	US 29	0.53
IS	495	0.00	VIRGINIA ST/L	14.38	PRINCE GEORGES COIL	14.38
					TOTAL N.H.S. MILEAGE FOR COUNTY	57.90

1995
 NATIONAL HIGHWAY SYSTEM

PRINCE GEORGE'S COUNTY

PRINCE GEORGE'S

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

ROUTE	BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
MD 3	0.00	US 301	2.48	ANNE ARUNDEL CO/L	2.48
MD 4	0.00	ANNE ARUNDEL CO/L	14.29	WASH DC LINE	14.29
MD 5	2.55	US 301	15.27	WASH DC LINE	12.72
US 50	0.00	WASH DC LINE	5.04	IS 595 (AHEAD)	5.04
IS 95	0.00	VIRGINIA ST/L	34.10	HOWARD CO/L	34.10
IS 95 X	0.00	RAMPS FROM IS 495	0.96	IS 95	0.96
MD 201	0.00	WASH DC LINE	0.68	MD 295	0.68
MD 210	2.90	MD 228	13.15	IS 95	10.25
MD 228	0.00	MD 210	1.35	CHARLES CO/L	1.35
IS 295	0.00	IS 95	0.80	WASH DC LINE	0.80
MD 295	0.46	MD 201	12.36	ANNE ARUNDEL CO/L	11.90
US 301	0.00	CHARLES CO/L	24.01	MD 3	24.01
MD 337	3.34	SUITLAND PARKWAY	3.41	MD 4	0.07
IS 495	0.00	MONTGOMERY CO/L	1.75	IS 95	1.75
IS 595	0.00	US 50	9.35	ANNE ARUNDEL CO/L	9.35
SUITLAND PARKWAY	0.00	WASH DC LINE	6.40	MD 337	6.40

1995
 NATIONAL HIGHWAY SYSTEM

QUEEN ANNE'S COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

QUEEN ANNES COUNTY

ROUTE		BEGIN MILEPOINT
US 50	0.00	ANNE ARUNDEL CO/L
MEGIN DESCRIPTION		

END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
18.78	TALBOT CO/L	18.78
13.55	DELAWARE ST/L	9.63
39.49	KENT CO/L	27.67
1.47	CAROLINE CO/L	1.47
	TOTAL N.H.S. MILEAGE FOR COUNTY	57.55

1995
 NATIONAL HIGHWAY SYSTEM

ST. MARY'S COUNTY

ST．MARY＇S

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

ROUTE	BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
MD 4	6.10	MD 235	9.36	CALVERT CO/L	3.26
MD 5	38.32	MD 235	45.23	CHARLES CO/L	6.91
MD 235	11.97	MD 246	30.75	MD 5	18.78
				TOTAL N.H.S. MILEAGE FOR COUNTY	28.95

1995
 NATIONAL HIGHWAY SYSTEM

SOMERSET COUNTY

SOMERSET

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION

NATIONAL HIGHWAY SYSTEM

STATE HIGHWAY ADMINISTRATION OF MARYLAND

NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

1995
 NATIONAL HIGHWAY SYSTEM

TALBOT COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

TALBOT COUNTY

1995
 NATIONAL HIGHWAY SYSTEM

WASHINGTON COUNTY

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

9/17/96

ROUTE	begin MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	TOTAL MILEAGE
IS 68	0.00	ALLEGANY CO/L	9.04	IS 70	9.04
IS 70	0.00	PENNSYLVANIA ST/L	38.33	FREDERICK CO/L	38.33
IS 81	0.00	WEST VIRGINIA ST/L	12.08	PENNSYLVANIA ST/L	12.08
US 340	0.00	VIRGINIA ST/L	2.27	FREDERICK CO/L	2.27
CAMP RITCHIE ACCESS RD	0.00	MD 550	0.63	PENNSYLVANIA ST/L	0.63
				TOTAL N.H.S. MILEAGE FOR COUNTY	62.35

1995
 NATIONAL HIGHWAY SYSTEM

WICOMICO COUNTY

WICOMICO

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM 1995

STATE HIGHWAY ADMINISTRATION OF MARYLAND

1995
 NATIONAL HIGHWAY SYSTEM

WORCESTER COUNTY

WORCESTER

STATE OF MARYLAND STATE HIGHWAY ADMINISTRATION NATIONAL HIGHWAY SYSTEM

National Highway System

STATE HIGHWAY ADMINISTRATION OF MARYLAND
 HIGHWAY INFORMATION SERVICES DIVISION
 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995

1995
 NATIONAL HIGHWAY SYSTEM

BALTIMORE CITY

KEY

National Highway Syatem

BALTIMORE CITY
STATE OF MARYLAND
STATE HIGHWAY ADMINISTRATION
NATIONAL HIGHWAY SYSTEM 1995

HIGHWAY INFORMATION SERVICES DIVISION

 NATIONAL HIGWAY SYSTEM ROUTES AS OF DECEMBER 31, 1995BALTIMORE CITY

ROUTE		BEGIN MILEPOINT	BEGIN DESCRIPTION	END MILEPOINT	END DESCRIPTION	tOTAL mileage
US	40	0.00	BALTIMORE COIL	9.75	MORAVIA RD	9.75
IS	70	0.00	BALTIMORE CO/L	0.14	ROAD END	0.14
IS	83	0.00	FAYETTE ST	6.70	BALTIMORE CO/L	6.70
IS	95	0.00	BALTIMORE COIL	11.29	BALTIMORE CO/L	11.29
	295	0.00	BALTIMORE COIL	3.13	LOMBARD ST	3.13
IS	395	0.00	IS 95	1.33	W. CAMDEN ST	1.33
IS	395 A	0.00	IS 395	0.65	RUSSELL ST	0.65
MD	695	0.00	BALTIMORE CO/L	3.23	ANNE ARUNDEL CO/L	3.23
IS	895	0.00	ANNE ARUNDEL COIL	8.44	IS 95	8.44
BOS	TON ST	0.00	ODONNELL ST CUTOFF	0.10	BROENING HIGHWAY	0.10
BOS	TON ST	0.00	FLEET ST	1.93	PONCAST	1.93
BRO	ENING HIGHWAY	0.24	BOSTON ST	2.18	BALTIMORE COIL	1.94
FLE	ET ST	0.00	PRESIDENT ST	0.84	GREENE ST	0.84
INTE	RSTATE AVE	0.00	PONCA ST	0.33	ODONNELL ST	0.33
LOM	BARD ST	1.12	PRESIDENT ST	2.15	GREENE ST	1.03
M.L.	KING BLVD	0.65	IS 395A M.L. KING BLVD	1.64	US 40	0.99
MOR	AVIA RD	2.82	US 40	3.24	IS 895	0.42
ODO	NNELL ST CUTOFF	0.00	INTERSTATE AVE	0.26	BOSTON ST	0.26
PRA	TT ST	1.16	GREENE ST	2.19	PRESIDENT ST	1.03
PRE	SIDENT ST	0.00	IS 83	0.51	FLEET ST	0.51
					TOTAL N.H.S. MILEAGE FOR COUNTY	54.04

- Access control is an important tool for system preservation.
- The degree of desirable access control is established by the route's functional classification

1. principal arterials should be fully controlled (ultimate freeway design)
2. intermediate arterials should have at least partial controls (ultimate expressway design)
3. minor arterials should have controls wherever cost effective; all new construction should include partial control

- Currently 18% (924 mi) of State Highway Administration's $5,300 \pm$ mile system is access controlled.
- 38% (473 mi.$)$ State Primary System mileage is currently uncontrolled; this includes 221 miles of principal arterials.
- 83% ($1,066 \mathrm{mi}$.$) of the Primary System mileage should be access controlled (53\% full,$ 30% partial) in the future based on pragmatic recommendations.
- Emphasis should be placed on implementing partial control of access on primary highways where applicable, then staged improvement to full control along recommended sections.
- The Primary Highway System Access Control Program will concentrate on preserving critical areas along the 265 miles of Primary highways which are not currently included in the Consolidated Transportation Program for upgrading.
- Using this report as a base, it is highly desirable that more detailed preliminary project planning studies be performed on the individual non-programmed corridors to establish reasonable estimates of right of way requirements and probable locations for access points and service roads.

TABLE OF CONTENTS (cont.)

Append 1 ces
Appendix A County Inventory of SHA Access Controls
A-1
Appendix B 143 Segments State Highey Primary System B-1
Appendix B $\quad 143$ Segments State Highway Primary System
Appendix $C \quad$ Statewide Accident Rates/ 100 MVM Rural and Primary
C-1
Appendix D Segment Priority Listing
Section 1 Inventory of State Highway System Access Controls
Fig. 1 Relationship of Functionally Classified Highways in Serving Traffic Mobility and Land I-3Access
Tab. 1 SHA Access Control Summary I-3
Fig. 2 State Primary Highway System Existing Controls of Access I-4
Fig. 3 Access Control on State Primary Highway System I-5
Fig. 4 Existing Access Controls on SHA System I-6
Tab. 2 State Highway Administration Access Controlled Mileage I-7
Section II Evaluation of Primary System Access Control Needs
Fig. 5 Typical Service Volume for 4 Lane Divided Urban Highway at Level of Service "C" II-2
Fig. 61981 Urban Accident Rate/ $100,000,000$ VMT II-2
Fig. 71981 Rural Accident Rate/ $100,000,000$ VMT II-3
Fig. 8 Typical Accident Rate Per Number of Accident Points Per Mile I I-3
Fig. 9 Typical Auto Emmisions (Various Cruise Speeds II-4
Fig. 10 Increase in Travel Time (hours) Per Year By Adding Signals II-4
Fig. 11 Relationship of Mobility and Land Access II-5
Fig. 12 Greatest Need for Access Control Improvements on Maryland State Primary System I I-10
Section III Primary System Access Control Recommendations
Fig. 13 Corridor-wide Needs Priorities for Access Control Improvements III-2
Fig. 14 Comparison of the the 21 Non-Freeway Corridors III-3
Fig. 15 Summary of Access Control Goals by 2010 II I-4
Tab. 3 State Primary System 1986-2010 Comparison IIT-5
Fig. 16 Status of Recommended Access Control Improvements for 21 Non-freeway Corridors III-6

INVENTORY OF STATE HIGHWAY SYSTEM ACCESS CONTROLS

PURPOSE

The State Highway Administration's jurisdictional responsibilities apply to approximately 5,300 miles of roadway ranging from Interstate freeways to narrow country roads. While the State Highway Administration's system represents only 20% of the total highway mileage in Maryland, it serves a disproportionately high 70% of the estimated annual vehicular miles of travel in the state, exclusive of the toll facilities. This apparent mileage/service imbalance occurs because the State Highway Administration system includes most of the high volume interstate and inter-regional arterials.

With preservation of existing public works systems being a priority at all levels of government, access controls along state Highway Administration arterial highways is a viable method of improving capacity and safety. As a first step in making rational decisions regarding future improvements, this inventory of existing access controls has been developed. Included in Appendix A are detailed maps and line item listings outlining each access controlled state highway.

BACKGROUND

For purposes of this report, control of access is defined as limiting the locations where traffic may enter or exit a highway. Full control of access restricts vehicular access to grade separated interchanges and no driveways or at-grade intersections of any kind are permitted (freeway design). Partial control of access limits access points to major crossroads or major subdivision streets which intersect at grade, but where access to private roads is generally precluded.

These definitions are in conformance with those of the American Association of State Highway and Transportation Officials (AASHTO). Unfortunately, the state's legal description of controlled access highways contradicts the nationally accepted AASHTO definition of design type.

State Facility Definition

By State definition, a fully controlled access roadway is termed "Expressway." In Title 8, Section lol(g) of the Annotated Code of Maryland an expressway is defined as a major highway of four or more lanes that has a median, grade separation at each crossroad, as well as points of entrance and exit limited to predetermined locations. Partially controlled access roadways are denoted as "Controlled Access Highways" in Title 8-101(e) of the Annotated Code of Maryland. This type of highway is defined therein as a "major highway with the same characteristics as an expressway, except that the conflict of cross-streams of traffic is not eliminated necessarily at each intersection by grade separation structures."

By AASHTO definition, control of access is the condition where the right of owners/occupants of abutting land or other persons to access, light, air, or view in connection with a highway is regulated by public authority.

Ful1 control of access means that preference is given to through traffic by providing access connections with selected public roads only, and by prohibiting crossings at. grade or direct private driveway connections. As previously mentioned, the State Annotated Code refers to this type of facility as an "Expressway" while the AASHTO design type is "Freeway."

Partial control of access means that preference is given to through traffic to a degree that, in addition to access connections with selected public roads, there may be some crossings at grade and occasionally private road connections. The State Annotated Code refers to this type of facility as a "Controlled Access Highway." The AASHTO design type is "Expressway" when applied to a multi-lane divided highway.

APPLICATION

Access control is generally accomplished by legally obtaining right of access from abutting property or by the use of frontage roads. The principal advantages of access control are the preservation of the highway's capacity and improved safety for highway users. Some degree of access control should be considered on all arterials and in the development of any
highway on new location. The degree of access control may range from minimum driveway regulations to full control.

Justification for the extent of access control should be based on the highway's functional classification. Functional classification defines the primary purpose the highway is intended to serve. Arterial highways are intended to accommodate relatively long distance trips, thus mobility with the associated need for high level access control is emphasized. At the opposite extreme "locals" are oriented to land access purposes and access controls are neither cost effective or desirable. Collectors serve the dual purposes of providing direct land access and limited mobility service between local roads/properties and arterials. Access controls along collectors are usually limited to controlling median breaks and access point spacing.

Maryland's highways are functionally classified per the following hierarchy:

Principal Arterial
Intermediate Arterial
Minor Arterial
Major Collector
Minor Collector
Local
A schematic representation of the relationship of function to the desirable proportion of a road's service which should be for the purposes of land access and mobility is illustrated in Figure 1.

RELATIONSHIP OF FUNCTIONALLY CLASSIFIED

HIGHWAYS IN SERVING TRAFFIC

MOBILITY AND LAND ACCESS
FUNCTION
PRINCIPAL ARTERIAL

Ideally all arterials are potential candidates for access controls. Of the $5,300+$ miles of existing State Highway Administration roadways only 18% currently have access controls. Considering that approximately 55% of the state Highway Administration system is comprised of arterial facilities, the discrepancy between what is ideally desirable and what exists is very large.

Table 1
SHA Access Control Summary
Total
Primary Secondary System

Full Controls	540	20	560
Partial Controls	224	140	363
Uncontrolled	473	$\underline{3,872}$	$\underline{4,345}$
Total Miles	1,237	4,032	5,268

Since establishing access controls on all existing arterials is neither possible or prudent, the State's Primary Highway System is the focus of access control efforts. This limited mileage system, comprised mainly of principal and intermediate arterials, provides the interstate and inter-regional framework for vehicular travel in Maryland. While representing slightly more than 4% of Maryland's highway mileage, the State Primary Highway System handes nearly 40% of the total vehicular miles of travel. The designated Primary highways are vital to Maryland's social and economic well being and their operational integrity must be preserved.
 importantly, 221 miles of principal arterial primary highways do not have any form of access control. One of the State Highway Administration's highest goals is to protect the nearly 500 miles of primary highways which are currently uncontrolled.

ACCESS CONTROLS ON STATE PRIMARY HIGHWAY SYSTEM

Function

Princlpal Arterlal
intermesiata Arterlal

EXISTING ACCESS CONTROLS ON SHA SYSTEM

UNCONTROLLED HIGHWAYS \square

TOTAL SHA MILAGE PARTIAL ACCESS CONTROLS

FULL ACCESS CONTROLS

Table 2

STATE HIGHWAY ADMINISTRATION ACCESS CONTROLLED MILEAGE*

* Due to rounding, the mileage shown in this table may differ slightly from actual mileage.
(SEE APPENDIX A FOR DETAILED COUNTY INVENTORIES OF ACCESS CONTROLLED SECTIONS)

EY̌ALUATION OF PRIMARY SYSTEM ACCESS CONTROL NEEDS

Preservation and enhancement of the existing State Highway system is a top priority of the Maryland Department of Transportation. Access control is a pragmatic tool to reach this goal.

In support of this statement there are three major State documents Executive Order 01.01 .1982 .08 , Policies to Guide State Actions $\frac{\text { for the Physical and Economic Development of }}{\text { Maryland - July, } 1982 \text {, in section } 2(\mathrm{~F} 4)}$ promulgates, "Maintaining the capacity of the State primary highway system and control highway access to discourage strip commercial and residential development and to satisfy the reasonable access requirement of industry." Also, the Maryland Department of Transportation in a report entitled Primary Highway System Plan Report - January, 1978, clearly states, "the Department shall emphasize appropriate control of access to the Primary Highway System." Also, in December of 1983, the Department published its second State Report on Transportation noting system preservation as being the Department's number one priority.

The Department is committed to providing better and safer highway transportation service and preserving the capacity of the existing highway system, especially the state Primary Highway System which constitutes the state's most important highways.

The State Highway Administration must set priorities for preserving and enhancing the capacity of the existing network. Control of access conserves the limited public dollars by providing a cost effective means of maintaining and even improving the traffic carrying capacity of the existing highway system. By acquiring, or at least preserving, the right-of-way line of through highway, the life of the facility can be extended. Also, acquiring control of access can often be a low cost alternative to major reconstruction or relocation of an existing highway. BY ADOPTING A CONTROL OF ACCESS POLICY AND SETTING IMPLEMENTATION PRIORITIES, OUR LIMITED RESOURCES CAN BE BETTER MANAGED.

The specific objectives which can be attained by access control improvements are as follows:

1. Improve muinline capacity:

There is a direct correlation between the type of access controls on a mainline roadway and the vehicle carrying capacity. This correlation is based upon the fact that as the degree of access is increased, and subsequently eliminate at-grade crossing points, traffic can flow at a smoother, more efficient pace.

The following is an example of capacities on a four lane divided highway at Level of Service ' C' give various degrees of access control. The effect of improving access control is dramatic and in certain areas this action alone would eliminate the need for construction of additional lanes.

FIGURE 5
TYPICAL SERVICE VOLUME FOR 4 LANE DIVIDED URBAN HIGHWAY AT LEVEL OF SERVICE "C"

ROADWAY	FULL TYPE	PARTIAL CONTROL	NO CONTROL
CONTROL			
ILANE DIVIDED	1200	800	550

Source: Maryland-National Capital Park and Planning Commission
2. Improve operational safety:

Accidents are costly. The cost of medical bills, property damage and loss of production work hours runs into multi-billion dollars annually. In addition, the trauma and added human stress one encounters during and after an auto accident cannot be calculated.

FIGURE 6
1981 URBAN Accident Rate/100,000,000 V.M.T.Nation Acc. RateMd. Acc. RateMd. Injury Acc. Rate

As can be seen by the urban and rural accident rate diagrams (Figures 6 and 7), the application and/or improvement of access controls yields a significant reduction in accident occurrence. While Maryland's accident rate experience is very favorable compared to national averages, both diagrams indicate major reductions are still possible through access control improvements. In rural and urban areas of the state freeways are three to five times safer, respectively, than uncontrolled facilities.

FIGURE 8
TYPICAL ACCIDENT RATE PER NUMBER OF ACCESS POINTS PER MILE

Source: Access Manayement tor streets and Highways (FHWA-IP-82-3)
3. Reduce air pollution:

At constant operating speeds, particularly those greater than 45 mph , an automobile covering the same distance emits significantly less pollutants than during acceleration/deceleration operation. Therefore, if access control improvements along a highway provide for higher speed uninterrupted flow conditions, air pollution will be less than for similar roads with more at-grade intersections with lower speeds and interrupted driving conditions.

FIGURE 9
TYPICAL AUTO EMISSIONS A'T VARIOUS CRUISE SPEEDS

Source: Guidelines for Air Quality Maintenance Planning and Analysis Volume (Revised): Evaluation Indirect Sources - September, 1978
4. Improve travel speeds and mobility:

Mobility and speed have a direct correlation to degree of access control. The more conflict points there are on a roadway and the closer their spacing, the lower the overall operating speed will be, along with a corresponding increase in the amount of travel time for the occupants of a motor vehicle.

FIGURE 10
INCREASE IN TRAVEL TIME (HOURS)
PER YEAR BY ADDING SIGNALS

Signals Added	Highway ADT		
	3,000	10,000	20,000
1	358	3,975	15,735
2	715	7,939	31,470
3	1,069	11,914	47,205
4	1,431	15,878	62,941

Data Source: Evaluation of Techniques for the Control of Direct Access to
Arterial Highways
Report No. FHWA-RD-76-85

A schematic representation of the relationship of the roadway's speed, mobility and degree of access control is illustrated in the following Figure ll. By minimizing side friction points, access control improvements can significantly enhance the efficiency and comfort of motor vehicle travel.

FIGURE 11
RELATIONSHIP OF MOBILITY AND LAND ACCESS
5. Maximize energy savings:

Just. as motor vehicles emit more pollutants during acceleration and deceleration, they also use significantly more energy when speed fluctuates than at. constant. speed. A vehicle operating for one mile with stop and start conditions gets 29% less fuel economy than one operating at a constant 55 mph on a freeway for the same distance. The application of enhanced access controls on arterials can have a direct bearing on the motorist's operating cost and the use of limited energy resources.
6. Encourage orderly land use development:

The interrelationship between land development and transportation is inseparable. Highways can promote development or be strangled by the resulting traffic demands of improperly timed or located development.

In order to preserve the functional role of arterial highways, that of moving vehicular traffic over significant distances between land use related points of trip origin and trip destination, restrictions must be placed on the type, number and location of access points along the mainline. This can be accomplished by local zoning and/or building ordinances, regulation of access points (permits), and acquisition of property access rights. Ultimately, the latter method will be the preferred option along many Primary system corridors.

The maximum value for Accident Rate is 20 points.
$<50 \%$ of the average -0 points
$\geq 50 \%$ but < 90% of the average -5 points
$\geq 90 \%$ but < 110% of the average -10 points
$\geq 110 \%$ but < 150% of the average -15 points
$\geq 150 \%$ of the average -20 points

High Accident Locations

This factor is actually the sum of two numbers, High Accident Sections and High Accident Intersections within the designated segment during 1980. These established indices reflect the most serious safety problem areas. Access control improvements could be a viable option to correct these problems.

For the purposes of this study, a high accident section is generally any half-mile section with five or more accidents based on statewide averages, excluding right angle collisions. A high accident intersection is an intersection with eight (8) or more accidents in 1980 based on statewide averages.

The maximum value for High Accident Locations is 5 points.

- No locations	- 0 points
- One location	2 points
- Two or more locations - 5 points	

Fatality Accidents

Fatal accidents are used as an indicator of accident severity. This factor represents the number of accidents, in 1980 , along the designated segment involving one or more fatalities.

The maximum value for Fatality Accidents is 5 points.

- No fatal accidents
- 0 points
- One fatal accident
- 2 points
- Two or more fatal accidents - 5 points

Injury Accident Rate

The accident injury rate for the section is compared to the statewide average for similar facilities and is used as a supplemental indicator of accident severity.

The maximum value based on statewide Injury Accident rate is 5 points.

$<90 \%$ of the average	-0 points
$\geq 90 \%$ but < 110% of the average -2 points	
$\geq 110 \%$ of tie average	-5 points

LAND USE FACTORS

Development pressure

This factor is important in establishing priorities for access control improvements. From a programming perspective, the most critical areas to institute access controls are those undergoing significant land use changes, most of which are along the urban periphery.

For this study, the rate of population change was selected as an indicator of overall development pressure. It is assumed the greater the population growth rate, the greater pressure there is for land development. The ranges used in this category represent the percentage change in population between 1970 and 1980 for the district(s) adjacent to the designed segment as differentiated by the Department of state Planning.

Since two of the benefits of access control can be to prevent/control strip development and promote better land use management, the higher the population growth rate increase, the greater is the need for control of access improvements.

The maximum value for Development Pressure is 20 points.
$<5 \%$ growth
$\geq 5 \%$ points
≥ 25 but $<25 \%$ growth -5 points
$\geq 25 \%$ but $<50 \%$ growth -10 points
$\geq 50 \%$ but $<75 \%$ growth -15 points
$\geq 75 \%$ growth $\quad-20$ points

RATING SUMMARY
The maximum number of deficiency points for roadway segment is 100 . As previously stated, the greater the number of points accumulated for a segment, the greater its need for control of access improvements. The evaluation matrix for the 143 non-freeway primary segments are contained in Appendix B.

EVALUATION RESULTS

After individual evaluation of the 143 nonfreeway segments of the Primary System using the 100 point matrix format, the sections were rank ordered (Appendix D). Scores ranged from 97 (highest need) to 5 (lowest priority). The segments of greatest need are graphically displayed on the accompanying map (Figure 12) on the next page.

When the 143 segments are aggregated based on a per mile deficiency rating, the 21 non-freeway Primary corridors were prioritized in the following order:

Point

		Point Average
Ran	S 50 to MD 100	71.21
1.	MD 2 - US 50 to MD 100 - 695	62.88
2.	US $301 / \mathrm{MD} 3$ - VA Line to I-695	
3	MD 5 - US 301 to D.C. Line	
4	MD 140/MD $30-\mathrm{I}-695$ to PA Line	
5	I-70 - Ijamsville to Patrick Streei	
6	US $50 / \mathrm{MD} 90-\mathrm{I}-68$ to Ocean City	
7.	US 29 - D.C. Line to I-70	7
8	MD 5/MD 235 - US 301 to MD 246	
9.	MD 2 - MD 4 to US 50	0
10	MD 4 - D.C. Line to MD 235	3
11	US 13 - VA Line to Del. Line	
12	US 15/340 - VA Line to PA Line	41.17
13	US 301 - US $50-$ Del. Line	37.34
14	US 220 - W/VA Line to PA Line	
15	MD 24/US 1 - I-95 to PA Line	36.16
16	MD 213/MD 279 - US 301 to I-95	34.45
17.	MD 404 - US 50 to Del. Line	
18	US 48 (US 40) - US 220 to I-70	3.16
19	US 219/US 40 - Oakland to PA Lin	- 31.70
20.	MD 140 - MD 30 to US 15	
21	IJS 113 - US 13 to Del. Line	27.04

Within the following Recommendation Section of this report specific access control needs and improvements are addressed in greater detail on an individual corridor basis.

GREATEST NEED FOR ACCESS CONTROL IMPROVEMENTS

ON MARYLANDS STATE PRIMARY HIGHWAY SYSTEM

PRIMARY SYSTEM ACCESS CONTROL RECOMMENDATIONS

Based upon the Evaluation Section results, this portion of the report addresses specific problems and outlines access control recommendations for the existing twenty-one (21) nonfreeway corridor segments on the State Primary Highway System.* While the ideal basic goal would be to have all principal arterials with full control of access and all intermediate arterials with partial control of access, the report's recommendations have been tempered by pragmatic considerations. Arranged in priority order in terms of need (see Figure l3), the individual corridor recommendations beginning on page III-7 reflect cost effective objecttives which are compatible with other long term plans and expected usage.

GENERAL RECOMMENDATIONS

In the course of this study several recommendations of a comprehensive nature have evolved. The following complimentary actions would be desirable in affecting access control improvements on the state Primary Highway System.

1. Maintain a funding mechanism to purchase strategically located access controls/ property along non-programmed segments of the Primary System. As conceived, the
"Primary Highway System Access Control program" makes purchases from willing sellers, on a case-by-case basis, within Fund 70 of the Consolidated Transportation Program (CTP). It's goal is to enhance and protect access controls at. strategic locations, pending future implementation of major CTP projects, to affect the access control recommendations contained in this report.
2. Develop a written policy addressing access controls. As a minimum the policy should mandate partial control of access on all new construction projects for any arterial highway and partial or full control of access as part of any improvement on the Primary Highway System.
3. Reassess the State Primary Highway System network. Since the last revision in l978, several of the relocation/new construction concepts have been altered. In addition a few of the existing designated highways should be reconsidered due to marginal usage, duplication, and/or fragmentation.

* The Intercounty Connector, MD 100 Extended and the Patuxent Freeway projects create "new" Primary corridors and are not specifically addressed in the report. Given their functional classifications all should be constructed with partial or full controls of access.

CORRIDOR-WIOE NEEDS PRIORITIES

 FOR ACCESS CONTROL IMPROVEMENTS(Rank Order 1-21)

4. The State Highway Administration should encourage local jurisdictions to participate in selective land use planning and development of local support roadways. Special attention should be focused along those corridors where imposing continuous access are deemed to be impractical or unnecessarily disruptive. Each county should develop a Master Plan of Highways with particular emphasis on protecting State Primary Highway corridors. They should specify the intended degree of access control on major highways and promote future access via development of integrated local road network. Parcels of land abutting state highways targeted for access control could be given "interim temporary access" until other elements of the Master Plan have been implemented.
5. Given tight financial constraints, staged implementation of access control improvements should be employed. Emphasis should be placed on implementing partial control of access where applicable, then staged improvement to full control along recommended sections. While not providing the high level of service obtained with full control, partial control adequately addresses other factors and, most importantly due to lower implemenation cost, can enhance and preserve operation along more miles of highway given a fixed investment.
6. It is not imperative, but it would be desirable to modify definations of freeway and expressway in Title 8, Section 101 (G) of the Annotated Code of Maryland. As now defined, the "legal" terms are in
direct contradiction with the more widely accepted design terminology used by A"erican Association of State Highway officials (AASHTO).

SYSTEM RECOMMENDATION SUMMARY

The 21 non-freeway corridors analyzed in this report contain approximately two thirds of the existing State primary mileage. If the recommendations in this section are followed eighty-three percent (838-1,066 miles) of the State Primary System mileage should be fully or partially controlled (53\% and 30\% respectively) in the future (see Table 3). Approximately 220 miles (17\%) of the Primary system do not warrant implementation of continous access controls now or in the near future.

FIGURE: 14

COMPARISON OF THE 21 NON-FREEWAY CORRIDORS

SUMMARY OF ACCESS CONTROL GOALS BY 2010

TABLE 3
STATE PRIMARY SYSTEM - 1986 AND 2010 COMPARISON

Corridor
Termini
Existing Controls (1986)

Full	Part	None	Total	Full	Part	None	Total
3.8	0.0	12.5	16.3	8.5	0.0	7.8	16.
5.5	0.0	63.1	68.6	7.8	60.8	0.0	68.6
0.0	12.2	0.6	12.8	9.4	3.4	0.0	12.8
4.3	0.0	22.3	26.6	9.4	0.0	17.2	26.6
36.1	3.3	0.0	39.4	39.4	0.0	0.0	39.4
17.8	34.9	63.5	116.2	28.9	87.3	0.0	116.2
2.7	18.4	4.1	25.2	21.7	0.0	3.5	25.2
0.0	0.0	38.2	38.2	0.0	0.0	38.2	38.2
0.0	2.2	18.9	21.1	0.0	2.2	18.9	21.1
9.9	10.1	35.6	55.6	10.8	44.8	0.0	55.6
11.7	23.5	9.4	44.6	15.4	29.2	0.0	44.6
19.0	23.2	0.0	42.2	19.0	23.2	0.0	42.2
0.0	39.7	0.0	39.7	0.0	39.7	0.0	39.7
0.0	0.0	23.1	23.1	0.0	5.2	17.9	23.1
0.0	4.1	26.4	30.5	0.0	10.4	18.5	28.9
0.0	2.1	24.3	26.4	0.0	2.1	24.3	26.4
0.0	1.3	21.4	22.7	0.0	17.2	6.4	23.6
13.9	5.0	18.0	36.9	36.9	0.0	0.0	36.9
0.0	3.4	37.5	40.9	0.0	3.4	37.5	40.9
0.0	9.4	22.0	31.4	0.0	31.4	0.0	31.4
0.0	6.0	31.8	37.8	0.0	6.0	31.8	37.8
124.7	198.8	472.7	796.2	207.2	366.3	222.0	795.5
403.9	0.0	0.0	403.9	403.9	0.0	0.0	403.9
11.3*	25.5*	0.0	36.8*	75.3	13.4	0.0	88.7
539.9	224.3	472.7	236.9	686.4	379.7	222.0	,288.1

*Parts of MD 32 and I-795 were recently added to Primary System in 1986.
Mileage not included in original analysis; I-97/MD 32, MD 100, ICC, I-95
ICC, I-95 and I-795/MD 795 (as shown in the 1986-1991 Consolidated
Transportation Program).

Implementing proposed access control improvements on these existing Primary corridors will require a firm commitment of funds and resolve by the state Highway Administration and the Department. As indicatec in Eigure 16 the 1986-1991 Consolidated Transportation Program (CTP) is currently addressing twenty-three percent (23\%) of the proposed primary system recommendations. This coupled with sections that are currently full controlled and the 220 miles of highway where continuous improvements are not deemed effective covers nearly seventy percent (70%) of the mileage in the 21 non-freeway corridors.

FIGURE 16
STATUS OF RECOMMENDED ACCESS CONTROL [MPROVEMENTS FOR 21 NON FP.EEWAY CORRIDORS

The remaining 265 m:les in need of access control improvements :s the area of application for the Primary Hiciway System Access control program. This small informal program will attempt to preserve critical areas along many of these highways intil major reconstruction projects can be giadually added to the CTP. Given limited funcing and manpower four (4) routes are being erohasized; US 50 from US 301 east to Ocean City, US 301 from US 50 south to the Virginia state line, MD 3 from MD 32/I-97 to US 50 and MD $2 / 4$ from MD 258 to MD 264.

FOLLOWUP ACTIONS

The intent of this study/report has been to establish areas of need and develop general recommendations to guide highway and land use planning decisions along the state primary Highway System. An important next step is to perform more detailed preliminary project planning studies on the individual corridors to establish reasonable estimates of right of way requirements and probable locations for access points and service roads. This data is initially needed to guide State Highway Adminstration purchases of property and/or controls, via the Primary Highway System Access control program, and local land use planning decisions.

The following individual corridor recommendations provide a base for the more detailed studies which should follow. In the meantime this report can be used as a general guideline of access control objectives on the state Primary System.

INDIVIDUAL CORRIDOR RECOMMENDATIONS

Note: Improvement references made to FY 1986-1991 Consolidated Transportation Program and
1984 Highway Needs Inventory

MD $2 / \mathrm{MD}$ In CORRIDOR
US 50 to $\mathrm{I}-695$
This corridor currently functions as a principal arterial connecting Baltimore with Annapolis. The route carries a diverse mixture of commuters, shoppers, interstate travelers and vacationers while providing the main supplementary arterial service to the many waterfront communities adjacent to the corridor. Completion of the programmed Arundel Freeway (MD lo) as a multi-lane freeway southward to connect with MD 2 south of MD 100 will provide a much needed bypass of the heavily congested Glen Burnie area and allow the parallel section of Ritchie Highway to serve as a minor arterial support facility.

US 50 to south of MD 100
 (composite score 71)

The major deficiencies along this uncontrolled section are high traffic volumes, above average accident rates and encroaching development. A high number of personal injury accidents occur annually and several areas have been desiunated as High Accident Locations. This section of Ritchie Highway currently carries the highest proportion of long distance trips destined for Annapolis and the Eastern Shore, since many experienced travelers choose to bypass the Glen Burnie area via MD 3/MD 100. In the future the $I-97$ corridor, which is being constructed as an Interstate freeway between Baltimore and Annapolis, will be more attractive for most long distance travelers. When that route is complete, the MD $2 / \mathrm{MD} 10$ corridor will serve as an intermediate arterial.

Existing frontage development precludes major continuous accus amiol improvements along the existing MD 2 alignment. The most cost effective method of improving access control would be TSM measures to include median closures, consolidation of existing entrances including construction of frontage roads at selective locations and control of new development access. Consideration should be given to reconstructing major intersections as warranted as well as adding the fifth and sixth lanes to meet immediate safety and service needs.

MD 3 /US 301 is a principal arterial providing an alternative interstate travelway between Virginia and Baltimore or Washington. In the vicinity of Waldorf, Crofton and Glen Burnie, it also serves as a high volume commuter route. overall, the MD $3 / \mathrm{US} 301$ corridor has the greatest number of seriously deficient sections and would benefit the most by the application of major access control improvements of any state Primary Highway System route.

Virginia State Line to South of Waldorf (composite score 58)

This section has moderate traffic volumes, is about average in terms of safety and has no control of access. Interim consolidation of access points and construction of frontage roads is justifiable in congested areas such as La Plata. Partial control of access should be implemented as part of any major corridor improvement.

South of Waldorf to MD 5 at Brandywine (composite score 81)

The waldorf area has a high rate of suburban development which, in addition to the "dog leg" movement of MD 5 traffic, has generated high traffic volumes on this section. Uncontrolled frontage development along US 301 is a major factor contributing to congestion and mainline safety problems.

The Waldorf Bypass Study should consider an alignment to the east so as to remove MD 5 trips from the entire Waldorf area. In the interim, consolidation of access points along US 301 should be given serious consideration.

It is strongly recommended that this section of the US $301 / \mathrm{MD} 5$ corridor should be upgraded with at least partial control of access as soon as possible. Full control of access along the MD 5 travelway portion is highly desirable.

MD 5 at Brandywine to US 50
(composite score 50)
This section has moderate traffic volumes and no control of access. Suggest interim TSM improvements and consolidation of entrances. partial control of access, with interchanges at high volume intersecting roads is recommended as part of any major reconstruction project.

US 50 to MD 32
(composite score 71)
The major problems are high traffic volumes, above average accident rates and no control of access along this section. Unorthodox median land use near Crofton and Millersville contributes to the safety hazard. While full control of access (freeway) would be desirable, at least partial control is imperative.

MD 32 to I-695
(composite score 78)
The major problems with this segment of MD 3 are high traffic volumes, above average accident rates and no control of access. South of MD 3 Business in the Benfield area unorthodox median land use creates serious safety problems. This section is identified in the 1986-1991 Consolidated Transportation Program for a $6 / 8$ lane freeway reconstruction and will become part of the Interstate System (I-97).

MD 5 CORRIDOR
US 301 to D.C. Line

This roadway serves as a principal arterial connecting D.C. with bedroom communities in prince George's and Charles Counties and provides an alternate interstate route to the south via US 301. The corridor currently has partial control of access except for a small portion north of MD 637 to the D.C. Line. Since most of the highway has partial control the main emphasis is on providing capacity improvements and preserving right-of-way for future freeway conversion south of I-95.

US 301 to I-95
(composite score 60)
The entire section should be upgraded to full control of access. The most immediate service and safety needs occur on the portion between I-95 and MD 223. Continuing suburbanization of this area and the dramatic growth of bedroom communities in Charles County is causing increased congestion with resulting safety problems. A very high number of injury accidents and several fatal accidents have occurred on the portion north of MD 223. South of MD 223 the land use remains mostly rural, with traffic trips being more commuter and traveler oriented.

I-95 to D.C. Line

(composite score 69)
This section is characterized by intense commercial development, high volumes and heavy turning movements. Accidents occur frequently along this section as a result of the congested land use and traffic patterns. The number of injury accidents is high with several areas being identified as High Accident Locations. Except for the portion north of MD 637, enhanced access control is not deemed to be cost effective. Consideration should be given to providing partial control of access for the short uncontrolled section between MD 637 and the Suitland Parkway as part of any future reconstruction.

MD 140/MD 30 CORRIDOR
 I-695 to Pennsylvania State Line

MD $140 / 30$ is a principal arterial corridor which links Baltimore with southern Pennsylvania. South of Reisterstown, MD 140 carries a high volume mix of commuters and through traffic oriented to Baltimore. The area is rapidly becoming more urbanized and intense commercial, industrial and high density residential development abuts the roadway.

North of Reisterstown, MD 30 quickly becomes rural in nature, except as it passes through Hampstead and Manchester, and traffic volumes are only moderate. These older communities allow parking along MD 30. The operating speed is reduced by traffic signals and the increased number of turning movements and homes abutting the roadway. North of Manchester to the Pennsylvania Line, MD 30 again takes on rural characteristics and traffic volumes decline substantially.

$$
\begin{aligned}
& \text { I-695 to MD } 140 \text { (Westminster Pike) } \\
& \text { (composite score } 73 \text {) }
\end{aligned}
$$

The major problems are high traffic volumes and higher than average accident rates. The injury accident rate is well above average and 13 High Accident Locations have been identified along this section. Land development pressure is intense. No access control improvements are recommended along the existing section of MD 140 since the Administration is presently constructing the parallel Northwest

Expressway (freeway). The expressway, which is open to service from I-695 to Franklin Boulevard will become the travelway for this principal arterial corridor. Reisterstown Road will then supplement the corridor by providing minor arterial support, which is more in nature with its geometric condition and lack of control of access.

> MD 140 (Westminster Pike) to Pennsylvania State Line (composite score 49)

MD 30 experiences a higher than average accident rate and continuing growth near Hampstead and Manchester. Traffic volumes have increased 100% over the past decade. No control of access currently exists along this section. In the immediate future access control improvements along the existing roadway should be linited to restricting new access points, consolidating existing ones where practical and TSM techniques (such as removing or restricting the parking in Manchester and Hampstead). Any major construction or reconstruction in this corridor, such as the Hampstead Bypass, should include partial control of access with provision for ultimate full control of access should Pennsylvania decide to upgrade the route.

Full Control

$$
\begin{array}{r}
I-70 \text { CORRIDOR } \\
\text { I-270 to I-695 }
\end{array}
$$

I-70 begins at Baltimore and travels westward across the continent. It is the major Interstate route from the mid-west to the port of Baltimore. This principal arterial currently carries both the US 40 and the I-70 designation from Pine orchard to Frederick City.

MD 144 to Ijamsville Road (Composite Score 54)

The 3.3 mile section from MD 144 (Patrick Street) to Ijamsville Road is the only portion of the $I-70$ corridor in Maryland not built to freeway standards; it currently has partial control of access. A relocation with full control of access is currently under construction. No capital expenditures for access controls are recommended on the existing section of US 40 which will revert to a collector function after the relocation is open to traffic in 1986.

This arterial serves as an extension of $I-68$ near Annapolis to the Delmarva Peninsula and its ocean resorts. In general, the major deficiencies are related to the seasonal traffic variation and insufficient control of access. For the most part this roadway is a four lane divided highway with partial or no control of access. Congestion is greatest near the William Preston Lane, Kent Narrows, Choptank River and Nanticoke River Bridges and in the small urban areas of Easton, Cambridge and Salisbury.

$$
\text { I-68 to US } 301 \text { (composite score 71) }
$$

Land development and traffic growth pressures are greatest in the vicinity of Stevensville in Queen Anne's County and Annapolis on the western shore. This section of US 50 experiiences an accident rate well above the statewide average. Four High Accident Locations have been identified in the Annapolis area and eight within Queen Anne's County. Reconstruction of this section to freeway standards should be a high priority.

US 301 to MD 404 (composite score 47)

After the split with US 301 . US 50 turns southeast with no control of access and a 30% reduction in traffic volume. At the intersection of US 50 and MD 404, another traffic split occurs since both roads serve the recreation centers of the peninsula. High traffic volumes and land development pressures in the immediate future justify priority upgrading to partial control of access. Consideration should be given to constructing interchanges at MD 213 and MD 404 shortly thereafter. Ultimately full control of access should be implemented.

MD 404 to US 13 (composite score 52)
South of MD 404 traffic volumes diminish somewhat with higher volumes occurring in and near the small urban areas. In these areas the
impact of high seasonal volumes coupled with local traffic is greatest. The presence of two 2 lane river crossings (Choptank and Nanticoke) also contributes to service and safety problems along this 59 mile section of US 50 . There is no control of access except east of MD 349 near salisbury. It is, recommended that access control improvements be implemented in the vicinity of the urban areas and river crossings and then be expanded to provide partial control, and in the longer term full control, along this section.

In the Easton area, MD 322, which was built as a western bypass with partial control of access, should be redesignated as US 50 and reconstructed as a divided highway when traffic congestion warrants. In Cambridge, the completion of the new Choptank bridge should enhance traffic operations for the immediate future but consideration of a bypass will be necessary when the entire US 50 corridor is eventually upgraded to freeway standards. In Salisbury an extension of the existing bypass westward will relieve downtown congestion in the future.

MD 13 to OCEAN CITY (composite score 41)

US 50 continues as a principal arterial with partial control of access and reduced traffic volumes until it reaches MD 90, which serves as the principal arterial route into ocean City while US 50 is downgraded to an intermediate arterial. Since MD 90 was constructed to be a full control of access highway and carries an increasing proportion of Ocean city bound traffic, it would be logical to redesignate it as US 50 in the future. Partial controls along existing US 50 end at MD 452 . From there to Assawoman Bay TSM measures, selective frontage roads, and regulation of new access points should be used to obtain the best degree of control practical. The entire US $50 / \mathrm{MD} 90$ alignment should ultimately be upgraded to freeway standards in the future.

MD 2 CORRIDOR
 MD 4 to US 50

While this intermediate arterial links Annapolis with southern Maryland, via MD 4, this portion of MD 2 is primarily commuter oriented serving the many communities in Southern Anne Arundel County. The facility is generally uncontrolled and carries moderate volumes, except in the vicinity of Annapolis. Given the limited volume of through traffic, continuous access controls are not recommended for this corridor.

MD 4 to MD 214
(composite score 35)
The current deficiencies associated with this section are relatively minor as compared to other corridors although considerable residential growth is expected to continue. It is recommended that access controls on the portion between MD 214 and MD 259 be improved through consolidation of existing and future access points wherever feasible. Since the future minimal mileage primary connection to MD 4 is via an improved MD 259, no access control improvements are deemed necessary on the portion of MD 2 south of MD 259 which will revert to the secondary highway system.

MD 214 to US 50
(composite score 65)
With its proximity to the growing Annapolis area, this section of MD 2 experiences relatively high traffic volumes and much higher than average accident and injury accident rates. Four High Accident Locations have been designated within this section. While safety and service problems associated with heavy commuter traffic warrant immediate correction, access control improvements should generally be limited to consolidation of access points, selective frontage roads and land use controls throughout the corridor. However, for any major construction/reconstruction projects partial control of access should be considered.

$$
\text { Priority } 3
$$

 HNI Divided Highway Reconstruct

HNI Freeway Reconstruct
t

Construction Program Interchange Modification

D\&E Program
Divided Highway Reconstruct with access control improvements (including bridge)

1

$$
\begin{aligned}
& \text { MD } 4 \text { (MD } 2 / 4) \text { CORRIDOR } \\
& \text { MD } 235 \text { to D.C. Line }
\end{aligned}
$$

This corridor and the MD 5 corridor link southern Maryland and Washington, D.C. To an increasing degree most of Southern Maryland is becoming more urban oriented. As an intermediate arterial and commuter route, the application of access control improvements will be needed to preserve the vehicular carrying capacity of MD 4 .

MD 235 to US 301
(composite score 43)
The northern portion of this section is currently experiencing significant development pressures from the D.C. urbanized area and moderate traffic volumes occur. Except for the Wayson's Corner area, the Anne Arundel County portion is partially controlled while the section in Prince George's county is fully controlled. The Wayson's Corner area, given its high accident rate, should be given top priority and form the focal point of access improvements to upgrade the remaining portion of the MD 4 (MD 2) corridor. Full control of access is recommended north of MD 260 due to higher traffic volumes. Elsewhere, partial control with selective interchanges at high volume crossroads in order to maintain a high degree of mobility on the mainline is desirable. MD $2 / 4$ from south of MD 264 to the Thomas Johnson Bridge is currently being reconstructed to a four lane divided highway. Partial control of access has been incorporated into the reconstruction.

US 301 to I-95
(composite score 42)

Most of this section has full control of access. Partial controls exist from I-95 to Dower House Road. It is recommended that this section be upgraded to full control as soon as possible to establish design continuity. The section currently experiences an above average accident rate.

> I-95 to D.C. Line (composite score 42)

This section has partial control of access. It is recommended that the existing roadway be preserved by maintaining the present level of control and as needed improve operation by TSM measures at critical locations. The District of Columbia has no plans to significantly improve their portion of this corridor.

US 13 CORRIDOR

Virginia State Line to Delaware State Line

This corridor serves as a principal arterial connecting the Delmarva Peninsula and northern East Coast cities with Norfolk via the Chesapeake Bay Bridge/ Tunnel. While much of the traffic is interstate in nature, the Salisbury urban area is also a center of commuter oriented traffic.

$$
\begin{aligned}
& \text { Virginia State Line to US } 113 \\
& \text { (composite score } 30 \text {) }
\end{aligned}
$$

This section has no control of access south of MD 366. The roadway is a 4 lane divided highway which currently operates with moderate traffic volumes through a rural countryside without major problems. Partial control of access is recommended to preserve the route's operational level. Consideration might be given to full control if Virginia substantially upgrades its portion.

US 113 to North Termini Salisbury Bypass (composite score 44)

The newly constructed Salisbury Bypass is fully controlled with the remainder of US 13 being partially controlled. While no further improvement of access control is warranted at this time, ultimately full control would be desirable along this important principal arterial corridor if Delaware and/or Virginia substantially improve their portions of US 13.

North Termini Salisbury Bypass to Delaware Line (composite score 45)

This section has no control of access but carries the highest traffic volumes. It is recommended partial control should be implemented to preserve the roadway's functional integrity. Full control might be considered in the near future if Delaware were to substantially upgrade their portion of this facility.

US 15/US 340 VA LINE to PA LINE

US 15/340 CORRIDOR
Virginia State Line to Pennsylvania State Line
Due to mountainous terrain to the west, US 15/ 340 provides an alternative principal arterial corridor to I-81. The corridor serves a moderate volume of interregional traffic, with rapid urbanization and increasing commuter traffic in the vicinity of the City of Frederick. Pennsylvania has a 2 lane fully controlled highway bypassing Gettysburg. Most other corridor improvement projects within the adjacent states have been deferred.

```
Virginia State Line to I-70
    (composite score 45)
```

US $340 /$ US 15 south of Frederick was upgraded to a 4 lane freeway in the 60's except for the section from the Washington County Line to the Virginia state Line, where only partial control of access exists. While adequate for the foreseeable future, this small section should be lipgraded to full control when and if Virginia and West Virginia substantially improve their portion of the corridor. Their portion is substandard and motorists and truckers often avoid it.

I-70 to Pennsylvania State Line (composite score 41)

The portion in the city of Frederick is fully controlled. Recent reconstruction of the last undivided portion of this roadway near Thurmont establishes at least partial control of access throughout this section. It is expected this project will eliminate the most
critical service and safety problems, which had plagued US 15 for many years. Ultimately, on a individual basis, interchanges should be constructer to extend the fully controlled section beyond MD 26 to the Pennsylvania Line.

```
US 301
US 50 to DEL LINE
```

D\&E Program Study New Tnterchange at MD 213 \& US 301

US 301 CORRIDOR

$$
\begin{aligned}
& \text { US } 50 \text { to Delaware Line } \\
& \text { (composite score } 37 \text {) }
\end{aligned}
$$

This principal arterial links the Chesapeake Bay Bridge with the Upper Shore and Delaware. Currently the roadway is a 4 lane divided highway with partial control of access. Generally the significant problem is accidents at or in the vicinity of the unsignalized intersecting roadways. TSM improvement emphasis should be given to these locations for the immediate future.

While partial control of access adequately serves the relatively low traffic and the adjoining land use, this corridor does have the potential, with improved connections within Delaware, to become a more attractive alternative facility for north/south interstate travel. The State of Delaware is currently studying US 301 corridor improvements and, if implemented, Maryland should proceed toward ultimate full control by constructing interchanges where they are individually warranted by service and safety factors.

MD 24/US 1 CORRIDOR
I- 95 to Pennsylvania State Line

MD 24 from I-95 to US 1
(composite score 51)

The MD 24/US 1 corridor is a unique route within the state Primary Highway System. As the dogleg configuration might indicate, through trip travel on this routing is minimal. While MD 24 carries heavy traffic volumes, most trips are oriented from the Bel Air area to $I-95$ and then via $I-95$ to major regional/national activity centers. The trip length on MD 24 is relatively short and traffic is dominated by commuter/local business trips. US 1 serves the growing, but still predoninately rural sections of northeastern Harford County and provides the most direct access to Bel Air. While trip lengths tend to be longer, overall volumes are at best moderate with a low percentage of interstate or interregional traffic at this time.

IJS 1 and MD 24 serve independent purposes and io not constitute a singular routing. It is recommended no access control improvements, other than those currently programmed, be implemented pending study of this corridor as a primary route. Given the rapid growth of western Harford County and northeastern Baltimore county and their orientation to Baltimore the study should include the section of the US 1 corridor between I-695 and MD 24 Relocated.

MD 24 is a minor arterial connecting I-95 with US 1. The MD 24 corridor south of Bel Air is a major growth area in Harford County. The section of the existing roadway immediately south of US 1 Business has an accident rate almost three times the statewide average. High traffic volumes, heavy development pressure and no control of access have prompted construction of ? 4 lane divider relo cation with partial control of access.

US 1 from MD 24 to Pennsylvania State Line (composite score 3l)

This intermediate arterial serves the communities in northern Harford and Cecil Counties, and provides the only free bridge across the Susquehanna River in Maryland. The US 1 Bypass of Bel Air has full control of access, but from north of Bel Air to MD 273 in Cecil County no access controls exist. North of MD 273 partial control exists. Traffic volumes are molerate with higher than average accident rates occurring along the unimproved portion.

Pennsylvania has upgraded portions of their US 1 corridor substantially, while Maryland has not made a similar commitment. Pending study of the entire US $1 / M D 24$ corridor, access control improvements along non-programmed sections should be limited to consolidations of existing residential and conmercial entrances, regulation of new access points and TSM safety/ service measures at specific locations.

I I. I-38

```
MD 213/MD 279 CORRIDOR
    US 301 to I-95
(composite score 34)
```

This intermediate arterial corridor, including portions of MD 279 and MD 313, connects the Upper Shore with I-95 and US 301. MD 213 is a regionally important roadway providing access from the upper Eastern Shore to the Wilmington metropolitan area. It bisects the fastest growing area of Cecil county - the Greater Elkton Planning Area. It is in this area traffic volumes and corresponding accident rates are highest. South of the Elkton vicinity traffic volumes diminish progressively. The volume of through traffic is relatively low, perhaps in part due to the fact the present conditions of the bridges over the major rivers prevent truck traffic from using MD 213.

All major construction projects warranted by localized safety, service and/or structural conditions, such as the purposed Elkton Bypass, should include partial control of access. Other access control improvements along the existing roadway should be limited to consolidation of existing entrances and control of new access points, except the section north of the C\&D Canal to the proposed Elkton Bypass where partial control is deemed to be desirable.

At present, Delaware is studying improvements of its portion of US 301 which closely parallels the US 213 corridor. Given the current low usage of MD 213 for through traffic trips and to avoid duplication of expenditures and facilities, should Delaware elect to significantly improve US 301, no continuous corridorwide access control improvements are recommended at this time. Consideration might be given to removing MD $213 / \mathrm{MD} 279$ from the Primary system in the future.

MD 404 CORRIDOR
US 50 to Delaware State Line

MD 16 to Delaware State Line (composite score 30)

MD 404 functions as an intermediate arterial and links US 50 with Denton and the Delaware resorts. It is used as an alternate route between the Bay Bridge and the ocean resorts which accounts for a high seasonal variation in traffic volumes. While MD 404 maintains a adequate level of traffic operation eight months a year, increased volumes during the summer months create interrupted flow and low operating speeds on this two lane roadway.

US 50 to Denton Bypass, west of Denton
 (composite score 30)

A priority along MD 404 is that partial control of access should be acquired between US 50 and the Denton Bypass. The existing right-of-way is adequate to construct a four lane divided roadway. Additional right-of-way may be required where service roads are needed to establish partial control of access.

```
Begin Denton Bypass, west of Denton to
    MD 16, east of Denton
    (composite score 45)
```

MD 404 within the Town of Denton has the worst cumulative rating due to its high accident rate, which is five times higher than comparable roadways on the state system, and highest traffic volumes. In addition, the injury accident rate is twice the statewide average. This portion has the highest priority for access control improvements along the MD 404 corridor. This section, which includes MD 404 Relocated around Denton (open to traffic in 1988), should have partial control of access provisions included in any major improvements.

The acquisition of partial access controls as part of roadway dualization between the Denton Bypass and Delaware should be considered in the future. The reconstruction of this easternmost section should be coordinated with and dependent upon the state of Delaware improving its portion of the MD 404 corridor. In the interim access control improvements should be limited to selective consolidation of entrances, TSM measures and regulation of new access points.

US 40 \& US 48
 US 220 to $\mathrm{I}-70$

US 48 (US 40) CORRIDOR
US 220 to $I-70$
(composite score 33)

US 40, the National Pike, connects Cumberland, via $1-70$, with major East Cost cities. The section is scheduled to be upgraded as part of US 48 corridor, the National Ereeway.

Existing US 40 east of Cumberland is a combination of two to four lanes of mountainous roadway with full or partial control of access in very few locations. The reconstruction along US 40 east of Cumberland will fill in the missing link of an improved freeway connection across the mountains of Western Maryland. The Administration is committed to compelling a four lane freeway in this corridor. Any investment in the highway network in Western Maryland, along with a sound economic development plan, could lead to an influx of dollars and stronger economy for the region.

HNI
Multi-Iane Urban Construct

US $219 /$ US 40 CORRIDOR
Oakland to Pennsylvania State Line

US 219 functions as the intermediate arterial connection between Oakland, the county seat of Garrett County, and US 48. US 219 is also the major access route south from US 48 to the recreational area around Deep Creek Lake.

> MD 135 to US 48
> (composite score 33)

The major problem is peak summer traffic volumes which increases approximately 50% above the average daily traffic volume. Additionally, the accident rate in Oakland is 30% higher than the statewide average for roadways with the same design characteristics. The corridor is also being affected by continuing development pressure in the Deep Creek Lake area.

The purchase of continuous access controls along the existing roadway in Oakland is not feasible due to the significant adjacent development. In order to alleviate this greatest problem area, it is strongly recommended that a bypass of Oakland be built from the MD 219 (South) and MD 135 intersection east of Oakland to MD 219 at Cherry Glade Run, north of Oakland, with partial access controls.

Ideally, partial control of access should be established along all of US 219 north of Oakland to US 48. This should be implemented primarily in conjunction with future dualization along much of this roadway. It is recognized, however, this highway also serves the purpose of providing the only local access to several areas. Accordingly, compromises will be necessary at locations where eliminating all local access points may not be cost effective or in the best interest of the local economy.

US 48 to Pennsylvania State Line (composite score 20)

This section of US 40 serves an intermediate arterial function since the US 48 corridor has been completed west through West Virginia. It provides the most direct access to several small to moderate sized urban areas in southwestern Pennsylvania.

Access control improvements along US 40 north of US 48 will be limited to providing continuous left hand turn lanes within the existing right-of-way, minimizing the number of new access points and consolidating existing ones when practical.

MD 140 CORRIDOR
Northwest Expressway (MD 795) to US 15

MD 97 to US 15
(composite score 21)

MD 140 functions as an intermediate arterial and connects the towns of Taneytown and Westminster with the northwestern Baltimore suburbs and US 15. The eastern part of the corridor is a heavily used commuter route to Baltimore while the portion west of Westminster services a rural area with limited through trips.

$$
\begin{aligned}
& \text { MD } 795 \text { to MD } 97 \text { North } \\
& \text { (composite score } 41 \text {) }
\end{aligned}
$$

This portion is another example, like Ritchie Highway, of the consequences of not providing adequate access control provisions in past new construction projects. Although most of this section was constructed as a bypass/reloccation in the fifties, today much of it serves as a commercial strip. While the impact of land development with unrestricted access is greatest in the immediate environs of Westminster, the continued suburbanization of eastern Carroll County continues to generate greater traffic volumes which also impacts the roadways service capabilities.

Partial control should be established along MD 140 to improve mobility and prevent additional direct land service access. It is recognized this will be difficult and expensive to attain partial controls, particularly at certain heavily developed locations. Development of service roads, interchanges when warranted by service volumes, consolidation of existing entrances and strict regulation of new access points should be pursued immediately to prevent further deterioration. A new bypass option is being considered in the vicinity of Westminster.

From US 15 to north of Westminster, MD 140 travels through a rural setting with little pressure for roadside development except in the area around Taneytown. The major problem area in this section is through Taneytown, where MD 140 is a typical small town street with parking allowed on both sides and resiidents and commercial establishments have direct access. This results in a higher than average accident rate. The state is currently studying a bypass proposal which should include partial control of access provisions as part of its construction.

East of Taneytown to MD 31 near Westminster, MD 140 was constructed in the early 1960's with partial control of access and right-ofhighway accommodate a ultimate four lane divided highway. No additional upgrading of access control is recommended at this time. West of Taneytown partial access control should be pursued in the future.

US 113 CORRIDOR
US 13 to Delaware State Line

US 113 serves as an intermediate arterial and connects the largest communities of Worcester County on a north/south axis. The section north of US 50 is affected to a greater degree by resort traffic and development.

$$
\begin{gathered}
\text { US } 13 \text { to US } 50 \\
\text { (composite score } 26 \text {) }
\end{gathered}
$$

This section has no control of access except for the bypass of Snow Hill. The roadway is generally adequate except for the accident rate which is above the statwide average in the vicinity of Berlin. Traffic volumes are generally low with increases in and near the major towns. It is recommended that when the roadway between Snow Hill and Berlin is reconstructed partial control of access be incorporated into its design. In the interim, access control improvements, should include stringent regulation of new access points, consolidated of entrances and TSM measures. South of Snow Hill these "interim" measures should be sufficient for the long term as well.

US 50 to Delaware State Line (composite score 32)

This section has no control of access except in the area of the US 50 interchange. Traffic volumes are heavier than generally found on the section south of US 50 , with the segment in the vicinity of MD 90 experiencing higher than average accident and personal injury rates. When this roadway is relocated in the
future it is recommended that partial control of access be incorporated into its design. In the interim selective consolidation of entrances, TSM measures and regulation of new access points should be pursued.

APPENDICES

APPENDIX A COUNTY INVENTORY OF SHA ACCESS CONTROLS

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 126.55)

$\begin{gathered} 1980 \text { State Functional } \\ \text { Classification } \end{gathered}$	Full Controls	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	Total Mileage
Principal Arterial	19.36	4.08	21.87	$\begin{aligned} & 45.31 \\ & (73 \%) \end{aligned}$
Intermediate Arterial	0	0	14.00	$\begin{aligned} & 14.00 \\ & (22 \%) \end{aligned}$
Minor Arterial	0	0	2.71	$\begin{aligned} & 2.71 \\ & (48) \end{aligned}$
Major Collector	0		0.56	$\begin{array}{r}0.56 \\ \text { (18) } \\ \hline\end{array}$
Total	19.36	4.08	$\overline{39.14}$	$\overline{62.58}$
	(31\%)	(7\%)	(628)	(100\%)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
None in Allegany County			

PRIMARY SYSTEM BREAKDOWN

PRIMARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
US 40 IUS 48 US 40 IUS 220 US US US US U0 US 48	Garrett County Line to MD 639 MD 639 to MD 144 AN MD 144 AC to MD 144 AD US 40 Scenic to east of Mountain Road East of Mountain Road to east of Orleans Road	$\begin{array}{r} 13.10 \\ 2.58 \\ 0.85 \\ 3.23 \\ 3.68 \end{array}$	Prin. Art。 Prin. Art. Prin. Art. Prin. Art. Prin. Art.	Full Full Partial Partial Full

SECONDARY SYSTEM BREAKDOWN										
Route	Limits	Length	State							
Function										Type of
:---:										
Controls										

ANNE ARUNDEL COUNTY

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 108.11)

1980 State Functional Classification	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	Total Mileage
Principal Arterial	43.80	6.43	19.56	$\begin{aligned} & 69.79 \\ & (64 \%) \end{aligned}$
Intermediate Arterial	4.70	9.23	20.59	$\begin{aligned} & 34.52 \\ & (32 \%) \end{aligned}$
Minor Arterial	3.80	0	0	$\begin{aligned} & 3.80 \\ & (4 \%) \end{aligned}$
Total	$\begin{aligned} & 52.30 \\ & (48 \%) \end{aligned}$	$\overline{15.66}$ (15%)	$\begin{aligned} & \overline{40.15} \\ & (37 \%) \end{aligned}$	$\begin{aligned} & 108.11 \\ & (100 \%) \end{aligned}$

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 236.11			
Classification Clanal	Full Controls	Partial Controls	Total Controlled Mileage
Principal Arterial	3.70	0	3.70
Intermediate	3.81	1.36	5.17
Minor Arterial	0	2.18	2.18
Major Collector Total	$\frac{0}{7.51}$	$\frac{0.76}{4.30}$	$\frac{0.76}{1.81}$

Route	Limits	Length	State Function	Type of Controls
MD 2	MD 393 to US 50	0.94	Int. Art.	Partial
MD 3	MD 3 Bus. to I-695 @ I-895A		Prin. Art	Full
MD 4	Calvert County Line to Sands Road	3.40	Int. Art.	Partial
MD 10	MD 648E to MD 695	3.80	Minor Art	Full
MD 32	Waterbury Road to Discus Mill Road	4.75	Int. Art.	Partial
MD 32	MD 295 to Howard County Line	1.04	Prin. Art	Partial
MD 46	BWI Airport to MD 295	2.08	Int. Art.	Full
$\left\|\begin{array}{ll} \text { US } & 50 \\ / 301 \end{array}\right\|$	Prince George's County Line to MD 786C	11.83	Prin. Art	Full
US 50	MD 786C to Sandy Point Road	5.39	Prin. Art	Partial
$\left\|\begin{array}{ll} \text { US } & 50 \\ / 301 \end{array}\right\|$	Sandy Point Road to Queen Anne's County Line (toll)	2.88	Prin. Art	Full
MDI00	MD 10 to MD 3	3.80	Int. Art.	Full
MD295	Prince George's County Line to Baltimore County Line (part Federal)	15.24	Prin. Art,	Full

PRIMARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{aligned} & \mathrm{I}-695 \\ & \mathrm{MD695} \\ & \mathrm{I}-895 \end{aligned}$	MD 3 to Baltimore County Line Baltimore City Line to MD 3 Baltimore County Line to Baltimore City Line (toll)	$\begin{aligned} & 2.81 \\ & 2.63 \\ & 0.78 \end{aligned}$	Prin. Art Prin. Art Prin. Art	Full Full Full
SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
MD 32	MD 178 to MD 32 Ult. and MD 32 Ult. to MD 175	1.36	Min. Art.	Partial
MD 70	College Creek to US 50	1.31	Min. Art.	Partial
MD100	MD 607 to MD 10	3.81	Int. Art.	Full
MDI 00	MD 177 to MD 607	0.76	Maj. Coll	Partial
MD424	MD 793 to US 50/301	0.87	Min. Art.	Partial
I895A	MD 3 to I-895B	0.82	Prin. Art	Full
$\begin{aligned} & \mathrm{I}- \\ & 895 \mathrm{~B} \\ & \hline \end{aligned}$	MD 2 to I-895	2.88	Prin. Art.	Full

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 114.29)

1980 State Functional Classification	Full Controls	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	Total Mileage
Principal Arterial	97.86	0	11.10	$\begin{aligned} & 108.96 \\ & (95 \%) \end{aligned}$
Intermediate Arterial	0	0	2.53	$\begin{aligned} & 2.53 \\ & (2 \%) \end{aligned}$
Minor Arterial	0.99	0	0	$\begin{aligned} & 0.99 \\ & (18) \end{aligned}$
Major Collector	1.81	0	0	$\begin{array}{r} 1.81 \\ (2 \%) \\ \hline \end{array}$
Total	100.66	0	13.63	114.29
	(88\%)	(0\%)	(12\%)	(100\%)

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 275.89)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Intermediate Arterial	3.45	2.55	6.00
Minor Arterial	0.85	1.13	1.98
Major Collector	$\underline{0.59}$	$\underline{0.15}$	$\underline{0.74}$
Total	4.89	3.83	8.72

EXISTING ACCESS CONTROL Primary System
\qquad Full Control Partial Control No Control
ニニニニ Proposed Primary Secondary System
\longrightarrow Full Control
－ーー一 Partial Control No Control

CALVERT COUNTY MARYLAND

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 41.81)

1980 State Functional Classification	Full Controls	Partial Controls	No Controls	Total Mileage
Intermediate Arterial	0	6.14	35.67	41.08
				(100%)
	$\overline{0}$	$\overline{6.14}$	$\overline{35.67}$	$\overline{41.08}$
	(0%)	(15%)	(85%)	(100%)

PRIMARY SYSTEM BREAKDOWN				
Rout	Limits	Length	State Function	$\begin{aligned} & \text { Type of } \\ & \text { Controls } \end{aligned}$
$\begin{cases}M D & 2 \\ 4 & \\ M D & 4\end{cases}$	0.6 mile south of Parran Road to MD 264 St. Mary's County Line to MD 2	$\begin{aligned} & 5.49 \\ & 0.65 \end{aligned}$	Int. Art. Int。Art。	Partial Partial

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 82.08)

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 139.77)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Minor Arterial	0	3.45	3.45
Total	$\overline{0}$	$\overline{3.45}$	$\overline{3.45}$

PRIMARY SYSTEM BREAKDOWN						
Route	Limits	Length	State Function	Type of Controls		
MD404	Watts Creek to Double Hills Road Gay Street to Sharp Road	0.25	1.11	Int. Art.	Partial	Int. Art.
:---	Partial	Part				
:---						

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
MD 313	MD318 @ MD 634 to Faulkner Branch	3.45	Min. Art.	Partial

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 37.61)

1980 State Functional Classification	Full Controls	Partial Controls	No Controls	Total Mileage
Principal Arterial	1.61	0	11.12	12.73 (34%) Intermediate Arterial
	0	9.38	15.50	24.88 Total
	$\overline{1.61}$	$\overline{9.38})$	$\overline{26.62}$	$\overline{37.61}$
	(4%)	(25%)	(71%)	(100%)

PRIMARY SYSTEM BREAKDOWN							
Route	Limits	Length	State Function	Type of Controls			
I-70	Frederick County Line to Howard County Line MD 31 to MD 832	1.61	Prin. Art.	Full			
MDl		9.38	Int. Art.	Partial			

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
MD 26	Martz Road to Emerald Lane	1.70	Min. Art.	Partial
MD 26	Klees Mill Road to Freter Rd	- 62	Min. Art.	Partial
MD 27	I-70 to MD 808A	2.88	Min. Art.	Partial
MD 27	WM R / R to MD 852G	2.40	Min. Art.	Partial
MD 31	New Windsor to MD 140	6.10	Min. Art.	Partial
MD 32	Howard County Line to north	1.48	Min. Art.	Partial
MD 91	MD 897D to MD 140	0.35	Min. Art.	Partial
MD 91	MD 140 to MD 879E	0.79	Maj. Coll.	Partial
MD 97	MD 850 H to begin divided highway near MD 140	9.35	Min. Art.	Partial

PENNSYLVANIA

CECIL COUNTY MARYLAND

EXISTING ACCESS CONTROL Primary System
Full Control
－are Partial Control
— No Control
ニニニー Proposed Primary
Secondary System

－ーーー Partial Control
— No Control

CECIL COUNTY

EXISTING CONTROL OF ACCESS

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 53.73)

1980 State Functional Classification	Full Controls	Partial Controls	No Controls	Total Mileage
Principal Arterial	18.56	3.20	0	21.76 (41%) Intermediate Arterial
	0	2.05	20.53	22.58 (42%) Minor Arterial
Total	0	4.06	5.33	9.39 (17%)

PRIMARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
US 1	MD 273 to Pennsylvania	4.06	Min Art.	Partial
I-95	Harford County Line to Delaware State Line (Toll)	18.56	Prin. Art	Full
MD2 79	Big Elk Creek to MD 823 at Chestnut Hill Road	2.05	Int. Art.	Partial
US 30	Delaware State Line		Prin. Art	Partial

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 164.96)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Minor Arterial	0	3.44	3.44
Total	$\overline{0}$	$\overline{3.44}$	$\overline{3.44}$

1980 State Functional Classification	Full Controls	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	Total Mileage
Principal Arterial	0	0	26.57	$\begin{aligned} & 26.57 \\ & (688) \end{aligned}$
Intermediate Arterial	0	0	12.37	$\begin{aligned} & 12.37 \\ & (328) \end{aligned}$
Total	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & 38.94 \\ & (1008) \end{aligned}$	$\begin{aligned} & 38.94 \\ & (100 \%) \end{aligned}$

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
None in Charles County			

PRIMARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
	None in Charles County			

SECONDARY SYSTEM BREAKDOWN								
Route	Limits	Length	State Function	Type of Controls				
	None in Charles County							

$$
A-16
$$

DORCHESTER COUNTY

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE - 121.26)

1980 State Functional Classification	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	No Controls	$\begin{gathered} \text { Total } \\ \text { Mileage } \end{gathered}$	$\begin{gathered} 1980 \text { State Functional } \\ \text { Classification } \end{gathered}$	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	Total Controlled Mileage
Principal Arterial	0	0	16.95	$\begin{aligned} & 16.95 \\ & (100 \%) \end{aligned}$	None in Dorchester County			
Total	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \overline{16.95} \\ & (100 \%) \end{aligned}$	$\begin{aligned} & \overline{16.95} \\ & (100 \%) \end{aligned}$				

Full Control
－ーー一 Partial Control
No Control

EXISTING CONTROL OF ACCESS

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 85.11)

1980 State Functional Classification	Full Controls	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Milleage } \\ \hline \end{gathered}$
Principal Arterial	55.55	24.93	0	$\begin{aligned} & 80.48 \\ & (95 \%) \end{aligned}$
Intermediate Arterial	0	0	4.63	$\begin{aligned} & 4.63 \\ & (5 \%) \\ & \hline \end{aligned}$
Total	$\begin{aligned} & \overline{55.55} \\ & (66 \%) \end{aligned}$	$\begin{aligned} & 24.93 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & \overline{4.63} \\ & (5 \%) \end{aligned}$	$\begin{aligned} & \overline{85.11} \\ & (100 \%) \end{aligned}$

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Intermediate Arterial	0	7.21	7.21
Minor Arterial	0	2.21	2.21
Total	$\overline{0}$	$\overline{9.42}$	$\overline{9.42}$

PRIMARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{gathered} \text { US / } 15 \\ 340 \end{gathered}$	US 15 to US 40	4.74	Prin. Art.	Full
US 15	US 15/340 to north of MD355	3.42	Prin. Art.	Full
US 15	North of MD 355 to Pennsylvania State Line	21.63	Prin. Art.	Partial
US 40	US 15 at Jefferson Street to I-70/I-270	1.33	Prin. Art.	Full
US 40	MD 144 to Ijamsville Road	3.30	Prin. Art.	Partial
I-70	Washington County Line to MD 144	16.92	Prin. Art.	Full
I-70	Ijamsville Road to Carroll County Line	8.96	Prin. Art.	Full
I-270	Montgomery County Line to I- 70	10.06	Prin. Art.	Full
US 340	Washington County Line to US 15	10.12	Prin. Art.	Full

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{array}{ll} \text { US } & 15 \\ \text { MD } & 26 \\ \text { MD } 194 \end{array}$	Potomac River to UD 340 US 15 to 0.3 mile east of MD 355 Walkersville Bypass	$\begin{aligned} & 7.21 \\ & 0.83 \\ & 1.38 \end{aligned}$	Int. Art. Min. Art. Min. Art.	Partial Partial Partial

GARRETT COUNTY

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 136.49)

$\begin{gathered} 1980 \text { State Functional } \\ \text { Classification } \end{gathered}$	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Mileage } \\ \hline \end{gathered}$
Principal Arterial	32.15	0	0	$\begin{aligned} & 32.15 \\ & (52 \%) \end{aligned}$
Intermediate Arterial	0	3.40	26.37	$\begin{aligned} & 29.77 \\ & (48 \%) \end{aligned}$
Total	$\begin{aligned} & \overline{32.15} \\ & (52 \%) \end{aligned}$	$\begin{aligned} & \overline{3.40} \\ & (5 \%) \end{aligned}$	$\begin{aligned} & \overline{26.37} \\ & (43 \%) \end{aligned}$	$\begin{aligned} & \overline{61.92} \\ & (100 \%) \end{aligned}$

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Intermediate Arterial	0	3.35	3.35
Total	-	-	-
	0	3.35	3.35

PRIMARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{aligned} & \text { US } 48 \\ & \text { US219 } \end{aligned}$	West Virginia State Line to Allegany County Line Deep Creek Bridge to MD 42	$\begin{array}{r} 32.15 \\ 3.40 \end{array}$	$\begin{aligned} & \text { Prin. Art } \\ & \text { Prin. Art } \end{aligned}$	Full Partial

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\left\lvert\, \begin{aligned} & \text { MD 135 } \\ & \text { MD } 135 \\ & \text { US } 219 \end{aligned}\right.$	US 219 south to Little Youghioheny River MD 38 to MD 135C B\&O Bridge to MD 135	$\begin{aligned} & 1.34 \\ & 1.40 \\ & 0.61 \end{aligned}$	Int. Art. Int. Art. Int. Art.	Partial Partial Partial

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 41.25)

1980 State Functional Classification	Full Controls	Partial Controls	Controls	Total Mileage
Principal Arterial	18.34	0	0	18.34
Minor Arterial	2.20	0	20.71	(44%) 22.91 (56%)
Total				
	$\overline{20.54}$	$\overline{0}$	$\overline{20.71}$	$\overline{41.25}$
	(50%)	(0%)	(50%)	(100%)

\(\left.$$
\begin{array}{l}\text { STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 235.86) } \\
\begin{array}{|l|c|c|c|}\hline 1980 \text { State Functional } \\
\text { Classification }\end{array} \\
\hline \begin{array}{c}\text { Full } \\
\text { Controls }\end{array} \\
\begin{array}{l}\text { Partial } \\
\text { Controls }\end{array}\end{array}
$$ \begin{array}{c}Total Controlled

Mileage\end{array}\right]\)| Minor Arterial |
| :--- |
| |

PRIMARY SYSTEM BREAKDOWN						
Route	Limits	Length	State Function	Type of Controls		
US 1	MD 24 Relocated to US l Business north of Bel Air Baltimore County Line to Cecil County Line (Toll)	2.20	Min。Art.	Full		

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
US 1	MD 147 to MD 24 Relocated	2.32	Min. Art.	Full
MD 22	I-95 to Aberdeen Proving	3.13	Int. Art.	Partial
	Grounds			
MD 23	US 1 to MD 165	6.73	Min. Art.	Partial
MD 24	I-95 to Aberdeen Proving	3.55	Min. Art.	Partial
	Grounds			
MD152	I-95 to Old Mountain Road	0.84	Min. Art.	Partial
MD152	Old Mountain Road to	0.81	Min. Art.	Partial
	Stockton Road			
MD152	MD 147 to end divided highway	0.43	Min. Art.	Partial
MD152	Connelly Road to Carrs Mill	1.20	Min. Art.	Partial
MD155	Hope Mill Road to MD 156	1.34	Min. Art.	Partial
MD155	MD 462 to I-95	1.77	Min. Art.	Partial
MD165	Old Pylesville Road to	3.64	Min. Art.	Partial
MD 715	US 40 to Aberdeen Proving Grounds	1.20	Min. Art.	Partial

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 135.86)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Intermediate Arterial	0	5.22	5.22
Minor Arterial	0	5.36	5.36
Major Collector	0.46	0	0.46
Total	$\overline{0.46}$	$\overline{10.58}$	$\overline{11.04}$

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE- 160.44)

1980 State Functional Classification	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	Total Mileage
Principal Arterial	0	8.79	0	$\begin{array}{r} 8.79 \\ (67 \%) \end{array}$
Intermediate Arterial	0	0	4.28	$\begin{array}{r} 4.28 \\ (33 \%) \end{array}$
Total	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 8.79 \\ (67 \%) \end{gathered}$	$\begin{aligned} & 4.28 \\ & (33 \%) \end{aligned}$	$\begin{aligned} & \overline{13.07} \\ & (100 \%) \end{aligned}$

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
None in Kent County			

PRIMARY SYSTEM ACCESS CONTROL BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
US	Queen Anne's County Line to Cecil County Line	8.79	Prin. Art	Partial

SECONDARY SYSTEM ACCESS CONTROL BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
	None Kent County			

$$
A-28
$$

MONTGOMERY COUNTY

STATE SECONDARY SYSTEM SUMMARX (TOTAL MILEAGE 307.77)

1980 State Functional Classification	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Mileage } \\ \hline \end{gathered}$
Principal Arterial	39.25	8.01	4.37	$\begin{aligned} & 51.63 \\ & (1008) \end{aligned}$
Total	$\begin{aligned} & \overline{39.25} \\ & (76 \%) \end{aligned}$	$\begin{aligned} & \overline{8.01} \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 4.37 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & \overline{51.63} \\ & (100 \%) \end{aligned}$

PRIMARY SXSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{cases}\text { US } & 29 \\ \text { US } & 29 \\ \text { I-2 } & 70 \\ I-270 \\ Y & \\ I-495\end{cases}$	Northwest Branch to MD 198 Dustin Road to Howard County Line Frederick County Line to $\left\lvert\, \begin{aligned} & I-495 \\ & I-495 \\ & \text { to } I-270 \end{aligned}\right.$ Virginia State Line to Prince George's County Line	$\begin{array}{r} 7.13 \\ 0.88 \\ 22.72 \\ 2.04 \\ 14.49 \end{array}$	Prin. Art. Prin. Art. Prin. Art. Prin. Art. Prin. Art.	Partial Partial Full Full Full

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 237.91)

1980 State Functional Classification	Full Controls	Partial Controls	No Controls	Total Mileage
Principal Arterial Intermediate Arterial	63.20 7.95	12.23 6.48	27.10 0	$\begin{aligned} & 102.53 \\ & (88 \%) \\ & 14.43 \\ & (12 \%) \end{aligned}$
Total	$\begin{aligned} & \overline{71.15} \\ & (61 \%) \end{aligned}$	$\begin{aligned} & \overline{18.71} \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 27.10 \\ & (238) \end{aligned}$	$\begin{aligned} & 116.96 \\ & (100 \%) \end{aligned}$

1980 Classification	Full Controls	Partial Controls	Total Controlled Mileage
Principal Arterial	1.13	0	1.13
Intermediate Arterial	0	14.22	14.22
Minor Arterial	0	$\frac{6.61}{}$	-6.61
Total	1.13	20.83	21.96

QUEEN ANNE'S COUNTY

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 48.14)

1980 State Functional				
Classification	$\begin{array}{c}\text { Full } \\ \text { Controls }\end{array}$	Partial		
Controls			$\left.\quad \begin{array}{c}\text { Controls }\end{array}\right]$	Total
:---:				
Mileage	$	$		

1980 Classification	Full Controls	Partial Controls	Total Controlled Mileage
Minor Arterial	0	1.44	1.44
Total	-0	$\overline{1.44}$	$\overline{1.44}$

PRIMARY SYSTEM BREAKDOWN				
Rout	Limits	Length	State Function	Type of Controls
$\begin{array}{ll} \text { US } 50 \\ 301 \\ \text { US } & 50 \\ 301 \\ \text { US } 301 \end{array}$	Anne Arundel County Line to MD 8 (Toll) MD 8 to US 50/301 split (Queenstown) US 50/301 split (Queenstown) to Kent County Line	$\begin{array}{r} 3.13 \\ 8.80 \\ 27.71 \end{array}$	$\begin{aligned} & \text { Prin. Art. } \\ & \text { Prin. Art. } \\ & \text { Prin. Art. } \end{aligned}$	Full Partial Partial

EXISTING ACCESS CONTROL
Primary System
Full Control
－Partial Control
—— No Control ニニニニ Proposed Primary Secondary System
—— Full Control
－－－Partial Control
No Control

ST．MARY＇S COUNTY MARYLAND

ST MARY'S COUNTY

EXISTING CONTROL OF ACCESS

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE- 29.13)

1980 Classification	Full Controls	Partial Controls	No Controls	Total Mileage
Intermediate Arterial	0	3.35	25.78	29.13 (100%)
Total	-	-	-	-
(0%)	3.35 (12%)	25.78 (88%)	29.13 (100%)	

PRIMARY SYSTEM BREAKDOWN						
Route	Limits	Length	State Function	Type of Controls		
MD 235 to Calvert County Line	3.35	Int. Art.	Partial			

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE - 20.28)

1980 State Functional Classification	Full Controls	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Mileage } \end{gathered}$
Principal Arterial	0	20.28	0	$\begin{aligned} & 20.28 \\ & (100 \%) \end{aligned}$
Total	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \overline{20.28} \\ & (100 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \overline{20.28} \\ & (100 \%) \end{aligned}$

PRIMARY SYSTEM ACCESS CONTROL BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
US	Worcester County Line to Wicomico County Line	20.28	Prin. Art	Partial

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE - 31.65)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
None in Somerset County			

SECONDARY SYSTEM ACCESS CONTROL BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
	None in Somerset County			

EXISTING ACCESS CONTROL
Primary System
Full Control
－Partial Control
—— No Control
ニーニー Proposed Primary Secondary System
－Full Control
－ーーー Partial Control
No Control

TALBOT
COUNTY
MARYLAND

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 30.47)

1980 State Functional Classification	Full Controls	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	Total Mileage
Principal Arterial	0	0	25.65	$\begin{aligned} & 25.65 \\ & (848) \end{aligned}$
Intermediate Arterial	0	0	4.82	$\begin{array}{r} 4.82 \\ (168) \\ \hline \end{array}$
Total	$\begin{aligned} & \overline{0} \\ & (0 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & 30.47 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 30.47 \\ & (100 \%) \end{aligned}$

PRIMARY SYSTEM BREAKDOWN							
Route	Limits	Length	State Function	Type of Controls			
	None in Talbot County						

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 103.60)

1980 State Functional Classification	Full Controls	Partial Controls	Total Controlled Mileage
Minor Arterial	0	5.12	5.12
Major Collector	0	3.28	3.28
Total	$\overline{0}$	$\overline{8.40}$	$\overline{8.40}$

EXISTING CONTROL OF ACCESS

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 64.12)

1980 State Functional Classification	Full Controls	Partial Controls	No Controls	$\begin{aligned} & \text { Total } \\ & \text { Mileage } \end{aligned}$
Principal Arterial Total	$\begin{aligned} & 59.31 \\ & \frac{59.31}{(94 \%)} \end{aligned}$	$\begin{aligned} & 2.58 \\ & \frac{2.58}{(38)} \end{aligned}$	$\begin{aligned} & 2.23 \\ & \overline{2.23} \\ & (38) \end{aligned}$	$\begin{aligned} & \begin{array}{l} 64.12 \\ (100 \%) \end{array} \\ & \overline{64.12} \\ & (100 \%) \end{aligned}$

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{array}{ll} \mathrm{US} & 40 \\ M D & 6 \end{array}$	MD 144 to West Hagerstown City Limits WM R / R to MD 843E MD 843 F to MD 843 I US 340 to $\mathrm{B} \& O$ Bridge MD 858 H to MD 858G Dog Creek to MD 858D Netz Road to US 40 Alt.	$\begin{aligned} & 1.98 \\ & 1.31 \\ & 0.50 \\ & 0.18 \\ & 1.45 \\ & 0.40 \\ & 0.70 \end{aligned}$	$\left(\begin{array}{l} \text { Min. Art. } \\ \text { Maj. } \operatorname{Coll} \\ \text { Maj. } \\ \text { Min. Art. } \end{array}\right.$	Full Partial Partial Partial Partial Partial Partial

STATE PRIMARY SYSTEM SUMMARY (TOTAL MILEAGE 46.83)

$\begin{gathered} 1980 \text { State Functional } \\ \text { Classification } \end{gathered}$	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	$\begin{gathered} \text { No } \\ \text { Controls } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Mileage } \end{aligned}$
Principal Arterial	11.67	16.89	18.27	$\begin{aligned} & 46.83 \\ & (100 \%) \end{aligned}$
Total	$\begin{aligned} & 11.67 \\ & (24 \%) \end{aligned}$	$\begin{aligned} & 16.89 \\ & (35 \%) \end{aligned}$	$\begin{aligned} & 18.27 \\ & (41 \%) \end{aligned}$	$\begin{aligned} & 46.83 \\ & (100 \%) \end{aligned}$

SECONDARY SYSTEM BREAKDOWN				
Route	Limits	Length	State Function	Type of Controls
$\begin{aligned} & \text { uS } 13 \\ & \text { Bus. } \end{aligned}$	US 13 to Crown Road	0.63	Int. Art.	Partial

	Full Control
	Partial Conirol
$-=-$	No Control
Secondary System	

Full Control
$-m-$ Partial Control

STATE SECONDARY SYSTEM SUMMARY (TOTAL MILEAGE 131.69)

$\begin{aligned} & 1980 \text { State Functional } \\ & \text { Classification } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Full } \\ \text { Controls } \end{gathered}$	Partial Controls	No Controls	$\begin{aligned} & \text { Total } \\ & \text { Mileage } \\ & \hline \end{aligned}$
Principal Arterial	11.17	6.59	3.87	$\begin{aligned} & 21.63 \\ & (31 \%) \end{aligned}$
Intermediate Arterial	0	11.00	37.83	$\begin{aligned} & 48.83 \\ & (69 \%) \end{aligned}$
Total	$\begin{aligned} & \overline{11.17} \\ & (16 \%) \end{aligned}$	$\begin{aligned} & \overline{17.59} \\ & (25 \%) \end{aligned}$	$\begin{aligned} & \overline{41.70} \\ & (59 \%) \end{aligned}$	$\begin{aligned} & \overline{70.46} \\ & (100 \%) \end{aligned}$

PRIMARY SYSTEM BRRAKDOWN				
Route	Limits	Length	State Function	Type of Controls
US 13	MD 675A to Somerset	2.44	Prin. Art	Partial
US 50	Wicomico County Line to	3.41	Prin. Art	Partial
US 50	MD 90 $M D 90$ to MD 452	4.97	Int. Arto	Partial
MD 90	US 50 to Isle of Wight	9.28	Prin. Art	Full
MD 90	Isle of Wight	0.74	Prin. Art	Partial
MD 90	Isle of Wight (east) to	1.89	Prin. Art	Full
US 113	MD 394 south of Snow Hill	4.52	Int. Art.	Partial
US113	MD 346 south of US 50 to end divided north of US 50	1.51	Int. Art.	Partial

SECONDARY SYSTEM BREAKDOWN								
Route	Limits	Length	State Function	Type of Controls				
	None in Worcester County							

APPENDIX B

143 SEGMENTS STATE HIGHWAY PRIMARY SYSTEM

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline County Allegany \& \begin{tabular}{l}
Present \\
Control \\
Of \\
Access
\end{tabular} \& \begin{tabular}{l}
State \\
Functional Classification
\end{tabular} \& Volume Per Lane Per Day \& \begin{tabular}{l}
1980 \\
Number of Eigh Accident Locations
\end{tabular} \& \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} \& \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} \& \[
\begin{gathered}
1980 \\
\text { Injury } \\
\text { Accident } \\
\text { Rate } \\
\hline
\end{gathered}
\] \& Number of Injury Accidents \& Land Development Pressure \& Couments \\
\hline \begin{tabular}{l}
ROLTE \#US 40 \\
Limits MP 13.77 to \\
US 220 ULT. \\
Ler.gth 1.92 miles \\
* of Lanes - 4 \\
Eivided \(x\) Undivided \(\qquad\) \\
silepoint \(\qquad\) to 15.69 Points (27) Total
\end{tabular} \& Partial \& Principal Arterial
\[
(15)
\] \& \begin{tabular}{l}
\[
5400
\] \\
(5)
\end{tabular} \& 0
\(10)\) \& \begin{tabular}{l}
Actual 98 \\
Statewide \\
Average 181 \\
(5)
\end{tabular} \& \& \begin{tabular}{l}
Actual 54 \\
Statewide Average 95 \\
(0)
\end{tabular} \& 6 \& \begin{tabular}{l}
\[
-25 t \text { to }-5 i
\] growth \\
(0)
\end{tabular} \& \\
\hline \begin{tabular}{l}
Route \# US 40 \\
Lirits US 220 ULT. to. \\
MC. 144 \\
Length 0.45 mile \\
4 of Lanes - 4 \\
Divided x Undivided \(\qquad\) \\
Milepoint \(\qquad\) 15.69 to 15.14
\(\qquad\) 32) Total
\end{tabular} \& Partial \& \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} \& \begin{tabular}{l}
\[
5400
\] \\
(5)
\end{tabular} \& 0

100 \& | Açtual 76 |
| :--- |
| Statewide Average 81 |
| (10) | \& \[

0
\]

\[
(0)

\] \& | Actual 38 |
| :--- |
| Statewide |
| Average 41 |
| (2) | \& 1 \& | $\begin{gathered} -25 \text { to }-5 \text { t } \\ \text { growth } \end{gathered}$ |
| :--- |
| (0) | \& Travelway for US 48

\hline ```
RJute \# UE 40
Lirits Md. 144 AN to
Md. 144 AA
Lergch 7.69 miles

* of Lanes - 4
Livided x Undivided

```
\(\qquad\)
```

$$
\text { Milepoint } 16.14 \text { to } 23.83
$$

$$
\text { Points } 34 \text {) fotal }
$$

``` & None
\[
(10)
\] & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & \[
3550
\] &  & \begin{tabular}{l}
Actual 119 \\
Statewide Average 158 \\
(5)
\end{tabular} &  & \begin{tabular}{l}
Actual 0 \\
Statewide Average 79 \\
( 0 )
\end{tabular} & 0 & \[
\begin{aligned}
& -25 t \text { to } 25 t \\
& \text { growth }
\end{aligned}
\] & Travelway for US 48 \\
\hline Route US 40
Limits Md. 144 AA to
Davis Road & None
( 10 ) & Principal Arterial
\[
\left({ }^{15}\right)
\] & 5000
\((5)\) & 0

10 & \begin{tabular}{l}
Actual 90 \\
Statewide Average 209 \\
(0)
\end{tabular} & (5) & \begin{tabular}{l}
Actual 38 \\
Statewide Average 121 \\
(0)
\end{tabular} & 8 & 5 to 25: growth
\[
(5)
\] & Travelway for US 48 \\
\hline
\end{tabular}

\section*{Present Control of Access - 10 point tota No control (10)}
partial (0)
State Functionaterial (15)
Principal Arter
Principal arterial (15)
Intermediate
Interme
Others
Volume Per lane Per Day - 20 point total
\(\leq 4500\) (0) \(>6800\)
\(\begin{array}{ll}>4500 \\ <5700(5) & <9100(15) \\ >9100(20)\end{array}\)
\begin{tabular}{l}
\(<5700\) (5) \\
\(>5700\) \\
\hline 6800
\end{tabular}
1980 Number of High Accident Locations - 5 point total
No high accident location
re high accident locatio
(2)
(2)
- 1980 Accident Rate Per 100 NMM - 20 point totel
\(<50\) ( 0 ) 110-150 (15)
\(50-908\) ( 5 )
\(90-1108\)
- 1980 Nurber of Fatality Accidents - 5 point total

None
(0)
(2)

One (2)
Tvo or more (5)
- 1980 Injury Accident Rate - 5 point total
<90 ( 0 )
<90-110 (2)
\(>110\) (5)
Number of Injury Accidents - actual number
- Lamber of Injury Accidents - actual number

\(5-25\) (5) \(>75 \%\) (20)
25-50.(10)

- Present Control of access - 10 point total No control (10)
Prate Functional Classification - 15 point total
State Functind Arterial (15)
Intermediate (5)
Volume per Lane per Day - 20 point total
<4500 (0) >6800
\(\geq 4500 \quad \leq 9100(15)\)
\(\leq 5700\) (5)
\(>57000\)
< 88000 (10)
- 1980 Number of High Accident Locations - 5 point total No high accident location
one high accident location (2)
\(\mathrm{T}, \mathrm{o}\) or more high accident locations (5)
- 1980 Accident Rate Per 100 mM - 20 point total
<50* (0) 110-150 (15)
\(50-901(5)\)
\(90-110, ~(10)\)
- 1980 Number of Fatality Accidente - 5 point total

None
Hone
One (2)
Two or more (2)
\(<90\) ( 0 )
\begin{tabular}{r|r|}
\hline \(90-110\) \\
(2)
\end{tabular}
\(>110\) (5)
Number of injury accidents - actual number
Land Developsent Pressure - 20 point total
\(<5\) (0) 50-750! 15
\(5-25:(5)>75\) (20)
25-50: (10)


- Preeent Control of Acceses - 20 point total Wo control (10)
- State Functional Clasaification - 15 point total Principal Arterial (15)
Intermediate (5)
- volume Por Lane per Day - 20 point tota
\(<4500\) ( 0 ) \(\geq 6800\)
\(>4500 \quad<9100(15)\)
\(<5700\) ( 5\()\)
\(>9100(20)\)
\(<5700\) ( 5\()>9100(20)\)
\(>5700\)
\(\geq 5700\)
\(<6800(10)\)
- 1990 muber of High Accident Locatione - 5 point total wo high eccident location One high accident location
One high accident location
Two or more high accident locatione (2)
- 1980 Accident Rate Per 100 NVM - 20 point total
\begin{tabular}{ccc}
\(<501\) \\
\(50-901\) & \((0)\) & \(110-1501(15)\) \\
\hline
\end{tabular}
\(50-901\)
\(90-110\)
- 1980 Number of Fatality Accidenta - 5 point total None
One (0)
(2)

Two or (2)
- 1980 Injury Accident Rate - 5 point total
\(<90\) (0)
\(>{ }^{90-110}\)
- Number of Injury Accidenta - actual number
- Land Dovelopment Pressure - 20 point total
<51 (0) 50-7es ! 15
\(5-250(5)>750 \quad(20)\)
25-50: (10)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Colnty Anne Arundel & Present Control of Access & \begin{tabular}{l}
State \\
Functional Classification
\end{tabular} & \begin{tabular}{l}
Volume \\
Per Lane \\
Per Day
\end{tabular} & \begin{tabular}{l}
1980 \\
Number of Ei igh Accident Locations
\end{tabular} & \begin{tabular}{l}
1980 \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & \begin{tabular}{l}
1980 \\
Injury Accident \\
Rate
\end{tabular} & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline Route Md. 3
Limits Prince George's
\(\quad\) County Line to
Md. 32 ULT. & \begin{tabular}{l}
None \\
( 10)
\end{tabular} & \begin{tabular}{l}
Principal Arterial \\
( 15 )
\end{tabular} & \[
9000
\]
\[
(15)
\] & 4

\((5)\) & \begin{tabular}{l}
Actual 206 \\
Statewide \\
Average 158 \\
( 15)
\end{tabular} & (5) & \begin{tabular}{l}
Actual 105 \\
Statewide \\
Average 79 \\
(.5)
\end{tabular} & 90 & \begin{tabular}{l}
50: to 75: growth \\
( 15 )
\end{tabular} & In CTP (DGE) and HNI as I-297 for multi-lane reconstruct \\
\hline \begin{tabular}{l}
Route \# Md. 3 \\
Limits Md. 32 ULT. to \\
Md. 178A \\
Length 0.97 mile \\
Fof Lanes - 4 \\
Diviced XUndivided \(\qquad\) \\
Milepoint \(\frac{6.49}{}\) to \(\frac{7.46}{\text { Points }(79)}\)
\end{tabular} & None

( 10 & \begin{tabular}{l}
Principal Arterial \\
( 15 )
\end{tabular} & \begin{tabular}{l}
\[
7100
\] \\
( 15)
\end{tabular} & \[
(2)
\] & Actual 188
Statewide
Average
158
\((15)\) &  & \begin{tabular}{l}
Actual 129 \\
Statewide \\
Average 79 \\
(5)
\end{tabular} & 13 & \begin{tabular}{l}
50 to 75 growth \\
(15)
\end{tabular} & In CTP (D\&E) and HNI as I-97 for multi-lane reconstruct \\
\hline Route Md. 3
Limits Md. 178A to

Md. 3 Bus.
Lergth 4.03 miles
Fof Lanes -4
Divided XUndivided
Milepoint 7.46 to \(\overline{11.49}\)
Moints 77\()^{\text {Fotal }}\) & None
\[
(10)
\] & Principal Arterial
(15) & \begin{tabular}{l}
\[
9800
\] \\
(20)
\end{tabular} & (5) & \begin{tabular}{l}
Actual 152 \\
Statewide \\
Average 158 \\
( 10 )
\end{tabular} &  & \begin{tabular}{l}
Actual 83 \\
Statewide Average 79 \\
(2)
\end{tabular} & 47 & \begin{tabular}{l}
25 to 50: growth \\
(10)
\end{tabular} & In CTP (D\&E) and HNI as I-97 for multi-lane reconstruct \\
\hline  & Partial
(0) & \begin{tabular}{l}
Intermediate Arterial \\
(5)
\end{tabular} & 3800
\((0)\) & 0

\((0)\) & \begin{tabular}{l}
Actual 146 \\
Statewide Average 81 \\
(20)
\end{tabular} & 0

\((0)\) & \begin{tabular}{l}
Actual 86 \\
Statewide \\
Average 41 \\
(5)
\end{tabular} & 23 & \[
25 \text { to } 50 \text { t }
\] growth
(10) & In HNI for multilane reconstruct \\
\hline
\end{tabular}
- Present Control of Access - 10 point total No control (10)
State Functional Classification - point total
Principal Arterial (15)
Intermediate (5)

- Volume Per Lane Per Day
\begin{tabular}{l}
\(<4500(0)\) \\
\(>4500\) \\
\(>98100(15)\) \\
\hline \(9100(20)\)
\end{tabular}
\(<5700(5)>9100(20)\)
\(>5700\)
\(>5700\)
\(>5700\)
\(<6800\) (10)
1980 Number of High Accident Locations - 5 point total No high accident location or more high accident locations (5)
- 1980 Accident Rate per 100 MVM - 20 point tota
\(<50\) ( 0 ) 110-1501 (15)
\(\begin{array}{cc}50-90 \\ 90-1101 & (10)\end{array}\)
- 1980 Number of Fatality Accidents - 5 point total
- None (0)

None
One
(2)

Two or more (5)
- 1980 Injury Accident Rate - 5 point total
<90 ( 0 )
90-110 (2)
Number of Injury Accidents - actual numbe
- Land Development Pressure - 20 point total
\(<51\) (0) 50-75: !15)

\(5-251(5)\)
\(25-50 \cdot(10)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Baltimore & Present Control of Access & \begin{tabular}{l}
State \\
Functional Classification
\end{tabular} & Volume Per Lane Per Day & \begin{tabular}{l}
1980 \\
Number of righ Accident Locations
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & ```
    1980
    Irjury
    Accident
    Rate
``` & Number of Injury Accidents & Land Deve lopment Pressure & Comments \\
\hline \begin{tabular}{l}
Route " Md. 30 \\
Limits Md. 140 to Carroll County Line \\
Length 7.40 miles \\
* of Lanes - 2 \\
Divided \(\qquad\) Undivided x \\
siilepoint \(\qquad\) 0.00 to \(\qquad\) Points (50) Total
\end{tabular} & None
\[
\text { (} 10 \text {) }
\] & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & \[
3600
\] & 0

0 & \begin{tabular}{l}
Actual 242 \\
Statewide \\
Average 223 \\
(10)
\end{tabular} & & \begin{tabular}{l}
Actual 139 \\
Statewide Average 191 \\
(0)
\end{tabular} & 27 & \begin{tabular}{l}
25\% to 50 : growth \\
(10)
\end{tabular} & Travelway for Md. 30 ULT. \\
\hline \begin{tabular}{l}
Route \# Md. 140 \\
Limits I-695 to MP 8.90 \\
Length 6.95 miles \\
\# of Lanes - 4 \\
Divided \(x\) Undivided \(x\) \\
Milepoint \(\frac{1.95}{\text { Points }(72)} \frac{8.90}{\text { Total }}\)
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Principal Arterial & \[
7700
\]
(15) & 12

\(15)\) & \begin{tabular}{l}
Actual 487 \\
Statewide Average 431 \\
(15)
\end{tabular} & (2) & \begin{tabular}{l}
Actual 304 \\
Statewide \\
Average 271 \\
(5)
\end{tabular} & 239 & \begin{tabular}{l}
0 to 50\% growth \\
(5)
\end{tabular} & \begin{tabular}{l}
1) Travelway for I-795 and Md. 140 LZT. \\
2) Portion from I-695 to McDonogh Road is in CTP (DEE) and HNI for urban divided reconstruct. Remainder is in HNI for multi-lane reconstruct. \\
I)
\end{tabular} \\
\hline \begin{tabular}{l}
Route M. Md. 140 \\
Li: rits IF 8.90 to Md. 30 \\
Length 1.06 miles \\
* of Lanes - 2 \\
Divided \(\qquad\) Undivided X \\
Milepoint \(\qquad\) 8.90 to 9.96 Points 82) TotaI
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & 15,000
\((20)\) & 1

121 & \begin{tabular}{l}
Actual 810 \\
Statewide Average 346
\end{tabular} & 0

\(10)\) & \begin{tabular}{l}
Actual 379 \\
Statewide Average 199 \\
(5)
\end{tabular} & 22 & \begin{tabular}{l}
25* to 50* growth \\
(10)
\end{tabular} & Travelway for Md. 140 ULT.
\[
31
\] \\
\hline \begin{tabular}{l}
Route \# Ma. 140 \\
Limits Md. 30 to MP 10.99 \\
Length 1.03 miles \\
\# of Lanes - 2 \\
Divided \(\qquad\) Undivided \(X\) \\
Milepoint \(\qquad\) 9.96 to 10.99 Points (45) Total
\end{tabular} & None

(10) & \begin{tabular}{l}
Intermediate Arterial \\
(5)
\end{tabular} & 8400
(15) & 0
\((0)\) & \begin{tabular}{l}
Actual 222 \\
Statewide Average 278 \\
(5)
\end{tabular} & 0

0 & \begin{tabular}{l}
Actual 79 \\
Statewide Average 160 \\
(0)
\end{tabular} & 5 & 25 to 50: grow th
\[
(10)
\] & In HNI for multilane reconstruct \\
\hline
\end{tabular}

Preant control of Access - 10 point total No control (10)
Startial Functional Claasification - 15 point total
Principal Arterial (15)
Intermediate (5)
0 thers (0)
Volume Per Lane Per Day - 20 point total
\(\langle 4500(0) \geq 6800\)

\(>5700\)
\(>5700\)
\[
\geq 5700
\]
< 6800 (10)
- 1980 Number of High Accident Locations - 5 point totul No high accident location One high accident location (2)
- 1980 Accident Rate Per 100 m.NM - 20 point tota
\(<501\) (0\()\) 110-1501 (15)
50-90 (5)
90-110 (10) (
1980 Number of Fa
None (0)
None
Two or more (5)
- 1980 Injury Accident Rate - 5 point total
\(<90\) (0)
90-110 (2)
\(>110\) (5)
Number of Injury Accidents - actual number
Land Developeant Preasure - 20 point total
Land Developeent Preasure-
\(<50\) (0) \(50-75: 15)\)
\(5-25:(5)>75\) (20)
25-50 (10)

- Preeent control of Acceee - 10 point total No control (10)
State Functional claaalifcation - 15 polnt tota Principal Axterial (15) Intermediate (5)
(0) 20 point total
\(<4500\) (0) \(>6800\)
\(\geq 4500 \quad \leq 9100(15)\)
\(<5700\)
\(>9100(20)\)
\(\geq 5700\)
\(<6800\) (10)
1980 Number of High Accident Locationa \(=5\) point toral No high accident location
- 1980 Accident Rate Per 100 NvM - 20 point total
\(<50\) (0) 110-150 (15)
\(50-904\) (5) 150 (20
90-110 (10)
- 980 Number of Fatality Accidenta - 5 point total None One or more (5)
- 1980 Injury Accident Rate - 5 polnt total
\(<90\) (0)
90-110 (2)
Number of injury Accidents - actual nuber
Number or injury accidants - actual number
< 5 (0) (0) 50-75: (15)
\(5-250\) (5) \(>75\) (20) 25-501 (10)

- Present Control of accese - 10 point total Ho control (10)

- State Functional Claself Principal Arterial (15) Intermediat
Other Per
Volume Per Lane Per Day - 20 point total
\(\leq 4500\) (0) \(>6800\)
\(>4500\)
\(<5700(5)>9100(15)\)
\(\geqslant 5700\)
\(<6800\) (10)
1980 Number of High Accident Locations - 5 point total No high accident location Two or more high accldent locations (5)

1980 Acciont Rate Per 100 nin - 20 point total
\(<504\) (0) 110-150 (15
50-90 (5)
- 1980 Number of Fatality Accidents - 5 point total

None
One
\((0)\)
\((2)\)
Two or more (\({ }^{(2)}\)
- 1980 Injury Accident Rate -5 point total
\(<90{ }^{\circ}\)
90-110: (2)
Number of Infury Accidenta - actual number
- Land Development Pressure - 20 point total
\(<50(0) \quad 50-75!(15)\)
\(5-250\) (5) \(>754\) (20)
25-50 (10)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline County Caroline & \begin{tabular}{l}
Present \\
Control \\
Of \\
Access
\end{tabular} & \begin{tabular}{l}
State \\
Functional \\
Classification
\end{tabular} & Volume Per Lane Per Day & \begin{tabular}{l}
1980 \\
Number of High Accident Locations
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & \begin{tabular}{l}
1980 \\
Injury \\
Accident \\
Rate
\end{tabular} & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
RoLte Md. 404 \\
Limits Queen Anne's Counts \\
Line to MP 6.40 \\
Lergth 6.40 miles \\
* of Lanes - 2 mostly \\
Divided Undivided 2 \\
sidlepoint \(\qquad\) to \(\qquad\) Points (30) Total
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Intermediate Arterial
\[
(5)
\] & \begin{tabular}{l}
\[
3360
\] \\
\(10)\)
\end{tabular} & 0

\(10)\) & \begin{tabular}{l}
Actual 198 \\
Statewide \\
Average 209 \\
(10)
\end{tabular} & & \begin{tabular}{l}
Actual 104 \\
Statewide Average 121 \\
(0)
\end{tabular} & 10 & \begin{tabular}{l}
5 to 25 . growth \\
(5)
\end{tabular} & In HNI for multilane divided reconstruct \\
\hline & None
(10) & \begin{tabular}{l}
Intermediate Arterial \\
(5)
\end{tabular} & \[
2000
\]
\[
(0)
\] & 2

(5) & \begin{tabular}{l}
Actual 735 \\
Statewide 158 \\
(20)
\end{tabular} & \[
(0)
\] & \begin{tabular}{l}
Actual 142 \\
Statewide 79 \\
(5)
\end{tabular} & 6 & \begin{tabular}{l}
5* to 25 growth \\
(5)
\end{tabular} & Travelway for Md. 404 ULT. \\
\hline Route Md. 404
Linits Md. 404 wBL to
Md. 313 & None, except 0.25 mi . Partial
\[
(10)
\] & Intermediate Arterial & \[
7400
\]
\[
(15)
\] & (0) & \begin{tabular}{l}
Actual \(11 \$\) \\
statewide Average 209
\end{tabular} & 0

\((0)\) & \begin{tabular}{l}
Actual 50 \\
Statewide \\
Average 121 \\
(0)
\end{tabular} & 7 & 5\% to 25\% grow th
\[
(5)
\] & Portion of segnent is in HNI for multilane divided reconstruct \\
\hline \begin{tabular}{l}
Rolte \# Md. 404 \\
Lirits Md. 313 to Delaware \\
State Line \\
Ler.gth 4.06 miles \\
\# of Lanes - 2 \\
Divided \(\qquad\) Undivided \(X\) \\
Milepoint \(\qquad\) 12.41 to \(\overline{16.47}\) Points (30) Total
\end{tabular} & None

\((10)\) & Intermediate Arterial & 6000
\((10)\) & 0
10 & \begin{tabular}{l}
Actual 28 \\
Statewide \\
Average 209 \\
(0)
\end{tabular} & \[
(0)
\] & \begin{tabular}{l}
Actual 28 \\
Statewide \\
Average 121 \\
(0)
\end{tabular} & 3 & \begin{tabular}{l}
5 to 25 growth \\
(5)
\end{tabular} & In KNI for multilane divided reconstruct \\
\hline
\end{tabular}
- Present control of Access - 10 point total No control (10)
- State Functional Classification - 15 point total Principal Axterial (15)
Intermediate (5)
Others
volume Per Lane Per Day -20 point tota
Volume Per Lane Per Da
\(<4500(0)>6800\)
\(\begin{array}{ll}<4500(0) \\ >4500 \\ <5700(5) & <9800(100(15) \\ >9100(20)\end{array}\)
\(<5700\) (5
\(>5700\)
< 68000 (10
1980 Number of High Accident Locations - 5 point total No high accident location
ne high accident location (2)
wo or more high accident locations (5)
- 1980 Accident Rate Per \(100 \mathrm{~mm}-20\) point total
\(<50\) (0) 110-1504 (15)
\(50-90\) (5) 150 (20)
90-110 (10)
- 1980 Number of Fatality Accidenta - 5 point total

None
One

\section*{(2)}

One (2)
Two or mare
(5)
- 1980 Injury Accident Rate - 5 point total
\(<90\) (0 (2)
90-110: (2)
\(>110)^{(5)}\)
Number of Injury Accidents - actual number
- Number of Injury Accidents - actual number

Land Developenent Pressure - 20 point total

25-50 (10)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline County Carroll & \begin{tabular}{l}
Present \\
Control \\
of \\
Access
\end{tabular} & \begin{tabular}{l}
State \\
Functional Classification
\end{tabular} & Volume Per Lane Per Day & \begin{tabular}{l}
\[
1980
\] \\
Number of High Accident Locations
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & \begin{tabular}{l}
1980 \\
Injury \\
Accident \\
Rate
\end{tabular} & Number of Injury Accidents & Land Development Pressure & Commerits \\
\hline \begin{tabular}{l}
Route \# Md. 140 \\
Limits Md. 97 to Md. 27 \\
Lergth 1.39 miles \\
| of Lanes - 4 Divided x Undivided \(\qquad\) \\
Millepoint 8.05
\(\qquad\)
\(\qquad\) to Points \(\qquad\) \\
37) Total
\end{tabular} & None
(10) & Intermediate Arterial
\[
(5)
\] & \begin{tabular}{l}
5800 \\
(10)
\end{tabular} & \begin{tabular}{l}
1 \\
(2)
\end{tabular} & \begin{tabular}{l}
Actual 230 \\
Statewide \\
Average 379 \\
(5)
\end{tabular} & 0
\[
(0)
\] & \begin{tabular}{l}
Actual 119 \\
Statewide \\
Average 220 \\
(0)
\end{tabular} & 14 & \begin{tabular}{l}
5\% to 25t. growth \\
(5)
\end{tabular} & In HNI for multilane reconstruct \\
\hline & None
(10) & Intermediate Arterial & \[
7800
\]
\[
\text { (} 15 \text {) }
\] & \[
(0)
\] & \begin{tabular}{l}
Actual 119 \\
Statewide \\
Average 379 \\
(0)
\end{tabular} & \[
(0)
\] & \begin{tabular}{l}
Actual 55 \\
Statewide Average 220 (0)
\end{tabular} & 6 & 5* to 25: growth
(5) & In HNI for multilane reconstruct \\
\hline Route Md. 140
Limits Md. 97 and Md. 526
and Md. 31 & None
(19) & Intermediate Arterial & 1500
\((0)\) & & \begin{tabular}{l}
Actual 108 \\
Statewide Average 3.79
\end{tabular} & & \begin{tabular}{l}
Actual 0 \\
Statewide Average 220
\end{tabular} & 0 & \begin{tabular}{l}
5t to 25* growth \\
(5)
\end{tabular} & In HNI for multilane reconstruct \\
\hline \begin{tabular}{l}
Route M Md. 140 \\
Linits Md. 31 to Md. 832 \\
Length 9.38 miles \\
\# of Lanes - 2 \\
Divided Undivided X \\
Milepoint \(\qquad\) 10.80 to \(\overline{20.18}\) Points (11) Total
\end{tabular} & Partial
(0) & Intermediate Arterial & 2900 & 0

\(10)\) & \begin{tabular}{l}
Actual 99 \\
Statewide \\
Average 278 \\
(0)
\end{tabular} & 0

101 & \begin{tabular}{l}
Actual 44 \\
Statewide \\
Average 67 \\
(0)
\end{tabular} & 9 & 3t to 50t growth
(6) & \begin{tabular}{l}
1) Portion of segment from Md. 31 to Hughes Shop Road is in HNI for multilane reconstruct. \\
2) Remainder of segment is in HNI for multi-lane divided reconstruct.
\end{tabular} \\
\hline
\end{tabular}
- Present Control of Access - 10 point total No control (10)
State Functional Clamaifican - 15 point total principal Arterial (15) Intermediat
thers (5)
- Volume Per Lane Per Day - 20 point total
\(<4500\) (0) \(>6800\)
\(\begin{array}{ll}>4500 \\ <5700 \quad(5) & \leq 9100(15) \\ >9100(20)\end{array}\)
\(<5700\)
\(\geq 5700\)
\(<6800\) (10)
1980 Number co "igh Anceident Locations -5 point total No high accident location
Two or more high accident locations (5)
- 1980 Accident Rate Per 100 mM - 20 point tota
<50 (O) 110-150. (15)
50-90 (5) 150 (20
- 1980 Number of Fatality Accidents - 5 point total

None (2)

Two or more (5)
- 1980 Injury Accident Rate - 5 point total
\(<904\) (0)
90-110: (2)
\(>1108\) (5)
- Number of injury Accidents - actual number
- Number of Injury Accidents - actual number
\(<58(0) \quad 50-750!15)\)
\(\begin{aligned} 5-25: & \text { (5) }>75 \text { (20) }\end{aligned}\)
25-50 (10)

- Present control of Acceses - 10 point total No control (10)
- State functional classification - 15 point total Principal Axterial (15)
Interediate Intermediate (5) Others
Volume Per Lane Per Day - 20 point total
\(<4500\) (0) \(>6800\)
\(\underset{\sim}{>} \mathbf{4 5 0 0}(5700 \quad \underset{~ 59100(15)}{>}\)
\(>5700\) (5) \(>9100\) (20)
\(<5700\)
\(<6800\) (10)
- 1980 Number of High Accident Locations - 5 point total No high accident location One high accident (0) One high accident location (2)
- 1980 nceident Rate Par 100 mWM - 20 point totel
\(\begin{array}{lll}<501 & (0) \\ \text { (}\end{array}\)
\(\begin{array}{cccc}<501 & (0) & 110-1501 & (15) \\ 50-90 & (5) & 1501 & (20)\end{array}\)
90-110 (10)
- 1980 Number of Fatality Accident - 5 point total

None
One (2)
(2)
- 1980 Injury Accident Rate -5 point total

1980 Injury Acci
\begin{tabular}{c|c}
\(<907\) \\
\(90-110\) \\
(2) \\
(2)
\end{tabular}
\(>1101\) (5)
- Number of Injury Accidents - actual number

Land Development Pressure - 20 point total
\(\begin{array}{lll}<50 & (0) \\ 5-250 & (50-754 \\ (5)\end{array}>750(20)\)
\(\underset{25-50}{5-250}(10)>750\) (20)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Colinty Charles & \begin{tabular}{l}
Present \\
Control \\
Of \\
Access
\end{tabular} & \begin{tabular}{l}
State \\
Functional Classification
\end{tabular} & Volure Per Lane Per Day & \begin{tabular}{l}
1980 \\
Number \\
of High \\
Accident \\
Locations
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & \begin{tabular}{l}
1980 \\
Injury Accident Rate
\end{tabular} & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
Route \# Md. 5 \\
Limits St. Mary's County Line to US 301 \\
Lergth 12.37 miles \\
* of Lanes - 4 \\
Divided 75 Undivided 25: \\
rilepoint \(\qquad\) 0.00 to 0 12.37 Points (59) Total
\end{tabular} & None
\[
(10)
\] & Intermediate Arterial
\[
(5)
\] & \[
4100
\]
\[
(0)
\] & 8
(5) & \begin{tabular}{l}
Actual 260 \\
Statewide \\
Average 215 \\
(15)
\end{tabular} & \[
(2)
\] & Actual 111
Statewide
Average
116
\((2)\) & 83 & Greater than 75: growth
\[
(20)
\] & Portion from St. Mary's County Line to north of Md. 231 is in HNI for multilane reconstruct. \\
\hline Route \# US 301
Limits Virginia State Line
to Md. 6 & None
\[
(10)
\] & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & \[
3500
\]
\[
10)
\] & \[
121
\] & \begin{tabular}{l}
Actual 129 \\
Statewide Average 158 \\
(5)
\end{tabular} & (5) & \begin{tabular}{l}
Actual 40 \\
Statewide Average 79 \\
\((0)\)
\end{tabular} & 30 & 25 to 75: growth
(13) & In HNI for reconstruct \\
\hline Route US 301
Limits Md. 6 to Md. 5
Lergth 8.59 miles
\# of Lares - 4
Divided X Undivided
Milepoint 14.97 to 23.56
\[\)\begin{tabular}{l}
\text { Points } 90 \text { Total }
\end{tabular}
\] & \begin{tabular}{l}
None \\
(10)
\end{tabular} & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & \[
6000
\]
(10) & & \begin{tabular}{l}
Actual 240 \\
Statewide Average 158 \\
(20)
\end{tabular} & & \begin{tabular}{l}
Actual 88 \\
Statewide Average 79 \\
(5)
\end{tabular} & 69 & \begin{tabular}{l}
50: to greate than 100: growth \\
(20)
\end{tabular} & In HNI for reconstruct
ers, \\
\hline \begin{tabular}{l}
Route \# US 301 \\
Linuts Md. 5 to Prince \\
George's County Line \\
Length 3.01 miles \\
\# of Lanes - 4 \\
Divided \(X\) Undivided \(\qquad\) \\
Milepoint \(\qquad\) 23.56 \(\qquad\) \\
Points (97) Total
\end{tabular} & None
(10) & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & 10,000
(20) & 5

(5) & \begin{tabular}{l}
Actual 314 \\
Statewide \\
Âverage 158 \\
(20)
\end{tabular} & \[
(2)
\] & \begin{tabular}{l}
Actual 105 \\
Statewide \\
Average 79 \\
(5)
\end{tabular} & 46 & Greater than 1001 growth
\[
(20)
\] & In HNI for multilane reconstruct \\
\hline
\end{tabular}
- Present Control of Access - 10 point total No control (10) Partial (0)
State Functional Classification - 15 point total Principal Arterial (15) Intermediate (5)
Others
volume per Lane Per Day - 20 point total
\(<4500\) (0) \(>6800\)
\(\geq 4500 \quad \leq 9100\) (15)
\(\geq 5700\) (
\(>\)
\(>\)
\(\geq 5700\)
1980 Number of High Accident Locations - 5 point total
No high accident location (0) One high accident location Two or more high accident locations (5)

1900 accident pate per 100 mm - 20 point total < 50 an (0\() \quad 10-1501\) (15) \(50-90\) (5)
\(90-110\) (10)
- 1980 Number of Fatality Accidents - 5 point total None (0) One or more (5)
1980 Infury Accident Rate - 5 point total
\(<900^{(0)}\)
90-110 (2)
Number of Injury Accidents - actual number
- Land Development Pressure - 20 point total
\(<50(0)\) 50-75: (15)
\(5-250\) (5) \(>750\) (20)
\(5-25:(10)\)
\(25-50\) (

- Preeent Control of Acceee - 10 point total No control (10)
- State Functional Claseification - 15 point total principal arterial (15) Intermediate (5)
Othere Lane Per Day - 20 point pert
Volume per Lane per
\(>4500(0)<6800\)
\(<5700\) (5) \(>9100(20)\)
\(>5700\)
\(>5700\)
< 6800 (10)
1980 Number of High Accident Locations - 5 point totel No high accident location one high accident location (2) Two or more high accident locations (5)
- 1980 Aceident Rate Per 100 MN- 20 point tota
\[
\begin{array}{rlll}
<501 & (0) & 110-150 & (15) \\
50-90 & (5) & 1500 \\
(20)
\end{array}
\]
\[
\begin{array}{ll}
50-901 & \text { (} 5)
\end{array}
\]
- 1980 Number of Fatality Accidents -5 point total

None
One
(2)

Tvo or more (5)
- 1980 Injury Accident Rate - 5 point total
\(<901\) (0)
90-110 (2)
\(>1101\) (5)
- Number of Injury Aceidents - ectual number
- Land Development Preseure - 20 polnt nube
\(<50\) (0) 50-750 ! 15) 25-50• (10)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Frederick & \begin{tabular}{l}
Present \\
Control of Access
\end{tabular} & State Punctional Classification & \begin{tabular}{l}
Vol ume \\
Per Lane \\
Per Day
\end{tabular} & \begin{tabular}{l}
1980 \\
Number of High Accident Locations
\end{tabular} & \begin{tabular}{l}
2980 \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & \[
\begin{gathered}
1980 \\
\text { Injury } \\
\text { Accident } \\
\text { Rate } \\
\hline
\end{gathered}
\] & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
Route \# US 15 \\
Limits MP 16.44 to MP 22.9 \\
Lergth 6.55 miles \\
* of Lares - 4 \\
Divided XUndivided \(\qquad\) \\
Ailepoint 16.44 to 22.99 \\
Points (31) Total
\end{tabular} & Partial
\[
(0)
\] & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & \[
4000
\]
\[
(0)
\] & 0
\(10)\) & \begin{tabular}{l}
Actual 48 \\
Statewide \\
Average 81 \\
(5)
\end{tabular} & & \begin{tabular}{l}
Actual 13 \\
Statewide \\
Average 41 \\
(0)
\end{tabular} & 5 & \begin{tabular}{l}
51 to 50 growth \\
(9)
\end{tabular} & \\
\hline Route \# US 25
Limits MP 22.99 to
Md. 806 M
Length 6.38 miles
\# Of Lanes -2
Divided Undivided \(x\)
Milepoint 22.99 to \(\frac{29.37}{\text { Total }}\)
Points (45) & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Principal Arterial
(25) & (5) & 1

121 & \begin{tabular}{l}
Actual 146 \\
Statewide Average 209 \\
(5)
\end{tabular} & 1

12 & \begin{tabular}{l}
Actual 80 \\
Statewide \\
Average 121 \\
(0)
\end{tabular} & 18 & \begin{tabular}{l}
54 to 501 growth \\
(6)
\end{tabular} & In CTP and HNI for 4 lane divided reconstruct \\
\hline Route " US 15
Limits MD 806 M to MP
32.90 & Partial
(0) & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & 4600
(5) & 0

\(10)\) & \begin{tabular}{l}
Actual 211 \\
Statewide Average 142 \\
(25)
\end{tabular} & 1

\(12)\) & \begin{tabular}{l}
Actual 101 \\
Statewide \\
Average 90 \\
(5)
\end{tabular} & 12 & \begin{tabular}{l}
51 to 25 growth \\
(5)
\end{tabular} & In CTP and HNI for 4 lane divided reconstruct \\
\hline Route \# US 15
Linits MP 32.90 to
MP 38.03
Length 5.13 miles
O Of Lanes -4
Divided \(X\) Uniivided
Milepoint 32.90 to \(\overline{38.03}\)
Points (44) Total & Partial

\((0)\) & Principal Arterial
\[
(15)
\] & 1900 & 1

\(12)\) & \begin{tabular}{l}
Actual 178 \\
Statewide Average 81 \\
(20)
\end{tabular} & 11 & \begin{tabular}{l}
Actual 36 \\
Statewide \\
Average 41 \\
\((0)\)
\end{tabular} & 5 & \begin{tabular}{l}
51 to 25 growth \\
(5)
\end{tabular} & In CTP and HNI for 4 lane divided reconstruct \\
\hline
\end{tabular}
- Present control of accees - 10 point total No control (10)
Starte Functional Classification - 15 point total
Principal Arterial (15)
Intermediate (5) Interme
others
Volume Per Lane Per Day - 20 point total
4500 (0) \(\geq 6800\)
\(\geq 4500<6800\) (15)
\begin{tabular}{l}
\(\geq 5700\) 1 \\
\hline\(>5700\) 10
\end{tabular}
\(\geq 5700\)
\(<6800(10)\)
1980 Number of High Accident Locations No high accident location One hígh accident location No high accident location
One high accident location

1980 Accident Rate Per 100 mm - 20 point total
\[
\begin{array}{llll}
<501 & (0) & 110-1500 & (15) \\
50-90 & (5) & 150 & (20)
\end{array}
\]
\[
\begin{aligned}
& 50-90 \\
& 90-110
\end{aligned} \quad(10)
\]
- 1980 Number of Fatality Accidents - 5 point total None \(\qquad\)
One (2)
Two or more
1980 Injury Accident Rate - 5 point total
<902 (0)
\(90-110\) (2)
1101
- Number of Injury Accidents - actual number

Land Development Pressure - 20 point total
\(<54(0) \quad 50-750(115)\)
\({ }_{5-254}(5)>75\) (20)
25-50 (10)

- prosent control of Access - 10 point tota No control (10)
- State Functional Classification - 15 point total State Functional Classific
Principal Arterial (15) Intermediate (5) Other
Volure Per Lane Per Day
\(\leq 45 C 0(0)>6800\)
\(>4500<2100\) (15)
\(>5700(5)>9100(20)\) \(>5700\)
\(<6800\) (10) 980 Number of High accident Locations -
No high accident location No high accident location Two or more high accident locationa (5)
- 1900 Accidant Rate Fer 200 NWM - 20 point total

504 (01 110-1501 (15)
\(50-901\)
\(90-110\)\((5)\)
- 1980 Number of Fatality Accidents - 5 point total

None
(a)

One (2)
Two or nore (5)
- 1980 Injury Accident Rate - 5 point total
\(<90\) (0)
90-110 (2)
\(>110\) (5)
- Nuber of Injury Accidents - actual number
-Land Developenent Pressure - 20 point total
< 5i (0) 50-754 ! 15)
\(\begin{array}{llll}5-250 & (5) & >50 & \text { (20) }\end{array}\)
25-501 (10)

- Praient control of Accese - 10 point total Ho control (10)
- State Functional classification - 15 point tota Principal Arterial (15) ntermedia
there
Volume Per Lane Per Day - 20 point total
\(<4500\) (0) \(>6800\)
\(\geq 4500(5) \leq 9100(15)\)
\(<5700\)
\(>5700\)
\(<6800\) (10)
- 1980 Number of High Accident Locations - 5 point total One high accident location
Two or more high accident locatione (5)
- 1980 Accidont rate per 100 mVM - 20 point total
\(<50\) (0) 110-150 (15)
\(50-901\) (5) 1500
1980 Number of Fatality Accidente - 5 point total
None
One

980 Injury Accident Rate - 5 point total
\(<90\) (0)
90-110 (2)
\(>110\) (5)
Number of injury Accidenta - actual number
Land Development pressure - 20 point toter
\(5-251(5)>75:(20)\) 25-50 (10)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline County Montgomery & \begin{tabular}{l}
Present \\
Control \\
of \\
Access
\end{tabular} & State Functional Classification & Volure Per Lane Pex Day & Number of kigh Accident Locations & \begin{tabular}{l}
1980 \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of \\
Fatality \\
Accidents
\end{tabular} & \begin{tabular}{l}
1980 \\
Injury Accident Rate
\end{tabular} & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
Koute \# US 29 \\
Limits D.C. Line to Md. 97 \\
Length 0.82 mile \\
\# Of Lanes - 6 \\
Diviced \(x\) Undivided \(\qquad\) \\
\(\begin{array}{r}\text { Miilepoint } \\ \text { points }(60) \\ \frac{0.00}{\text { Total }} \text { to } \\ \hline\end{array}\)
\end{tabular} & None
\[
\text { (} 20 \text {) }
\] & \begin{tabular}{l}
Intermediate Arterial \\
(5)
\end{tabular} & \[
7000
\]
\[
\text { (} 15 \text {) }
\] & 5
(5) & \begin{tabular}{l}
Actual 1010 \\
Statewide Average 379 \\
(20)
\end{tabular} & \[
(0)
\] & \begin{tabular}{l}
Actual 549 \\
Statewide Average 220 \\
(5)
\end{tabular} & 69 & \[
\begin{aligned}
& -25 \text { to }-5 t \\
& \text { growth }
\end{aligned}
\]
\[
(0)
\] & \\
\hline \begin{tabular}{l}
Route \# US 29 \\
Limits Md. 97 to I-495 \\
Length 1.56 miles \\
* of Lanes - 6 \\
Divided X Undivided X \\
Milepoint \(\qquad\) to 2.38 \\
Points 55) Total
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & \begin{tabular}{l}
\[
5000
\] \\
(5)
\end{tabular} & 5

(5) & \begin{tabular}{l}
Actual 616 \\
Statewide Average 441 \\
(15)
\end{tabular} & & \begin{tabular}{l}
Actual 386 \\
Statewide \\
Average 281 \\
(5)
\end{tabular} & 67 & \[
\begin{gathered}
-25 \text { to }-5: \\
\text { growth }
\end{gathered}
\]
\[
(0)
\] & \\
\hline \begin{tabular}{l}
ROute US 29 \\
Limits I-495 to Md. 193 \\
Length 0.34 mile \\
* of Laries - 6 \\
Divided XUndivided \(\qquad\) \\

\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & \begin{tabular}{l}
Principal Arterial \\
(15)
\end{tabular} & 6600
\((10)\) & 2 & \begin{tabular}{l}
Actual 488 \\
Statewide \\
Average 379 \\
(15)
\end{tabular} & & \begin{tabular}{l}
Actual 285 \\
Statewide \\
Average \\
220 \\
(5)
\end{tabular} & 14 & \begin{tabular}{l}
\[
\begin{gathered}
-25 \text { to }-51 \\
\text { growth }
\end{gathered}
\] \\
(0)
\end{tabular} & \(y_{i}\) \\
\hline \begin{tabular}{l}
Route \# US 29 \\
Lirits Md. 293 to MP 3.55 \\
Length 0.83 mile \\
\# Of Lanes - 6 \\
Divided x Unaivided \(\qquad\) \\
Milepoint \(\qquad\) 2.72 to \(\overline{3.55}\) \\
Points (52) Total
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Principal Arterial
\[
\text { (} 25 \text {) }
\] & 8800
\[
\text { (} 15 \text {) }
\] & 2
(5) & \begin{tabular}{l}
Actual 244 \\
Statewide \\
Average 379 \\
(5)
\end{tabular} & \[
(2)
\] & \begin{tabular}{c|}
Actual 106 \\
Statewide \\
Average \\
220 \\
\((0)\)
\end{tabular} & 17 & \[
\begin{aligned}
& -25 \text { to }-5 t \\
& \text { growth }
\end{aligned}
\]
\[
(0)
\] & \\
\hline
\end{tabular}
- Present control of Accesa - 10 point total No control (10)
State Functional Claaaification - 15 point total Principal Arterial (15) Intermediate (5)
Othere (0)
- Volune Per Lane Per Day
\(<4500(0) \geq 6800(15)\)
\(>4500\)
\(\geq 5700\)
\(<\) \begin{tabular}{l}
\(>5700\) \\
\(>5700\) \\
\(<6800\) \\
\hline 101
\end{tabular}
\(<6800(10)\) High Accident Locationa - 5 point total
1980 Number of High Accident Locationa-
No high accident location
(2)
(2)
- 1980 Accident Rate Pex \(100 \mathrm{mmM}-20\) point total
\(<50\) (0\()\) 110-150 (15)
\(50-90\) (5) 150 (20)
- 1980 Number of Fatality Accidents - 5 point total

None (2)
\((2)\)

Two or more (5 (
1980 Injury Accident Rate -5 point total
\(<90\) (0\()\)
\(90-110\) (2)
\(>110\) (5)
Number of Injury Accidents - actual number
-Land Development Preasure - 20 point total
< 5 (0) (0) 50-75: (15)
\(5-25 *(5)>758\)
(20)
25-50 (10)

- Present Control of Accese - 10 point total No control (10)
- State Functional classification - 15 point total Principal Arterial (15)
intermediate (5) others
volume per Lane per Day - 20 point total
\(<4500 \mid 01>6800\)
\(>4500\) (5) \(>9100\) (15)
\(>5700\)
\(>5700\) \(<5700\)
- 1980 Number of high accident Locations - 5 point tota No high accident location
One high accident location No high accident location
One high accident location
Two or more high accident locatione (5)
- 1900 accident Rate per \(100 \mathrm{NMM}-20\) point total
\(<501\) (01 110-1501 (15)
\(50-901\)
(51
90-110: (10)
- 1980 kumber of Fatality Accidents - 5 point total

None
One
(0)
(2)
\begin{tabular}{l}
One (2) \\
\hline
\end{tabular}
- 1980 Injury Accident pate -5 point total
\(<908\) (0)
<90 (2)
\(90-110\) (
\(>1108\) (5)
- Number of Injury Accidents - actual number
- Land Development Pressure - 20 point total
\(<58\) (0) \(50-750\) ! 15)
\(5-25\) (5) \(>759\) (20)
\(5-258(5)\)
\(25-50, ~(10)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Present Control Of Access & State Functional Classification & \begin{tabular}{l}
Polume \\
Fer Lane \\
Per Day
\end{tabular} & \begin{tabular}{l}
1980 \\
nuber of Bigh Aceldent Locations
\end{tabular} & \begin{tabular}{l}
1980 \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
1980 \\
Nuber of Fetality Accidents
\end{tabular} & \[
\begin{aligned}
& 1980 \\
& \text { Irjury } \\
& \text { Accident } \\
& \text { Rate }
\end{aligned}
\] & Vuber of Injury Accidents & \begin{tabular}{l}
Land \\
Development Pressure
\end{tabular} & Comments \\
\hline \begin{tabular}{l}
Doute MD 3 \\
Livits US 50 to Anne Arundel County \\
Length 2.53 miles \\
- of Lanes -4 \\
pifided x Ondivided \(\qquad\) \\
Mlepoint \(\qquad\) 0.00 to 2.53 \\
points (57) Total
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & \begin{tabular}{l}
Principal \\
Arterial \\
(15)
\end{tabular} & \begin{tabular}{l}
\[
8000
\] \\
(15)
\end{tabular} & (2) & \begin{tabular}{l}
Actual 11 \\
Statewide Average 158 \\
(5)
\end{tabular} & \[
(5)
\] & \begin{tabular}{l}
Actual 61 \\
Statewide \\
Average 79 \\
(0)
\end{tabular} & 18 & \begin{tabular}{l}
\[
\begin{aligned}
& 5 \text { to } 25 \% \\
& \text { growth }
\end{aligned}
\] \\
(5)
\end{tabular} & In CTP (DEE) and HNI for divided highway reconstruction with access control improvements \\
\hline \begin{tabular}{l}
Doute MD 4 \\
Lirits \\
Dower House Road to 1-95 \\
Length 1.48 miles \\
- of Lames -4 \\
Divided \(x\) Ondiviand \(\qquad\) \\
Milepoint 7.95 to 9.43 paints (40) potal
\end{tabular} & Partial
\[
\left(\begin{array}{ll}
1
\end{array}\right)
\] & Intermedrate Arterial (5) & \[
9000
\]
(15) & \[
(5)
\] & \begin{tabular}{l}
Actual 227 \\
Statewide \\
Ave rage \\
214 \\
(10)
\end{tabular} & 0
\[
(0)
\] & \begin{tabular}{l}
Actual 126 \\
Statewide Average 112
\end{tabular} & 27 & \begin{tabular}{l}
\[
\begin{aligned}
& -25 \text { to }-58 \\
& \text { growth }
\end{aligned}
\] \\
(0)
\end{tabular} & Portion from Dower House Road to I-95 is in HNl for divided highway reconstruction wath access control improvements \\
\hline & Partal
(0) & Intermediate Arterial
(5) & \[
9300
\]
(20) & \[
(5)
\] & \begin{tabular}{l}
Actual 213 \\
Statewide \\
Average \\
214 \\
(10)
\end{tabular} & 0
(0) & \begin{tabular}{l}
Actual 126 \\
Statewide Average 112 (5)
\end{tabular} & 77 & \[
\begin{aligned}
& -25 \text { to }-5 \text { i } \\
& \text { growth }
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
Poute (MD 5 \\
Limits US 301 to MD 223 \\
Lenst:- \(\quad 5.34\) miles \\
\% of Lanes -4 \\
L: lided \(x\) Undivided \(\qquad\) \\

\end{tabular} & Partial
(0) & \begin{tabular}{l}
principal \\
Arterial \\
(15)
\end{tabular} & \[
7200
\]
(15) & (5) & \begin{tabular}{l}
Actual 117 \\
Statewade \\
Average \\
214 \\
(5)
\end{tabular} & \[
(2)
\] & \begin{tabular}{l}
Actual 78 \\
Statewide Average 112 (0)
\end{tabular} & 44 & \begin{tabular}{l}
Part 59 to 258 growth part 258 to 50 growth \\
(7)
\end{tabular} & In HNI for divided haghway reconstruction whth access control improvements \\
\hline \begin{tabular}{l}
 \\
- 1980 Number of High Accíde No high accident locatio Two or more high acciden
\end{tabular} & \begin{tabular}{l}
10 point \\
tion - 15 \\
20 point total \\
Locations \\
locations
\end{tabular} & \begin{tabular}{l}
int total \\
1 \\
- 5 point total \\
(0) \\
(2) \\
(5)
\end{tabular} & \begin{tabular}{l}
1980 Accide \\
\(<50\).
\[
50-90
\]
\[
90-110
\] \\
1980 Number \\
None \\
One \\
Two or mo \\
1980 Injury \\
\(<90\) 年
\[
90-110
\] \\
\(>110\) : \\
Number of I \\
Land Develo \\
\(<5\) \\
5-25 (\\
25-50 (1
\end{tabular} & \begin{tabular}{l}
Rate Pex 100 \\
0) 110-1 \\
5) 150 \\
0) \\
f Fatallty A \\
(0) \\
(2) \\
(5) \\
ceident Rate) \\
ury Accident \\
nent Pressure
\[
\begin{aligned}
& 50-75 * \\
& >75
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
MvM - 20 poi \\
(15) \\
(20) \\
cidente - 5 p \\
- 5 point tot \\
- actual num \\
- 20 point to \\
15) \\
20)
\end{tabular} & \begin{tabular}{l}
total \\
t total
\end{tabular} & & & & \(B-3 I\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Preant Control Of Accens & \[
\begin{gathered}
\text { State } \\
\text { Puscticoal } \\
\text { Clandification }
\end{gathered}
\] & Polure Per Lade Pur Day & \begin{tabular}{l}
1980 \\
Muber \\
of Hi gh \\
Aceident \\
Iocations
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
mate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
1980 \\
Nuber of Fatality Accidents
\end{tabular} & \[
190
\]
Injwy
Accident
Rater & \begin{tabular}{l}
Humber of \\
Injury \\
Accidents
\end{tabular} & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
Doute US 301 \\
Lides MD 4 to MD 214 \\
rength 5.99 miles - of Lanes -4 Divided \(x\) Dndivided
\(\qquad\) points (50) Total
\end{tabular} & None
(10) & Principal Arterial
(15) & \[
5000
\] & 2 & \begin{tabular}{l}
Actual 98 \\
Statewide \\
Average 98 \\
(5)
\end{tabular} & \[
(0)
\] & \begin{tabular}{l}
Actual 71 \\
Statewide Average 79 \\
(0)
\end{tabular} & 31 & \begin{tabular}{l}
Part 258 to 50: growth Part 5s to 25 growth \\
(8)
\end{tabular} & In HNI for divided highway reconstruction with access control 1 mprovements \\
\hline \begin{tabular}{l}
Boute US 301 \\
Limits MD 214 to US 50 \\
Length 3.89 miles \\
- of Lanes -4 Divided x Ondivided \(\qquad\) \\
Milepoint \(20.09 \quad 60 \quad 23.98\) points (49) potal
\end{tabular} & None
(10) & \begin{tabular}{l}
Principal \\
Arterial \\
(15)
\end{tabular} & \[
6500
\]
\[
(10)
\] & \[
(2)
\] & \begin{tabular}{l}
Actual 111 \\
Statewide Average 158 (5)
\end{tabular} & 1
\[
(2)
\] & \begin{tabular}{l}
Actual 62 \\
Statewide \\
Average 79 \\
(0)
\end{tabular} & 23 & 58 to 258 growth
\[
(5)
\] & In HNI for divided highway reconstruction with access control improvements \\
\hline \begin{tabular}{l}
Bute \\
Lindts \\
Length \\
- of Lanes \\
Divided \(\qquad\) Ondivided \(\qquad\) \\
Milepoint \(\qquad\) to \(\qquad\)
\end{tabular} & \((1)\) & () & () & () & () & & () & & () & \\
\hline \begin{tabular}{l}
Doute \\
Limits \\
Lergth \\
* of Lanes \\
Eividec \(\qquad\) Unái vided \(\qquad\) \\
My Iopoint \(\qquad\) to \(\qquad\)
\(\qquad\) \(\sqrt{\text { Iotc: }}\)
\end{tabular} & () & () & () & & () & () & () & - & () & \\
\hline
\end{tabular}
- Pressint control of accese - 10 point total No control (10)
State Functional Classification - 15 point total
Principal Arterial (15)
Intermediate (5) others
- Volume per Lane per Day - 20 point total
\(<4500\) (0) \(\geq 6800\)

\(>5700\)
\(>5700\) \(>5700\)
\(<6800(10)\)
- 1980 Number of High Accident Locations - 5 point tota

No high accident location
ne high (0)
One high accident locidi. locations (5)
- 1980 Accident Rate Per 100 mm - 20 point total
\(\begin{array}{llll}<50 \% & (0) & 110-1501 & (15) \\ 50-90 & (5) & 1509 & (20)\end{array}\)
90-110: (10)
- 1980 Number of Fatallty Accidents - 5 point total

None (2)

One (2)
- 1980 Injury Accldent Rate -5 point total
\(<908\) (0)
\(90-110\) (2) (2)
\(>110\) (5)
\(>110\)
- Number of Injury accidents - actual number
- Land Development pressure - 20 point total
< 58 (0\()\) 50-75: (15)
\(5-25\) (5) \(>75 *\) (20)
25-50: (10)

- Present Control of Accece - 10 point toral No contral (10)
State Functional Clacaification - 15 point total Principal Arterial (15) Internediate (5) Intermediate (0)
Othere
Volume per Lane Per Day - 20 point total
\(>4500\) (0) \(>6800\)
\(>4500(5)>9100(15)\)
\(>5700(20)\)
\(>5700\) (
\(>57000\)
\(<6800\) (10)
1980 Number of High Accident Locationa - 5 point total No high accident location One high accident location (2) Two or more high accident locations (5)
- 1980 Accident rate Per \(100 \mathrm{~mm}-20\) point total
\(<501\) (0\() \quad 110-1501\) (15)
50-90 (5)
1980 Kumber of Fatality Accidents - 5 point total
None (0)
One or more (5
1980 Injury Accident Rate - 5 point total
\(<908\) (0)
\(>\) 90-1101 (2)
\(>\) Number of Injury Accidents - actual number
Land Development Presaure - 20 point total

\(5-251\) (5) \(>75\) (20)
25-501 (10)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 1980 & & & & & & \\
\hline Cuinty St, Mary's & \begin{tabular}{l}
Present \\
Control \(0 f\) \\
Access
\end{tabular} & \begin{tabular}{l}
State \\
Functional \\
Classification
\end{tabular} & Vol ure Per Lane Per Day & Number of Eigh Accident Locations & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
1980 \\
Number of Fatality \\
Accidents
\end{tabular} & \[
\begin{gathered}
1980 \\
\text { Irjury } \\
\text { Accident } \\
\text { Rate } \\
\hline
\end{gathered}
\] & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
Rolie Md. 4 \\
Livits Md. 235 to Calvert County Line
\end{tabular} & Partial & Intermediate Arterial & 2000 & 0 & Actual 20 & 0 & Actual 0 & 0 & 0 to 5: growth & In HNI for 2 lane construct \\
\hline \begin{tabular}{l}
Lergth 3.35 miles \\
* of Lanes - 2 \\
Eivided \(\qquad\) Undivided \(X\) \\
Milepoint \(\qquad\) 0.00 to 3.35 Poincs 1 \\
5) Total
\end{tabular} & \((0)\) & (5) & (0) & \[
(0)
\] & \begin{tabular}{l}
Statewide \\
Average 121 (0)
\end{tabular} & (0) & Statewide Average 73
\[
(0)
\] & & (0) & \\
\hline & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Intermediate Arterial & \[
2800
\] & \[
(2)
\] & \begin{tabular}{l}
fictual 188 \\
Statewide \\
Average 158 \\
(15)
\end{tabular} & \[
3
\]
(5) & \begin{tabular}{l}
Actual 110 \\
Statewide Average 79 \\
(5)
\end{tabular} & 31 & \begin{tabular}{l}
Part 50: to 75 growth Part>100 growth \\
(19)
\end{tabular} & In HNI for 2 lane construct \\
\hline \begin{tabular}{l}
Route Md. 235 \\
Limits Md. 246 to Mč. 245 \\
Lergth 8.81 miles \\
- of Lares - \(2 \& 4\) \\
Dividec \(\mathbf{x}\) Undivided \(\mathbf{x}\) \\
Milepoint 11.99 to 2C. 80
\[
\text { Points }(45) \text { Total }
\]
\end{tabular} & None
(10) & Intermediate Arterial & \begin{tabular}{l}
4000 \\
4 lane \\
5000 \\
2 lane \\
(5)
\end{tabular} & \[
(5)
\] & \begin{tabular}{l}
Actual 243 \\
Statewide \\
Average 226 \\
(10)
\end{tabular} & & \begin{tabular}{l}
Actual 106 \\
Statewide Average 131
\end{tabular} & 51 & \begin{tabular}{l}
Part ot to 5* growth Part 50 to 7519rowth \\
(5)
\end{tabular} & Portion from Md. 246 to St. Andrew's Church Road is in HNI for mul-ti-lane reconstruct. Remainder is in CTP and HNI for 4 lane divided recorstruct. \\
\hline \begin{tabular}{l}
Route Md. 235 \\
Linits Md. 245 to Md. 5 \\
Length 9.97 miles * cef Lanes - 264 Dividec X Undivided X Milepoint 20.80 to \(\overline{30.77}\) Points (37) Total
\end{tabular} & None
(10\()\) & Intermediate Arterial & \begin{tabular}{l}
2100 \\
4 lane \\
4200 \\
2 lane \\
(0)
\end{tabular} & 1

1 & \begin{tabular}{l}
Actual 111 \\
Statewide Average 152 \\
(5)
\end{tabular} & (0) & \begin{tabular}{l}
Actual 69 \\
Statewide \\
Average 100
\end{tabular} & 21 & 50: to 75: growth
(15) & Portion from Hillsville to Laurel Grove is in CTP and HNI for 4 lane divided reconstruct. \\
\hline
\end{tabular}
- Present control of Access - 10 point total No control (10)
Partial (0 (anctional Classification - 15 point total Principal arterial (15)
Principal Arterial (15)
Intermediate (s)
Others (0)
- Volume Per Lane Per Day - 20 point total
\(\leq 4500\) (0) \(>6800\)
\(\geq 4500\) (5) \(\leq 9100\) (15)
\(<5700\) (5) \(>9100(20)\)
< 6800 (10)
- 1980 Number of High Accident Locations - 5 point total No high accident location One high accident location (2)
two or more high accident locations (5)
- 1980 Accident Rate Per 100 MVM - 20 point tota
\(\begin{array}{ccc}500 \\ 50-90 & (0) & 110-1500(15) \\ 5\end{array}\)
\(50-908\)
\(90-110\)
- 1980 Number of Fatality Accidents - 5 point total

None (0)
One (2)
Tro or mare (
(5)
- 1980 Injury Accídent Rate -5 point total
\(<901\) (0)
\(>\) 90-110 (2)
- Nuber of Injury Accidents - actual number
- Land Developpent pressure - 20 point total
\(<5\) 5-250 (0) 50 50-750! (15)
\(5-250\) (5) \(>75\) (20)
25-50 (10)

- Present Control of Acces: - 10 point total No control (10)
- State Functional Classification - 15 point total Principal Arterial (15)
Intermediate (5) Others
- Volune per Lane per Day - 20 point total
< 4500 (0) per Day
\(>4500\) <
\(<5700\) (5) \(>9100\) (20)
\(<5700\)
\(>5700\)
\(>5700\)
\(<6800(10)\)
- 1980 Number of High Accident Locations -5 point total No high accident location
(2)
- 1980 Accident Rate Per \(100 \mathrm{MVM}-20\) point total
<50 (0) 110-150 (15)
50-90 (5)
150
- 1980 Number of Fatality Accidenta - 5 point total

None (2)

One (2)
Two or more (
- 1980 Injury Aecident Rate - 5 point total
\(<90\) (0)
<90-110 (2)
\(>110\) (5)
- Number of Injury Accidents - actual number
- Land Development Pressure - actual number
\(<50\) (0)

25-50.(10)

-Present Control of Accese - 10 point total No control (10)
-State Functional Clasification - 15 point total Principal Arterial (15) Intermediate
othera
Volume per Lane Per Day - 20 point total
\(\leq 4500\) (\(01 \geq 6800\)

\(<5700\) (
\(>5700\)
\(<6800\) (10)
- 1900 Number of High Accident Location - 5 point total No high accident location One high accident location

1980 Accident Rute Per 100 MNM - 20 point totel
\[
\begin{array}{lll}
50-90 & 5) \\
90-110 & (10)
\end{array}
\]
- 1980 Number of Fatality decidents - 5 point total
\[
\begin{array}{ll}
\text { None } & \text { (0) } \\
\text { One } & \text { (2) }
\end{array}
\]

Two or more (2)
1980 Infury Accident Rate -5 point total
\(<90\) 90-110: (2)
- Number of Injury Accidents - actual number
- Land Development Pressure - 20 point total
\[
\begin{array}{c|cc|}
\hline 50 & (0) \\
5-250 & (5) & 50-754 \\
25-501 & (15)
\end{array}
\]
\[
\begin{aligned}
<50 & (0) \\
5-250 & (5) \\
25-501 & (20)
\end{aligned}
\]

- Present control of Access - 10 point total No control (10)
Partial
(0)
Partial (
State Functional Classification - 15 point total Principal Arterial (15) Intermedi
thers \(\qquad\)
Volure Per Lane Per Day - 20 point totsl
\(<4500\) (0) \(>6800\)
\(>4500(5)\)
\(>5700(5100(15)\)
\(>59100(20)\)
\(\geqslant 5700\)
\(<6800(10)\)
1980 Number of high Accident Locations - 5 point total
1980 Number of High Accident Locations (0)
No high accident location
No high accident location
(2)

One high accident location
Two or more high accident locations (5)

1980 Accident Rate Per 100 MM - 20 point total
<508 (0) 110-250: (15)
\(50-908\) (5)
\(90-110\)
1980 Number of Fatality Aceidents - 5 point total
None (0)
One
(2)
(5)

Two or more (5)
- 1980 Infury Accident Rate -5 point total
\(<901\) (0)
\(90-110\) (2 (\()\)
\(>1108\)
Number of Injury Accidents - actual number
Land Development Pressure - 20 point total
<5 (0) 50-75: ! 15)
5525: (5) \(>75\) (20)
25-50 (10)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Worcester & \begin{tabular}{l}
Present \\
Control Of \\
Access
\end{tabular} & \begin{tabular}{l}
State \\
Functional \\
Classification
\end{tabular} & Volure Per Lane Per Day & \begin{tabular}{l}
1980 \\
Nunber of Eigh Accident Locations
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Accident \\
Rate Per \\
100 MVM
\end{tabular} & \begin{tabular}{l}
\[
1980
\] \\
Number of Fatality Accidents
\end{tabular} & \begin{tabular}{l}
1980 \\
Injury Accident Rate
\end{tabular} & Number of Injury Accidents & Land Development Pressure & Comments \\
\hline \begin{tabular}{l}
RoLte \# US 113 \\
Limits MP 25.99 to \\
Md. 346 \\
Length 2.8 miles \\
\# of Lanes - 4 \\
Divided X Undivided \(\qquad\) \\
Milepoint \(\qquad\) 25.99 to 28.88 Points (42) Total
\end{tabular} & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Intermediate Arterial & \[
2350
\] & 0

\((0)\) & \begin{tabular}{l}
Actual 217 \\
Statewide Average 158 \\
(15)
\end{tabular} & \[
\left(0^{\circ}\right)
\] & \begin{tabular}{l}
hctual 81 \\
Statewide Average 79 \\
(2)
\end{tabular} & 6 & \begin{tabular}{l}
25 to 50 . growth \\
(10)
\end{tabular} & \\
\hline Route \# US 113
Limits

MP. 346 to 30.39 & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Intermediate Arterial & \[
960
\] & 0

\((0)\) & \begin{tabular}{l}
Actual 61 \\
Statewide Average 158 \\
(0)
\end{tabular} & & \begin{tabular}{l}
Actual 0 \\
Statewide Average 79 \\
(0)
\end{tabular} & 0 & \begin{tabular}{l}
25. to 50: growth \\
(10)
\end{tabular} & \\
\hline & \begin{tabular}{l}
None \\
(10)
\end{tabular} & Intermediate Arterial & \[
2350
\] & 0

\((0)\) & \begin{tabular}{l}
Actual 265 \\
Statewide Average 209 \\
(15)
\end{tabular} & \[
(0)
\] & \begin{tabular}{l}
Actual 133 \\
Statewide Average 121 \\
(2)
\end{tabular} & 5 & \[
25 \text { to } 50 \text { : }
\] growth
(10) & In HNI for 4 lane divided construct \\
\hline & None
(10\()\) & \begin{tabular}{l}
Intermediate Arterial \\
(5)
\end{tabular} & 4100
\((0)\) & 0

\((0)\) & \begin{tabular}{l}
Actual 137 \\
Statewide Average 209 \\
(5)
\end{tabular} & 0
\((0)\) & \begin{tabular}{l}
Actual 61 \\
Statewide Average 121 \\
(0)
\end{tabular} & 6 & \begin{tabular}{l}
5\% to 25\% growth \\
(5)
\end{tabular} & In RNI for 4 lane divided construct \\
\hline
\end{tabular}

\footnotetext{
- Present control of Acceas - 10 point total No control (10) partial
State Functional Classificarion - 25 point total Principal Arterial (15) Intermediate
Others
volume Per Lane Per Day - 20 point total
\(\leq 4500\) (0\()>6800\)

\(>5500\)
\(<\)
\(>5700\)
\(<\)
\(<6800(10)\)
1980 Number of high Accident Locations - 5 point total \(\begin{array}{ll}\text { No high accident location } & \text { (0) } \\ \text { One high accident location } & \text { (2) } \\ \text { Two or more high accident locations }\end{array}\) (0) Two or more high accident locations (5)
}

Accident Rate Per \(100 \mathrm{MNM}-20\) point total
\(<50\) (01 110-1501 (15)
\(50-908\)
\(90-110\)
\((10)\)
- 1980 Number of Fatality Accidents - 5 point total

None (0)
One \((0)\)
\((2)\)
\((5)\)
Two or more (5)
1980 Injury Accident Rate - 5 point total
\(<90\) (0)
\(90-110\)
\(>110\)
- Number of Injury Accidents - actual number
- Land Development Pressure - 20 point total
\(<51\) (01 50-75* (15)
\(5-250(5)>75\) (20)
25-50 (10)

- Present control of Accese - 10 point total No control (10)
Partial (0 (
state Functional classification -
Polnt total Principal Arterial (15) Principal Arterial (15)
Interwediate (5) Intermediate (0)
Other
- Volune Per Lane Per Day - 20 point total
\(<4500(0) \geq 6800\)
\(\geq 4500 \quad \leq 6800(15)\)
\(<5700(5)>9100(20)\)
\(\geqslant 5700\)
\(<6800(10)\)
- 1980 Number of High Accident Locations - 5 point total No high accident location No high accident location
One high accident location One high accident location (2)
Two or more high accident locations (5)
- 2980 Accident Rate Per \(100 \mathrm{mNM}-20\) point total <508 (0) 110-150. (15) \(50-901(5)\)
\(90-110:(10)\)
-1980 Number of Fatality Accidents - 5 point total None one 12
Two or more (5)
\(<90\) (0)
\begin{tabular}{cc}
\(90-1108\) \\
\(>1108\) & (5) \\
\hline
\end{tabular}
Number of Injury Accidents - actual number
Land Development Pressure - 20 point totol
\(<5\) (0) (0) 50-750 ! ! 5)
\(5-251\) (5) \(>750\) (20)
25-50 (10)

\section*{APPENDIX C}

STATEWIDE ACCIDENT RATES/100MVM RURAL\&PRIMARY

\footnotetext{
* Latest rate available
}

\section*{APPENDIX D \\ SEGMENT PRIORITY LISTING}
!BlGMFN1' IRLOR]TY I,TSITNS LY RAIIINC;

Route
Limits
1. US 301

MD 5 to Prince George's County Line
2. US 301

MD 6 to \(M D 5\)
3. MD 2 College Farkway to MD 648
4. MD 3 Prince George's County to MD 32
5. MD 140

MP 8.90 to MD 30
6. MD 3

MD 32 to MD 178A
7. MD 3

MD 178 to MD 3 Business
8. US 50

MD 349 tc US 13 ULT
9. US 50

Anne Arundel County Line to US 301
10. MD 2

US 50 to College Parkway
11. US 50

MD 786 C to MD 2
12. MD 140

I-695 to MP 8.90
13. US 50

MD 452 to MD 378
14. US 50

US 50 ULT to MD 349
15. MD 5

MD 637 to D. C. Line
16. MD 5

MD 223 to MD 637
17. MD 2

MD 214 to Divided Highway
18. US 50

MD 2 to Sandy Point Interchange

County

Charles Charles

Anne Arunciel
Tinne Arundel

Baltimore

Anne Arundel

Anne Arundel

Wicomico

Queen Anne's

Anne Arundel

Anne Arundel

Baltimore

Worcester

Wicomico
Prince George's
Prince George's
Anne Arundel

Anne Arundel

TYpe of Crosss
Control Scction
Re: ind
\begin{tabular}{|c|c|c|c|c|}
\hline 3.01 mile & None & 4 lane & dividec & 97 \\
\hline 8.59 mile & None & 4 lane & divided & 92 \\
\hline 2.56 mile & None & 4 lane & divided & E7 \\
\hline 6.45 mile & None & 4 lane & divided & 85 \\
\hline 1.06 mile & None & 2 lane & unaivided & 82 \\
\hline 0.97 mile & None & 4 lane & divided & 79 \\
\hline 4.03 mile & None & 4 lane & divided & 77 \\
\hline 4.43 mile & Partial & 4 and 6 Civided & lane & 77 \\
\hline 11.93 mile & Partial & 4 lane & civided & 73 \\
\hline 3.00 mile & None & 4 l ane & divided & 72 \\
\hline 0.40 mile & Partial & 4 lane & divided & 72 \\
\hline 6.95 mile & None & \begin{tabular}{l}
4 lane \\
and und
\end{tabular} & divided ivided & 72 \\
\hline 6.02 mile & None & 4 lane & divideả & 71 \\
\hline 2.87 mile & None & 4 lane & divided & 70 \\
\hline 0.59 mile & IVone & 2 lane & undivided & 69 \\
\hline 6.85 mile & Partial & 4 lane & civided & 69 \\
\hline 2.56 mile & None & 2 lane & undivided & 67 \\
\hline 5.00 mile & Partial & 6 lane & dividec & 67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Route & Limits & County & Length & Type of Control & Cross Section & Rating \\
\hline 19. & US 30 & Taldot County Line to MD 750 & Dorchester & 3.70 mile & None & 4 lane divided & 67 \\
\hline 20. & US 29 & Montgomery County Line to MD 32 & Howará & 4.38 mile & Partial & 4 lane civided & 57 \\
\hline 21. & MD 2 & MP 18.18 to MD 450 & Anne Arunael & 1.84 mile & None and Partin; & 4 lane divided & 66 \\
\hline 22. & MD \(\ddot{\sim}\) & MD 648 to MD \(100 \sim\) & Amme Arundel & 4.64 mile & None & 4 lane divided & 62 \\
\hline 23. & US 29 & MD 175 to MD 103 & Howard & 2.59 mile & Partial & 4 lane divided & 62 \\
\hline 24. & MD 5 & MD 235 to Charles County Line & St. Mary's & 7.04 mile & None & 4 lane divided & 61 \\
\hline 25. & MD 30 & Manchester to MD 30 ULT Proposed & Carroll & 1.28 mile & None & 2 lane undivided & 60 \\
\hline 26. & US 29 & D.C. Line to MD 97 & Montgomery & 0.82 mile & None & 6 lane divided & 60 \\
\hline 27. & US 29 & I-495 to MD 193 & Montgomery & 0.34 mile & None & 6 lane divided & 60 \\
\hline 28. & MD 5 & St. Mary's County Line to uS 301 & Charles & 12.37 mile & None & 4 lane divided and undivided & 59 \\
\hline 29. & MD 213 & Long Creek to MD 279 & Cecil & 6.06 mile & None & 2 lane undivided & 57 \\
\hline 30. & US 219 & MD 39 to MP 13.50 & Garrett & 1.99 mile & None & 2 lane undivided & 57 \\
\hline 31. & US 29 & MD 32 to MD 175 & Howard & 3.36 mile & Partial & 4 lane divided & 57 \\
\hline 32. & MD 3 & US 50 to Anne Arundel County Line & Prince George's & 2.53 mile & None & 4 lane divided & 57 \\
\hline 33. & MD 24 & I-95 to MP 9.31 & Harford & 5.76 mile & None & 2 lane undivided & 55 \\
\hline 34. & US 29 & MD 97 to I-495 & Montgomery & 1.56 mile & None & 6 lane divided and undivided & 55 \\
\hline 35. & I-70 & MD 144 to Ijamsville Road & Frederick & 3.30 mile & Partial & 4 lane divided & 54 \\
\hline 36 & MD 4 & MD 2 to Anne Arundel County & Calvert & 8.36 mile & None & 4 lane divided & 52 \\
\hline 37. & US 29 & MD 193 to MP 3.55 & Montgomery & 0.83 mile & None & 6 lane divided & 52 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Route & dimits & County & Length & Twoe of Control & Cross Section & Rating \\
\hline 38 & US 301 & MD 5 to MD 4 & Prince George's & 11.57 mile & None & 4 lane dividea & 52 \\
\hline 39 & US 50 & MD 322 to MD 32 (Easton) & Talbot & 4.28 mile & None & 4 lane divided & 52 \\
\hline 40 & US 220 & MD 395 to Pennsylvania State Line & Allegany & 3.73 mile & Noen & 2 lane undivided & 50 \\
\hline 41 & MD 30 & MD 140 to Carroll County Line & Baltimore & 7.40 mile & None & 2 lane undivided & 50 \\
\hline 42 & MD 404 & MP 6.40 to MD 404 WBL & Caroline & 1.65 mile & None & 4 lane divided & 50 \\
\hline 43 & MD 30 & Baltimore County Line to Manchester & Carroll & 6.07 mile & None & 2 lane undivided & 50 \\
\hline 44 & MD 140 & MD 832 to MD 140 ULT & Carroll & 2.12 mile & None & 2 lane undivided & 50 \\
\hline 45 & US 301 & Virginia State Line to MD 6 & Charles & 14.97 mile & None & 4 lane divided & 50 \\
\hline 46 & US 29 & MD 198 to Dustin Road & Montgomery & 0.82 mile & None & 4 lane divided & 50 \\
\hline 47 & US 301 & MD 4 to MD 214 & Prince George's & 5.99 mile & None & 4 lane divided & 50 \\
\hline 48 & MD 5 & US 301 to MD 223 & Prince George's & 5.34 mile & Partial & 4 lane divided & 49 \\
\hline 49 & US 301 & MD 214 to US 50 & Prince George's & 3.89 mile & None & 4 lane divided & 49 \\
\hline 50 & MD 30 & MD 30 ULT Proposed to Pennsylvania State Line & Carroll & 3.82 mile & None & 2 lane undivided & 47 \\
\hline 51 & US 15 & MD 806M to MP 32.90 & Frederick & 3.53 mile & Partial & 2 lane undivided & 47 \\
\hline 52 & US 50 & US 301 to Talbot County Line & Queen Anne's & 7.01 mile & None & 4 lane divided & 47 \\
\hline 53 & US 50 & Dorchester County Line to US 50 ULT proposed & Wicomico & 12.00 mile & None & 4 lane divided & 47 \\
\hline 54 & US 40 & MP 38.54 to Mann Watson Road & Allegany & 0.78 mile & None & 3 lane undivided & 45 \\
\hline 55. & MD 2 & MD 450 to US 50 & Anne Arundel & 0.33 mile & Partial & 2 lane divided & 45 \\
\hline 56. & MD \(\simeq 40\) & MD 30 to MP 10.99 & Baltimore & 1.03 mile & None & 2 lane undivided & 45 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Route & Lime: & County & Length & Type of Control & Cross Section & Rating \\
\hline 57. & MD 2/4 & MD 4 to MD 264 & Calvert & 15.40 mile & None & 2 lane undivided & 45 \\
\hline 58. & MD 2 & MD 4 to Anne Arundel County Line & Calvert & 4.55 mile & None & 2 lane undivided & 45 \\
\hline 59. & US 15 & MP 22.99 to MD 806M & Frederick & 6.38 mile & None & 2 lane undivided & 45 \\
\hline 60. & MD 4 & Dower House Road to 1-95 & Prince George's & 1.48 mile & Partial & 4 lane divided & 45 \\
\hline 61. & US 301 & Cnarles County Line to MD 5 & Prince George's & 2.53 mile & None & 4 lane divided & 45 \\
\hline 62. & MD 235 & MD 246 to MD 245 & St. Mary's & 8.81 mile & None & 2 and 4 lanes divided and undivided & 45 \\
\hline 63. & US 50 & Queen Anne's County Line to MD 322 & Talbot & 9.71 mile & None & 4 lane divided & 45 \\
\hline 64. & US 340 & End of Bridge to Frederick County & Washington & 1.88 mile & Partial & 4 lane divided & 45 \\
\hline 65. & US 13 & US 13 Bypass to Delaware State Line & Wicomico & 4.26 mile & None & 4 lane divided & 45 \\
\hline 66. & MD 140 & Baltimore County Line to MD 97 & Carroll & 8.05 mile & None & 4 lane divided & 44 \\
\hline 67. & US 15 & MP 32.90 to MP 38.03 & Frederick & 5.13 mile & Partial & 4 lane divided & 44 \\
\hline 68. & US 13 & Worcester County Line to MD 363 & Somerset & 13.42 mile & Partial & 4 lane divided & 44 \\
\hline 69. & US 50 & Wicomico County Line to MD 90 & Worcester & 3.41 mile & Partial & 4 lane divided & 44 \\
\hline 70. & MD 2/4 & MD 264 to MD 4 & Calvert & 12.85 mile & None & 4 lane divided & 43 \\
\hline 71. & US 50 & MD 322 to Dorchester County Line & Talbot & 11.66 mile & None & 4 lane divided & 43 \\
\hline 72. & US 1 & US 1 Business to Deer Creek & Harford & 5.14 mile & None & 2 lane undivided & 42 \\
\hline 73. & MD 24 & MP 9.3l to US 1 Business & Harford & 0.82 mile & None & 3-7 lane divided & 42 \\
\hline 74. & US 13 & MD 675A to Somerset County Line & Worcester & 3.44 mile & Partial & 4 lane divided & 42 \\
\hline 75. & US 50 & MD 90 to MD 452 & Worcester & 4.97 mile & Partial & 4 lane divided & 42 \\
\hline 76. & US 113 & MP 25.99 to MD 346 & Worcester & 2.89 mile & None & 4 lane divided & 42 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Route & Limits & zunty & Length & Type of Control & \begin{tabular}{l}
Cross \\
Section
\end{tabular} & Rating \\
\hline 97. & MD 140 & MD 97 to MD 27 & Carroll & 1.39 mile & None & 4 lane divided & 37 \\
\hline 98. & MD 279 & Big Ejk Creek to I-95 & Cecil & 2.09 mile & Partial & 2 lane undivided & 37 \\
\hline 99. & MD 213 & MD 313 to Cecil County Line & Kent & 1.75 mile & None & 2 lane undivided & 37 \\
\hline 100. & MD 235 & MD 245 to MD 5 & St. Mary's & 9.97 mile & None & 2 and 4 lanes divided and undivided & 37 \\
\hline 101. & MD 90 & Isle of Wight Road to MD 528 & Worcester & 1.50 mile & Partial & 2 lane undivided & 36 \\
\hline 102. & US 40 & Mann Watson Road to Washington County Line & Allegany & 2.29 mile & None & 2 lane undivided & 35 \\
\hline 103. & MD 140 & MD 27 to MD 97 & Carroll & 0.95 mile & None & 4 lane divided & 35 \\
\hline 104. & US 40 & Allegany County Line to MP 6.75 & Washington & 6.75 mile & None & 3 lane undivided & 35 \\
\hline 105. & US 40 & MD 144AN to MD 144AA & Allegany & 7.69 mile & None & 4 lane divided & 34 \\
\hline 106. & US 301 & Queen Anne's County Line to Cecil County Line & Kent & 8.79 mile & Partial & 4 lane divided & 34 \\
\hline 107 & US 220 & Rawlines Lane to MD 53 & Allegany & 4.95 mile & None & 2 lane undivided & 34 \\
\hline 108 & US 40 & US 20 ULT to MD 144AN & Allegany & 0.45 mile & Partial & 4 lane divided & 32 \\
\hline 109 & MD 53 & MP 2.61 to US 40 & Allegany & 0.73 mile & None & 4 lane divided & 32 \\
\hline 110 & US 15 & MP 16.44 to MP 22.99 & Frederick & 6.55 mile & Partial & 4 lane divided & 31 \\
\hline 111 & US 40 & Davis Road to M.V. Smith Road & Allegany & 1.58 mile & Partial & 4 lane divided & 30 \\
\hline 112 & MD 2 & Calvert County Line to MD 408 & Anne Arundel & 8.11 mile & None & 2 lane undivided & 30 \\
\hline 113 & MD 140 & MP 10.99 to Carroll County Line & Baltimore & 1.50 mile & None & 4 lane divided & 30 \\
\hline 114 & MD 404 & Queen Anne's County Line to MP 6.40 & Caroline & 6.40 mile & None & 2 lane undivided & 30 \\
\hline 115 & MD 404 & MD 313 to Delaware State Line & Caroline & 4.06 mile & None & 2 lane undivided & 30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Soute & Limits & Coun= & Length & Type of Control & & \begin{tabular}{l}
Cross \\
Section
\end{tabular} & Rating \\
\hline 116 & MD 213 & Kent County Line to MP 3.61 & Cecil & 3.61 mile & None & 2 & lane undivided & 30 \\
\hline 117 & MD 404 & Talbot County Line to Caroline County Line & Queen Anne's & 1.49 mile & None & 2 & lane undivided & 30 \\
\hline 118 & MD 404 & US 50 to Queen Anne's County Line & Talbot & 4.82 mile & None & 2 & lane undivided & 30 \\
\hline 119 & US 13 & Virginia State Line to MD 675A & Worcester & 3.87 mile & None & 4 & lane divided & 30 \\
\hline 120 & US 29 & Briggs Chaney Road to MD 198 & Montgomery & 2.10 mile & Partial & 4 & lane divided & 29 \\
\hline 121 & US 40 & MP 13.77 to US 220 ULT & Allegany & 1.92 mile & Partial & 4 & lane divided & 27 \\
\hline 122 & MD 140 & MD 140 ULT to Frederick County Line & Carroll & 2.78 mile & None & 2 & lane undividea & 27 \\
\hline 123 & US 301 & Kent County Line to Delaware State Line & Cecil & 3.20 mile & Partial & 4 & lane divided & 27 \\
\hline 124 & US l & Harford County Line to MD 273 & Cecil & 5.33 mile & None & 2 & lane undivided & 25 \\
\hline 125 & MD 213 & Cecilton to Long Creek & Cecil & 10.27 mile & None & 2 & lane undrvided & 25 \\
\hline 126 & MD 140 & Carroll County Line to US 15 & Frederick & 4.63 mile & None & 2 & lane undivided & 25 \\
\hline 127 & US 219 & MD 42 to Bear Creek & Garrett & 6.98 mile & None & 2 & lane undivided & 25 \\
\hline 128 & US 29 & Dustin Road to Howard County Line & Montgomery & 0.88 mile & Partial & 4 & lane divided & 25 \\
\hline 129 & US 113 & MD 346 to MP 30.39 & Worcester & 1.51 mile & None & 4 & lane divided & 25 \\
\hline 130 & US 113 & MD 589 to Delaware State Line & Worcester & 4.54 mile & None & 2 & lane undivided & 25 \\
\hline 131 & US 113 & MP 9.89 to MP 25.99 & Worcester & 16.10 mile & Partial and None & 2 & lane undivided & 21 \\
\hline 132 & US 40 & M.V. Smith Road to MP 38.54 & Allegany & 5.33 mile & Partial & 5 & lane divided & 20 \\
\hline 133 & MD 53 & US 220 to MP 2.61 & Allegany & 2.61 mile & None & 2 & lane undivided & 20 \\
\hline 134 & MD 4 & St. Mary's County Line to MD 2 & Calvert & 0.65 mile & Partial & 2 & lane undivided & 20 \\
\hline
\end{tabular}

\section*{SEGMENT PRIORITY LISTAMG BY RGT: こ}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Route & Limits & County & Ler. \(\ddagger\) n & Type of Control & \begin{tabular}{l}
Cross \\
Section
\end{tabular} & Rating \\
\hline 135 & MD 140 & MD 97 to MD 31 & Carroll & 0.41 mile & None & 4 lane divided & 20 \\
\hline 136 & US 40 & Pennsylvania State Line to US 219H & Garrett & 3.42 mile & None & 2 and 3 lane undivided & 20 \\
\hline 137 & US 219 & Bear Creek to US 48 & Garrett & 4.60 mile & None & 3 lane undivided & 20 \\
\hline 138 & US 1 & Deer Creek to MD 136 & Harford & 2.08 mile & None & 2 lane undivided & 20 \\
\hline 139 & MD 313 & US 301 to MD 213 & Kent & 2.53 mile & None & 2 lane undivided & 20 \\
\hline 140 & US 1 & MD 273 to Pennsylvania State Line & Cecil & 4.06 mile & Partial & 2 lane undivided & 17 \\
\hline 141 & U5 113 & US 13 to MP 9.89 & Worcester & 9.89 mile & None & 4 lane divided & 17 \\
\hline 142 & MD 140 & MD 31 to MD 832 & Carroll & 9.38 mile & Partial & 2 lane undivided & 11 \\
\hline 143 & MD 4 & MD 235 to Calvert County Line & St. Mary's & 3.35 mile & Partial & 2 lane divided and undivided & \\
\hline
\end{tabular}```

