ENVIRONMENTAL ASSESSMENT

FOR

CONTRACT NO. HO 630-101-770

U.S. ROUTE 29/BROKEN LAND PARKWAY INTERCHANGE

HOWARD COUNTY, MARYLAND

and
MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION

REGION III

U.S. Route 29/Broken Land Parkway Interchange Howard County
 Maryland
 Administrative Action

ENVIRONMENTAL ASSESSMENT
U.S. Department of Transportation Federal Highway Administration
and

State of Maryland
Department of Transportation State Highway Administration

Submitted pursuant to 42 U.S.C. (s) (C) 23 U.S.C. 128 (a) CEQ Regulations (40 CFR $1500 \mathrm{seq}$.)

HAL KASSOFF STATE HIGHWAY ADMINISTRATOR

by: Ne f. Pedant yer
Neil dy Pedersen, Director
Office of Planning and Preliminary Engineering

by:

SUMMARY

1. Administrative Action
() Environmental Impact Statement
(X) Environmental Assessment
() Finding of No Significant Impact
() Section 4(f) Evaluation
2. Additional Information:

Additional information concerning this project may be
obtained by contacting:
Mr. Louis H. Ege, Jr., Acting Mr. Edward Terry
Chief, Bureau of Project Planning, State Highway Administration, Room 310
707 North Calvert Street Baltimore, Maryland 21202
Phone: (301) 659-1130
Hours: 8:15 adm. - 4:15 pom.
Mr. Edward Terry
District Engineer
Federal Highway Administration
The Rotunda - Suite 220
711 West 4 nth Street
Baltimore, Maryland 21211
Phone: (301) 962-4011
Hours: 7:45 abm. - $4: 15$ pom.
3. Description of Action

This project proposes the construction of an interchange to improve traffic operations at the existing at-grade intersection of U.S. Route 29 with Owen Brown Road. The existing intersection operates at or near capacity. See Figures 1 and 2 for the approximate location of the project area.

4. Alternates Description

The State Highway Administration has considered several preliminary interchange alternates. Four (4) alternates incorporating the most feasible environmental and engineering features of the preliminary alignments were developed for presentation at the Alternates Public Meeting held April 25, 1985 at the Owen Brown Middle School. As a result of public comment, coordination with the communities and elected officials, and the evaluation of environmental and engineering
studies, three build alternates, Alternates 2,3 , and 5 , and the No-Build Alternate were recommended for detailed studies (Sep Figures 23, 26, 27 and 29). A fifth build alternate, Alternate 6, was developed subsequent to the Alternates Meeting and was also recommended for detailed studies.

Alternates 2 and 3 propose the extension of Broken Land Parkway from Stevens Forest Road across U.S. Route 29 to Symphony Woods Road, with a partial cloverleaf interchange between II.S. Route 2.9 and Broken Land Parkway Extended. Alternate 3 differs from Alternate 2 in that its tighter geometry minimizes right-of-way requirements. Both alternates utilize a directional flyover ramp for the heavy northbound U.S. Route 29 to westbound Broken Land Parkway movement.

Alternates 5 and 6 propose the reconstruction of Owen Brown Road as a five-lane roadway with a partial cloverleaf interchange between U.S. Route 29 and Owen Brown Road at the location of the present intersection. Alternate 6 differs from Alternate 5 in that it includes directional ramps to Broken Land Parkway Fixtended in the northwest quadrant.

5. Summary of Impacts

Alternates 2 and 3 would displace three residences and one minority owned business. Alternate 5 requires no displacements and Alternate 6 requires four residential displacements. In total, Alternates $2,3,5$, and 6 would require $56.2,48.4,11.2$, and 24.1 acres of additional right-of-way, respectively.

The additional right-of-way, would include, respectively for Alternates $2,3,5$, and $6,35.1,28.4,7.5$ and 7.5 acres of woodlands, $1.5,1.5, .1$, and .1 acres of wetlands, $20.3,13.0,1.0$ and 1.0 acres of 100 -year floodplains, and $15.7,15.7,14.2$ and 14.2 acres of prime
farmland soils. Alternates 2 and 3 would each entail seven stream crossings while Alternates 5 and 6 would each entail. six stream crossings. No threatened or endangered plant or animal species would be affected by any alternate.

One historic site on or eligible for the National Register of Historic Places would be affected by all alternates. No propertv would be required from this site. No archeological sites or public recreational area would be affected by any alternate.

The National Ambient Air Quality Standards wi.l. not he exceeded with the construction of any alternate. Federal Design Noise Abatement Criteria would be exceeded at three Noise Sensitive Areas for all alternates.

A comparison of impacts resulting from each alternate can he found in the Summary of Impacts table on the following page.

SUMMARY OF IMPACTS
U.S. 29 ROUTE 29/RROKFN LAND PARKWAY INTERCHANGE

No-Build	Alt.	Alt.	Alt.	Alt.
Alt.	2	3	5	6

SOCIO-ECONOMIC IMPACTS

1. Residential Dis-
placements 0
$3 \quad 3$
n
4
2. Number of Families

Relocated 0
3
3
n
4
3. Minority Families $\begin{array}{llllll}\text { Relocated } & 0 & 0 & 0 & 0 & 0\end{array}$
4. Business Displacements (Minority
$\begin{array}{llllll}\text { (owned) } & 0 & 1 & 1 & 0 & 0\end{array}$
5. Historic and Archeolopic Sites None None None None None
6. Public Recreational Jands Affected None None None None None
7. Consistent with Land Use Plan No
Yes Yes Yes Yes

NATURAL ENVIRONMENT IMPACTS

1. Loss of Natural
$\begin{array}{llllll}\text { Habitat } & 0 & 35.1 & 28.4 & 7.5 & 7.5\end{array}$
2. Effect on Threatened or Endangered Species None None None None None
3. Stream Crossings 0 $\quad 7 \quad 7 \quad 6$
4. Non-tidal Wetlands Affected (Acres) $0 \quad 1.5$. 1.5 .
5. Floodplain Areas Affected (Acres) 0
2.0 .3
13.0
1.0
1.0
6. Prime Farmland Soils Affected $\begin{array}{llllll}\text { (acres) } & 0 & 15.7 & 15.7 & 14.7\end{array}$
7. Stream Relocations
(Feet) 0
700
700
0
0
s-4

No-Ruild	Alt.	Alt.	Alt.	Alt.
Alt.	2	3	5	6

8. Air Quality

Sites exceeding S/NAAQS
$0 \quad 0$
0
0
n
9. Noise Sensitive Areas (NSA's) exceeding Federal Noise Abatement

| Criteria | 3 | 3 | 3 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COST - 1985 DOLLARS (x 1,000)

1. Construction
2. Right-of-Way

0
22, 328
18,775
11,074
$14,0.59$
5,200
4,565
7442,300
3. Envineering and Overhead 0 5,766 4,872 2,620 3,503

TOTAL
0
33,294
28,212
14,438
19, 862

The following Environmental Assessment Form is a requirement of the Maryland Environmental Policy Act and Maryland Department of Transportation Order 11.01.06.02. It's use is in keeping with the provisions of $1500.4(\mathrm{k})$ and 1506.2 and .6 of the Council of Environmental Quality Regulations, effective July 3., 1979, which recommend that duplication of Federal, State, and Local procedures be integrated into a single process.

The checklist identifies specific areas of the natural and social-economic environment which have been considered while preparing this environmental assessment. The reviewer can refer to the appropriate sections of the document, as indicated in the "Comment" column of the form, for a description of specific characteristics of the natural or social-economic environment within the proposed project area. It will also highlight any potential impacts, beneficial or adverse, that the action may incur. The "No" column indicates that during the scoping and early coordination processes, that specific area of the environment was not identified to be within the project area or would not be impacted by the proposed action.
A. Land Use Considerations

1. Will the action be within
the loo year flood plain?
2. Will the action require a
permit for construction
or alteration within the
50 year flood plain?
3. Will the action affect the use of any natural or manmade features that are unique to the county, state, or nation?
4. Will the action affect the use of an archeological or historical site or structure?
B. Water Use Considerations
3.4. Will the action require a permit for the change of the course, current, or cross-section of a stream or other body of water?
5. Will the action require the construction, alteration, or removal of a dam, reservoir, or waterway obstruction?
6. Will the action chanae the overland flow of storm water or reduce the absorption capacity of the ground?
7. Will the action require a permit for the drilling of a water well?
8. Will the action require a permit for water appropriation?
9. Will the action rerfuire a permit for the construction and operation of facilities for treatment or distribution of water?
10. will the project require a pernit for the construc'ion and operation of Ear:ilities for sewaqe treat nent and/or land disposal of liquid waste derivatives?

- $\quad \mathrm{X}$

21. Will the action result in any discharge into surface or sub-surface water?
22. If so, will the discharqe affect ambient water quality parameters and/or require a discharge permit?
C. Air Use Considerations
23. Will the action result in any discharge into the air?

X Sec. IV-D-1
24. If so, will the discharge affect ambient air quality parameters or produce a disagreeable odor?

- X Sec. IV-D-1

25. Will the action generate additional noise which differs in character or level from present conditions?
26. Will the action precluतe future use of related air space?
$-\quad \mathrm{X}$
27. Will the action generate any radiological, electrical, magnetic, or light influences?
D. Plants and Animals
28. Will the action cause the disturbance, reduction or loss of any rare, unique or valuable plant or animal?
29. Will the action result in the significant reduction or loss of any fish or wildlife habitats?
30. Will the action require a permit for the use of pesticides, herbicides or other hiological, chemical or radiological control agents?
E. Socio-Economic
31. Will the action result in a preemption or division of properties or impair their economic use?
X Sec. IV-A-1
32. Will the action cause relocation of activeties, structures, or result in a change in the population density
or distribution?
33. Will the action alter land values?
34. Will the action affect traffic flow and volume?

X \qquad Sec. IV-A-1
$X \quad$ Sec. IV-A-3

X - Sec. IV-A-2
35. Will the action affect the production, extraction, harvest or potential use of a scarce or economically important resource?
36. Will the action require a license to construct a sawmill or other plant for the manafacture of forest products?
37. Is the action in accord with federal, state, regional and local comprehensive or functional plans-including zoning?
38. Will the action affect the employment opportunities for persons in the area?
39. Will the action affect the ability of the area to attract new sources of tax revenue?
40. Will the action discourage present sources of tax revenue from remaining in the area, or affirmatively encourage them to relocate el sewhere?
\qquad Sec. IV-A-3
-X Sec. IV -C-3
$\ldots \quad \mathrm{X}$
\underline{X} Sec. IV-A-4

Sec. IV-A-3 - X laser
41. Will the action affect the ability of the area to attract tourism? $\quad \mathrm{X}$
\qquad
F. Other Considerations
42. Could the action endanger the public health, safety or welfare? \qquad
43. Could the action be eliminated without deleterious affects to the public health, safety, welfare or the natural environment? \qquad
44. Will the action be of statewide significance? \qquad
45. Are there any other plans or actions (federal, state, county or private) that, in conjunction with the subject action could result in a cumulative or synerfistic impact on the public health, safety, welfare, or environment? X _ Sec._III-A-2
46. Will the action require additional power generation or transmission capacity?
47. This agency will develop a complete environmental effects report on the proposed action.

TARLF OF CONTFNTS

Page$s-1$I. Description of Proposed Action I-1
A. Project Location I-1
B. Project Description I-1
C. Description of Existing Fnvironment I-1

1. Social Fnvironment I-1
2. Economic Environment I - 5
3. Land Use I-6
4. Historic and Archeological Resources I-7
5. Natural Environment I-7
6. Existing Air Quality I-12
7. Existing Noise Conditions I-12
II. Need for the Project I I - 1
A. Purpose I I-1
B. Project Background I I - 1
C. Existing and Projected Traffic Conditions II - 2
D. Fxisting and Projected Safety Conditions I I-3
III. Alternates Considered I I I-1A. Alternates Presented at the Alternates PublicMeetingI I I - 1
B. Alternates Considered and Dropned I I I -1
C. Alternates for Detailed Studies I I I - 3
IV. Environmental Impacts IV-1
A. Social and Economic Impacts IV - 1
B. Historic and Cultural Impacts IV-5
C. Natural Environmental Impacts IV-5
D. Air Quality Impacts IV-11
E. Noise Levels and Noise Impacts IV-18
v. Comments and Coordination V-1
VI. Appendices
Figure 1 Location Map I-1
Figure 2 Study Area Map I - 1
Figure 3 Census Tracts I-2
Figure 4 Community Facilities I -4
Figure 5 Existing Land Use IT
Figure 6 Future Land Use I- 6
Figure 7 Floodplains, Wetlands and Streams IT
Figure 8 No Build Alternate 1984 AnT II - 2
Figure 9 No Build Alternate Projected ADT I I-2
Figure 10 Alternate 2 Projected ADT with Owen Brown Road Bridge I I-2
Figure 11 Alternate 2 Projected ADT without Owen Brown Road Bridge II - 2
Figure 12 Alternate 3 Projected ADT with Owen Brown Road Bridge I In
Figure 13 Alternate 3 Projected ADT without Owen Brown Road Bridge II - 2
Figure 14 Alternate 5 Projected ADT I In
Figure 15 Alternate 6 Projected ADT I In
Figure 16 No Build 2015 Projected LOS II-?
Figure 17 Alternate 2 Projected Los with Owen Brown Road Bridge II-?
Figure 18 Alternate 2 Projected LoS without Owen Brown Road Bridge II - ?
Figure 19 Alternate 3 Projected LOS with Owen Brown Road Bridge II - ?
Figure 20 Alternate 3 Projected LOS without Owen Brown Road Bridge I In.
Figure 21 Alternate 5 Projected LOS II -

TABLES

PAGF
Table 1 Summary of Impacts s-4
Table 2 Population Growth in the Study Area J. -3
Table 3 Racial, Fthnic and Age Composition of the Study Area I-4
Table 4 Noise Sensitive Area Descriptions I-1.3
Table 5 Noise Abatement Criteria and Land Use Relationships I-15
Table 6 CO Concentrations At Fach Receptor Site, PPM 1995 IV-15
Table 7 CO Concentrations At Each Recentor Site, PPM 2015 IV-16
Table 8 Projected Noise Levels IV-20

I. DESCRIPTION OF PROPOSED ACTION

A. Project Location

The existing U.S. Route $29 /$ Owen Brown Road intersection is located in northeastern Howard County, Maryland. J.S. Route 29 , the primary roadway in the project area, hegins at Interstate 70 and runs in a southerly direction to washington, D.C., connecting suburban Baltimore and suhurhan Washington (See Figure 1). Residential and commercial development is rapidly occuring in the U.S. Route 2.9 corridor.

B. Project Description

The proposed project would improve traffic congestion at the U.S. Route $29 /$ Owen Brown Road intersection through the construction of an interchange hetween U.S. Route 29 and either Owen Brown Road or Broken I.and Parkway. U.S. Poute 29 is a four lane highway with partial control of access and experiences (peak hour traffic) congestion. Owen Rrown Road is a local east-west roadway. Broken luand Parkway is a two lane roadway which currently extends in a north-south direction from Owen Brown Road to Snowden River Parkway.
C. Description of Existing Environment

1. Social Environment
a. Population

In the last decade, Howard County experienced an acceleration of growth nearly doubling its population. From 1970 to 1980 , the population increased hy 90%, the largest growth rate among all Maryland Counties. The County's population is projected to double again hy the year 2000 (103% hy the year 2005).

Much of this growth has occurred in the eastern portion

of the County around Columbia and Ellicott City and along U.S. Route 29, U.S. Route 1 and Interstate 95. This growth can be attributed to the county's central location in the expanding Baltimore-Washington corridor, improvements to Interstate Routes 95 and 70 , as well as U.S. Routes 1,40 and 29 which traverse the county.

The growth is also due to the development of Columhia and its environs. According to the Maryland Department of Economic and Community Development, Columbia's population increased over 345% in the last decade (11,788 to 52,500 people) and is projected to increase hy 37% (to 72,000 people) by the year 1990.

The study area includes portions of Census Tracts (CT) \#6053.02, 6061.01 and 6061.02 (See Figure 3). For purposes of population comparisons the reader should note that the 1980 Census Tract 6053.01 was combined with Census Tract 6053.02 and Census Tract 6061.01 and 6061.02 were combined with Census Tract 6061.03 in 1970. Together, they comprise areas equivalent to the boundaries of Census Tract 6053 and 6061 respectively in 1970 . These latter two Census Tracts were subdivided after the 1970 Census.

From 1970 to 1980 , the population in Census Tracts 6053.01 and 6053.02 increased by 367% (1535 to 7168). The populatiuon in the Census tracts \#6061.01, 6061.02 and 6061.03 increased by an even greater rate 591.2% (2596 to 17943) in the same time period (Tahle 2).

According to the U.S. Bureau of the Census (1980), Census Tract 6053.01 had a population of 3,976 , 6061.01 had a population of 6,899 and 6061.02 had a population of 3,092 . for a total of 13,967 people (see Tahle 2).

TARLF 2
Population and Growth in the Study Area

	1970	1980	\% of Growth Rate
Howard County	62394	118572	90.0
Census Tract total	-	13967	-
6053.02	-	3976	-
6061.01	-	6899	-
6061.02	-	3092	-
6053 *	1535	7168	367.0
6061 *	2596	17943	591.2
*These Census Tracts were suhdivided after 1970 Census. Totals reflect figures for Census Tracts 6053.01 and 6053.02, and 6061.01, 6061.02, and 6061.03 in 1980 .			

An analysis of the 1980 Census data indicates that, of the total population in the aforementioned Census Tracts, 79.6\% were white, 16.1% were hlack, 4.0% were of Asian origin, 0.15 were American Indian and 0.3% were others. Census tract 6061.01 had the highest proportion of minority population (26\%). Furthermore, 482 (3.5\%) of the nonulation in all three Census Tracts were identifed as being age 60 and older, with the largest percentage residing in CT 6061.(02 ${ }^{\prime \prime}(4.6 \%)$. No concentrations of minorities and elderly were identified in the study area.

TABLE 3
Racial, Ethnic, and Age Composition of the Study Area Number (\% of Total)

		Census Tracts Total		6053.02		6061.01	6061.02
Total		13,967		3976		6899	3092
White 1	11,123	(79.6)	3,346	(84.2)	5,091	(73.8)	2,686 (86.9)
Black	2,238	(16.1)	466	(11.7)	1,570	(22.8)	202 (6.5)
Asian Origin	. 554	(4.0)	158	(4.0)	197	(2.9)	199 (6.0)
America Indian	an 11	(.08)	6	(0.2)	0		5 (0.2)
Other	41	(.29)	0			(0.6)	0
$60+$	482	(3.5)	100	(2.5)	241	(3.5)	141 (4.6)

b. Community Facilities

The study area is served by a variety of community
facilities and services within the surrounding Columbia
area.
Situated in or near the study area are the following schools:

Wildlake Middle
Wildlake High
Atholton High
Atholton Elementary
Owen Brown Middle
Dasher Green Elementary
Stevens Forest Elementary
Swansfield Elementary
Talbot Springs Elementary
Cedar Lane Special Education
Oakland Mills High
Oakland Mills Middle
Julia Brown Montessori

$$
\text { I }-4
$$

Each school has recreational facilities on site or is located adjacent to park and recreational areas.

Howard Community College and the Howard County Public Library are located near the study area.

Other recreational areas and facilities include Symphony Woods, Lake Kittamaqundi, Atholton Park, Martin Road Park, Merriweather Post Pavilion, Children's 7.00 and the Columbia Mall. None of these areas would be impacted by the proposed improvements. A Park and Ride Lot is located within the study area.

Hospital and medical services are provided by the Howard County General Hospital and the Medical Building situated near the study area.

The Howard County Police located in Fllicott City and the Maryland State Police, Waterloo Rarracks, serve the Columbia area.

A volunteer fire company provides both fire and ambulance service.

The U.S. Post Office is located northwest of the study area.

Public water and sewage services are available throughout the study area. Their capacity is adequate to support anticipated area growth.

2. Economic Environment

Major employers in the study area include Columbia Mall, Howard County General Hospital, Howard Community College and numerous clusters of commercial office and retail development scattered throughout the area.

This development is oriented both to the needs of the local community and the larger metropolitan region.

Columbia Town Center is one of the major commercial centers in the Baltimore-Washington region and has a retail trade area of 500,000 people. Its commercial activities are structured to provide a balance of local, community and regional needs within the development framework of the county.

An analysis of census data for the Census Tracts indicates the majority of people are employed in administrative, professional and educational services, manufacturing and retail trade.

The 1979 median household income of the population in these Census Tracts was $\$ 32,674$ which is considerably higher than the county wide median of $\$ 27,612$.
3. Land Use
a. Existing (Figure 5)

The study area's predominant land uses include residential, forested, and commercial. Low and medium density residential development predominate on the east and lower west side of the study area. Forested uses are situated along both sides of U.S. Route 29 predominating on the west side north and south of Owen Brown Road.

Commercial and institutional uses are concentrated along Little Patuxent Parkway in the study area.

No agricultural activity exists in the study area.
b. Future (Figure 6)

Howard County has developed a long range General Plan (1981) to guide future growth and development in the

county. It's main purpose is to channel orderly development to those areas most suited for future growth.

New low to medium density residential development is planned for some of the vacant land west of U.S. Route 29 and north of Owen Brown Road. East of U.S. Route 29, existing low to medium density residential development will continue to expand. Some additional commercial development is planned for the area south of the Merriweather Post Pavilion and the area to the east of Broken Land Parkway. The remainder of the study area will maintain its existing character.

4. Historic and Archeological Resources

There are no archeological sites in the vicinity of the proposed interchange improvements (See Correspondence Section).

There is a historic site (Athol, HO 37) located on the west side of U.S. Route 29 which is prohahly eligible for the National Register of Historic Places.
5. Natural Environment
a. Topography/Physiography

Terrain in the study area varies from gentle to oderate slopes of 5 to 25 percent. The entire area lies within the Eastern Division of the Piedmont Province, with levalions ranging from 280 to 380 feet above sea level.
b. Geology

The study area is located over a lenticular body of Guilford Quartz Monzonite, consisting of biotite-muscovitequartz monzonite. This formation is surrounded by the more expansive Lower Pelitic Schist of the Wissahickon Formation.

This formation consists of medium to coarse grained biotite-oligoclase-muscovite-quartz shcist, with garnet, staurolite, and kyanite; fine to medium grained semipeltic schist; and schistose psammitic gramulite.

The ancient crystalline rocks of the piedmont region have yielded varied mineral products. Slate, granite, gneiss, gabbro, serpentine, and marble have been used as both building stone and crushed stone, some of which is still quarried in parts of Howard County. Metals include areas of iron, copper, chrome, lead, and zinc. Non-metals include flint (quartz), feldspars, kaolin, talc, asbestos and mica. No mining activity is currently in progress in the study area.
c. Soils

Soils in the study area belong to the Glenelg ChesterManor association. They are generally deep, well drained, gently sloping soils. Farming is intensive on this association. Large areas are suited to row crops, hay crops, forage, pasture and orchards.

A large portion of the study area contains soils that have been identified by the U.S. Department of Agriculture (USDA), Soil Conservation Service (SCS) as "Prime Farmland." These soils lie primarily along the Little patuxent River and its tributaries. Other areas of prime farmland soils are generally located east of the project area. There is no agricultural use in the immediate project area.

d. Groundwater

Groundwater is not uniformly distributed throughout the metamorphosed and crystalline formations typical of the Piedmont Province. Water is generally confined to joints
and other fractures which occur randomly throughout these formations. The size of the joints, and hence the amount of water in them varies considerably. Groundwater in the study area is provided by wells in Hydrologic Unit III of the piedmont Aquifers. These are some of the poorest aquifers within the mapped area.

The patuxent formation outcrops the area generally east of U.S. Route 1 outside of the study area.
e. Surface Water

The Little Patuxent River and its tributaries provide drainage for the entire study area. The Maryland Department of Natural Resources (DNR), Water Resources Administration has classified all. surface waters of the state into four (4) categories, according to desired use. These categories are:

Class I - Water contact recreation for fish, other aquatic life and wildlife.

Class II - Shellfish harvesting
Class III - Natural Trout Waters
Class IV - Recreational Trout Waters
All waters of the state are Class I, with additional. protection by higher classifications. All waters in the study area are designated Class I.

f. Floodplains

The 100 -year floodplains in the study area are shown on Figure 7. These floodplains are based on II.S. Departmint of Housing and Urban Development (HUD) Flood Hazard Boundary and Flood Insurance Rate mapping as well as the Little Patuxent and Red Hill Drainage Area Hydrology Model. (Howard County Department of Public Works).

1) Terrestrial

Much of the study area has been developed into residential areas with commercial activity along the highways. However, woodland or forested areas within the study limits can be subdivided into and identified by the vegetation associations listed below:

Tulip Poplar Association - is characterized by the presence of tulip poplar in the absence of any other charateristic species. Common associated species include red maple, sweet gum, green ash, greenbriers, coast pepperbush, poison ivy, Virginia creeper, black gum, southern arrowwood, American holly, common winterberry holly, flowering dogwood, grape, sweetbay magnolia, common highbush blueberry, elderberry, rose, spicebush, tasselwhite and wax myrtle.

Sycamore - Green Ash, Box Elder, Silver Maple Association - This association is defined by the presence of any two (2) of the sycamore, green ash, box elder, or silver maple. Common associated species include red maple, Virginia creeper, white oak, flowering dogwood, grape, black cherry, northern red oak, spicebush, tulip poplar, black gum, Japanese honeysuckle, sassafrass, white ash, mockernut hickory, poison ivy, southern arrowwood, black oak, pignut hickory, brambles, greenbrier and ironwood.

Old-Field - is a younger successional stage of forest communities. The flora of these areas are varied but typically contain numerous grasses, asters, golden rods, sumac, various shrubs and saplings. This habitat is
distributed throughout the study area.
2) Aquatic Habitat

Several wetland areas are located within the study area and are generally associated with area streams. Wetlands in the study area have been identified by field inspections and the U.S. Department of the Interior, National Wetland Inventory (Draft, June, 1983).

The predominant wetland types in the study are briefly described below. Wetlands in the study areas are identified in Figure 7.

Palustrine Forested Broad-leaved Deciduous Temporary characterized by woody vegetation, 6 m or taller; dominant species include red maple (Acer rubrum), black willow (Salix nigga) and river birch (Setula nigra).

Palustrine Open Water - Diked/Impounded or Excavated bodies of water which basins vary from being Intermittently Exposed/Permanent to semi-permanent, depending on the water regime and local water sources; can include decorative landscaping ponds, sedimentation ponds, and stormwater management facilities.

Palustrine Scrub-shrub Broad-leaved Deciduous Tempoary - areas dominated by woody vegetation less than 6 m tall; includes tree shrubs, young trees, and trees or shrubs which are small or stunted due to environmental conditions; typical dominant include adders (Anus spp.), willows (Salix spp.), button bush (Cephalanthus, spp.), and young trees such as red maple (Acer rubrum).
h. Endangered Species

Coordination with the U.S. Fish and Wildlife Service
and the Maryland Department of Natural Resources indites that no threatened or endangered species are known to inhabit the study area.
6. Existing Air Quality

The U.S. Route $29 /$ Broken Land Parkway interchange project is within the Metropolitan Baltimore Intrastate Air Quality Control Region. While only a portion of the region does not meet the primary standards for carbon monoxide (CO) the entire region is subject to transportation control measures such as the Vehicle Emissions Inspections Program.

A detailed microscale air quality analysis has been performed to determine the CO impact of the proposed project which is described in further detail in Section IV-D.

7. Existing Noise Conditions

Nine (9) noise sensitive areas (NSA) have been
identified in the J.S. 29/Broken Land Parkway study area. Descriptions of the noise sensitive areas are provided in Table 4. The location of the NSA's are shown in Figures 23, 26, 27, and 29. A cony of the technical analysis report is available at the State Highway Administration, 707 North Calvert Street, Baltimore, Maryland, 21202.

Highway traffic noise is usually measured on the "A" weighted decibel scale "ABA", which is the scale that has a frequency range closest to that of the human ear. In order to give a sense of perspective, a quiet rural night would register about 25 dBA , a quiet suburban night would register about 60 dBA , and a very noisy urban daytime about 80 dA. Under typical field conditions, noise level changes of a 2-3 aBA can barely be detected, with a 5 dA change readily
noticeable. A 10 dA increase is judged by most people as a doubling of sound loudness. (This information is presented in the "Fundamentals and Abatement of Highway Traffic Noise" by Bolt, Beranek \& Newman, Inc. for FHWA, 1980).

The Federal Highway Administration has established, through Federal-Aid Program Manual (FHPM) 7-7-3, noise abatement criteria for various land uses. (See Table 5).

TABLE 4
Noise Sensitive Areas U.S. Route 29/Broken Land Parkway Interchange
Noise Sensitive Area Activity Category Description

R

R

B

B

B

B

B

Covington Road, two story single family frame residence

Owen Brown Road, two story single family brick and frame residence
II.S. Route 29, two story single family frame and hick residence

Owen Brown Road, two story single family frame residence

Amherst Avenue, two story single family frame and brick residence

Babylon Crest, two story single family frame and brick residence

Shell Road, one story single family frame and brick residence

8

9

B

B

Bushranger Path, Split level single family frame residence

Martin Road, two story single family stone residence (historic)

These levels are expressed in terms of an lieq noise level which is the energy-averaged noise level for a one-hour time period. All ambient and predicted levels in this report are Leq exterior noise levels unless otherwise noted.

Measurement of ambient noise levels is intended to establish the basis for impact analysis. The ambient noise levels as recorded represent a generalized view of present noise levels. Variations with time of total traffic volume, truck traffic volume, speed, etc., may cause fluctuations in ambient noise levels of several decibels. However, for the purposes of impact assessment, these fluctuations are not sufficient to significantly affect the assessment. Amhient noise levels were measured at noise sensitive areas in the U.S. 29/Rroken Land Parkway study area during the non-rush hour period based on the diurnal traffic curve.

It was determined for all the noise sensitive areas, the most typical noise conditions occur during the non-rush hour period (9:00 a.m. - 4:00 p.m.). During this time, the highest noise levels are experienced for the greatest length of time.

The results of the ambient measurements are included in Table 8 in Section IV-E along with the predicted noise levels; also see Figures 23, 26, 27 and 29 for NSA precentor locations.

TABLE 5
NOISE ABATEMENT CRITERIA AND LAND USE RELATIONSHIPS SPECIFIFD IN FHPM 7-7-3

II. NEED FOR THE PROJECT
A. Purpose

The purpose of this study is to analyze alternates to improve the existing traffic levels of service at U.S. Poute 29/Owen Brown Road and II.S. Route 29 at Mall South Fntrance. This is to he accomplished with a new grade separated interchange at U.S. Route 29.

The existing at-grade intersection at U.S. Route 29 and Owen Brown Road operates with considerable difficulty in handing high volumes of through and turning traffic resulting from development in the Columbia area. Peak hour traffic on U.S. Route 29, Broken Land Parkway, and Owen Brown Road is congested. The proposed interchange will permit free flow on U.S. Route 29 and Broken Land Parkway.

While short term improvements are heing provided through improved signalization to increase turning movement capacity, the present delays and anticipated increases in traffic volumes warrant the study of an interchange at this location.

B. Project Background

The long range goal of the State Highway Administration is to provide additional capacity throughout the U.S. Route 29 corridor by improving major intersections and widening U.S. Route 29.

The current 1985 Highway Needs Inventory lists improvements to the U.S. Route $29 /$ Broken Land Parkway Interchange and the 1982 Howard County Master Plan includes the improve-
ment of this intersection in its transportation plan. The project also conforms with the General Development Plan, Baltimore Region approved by the Regional Planning Council. The project is included in the Maryland Department of Transportation's Consolidated Transportation Program (CTP) for 1985-1990, for Project Planning and Preliminary Engineering. The subject interchange is considered hy Howard County elected officials as one of their highest transportation priorities.
C. Existing and Projected Traffic Conditions

With the ongoing residential development throughout the study area, traffic projections indicate an increase of 41,500 vehicles/day for U.S. Route 29 and 14,300 vehicles/day for Owen Brown Road and Broken Land Parkway between 1984 and 2015 under No-Ruild conditions. This projected traffic increase will cause additional congestion and delays at the existing intersection of J.S. Route 29 and Owen Brown Road.

The existing daily truck useage which comprises 6% of the average daily traffic (ADT) for U.S. Route 29 and 3% of the ADT for Owen Brown Road and Broken Land Parkway, will remain the same under the 2015 No-Build condition.

The average daily traffic for the No-Ruild Alternate is shown in Figure 9. The ADT for the proposed Build Alternates is shown in Figures $10-15$.

Quality of traffic flow along a highway is measured in terms of level of service (L/S). This measure is dependent upon highway geometry and traffic characteristics and ranges
 Srate Highway Admumstration

ADT $\frac{1995}{2015}$

ADT $\frac{1995}{2015}$

Mandand Department of Transportation State Highway Administration

ADC $\frac{1995}{2015}$

Mandand Liepartment of Fransportation State Highway Administration

from L/S "A" (Best) to L/S "C" (Minimum Desirahle), to L / S "E" (Capacity), and L/S "F" (Worst or Forced Flow). Figures 17-22 show the levels of service for the four proposed Build Alternates.

Level of service along the various segments is determined by operating characteristics at the intersections. The level of services shown are for the peak hour condition. L/S A is free flow, with low volumes and high speeds.

L/S B is the zone of stable flow, with operating speeds beginning to be restricted somewhat by traffic conditions; drivers, however, still have reasonable freedom to select their speed and lane of operation.

L/S C is still in the zone of stable flow, hut speeds and maneuverability are more closely controlled by the higher volumes.

L/S D approaches unstable flow, with tolerable operating speeds being maintained though considerably affected by changes in operating conditions.

L/S E cannot be described by speed alone, but represents operations at even lower operating speeds than in level n, with volumes at or near the capacity of the highway.

L/S F describes forced flow operation at low speeds, where volumes are below capacity.
D. Existing and Projected Safety Conditions

The network for the U.S. Route $29 /$ Broken Land Project includes the following sections:

1. U.S. Route 29 from Bradley/Allview North to the intersection of Old Columbia Road and U.S. Route 29.
2. Owen Brown Road from Martin Road east to Broken Land Parkway. Broken Land Parkway between Stevens Forest and Owen Brown Road is included in this section due to its contiguous location and design vis-a-vis Owen Brown Road.
3. Little Patuxent Parkway from Governor Warfield Parkway east to South Entrance Road.
4. South Entrance Road from U.S. Route 29 to Ifittle Patuxent Parkway.
5. Old Columhia Road from J.S. Route 29 to Owen Brown Road.
6. South Entrance Road from Old Columhia to South Entrance.

There was a total of 229 reported accidents for the entire study area during the years of 1981 through 1983 , none of which resulted in a fatality. There were 117 Property Damage accidents and 112 Injury Accidents with 1.94 persons injured during the entire study neriod.

The study area in its entirety, experienced an accident rate of 294 accidents ner one hundred million vehicle miles of travel, (acc/100 mvm) exceeding the weighted statewide average of $251 / a c c / 100 \mathrm{mvm}$ for similar design roadways now under state maintenance. The cost to the motoring and general public as a result of these accidents is approximately $\$ 1,708,000$ per hundred million vehicles miles of travel.

The road sections listed below experienced high accident rates in one or more collision tyne categorips:

1. U.S. Route 29 from Rradley/Allview to South Fintrance Road: Rear Find and Left Turn accidents.
2. Owen Brown Road from Martin to Stevens Forest: Rear End, Left Turn, Sideswipe and Fixed Object Accidents.
3. Little Patuxent Parkway from South Fntrance Road to Governor Warfield Parkway: Anfle, Rear Find, Fixed Ohject, Sideswine, and Left Turn Accidents.
However only the Little Patuxent Parkway section experienced a significantly higher total accident rate than our statewide expectations for this tyne design.
4. U.S. Route 29 Section

This section contains 3 High Accident Intersections (HAI's) for 1983: J.S. Route 29 at South Entrance Road, U.S. Route 29 at Allview/Bradley, and U.S. Route 29 at Owen Brown Road. (Note: The latter location also met the HAI criteria for 1981 and 1982.) U.S. Route 29 from . 12 miles north of Allview/Bradley to . 27 miles north of Owen Brown also qualified as a High Accident Section (HAS) for 1983. 75% of the accidents in this section of U.S. Route 29 are intersection-related and 54% of the accidents in this section are at the intersection of U.S. Route 29 and Owen Brown Road.

Rear end and left turn collision types account for 63% of total accidents and 84% of intersection-related accidents in this section. Both rear end accidents at 105 acc/100 mvm and left turn accident at 50 acc/ 100 mvm were higher than our statewide expectations in these categories.
2. Owen Brown Road

This section of Owen Brown Road experienced a total of 46 reported accidents during the study period, exceeding the statewide average rate for roads of similar design in hoth 1981 and 1982. However, this sections' accident rate, even in its highest year, would not have met the criteria of a State High Accident Section.

Rear end accidents at 93 acc $/ 100$ mom and left turn accidents at 51 acc/ 100 mvm were each approximately double their respective statewide average rates. Intersectionrelated accidents account for 48% of the total number in
this section, most of which occurred at the intersection of U.S. Route 29 and Owen Brown Road.

3. Little Patuxent Parkway

This section experienced a total of 57 reported accidents during the three-year period and realized an accident rate much bigher than our statewide expectations for this type design. It would qualify as a High Accident Section if it were State maintained. The intersection of Little Patuxent Parkway at Governor Warfield Parkway is listed in the 1982 County Intersection Accident Fxperience Booklet as having a high number of accidents.

Intersection-related accidents in fact, account for 68% of total accidents in this section. predominant collision types for this area were angle, rear end, and fixed object.

Accidents in this section have increased dramatically during the study period. The variety of oripins/destinations as well as recent office and retail development have generated sufficient traffic to cause congestion.

Other road sections in this study area are short in length and mainly supplement existing traffic movements. South Entrance hetween U.S. Route 29 and Little Patuxent Parkway is a major conduit for traffic with origins/destinations at Columbia Mall, Lake Kittamaqundi, Town Center, Howard County Hospital, Howard Community College and several of Columhia's Villages, as well as the recreational sites of South Entrance itself. Accidents for this section have increased each year of the study period with rear end types increasing at the greatest rate.

Accident rates for the Old Columbia Road section have remained constant during the study period with most occurring north of South Entrance. Old Columhia Road at the intersection of IU.S. Route 29 serves as a northern apmroach to South Entrance by southbound U.S. Route 29 traffic. It also accommodates northbound traffic attempting to avoid backups at South Entrance.

South Entrance Road is a short connector branching of f Old Columbia and extending to South Entrance Road south of Howard County Library (see Figure 4). Five of the eight accidents in this section were intersection-related.

Analysis

Grade separation at U.S. Route 29 and Owen Rrown would reduce or eliminate rear end and left turn collision types. Without additional improvements, however, and with the retention of existing traffic movements at South fntrance Road it may be assumed that accidents and congestion mirroring increased traffic volumes would increase at the South Entrance.

Design standards make infeasible the construction of full interchanges with U.S. Route 29 at hoth Rroken Land Parkway and Owen Brown Road. Thus any extension of Broken Land Parkway with an interchange at U.S. Route 29 should accommodate traffic patterns currently existing at the II.S. Route 29 and Owen Brown intersection. This alternative probably would result in the greatest reduction in accidents for the following reasons:

1. Northbound traffic on U.S. Route 29 with Columbia Town Center destinations would likely divert to an extension of Broken Land to Little Patuxent Parkway reducing accidents at South Fntrance.
2. The at-grade intersection of U.S. Route 29 and Owen Rrown Road would be removed, eliminating intersection-related accidents at that location.

It should be reiterated that Little Patuxent Parkway currently experiences a high accident rate and increased volumes of traffic on this roadway resulting from a Broken Land extension might lead to even higher accident rates in this section. However, if Broken Land Parkway is not extended, traffic with destinations at Town Center and Merriweather Post would continue to use South Fntrance Road which is currently a High Accident Intersection.

In summary, although the Build Alternates would alleviate operational and design problems at specific locations, actual reductions in overall accident rates for the entire study area would be contingent on specific details of each design proposal.

ALTERNATES CONSIDFRFD

A. Alternates Presented at the Alternates puhlic

Four Ruild Alternates were presented at the Alternates Puhlic Meeting. These were Alternates 2, 3, 4 and 5. Of these alternates, Alternates $2,3,5$ were carried forward for further study however, ontions 2A and 2 R of Alternate 2 and option A of Alternate 5 have heen dropped from the interchange concents. No preferred alternate or ontion has been selected at this time.

Of the original alternates, Alternate 4 was dronped from further study due to its inahility to adeallately accommodate the projected traffic volumes. Alternate 6 was added to the studies as a modification to Alternate 5 in response to comments received at and following the Alternates Public Meeting.
B. Alternates Considered and Dropned

1. On'tions 2A and 2B of Alternate 2

Option 2A pronosed a ramp connection in the northwest quadrant of the interchange to accomplish the turn from southbound U.S. Route 29 to westhound Rroken Iand Parkway. The ramp proposed in Ontion 2A was projected to carry a small volume of traffic which did not iustify the cost and floodplain impacts associated with construction across the Little Patuxent River. Ontion 2R pronosed that this turn he provided by a left turn of f the loon ramp in the southwest quadrant of the interchange. Roth of these ontions have heen dropped from the Alternate 2 interchange concent.

Option 2R, which proposed a left turn off the loon ramn in the southwest quadrant of the interchange, was dronned because it is incompatihle with the high-capacity
interchange concept.
In place of Options 2A and 2R, the turn from southhound U.S. Route 29 to Broken Land Parkway will he accomnlished hy the South Fintrance Road and Symphony Woods Road.

2. Option 2A of Alternate 5

Option A of Alternate 5 nronosed a left turn off the loop ramp in the northeast quadrant of the interchange onto easthound Owen Brown Road. This option has heen dropped and option B will be included in the Alternate 5 interchange. Option B proposes a directional ramp from northhound U.S. Route 29 to eastbound Owen Brown Road.

Option B can handle the expected traffic volumes more safely than Option A and with very little additional right-of-way required.
3. Alternate 4-(Dropped from further study)

Alternate 4 pronosed the extension of Rroken Land Parkway from the east side of II.S. Route 29 at Stevens Forest Road to the west side of U.S. Route 2 at the proposed location of Hickory Ridge Road. This Alternate proposed an urban diamond interchange to nrovide access hetween U.S. Route 29 and Rroken Land Parkway. This interchange provided for turning movements hetween II.S. Route 29 and Broken Land Parkway to he accommodated at, and controlled by, one high-canacity traffic signal. Traffic analysis indicates that this sipnal would operate at on
unacceptable level of traffic service and would not provide substantial improyement as compared to the existing intersection at Owen Brown Road and U.S. Route 29. It was for this reason that Alternate 4 was dropned.
C. Alternates for Detailed Studies

1. U.S. Route 29 - Widening

The widening of U.S. Route 29 from the existing four lanes to an ultimate (see Figure 25) width of six lanes is heing studied in a concurrent, but separate Project Planning study. All the U.S. Route $29 /$ Rroken Land Parkway interchange concepts are compatible with the J.S. Route 29 widening. The widening is not an integral part of the construction of the proposed interchanges. The timing of the construction of the widening would he determined during the U.S. Route 29 Corridor Study which involves the study of capacity and safety improvements along U.S. Route 29 from I-495 to U.S. Route 40 .
2. Alternate 1 - No Ruild

The No-Ruild Alternate would not provide for any long term improvements to the intersections along U.S. Route 29 at the South Entrance and at Owen Rrown Road. It would include routine maintenance, short term canacity improvements and safety improvements to the existing intersections. The No-Ruild Alternate would not, however, provide for the anticipated increase in traffic volumes.

Alternate 2 is the interchange concept originally proposed in 1965. It proposes construction of a full cloverleaf interchange with a directional ramn between U.S. Route 29 and westbound Broken Land Parkway Fxtended.

With this Alternate, Broken Iand Parkway is pronosed to be extended as a six lane divided roadway from (see figure 24) the east side of U.S. Route 29 at Stevens Forest Road to the west side of U.S. Route 29 at the proposed intersection with Hickory Ridge Road. The proposed extenSion of Broken Land Parkway will tie into the North section of Broken Land Parkway between Hickory Ridge Road and Little Patuxent Parkway that is currently under construction by Howard Research and Development Corporation. At the south end of Broken Land Parkway Fxtended the existing connection of Owen Brown Road to Broken Land Parkway must he relocated to the south. Owen Brown Road is proposed to intersect Broken Land Parkway opposite the existing intersection at Stevens Forest Road.

The Alternate 2 interchange concent provides for three of four right turns between Broken Land Parkway and U.S. Route 29 to be made by uninterrupted ramp movements via Ramps A, C and G (see Figure 25). The right turn hetween southbound U.S. Route 29 and Broken I.and Parkway would he accommodated by a right turn just north of South fintrance Road. Motorists would take South Fintrance Road to proposed Symphony Woods Road which intersects Rroken Land Parkway. Symphony Woods Road is proposed to be constructed hy others as part of the development plan proposed for this area.

Proposed Improvement to be Constructed by Others
$\square-$ Proposed Structure
\qquad _ Little Patuxent River 100 Year Flood Plain

- Air and Noise Receptors
- Wetlands

Structure to be Taken by proposed Improvement

- Existing Right of Way
- Proposed Right of Way
- - - - Historic Property Boundary
U.S. ROUTE 29/BROKEN LAND PARKWAY INTERCHANGE

ALTERNATES LEGEND

BROKEN LAND PARKWAY

RIGHT. OF WAY 250° MIN.

ROADWAY TYPICAL SECTION
50 MPH

BRIDGE TYPICAL SECTION

NOTE: THE DIMENSIONS SHOWN ARE FOR THE PURPOSE OF DETERMINING COST ESTIMATES AND ENVIRONMENTAL impacts, and are subject to change during THE FINAL DESIGN PHASE.

NOT TO SCALE

USS. ROUTE 29/BROKEN LAND PARKWAY INTERCHANGE

FIGURE 24
TYPICAL SECTIONS ALTERNATES $2 \& 3$

TWO-LANE RAMPS

SINGLE LANE RAMPS
LOOP RAMPS

ULTIMATE ON U.S. RTE. 29

NOTE:
THE DIMENSIONS SHOWN ARE FOR THE PURPOSE OF DETERMINING COST ESTIMATES AND ENVIRONMENTAL IMPACTS, AND ARE SUBJECT TO CHANGE DURING THE FINAL DESIGN PHASE.

NOT TO SCALE
U.S. ROUTE 29/BROKEN LAND

PARKWAY INTERCHANGE

FIGURE 25
TYPICAL SECTIONS ALTERNATES 2 \& 3

The left turns between U.S. Route 29 and Rroken Land Parkway would be provided hy three loon ramns (Ramns R, F and H) and one two-lane directional ramp, Ramn D. The directional ramp would provide for the northhound II.S. Route 29 to westhound Broken Land Parkway turn which is the heaviest turning-traffic volume.

The South Entrance to Columbia Town Center would he modified with Alternate 2. The right turns from and to Southbound U.S. Route 29 will remain in their existing locations (modified with minor safety improvements) but the median crossover and existing signal are to he eliminated.

Two optional local access features are pronosed with Alternate 2. The first is a local access ramp, Ramp I, which will provide access from Owen Brown Poad to southhound U.S. Route 29. The second option is a hridge to carry Owen Brown Road across U.S. Route 29. If this ontion is not selected, Owen Brown Road would he terminated on each side of U.S. Route 29. These two options are independent of each other and no preference for either has heen indicated at this time.

Access from and to U.S. Route 29 would he eliminated at River Meadow Drive, Allview Drive and Rradley Iane. Access to U.S. Route 29 from these streets would be provided via the existing internal street system. Houses along J. S. Route 29 near Allview Nrive would he provided a relocated frontage road connection to Allview Drive. Alternate? would require that Owen Brown Road he terminated on the north side of Broken Land Parkway. Old Columhia Road must
also be terminated just to the north of the proposed interchange. Access to two residences that is currently provided by Old ColumbiaRoad will he replaced by an access road connecting to Covington Road.

Alternate 2 would require the construction of six retaining walls. Two retaining walls are required along Ramp D in the northeast quadrant of the interchange to protect the Little Patuxent River from the ramp supnorting slopes. A retaining wall is required along Rroken Land Parkway in the vicinity of Hillcroft Fxecutive Park and two retaining walls are required along U.S. Route 29 at the Allview Drive Frontage Road. A retaining wall is required along the west side of U.S. Route 29 in the vicinity of the historic site to avoid taking property from the historic site.

3. Alternate 3 (Figure 26)

Alternate 3 proonses a partial cloverleaf interchange with a directional ramp between northhound U.S. Ponte 29 and westbound Broken Land Parkway Fxtended. As with Alternate 2, Broken Land Parkway would be extended from the south at Stevens Forest Road to the north at the intersection with Hickory Ridge Road. Broken Land Parkway is proposed to have the same typical section as with Alternate 2 (See Figure 25). The existing connection of Owen Brown Roan, at the south end of Broken Land Parkway Fxtented, must he relocated to the south opposite the existing intersection with stevens Forest Road.

Alternate 3 provides for three of the four right turns between U.S. Route 29 and Broken Land Parkway to he made by uninterrupted ramp movements via Ramps A, C and G. The southbound U.S. Route 29 to westbound Broken Land Parkway movement will be made via a left turn ramp off loon ramp H in the southwest quadrant of the interchange. This loon ramp also allows motorists to travel eastbound on Broken Land Parkway from southbound U.S. Route 29. Traffic from northbound U.S. Route 29 will enter westbound Broken Land Parkway via a two-lane directional ramp which is designed to handle the heavy traffic utilizing this ramp. The deft turns from Broken Land Parkway to U.S. Route 29 will he made by a left turn of f of Broken Land Parkway onto Ramps R and F which lead to U.S. Route 29. These left turns will require a traffic signal at each of the two turns and will be provided an exclusive turning lane in the median of the roadway.

The South Entrance to Columbia Town Center would be modified with Alternate 3 as it was with Alternate 2. The right turns from and to southbound U.S. Route 29 will remain intact and the median crossover and traffic signal. will he removed.

Three optional local access features are proposed with Alternate 3. As with Alternate 2, Ram I is proposed to provide access from Owen Brown Road to south hound U.S. Route 29. An additional ramp, Ramp J, is proposed to provide access from U.S. Route 29 northbound to Owen Brown Road. Finally, a bridge carrying. Owen Brown Road over U.S. Route

29 is proposed as an ontion. If this section is not selected, Owen Brown Road would he terminated on each side of U.S. Route 29. Each of these three ontions are independent of each other and no preference for any has heen indicated at this time.

Access to and from U.S. Route 29 would he eliminated at River Meadow Drive, Allview Drive and Rradley Jane. Access to U.S. Route 29 from these streets would he provided via the existing internal street system. Houses along U.s. Route 29 near Allview Drive would be provided with a relocated frontage road connection to Allview Drive. Alternate 3 would require that Owen Rrown Road he terminated on the north side of Rroken Land Parkwav. Old Columbia Road must also be terminated just to the north of the nroposed inter- change. Access to two residences that is currently provided by Old Columbia Road will he replaced hy an access road connecting to Covington Road.

Alternate 3 would require the construction of four retaining walls. One retaining wall is required along Broken Land Parkway in the vicinity of the Hillcroft Executive Park and two along U.S. Route 29 at the Allview Drive frontage road. A retaining wall is also required along the west side of U.S. Route 29 in the vicinity of the historic site to avoid property acquisition from the site.
4. Alternate 5 (Figure 27)

Alternate 5 proposes the construction of a nartial cloverleaf interchange at the juncture of U.S. Route 29 and Owen Brown Road. This alternate would require a hridge to

- Proposed Improvement

Proposed Improvement to be Constructed by Others

- Proposed Structure
 Flood Plain
- Air and Noise Receptors

3

- Wetlands
_ Structure to be Taken by proposed Improvement
- Existing Right of Way
———— - Proposed Right of Way
- - - - Historic Property Boundary

be constructed on Owen Brown Road which would span IJ.S. Route 29. Owen Brown Road would he reconstructed as a 5 lane roadway through the interchange area hetween Reechwood Road and Dewey Drive. This five lane section wolld provide. two lanes in each direction plus a center left turn'storage lane from Owen Brown Road to Ramps D and H (See Figure 28). These movements as well as left turns from the inner loop ramps would be signal controlled.

In the northeast quadrant, Ramp D would carry traffic from Owen Brown Road to northhound U.S. Rollte 29. Ioon Ramp A would provide access from northhound I. S. Route 29 to westbound Owen Brown Road. Access from northhound II.S. Route 29 to eastbound Owen Brown Road would be via Ramp R in the southeast quadrant. In the southwest quadrant loon Ramp F. accommodates traffic exiting southhound U.S. Poute 29 onto both east and westbound Owen Rrown Road. Ramp H in this quadrant provides access from Owen Rrown Road to sollthhound U.S. Route 29.

South Entrance Road to Columhia Town Center would remain operational as it is today.

Direct access to and from U.S. Route 29 at River Meadow Drive, Allview Drive and Rradley Lane would he terminated. Access to U.S. Route 29 from these local streets would he provided via the existing internal street system. Access to houses along U.S. Route 29 near Allview Drive would continue to be provided by the existing frontage road connection to Allview Drive. Alternate 5 would also require a cul-de-sac on Old Columbia Road just north of Owen Rrown Road. Access

OWEN BROWN ROAD

OWEN BROWN ROAD BRIDGE

SINGLE LANE RAMPS

ULTIMATE ON USS. RTE 29

NOTE: THE DIMENSIONS SHOWN ARE FOR THE PURPOSE OF DETERMINING COST ESTIMATES AND ENVIRONmental impacts, and are subject to change DURING THE FINAL DESIGN PHASE.

NOT TO SCALE
U.S. ROUTE 29/ BROKEN LAND PARKWAY INTERCHANGE

FIGURE 28
TYPICAL SECTIONS ALTERNATES 5 \& 6
to two houses on Owen Brown Road located just east of IJ.S. Route 29 would be provided hy a relocated driveway exiting onto Amhurst Avenue.

Alternate 5 would require the construction of four retaining walls; two along northhound U.S. Route 29 in the vicinity of the Allview Drive frontage road and one hetween southhound U.S. Route 29 and Ramp F. A fourth retaining wall would be required along the west of U.S. Poute 29 in the vicinity of the historic site.

5. Alternate 6 (Figure 29)

This alternate was develoned after the Alternates Puhlic Meeting held in April, 1985.

Alternate 6 is a modified cloverleaf interchange utilizing a directional fly-over ramp from northhound J.S. Route 29 to westhound Broken land Parkway. This alternate would require the construction of two hridges; one for Owen Brown Road over U.S. Route 29 and one for Rroken Jiand Parkway over U.S. Route 29. Owen Rrown Road would he a 5 lane roadway as with Alternate 5 (see Figure 2.8). Two through travel lanes and a center lane for left turns would he provided.

In the southeast quadrant, Ramp K would carry northbound U.S. Route 29 traffic to westhound Broken Land Park... way. Motorists would use Ramp B to travel easthound on Owen Brown Road and Ramp A to travel westhound on Owen Brown Road.

A collector/distributor (C/D) roadway would he nrovided for southbound U.S. Route 2.9 from south of the South

- Proposed Improvement

Proposed Improvement to be Constructed by Others
\square - Proposed Structure
 Flood Plain

- Air and Noise Receptors
- Wetlands
_ Structure to be Taken by proposed Improvement
—— Existing Right of Way
——— Proposed Right of Way
- - - Historic Property Boundary

BROKEN LAND PARKWAY BRIDGE
 TYPICAL SECTION - ALT. 6

Entrance Road to south of Bradley Lane. In the southwest quadrant of the interchange motorists would exit from the C/D road to Owen Rrown Road in either the easterly or westerly direction. Ramp G would allow motorists on Owen Brown Road access to U.S. Route 29 southbound via the $C / 0$ roadway.

Ramp L in the northwest quadrant would allow traffic from southbound Rroken Land Parkway to travel south on II.S. Route 29 via the C/D roadway. Southhound traffic on BrokenLand Parkway would use the C/D road to exit to Owen Brown Road east or westhound. The South fintrance to Columbia Town Center would remain operational at all times as it exists today.

In the northeast quadrant of the interchange Ramp C would provide access to either U.S. Route 29 northhound or to Broken Land Parkway westhound to the Columhia Town Center.

Access to and from U.S. Route 29 would be eliminated at Allview Drive, Bradley Lane and River Meadow Drive. Access to these streets would then be via the existing internal street system. Access to the houses along the U.S. Route ?9 near Allview Drive would he provided by a connection to the exiting frontage road. Access to two houses on Owen Rrown Road just east of U.S. Ronte 29 would be provided hy a relocated driveway exiting onto Amhurst Avenue. A cul-de-sac will he constructed on Old Columbia Road just north of Broken Land Parkway. Access to several residences and the Natures Way Childrens Center will he provided hy an access road connecting to Covington Road.

Alternate 6 would require the construction of three retaining walls. Two retaining walls would he required along northbound U.S. Route 29 in the vicinity of the Allview Drive frontage road. A retaining wall would he required along the west side of $I I . S$. Route 29 in the vicinity of the historic site.
IV. ENVIRONMENTAL IMPACTS

A. Social and Fconomic Impacts

1. Relocation

The No-Ruild Alternate and Alternate 5 would require no relocations. Alternates 2 and 3 each would disnlace three (3) residences and one (1) husiness, a day care center which is minority owned and operated. Alternate 6 would displace four (4) residences, three of which are the same as required by Alternates 2 and 3. None of the displacees are minority members.

A summary of the local real estate market revealed that comparable, affordahle replacement housing is available for those displaced. All families will he relocated in decent, safe, and sanitary housing within their financial means. Residences will he relocated in accordance with the requirements of the "Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970." (Sep Annendix). A lead time of twelve (12) months would he required for the relocations under Alternate 2, 3 and 6.

Replacement sites for Nature's Way Children Center may he more difficult to locate. However, under Howard County Zoning regulations, day care centers may he granted snecial exception in any District, provided that all State and County regulations and requirements are met.

No handicapped or elderly persons are expected to be displaced under any of the Build Alternates. There would he no impacts to schools, churches, or park or recreational areas by the proposed improvements.

The pedestrian crosswalk over U.S. Route 29 would he maintained. The Park and Ride lot located just past of II.S. Route 29, would he removed by Alternates 2,5 and 6 , but relocated elsewhere.

TITLE VI STATEMFNT

It is the policy of the Maryland State Highway Administration to ensure compliance with the nrovisions of Title VI of the Civil Rights Act of 1964 , and related civil rights laws and regulations which prohihit discrimination on the grounds of race, color, sex, national origin, age religion, physical or mental handicap in all State Highway Administration program projects funded in whole or in nart by the Federal Highway Administration. The State Highway Administration will not discriminate in highway planning, highway design, highway construction, the acquisition of right-of-way, or the provision of relocation advisory assistance.

This policy has heen incorporated into all levels of the highway planning process in order that proner consideration may he given to the social, economic, and environmental effects of all highway projects. Alleged discriminatory actions should he addressed to the fqual Opportunity Section of the Maryland State Highway Administration for investigation.

2. Access to Community Facilities and Services

The No-Build Alternate would not address the existing traffic congestion at the intersection of $\mathrm{J} . \mathrm{S}$. Route 29 and Owen Brown Road, nor would it address the proiected increase of traffic volumes for the area. Consequently, access to residences, husinesses and local facilities and services would become increasingly difficult and time comsuming.

All Four (4) Build Alternates would alleviate the congestion and potential traffic hazards at the nwen Rrown Road/U.S. Route 29 intersection, hut Alternates 2,3 and 6 would better accommodate traffic movements to residential and commercial areas as well as essential facilities and services provided the hridge option is selected or the
county constructs Martin Road Fxtended. Alternater 2, 3 and 6 would also separate Merriweather Post Pavillion event traffic from local and through traffic hy channelization to proposed side roads at lower speeds. Unlike Aliernates?, 3 and 6, Alternate 5 would not adequately accommodate event traffic or facilitate travel to and from Columhia New Town. All four huild alternates would deny access hetwefn U.S. Route 29 and River Meadow Drive, Rradlev Lane and Allview Drive making travel more circuitous in these areas. This proposed action could also adversely imnact neighborhoods in the areas of River Meadow Drive, Rradley Lane and Allview Drive hy limiting accessifility for emergency vehicles.

Alternates 2 and 3 include a cul-de-sac on owen Brown Road in front of the Julia Rrown Montessori School nroviding safer access to and from the school area, and also considers the option to cul-de-sac or hridge Owen Rrown Rnad at U.S. Route 29. If the hridge option is not selected, access for residents to either side would he less direct hut safer. If the bridge option is not selected and the county does not construct the extention of Martin Road to Hickorv Ridge Road, the accessinility of the Village of Hickory Ridge may be adversely impacted. Access would he hy way of Cedar Lane from either Maryland Route 32 or U.S. Route 29. Response times for emergency services may he increased and the length and duration of commuter and other trips hy residents would be correspondingly increased.

$$
\text { I V - } 3
$$

3. Community and Economic Impacts

Alternates 2,3 and 6 would not only provide for quicker and safer commuting to jobs, schools, shops and services but would also serve planned commercial and industrial growth. These improvements would also facilitate the transportation of supplies and goods in and out of the study area and the Columbia business district.

None of the Build Alternates would disrupt the integrity or cohesion of the communities, however some areas would be affected by the proposed improvements. Alternates 5 and 6 would negatively impact residents fronting Owen Brown Road between Amherst Avenue and Martin Road because of proximity effects and traffic increase due to the five-lane widening and usage of Owen Brown Road as an alternate rollo providing access into Columbia.

Residents fronting Stevens Forest Road would he negatively impacted due to increased traffic created by the proposed cul-de-sac of River Meadows Drive by all the Build Alternates and the proposed cul-de-sac of Owen Rrown Road by Alternates 2 and 3. However, Alternates 2 and 3 would benefit residents in the southeast quadrant of the study area by shifting through traffic further north, away from the residential area.

Alternates 2,3 and 6 would remove the existing old Columbia Road, requiring relocation of driveways for two residential properties adjacent to Old Columbia Road and Covington Road.

$$
\text { IV }-4
$$

4. Ifand Use Impacts

The No-Build Alternate is not consistent with Howard County's goals for providing an adequate transportation system for present and planned development. Failure to improve the transportation system along the U.S. Route 29 Corridor could result in development pressures to the western and central portions of the county desipnated for rural conservation.

Since the county has designated the study area, as well as most of the eastern region for intense commercial, industrial and residential development; improved road capacity and accessihility would be consistent with the comprehensive development plans adopted for the area. The existing at-grade intersection at U.S. Route 29 and Owen Brown Road experiences considerable difficulty in handing high volumes of through and turning traffic generated by development in the Columhia area.

All Build Alternates are consistent with the General Land Use Plan.

B. Historic and Cultural Impacts

No property is required from Athol (HO 37), nor are any adverse impacts to the site anticipated. Concurrence with this assessment has been requested from the Maryland Historical Trust.
C. Natural Environmental Impacts

1. Floodplains

All of the pronosed huild alternates will encroach upon the 100 year floodplain of the Jittle Patuxent River.

Placement of any fill material within the 100 year floodplain will require a Section 404 Permit from the Army Corps of Engineers. A comparison of the amounts of acreage within the 100 year floodplain required for each improvement is shown below:

ALTERNATE

Alternate 2
Alternate 3
Alternate 5
Alternate 6

FLOOODPI」AIN ACRFAGF RFOUIRFED

20.3
13.0
1.0
1.0

In accordance with the requirements of FHPM 6-7-3-2, each encroachment was evaluated to determine its significance. A significant encroachment would involve one of the following:

- A significant potential for interruntion or termination of a transportation facility which is needed for emergency vehicles or provide a communjity's only evacuation route.
- A significant risk, or
- A significant adverse impact on natural and heneficial floodplain values.

A preliminary analysis of the pronosed floonplain encroachments indicates that Alternates 5 and 6 would not significantly affect upstream water surface elevations or storage capacity. Alternate 2 has the most severe flnodplain impact, raising water surface elevations annroximately 0.5 feet and possibly requiring the purchase of floon easement. Alternate 3 significantly reduces floodnlain impacts as compared to Alternate 2 hut may still require the purchase of a lesser amount of flood easement. Adतitional detailed studies will continue through the design phase of
the project. All floodplain encroachments, will he coordinated with the appropriate Federal, state and local agencies.

The use of standard hydraulic design techniques for all waterway openings would incorporate structures to 1 imit upstream flood level increases and approximate existing downstream flow rates.

Use of state-of-the-art sediment and erosion control techniques and stormwater management controls will minimize risks and impacts to the beneficial floodplain values. None of the proposed floodplain encroachments would directly or indirectly support further development within the floodplain. A floodplain finding, if required, will he presented in the final environmental document.
2. Prime Farmland Soils

The project would affect Prime Farmland Soils under all Build Alternates proposed. There is no indication of any unique farmland soils within the study area. Approximate amounts of Prime Farmland Soils required for right-of-way purposes are shown below:

Alternate 2-15.7 acres
Alternate $3-15.7$ acres
Alternate 5-14.2 acres
Alternate 6-14.2 acres
Within the study area zoning is predominantly commerceisl and residential, consistent with planning goals for eastern Howard County. There are no active farms within the study area.

This proiect is being coordinated with the Soil Conservation Service in accordance with the National Farmland Protection Policy Act.

3. Surface Water

The Little Patuxent River and its tributaries provide drainage for the entire study area. Alternates 2 and 3 propose bridging the river at two locations in the easternportion of the interchange for construction of Rroken Land Parkway and Owen Rrown Road. The interchanges proposed for Alternates 2 and 3 would also require two new crossings of an unnamed tributary of the Little Patuxent with either pipes or culverts as well as extending two existing structures for widening of IJ.S. Route 29. Approximatelv 700^{\prime} of stream relocation of this unnamed tributary will also be required for construction of Alternates 2 and 3.

Alternates 5 and 6 will require widening the existing U.S. Route 29 bridge over Little Patuxent River north of the proposed interchange. The alternates will also require extension of an existing structure for an unnamed trihutary of the Little Patuxent flowing under U.S. Route 29. Two new stream crossings of the same trihutary will he required for construction of interchange ramps.

All Ruild Alternates cross Reaver Run. No extension of the existing culvert or disturbance of the streambed is anticipated.

The increase of impervious surfaces resulting from the proposed improvements would produce a proportionate increase in the amount of roadway runoff carrving vehicle penerated pollutants (i.e., oil, coolants, brake linings, rubher,
etc.). Stormwater runoff would he managed under the Department of Natural Resources' Stormwater Management Regulations. These regulations will require stormwater management practices in the following order of preference:

- on site infiltration
- flow attenuation by open vegetated swales and natural depressions
- stormwater retention structures
- stormwater detention structures

It has been demonstrated that these measures can significantly reduce pollitant loads and control runoff.

The final design for the proposed improvements will include plans for grading, sediment and erosion control, and stormwater management, in accordance with State and Federal laws and regulations. They will require review and approval by the Maryland Department of Natural Resources - Water Resources Administration (WRA) and the Department of Health and Mental Hygiene - Office of Fnvironmental Programs (OFP). Waterway construction permits will also be required from the Department of Natural Resources.

4. Habitat

Both terrestrial and aquatic habitats would he affected by the proposed action. The alternates under consideration would require the following amounts of woodland and wetland habitat for right-of-way:

WOODLAND
WETLANDS (non-tidal)
Alternate 235.05
1.55

Alternate 328.39
1.45

Alternate 5
7.5
0.1

Alternate 6
7.5
0.1

a.) Terrestrial

Species such as deer, rabbit, squirrel, racoon, dove, waterfowl, reptiles, amphihians, and fish are representative of the wildlife populations in the study area. coordination with DNR, Wildlife Administration, and U.S. Fish and Wildlife Service indicates that there are no known nopulations of threatened or endangered plant or animal species in the study area. (See correspondence from these agencies in Section V).

The loss of hahitat would he accompanied hy a proportional loss in animal population inhahiting these areas. According to the Horward County Master Plan, this area is zoned for residential and commercial development.

h.) Aquatic

Pursuant to Fxecutive Order 11990 , Protection of Wetlands, wetland areas potentially affected were identified. Potential impacts resulting from construction of the proposed roadway include sedimentation, nollution hy roadway runoff, and loss of vegetative cover. No tidal wetlands are located within the study area.

Non-tidal wetlands are identified within the study area based on the U.S. Fish and Wildife Service National Wetlands Inventory (See Figure 7). Ffforts were made to minimize impacts to non-tidal wetlands. However, due to the interchange design configurations necessary to provide desired circulation and roadway connections and the proximity of the floodplain of the Little Patuxent River, avoidance of all non-tidal wetlands was not feasihle.

$$
\text { I V }-10
$$

D. Air Quality Impacts

1. Analysis Ohjectives, Methodology, and Results

The objective of the air quality analysis is to compare the carbon monoxide ($C O$) concentrations estimated to result from traffic configurations and volumes of each Alternate with the State and National Ambient Air Guality Standards (S/NAAQS). The NAAQS and SAAQS are identical for CO: 35PPM (parts per million) for the maximum 1 hour period and 9 pmm for the maximum consecutive 8 hour period.

A microscale CO Dollution diffusion analysis was conducted using the third generation California Line Source Dispersion Model, CALINF 3. This microscale analvsis consisted of projections of 1 hour and 8 hour $C O$ concentrations at sensitive recentor sites under worst case meterological conditions for the No-Build Alternate and the Build Alternates 2, 3, 5, and 6 for the desipn year (2015) and the estimated year of comnletion (1995).
a. Analysis Inputs

A summary of analysis inputs is given helow. More detailed information concerning these inputs is contained in the U.S. Route $29 /$ Broken Land Parkway Air Quality Analysis which is availahle for review at the Maryland State Highway Administraion, 707 North Calvert Street, Baltimore, Maryland 21202.

Background Co Concentrations

In order to calculate the total concentration of $C O$ which occurs at a particular receptor site during worst case meterological conditions, the background co concentrations
are considered in addition to the levels directly attrihutable to the facility under consideration. Rackground C (levels were projected hased upon on-site monitoring conducted at Fort George G. Meade during the period of February, 1977. The hackground concentration resulting from area-wide.emissions from hoth mohile and stationary sources was assumed to he the following:

CO, PPM

1 Hour	8 Hour
3.6	2.0
3.5	1.9

Traffic Data, Emission Factors, and Sneeds
The appropriate traffic data was utilized as sunnlied by the Bureau of Highway Statistics (Septemher, 1985) of the Maryland State Highway Administration.

The composite emission factors used in the analysis were derived from the Fnvironmental Protection agency (FPA) Compilation of Air Pollutant Fmission Factors: Highway Mobile Sources, and the Modification to MORIIF 2, which were used by EPA to Respond to Congressional Inquires on the

Clean Air Act, and were calculated using the FPA MORILF 2.5 computer program. An ambient air temperature of $20^{\circ} \mathrm{F}$ was assumed in calculating the emission factors for both the 1 hour and 8 hour analysis in order to approximate worst case results for each analysis case. Credit for a vehicle inspection maintenance (I/M) emission control nrogram beginning in 1984 was included in the pmission facior calculations.

$$
\text { IV }-12
$$

Abstract

Average vehicle operating speeds used in calculating emission factors were based on the capacity of each roadway link considered, the applicable speed limit, and external influences on speed through the $1 i n k$ from immediately adjacent links. Average operating speeds ranged from 10 to 55 mph depending upon the roadways and alternate under consideration.

Meteorological Data

Worst-case meteorological conditions of 1 meter/second for wind speed and atmospheric stability class F were assumed for both the 1 hour and 8 hour calculations. In addition, as stated above, a worst-case temperature of $20^{\circ} \mathrm{F}$ was assumed.

The wind directions utilized as part of the analysis were rotated to maximize $C O$ concentrations at each receptor location. Wind directions varied for each receptor and were selected through a systematic scan of CO concentrations associated with different wind angles.

h. Sensitive Receptors

Site selection of sensitive receptors were made on the basis of proximity to the roadway, type of adjacent land use, and changes in traffic patterns on the roadway network. Nine (9) receptor sites were chosen for this analysis consisting of nine (9) residences. The receptor site locations were verified during study area visits by the analysis team. The receptor sites are shown on figures 23, 26, 27, and 29.

1

2

3

4

5

6

7

8

9

Residence, 2 story frame Covington Road.

Residence, 2 story hrick and frame.
Owen Rrown Road

Residence, ? story hrick and frame
U.S. Route 29

Residence, 2 story frame Owen Rrown Road

Residence, 2 story brick and frame
Amhurst Avenue
Residence, 2 storv hrick and frame Babylon Crest

Chell Road, one story single family frame and hrick residence

Bushranger Path, split level single family frame residence

Martin Road, two story single family stone residence (historic)
c. Results of Microscale Analysis

The results of the calculations of concentrations at each of the sensitive recentor sites for the, No-Build and Build Alternates are shown on Tahles 6 and 7 . The valles shown consist of predicted Co concentration attributahle to traffic on various roadway links plus projected hackpround levels. A comparison of the values in Tahles 6 and 7 with the S/NAAQS shows that no violations will ocour for the No-Build or Build Alternates in 1995 or 2015 for the 1 hour or 8 hour concentrations of $C O$. The proiected $C O$ concentrations vary between Alternates depending on receptor locations as a function of the roadway locations and traffic patterns associated with each Alternate.

TABLE 6
CO CONCENTRATIONS* AT EACH RECEPTOR SITE, PPM
199.5

TARLF 7
CO CONCFNTRATIONS* AT FACH RFFFFPTOR SITF, PPM
2015

Alternates 2 and 3 tend to result in the highest $C O$ concentrations in 1995 for most receptors while the No-Ruild Alternate tends to result in the highest co concentrations in 2015. The concentrations remain well below the s/NAAQS for all Alternates under consideration.

In conclusion, the No-Ruild Alternate and Build Alternates will not result in violations of the 1 hour or 8 hour S/NAAQS in 1995 or 2015.

2. Construction Impacts

The construction phase of the proposed project has the potential of impacting the ambient air quality through such means as fugitive dust from grading operations and materials handling. The State Highway Administration has addressed this possibility by establishing specifications for Materials, Highways, Bridges and Incidental Structures which specifies procedures to he followed by contractors involved in state work.

The Maryland Bureau of Air Quality Control was consulted to determine the adequacy of the Specifications in terms of satisfying the requirements of the Regulations Governing the Control of Air Pollution in the State of Maryland. The Maryland Bureau of Air Duality Control found that the specifications are consistent with the requirements of these regulations. Therefore, during the construction period, all appropriate measures will he taken to minimize the impact on the air quality of the area.

3. Conformity with Regional Air Ouality Planning

 Planning
 Implementation Plan (SIP) inf This projeftaconformsiwith the whicr ras

4. Agency Coordination
-r.rovarani nrofi :
Copies of the technical Air quality Analysis are heing circulated to the U.S. Finvironmentap Protection Agency land t (on:o.
the Maryland Air Management Adminishtration for, renviaw and t rarcaiatert $t a t$ comment.

F. Noise Levels and Noise Impacts

1. Prediction and Analysis. Methodology
F. Noise Levels ant mint

The method used to predigt therfusuretmoiserifevels in
 developed by the Federgl Highwaydiministration fof whe U.S.
 Prediction Model (FHWA Model) ingprpartatesi data nertalninglua いrfa゙mer
 experimentally and statistically détermined reférence soúnd level for three (3) classes of vehiclesp (aíto, medilim düty trucks, and heavy duty trucks) añ'd aphíi es a series of
 adjustments to each reference level to alrive at the
 predicted sound level. The adjustment's inciude: ijetraffic

 vehicles, average vehicle speed, and specifies a time nerion
 of consideration; 2) distance adiustment comnaring afatant

$$
\text { IV }-18
$$

$$
I V-1 H
$$

reference distance and actual distance hetween receiver and roadway, including roadway width and numher of traffic lanes; and 3) adjustment for various types of physical barriers that would reduce noise transmission from source (roadway) to receiver.

The prediction calculations were performed utilizing a computer program adaptation of the FHWA MODFL, STAMINA 2.0/Optima.

The determination of environmental noise impacts is based on the relationship hetween the predicted noise levels, the established noise abatement criteria, and the ambient noise levels in the project area. The anplicahle standard is the Federal Highway Administration's noise abatement criteria/activity relationship (See tahle 5 , page I-10) published in FHPM 7.7.3.

When design year Leq noise levels are projected to exceed the abatement criteria (Tahle 5) or increases amhient conditions by more than 10 dBA , noise ahatement measures (in general, noise barriers) are considered to minimize impacts. Consideration is based on the sime of the impacted area(number of structures, spacial distribution of structures, etc.), the predominant activities carried on within the area, the visual impact of control measure, practically of construction, and economic feasihility.

Economic assessment is hased on the following assumptions. An effective harrier should, in general, extend in both directions to four (4) times the distance between receiver and roadway (source). In addition, an
'lakle 8

effective barrier should provide a $7-10$ dRA reduction in the noise level, as a preliminary design goal. For the nurnose of comparison, a total cost of $\$ 23$ per square font is assumed to estimate total harrier cost.

This cost figure is hased on current costs experienced by the Maryland State Highway Administration and includes the costs of panels, footings, drainage, landscaning, and overhead. In addition, the unset limit for determining barrier cost-effectiveness is $\$ 40,000$ per residence. This is an average cost figure hased on current and nrojected barrier costs by the Maryland State Highway Administration.
2. Prediction Results

All nine (9) noise sensitive areas (NSA) are
associated with the No-Ruild Alternate and each Ruild
Alternate. The predicted lea noise levels would vary - 6 to +9 dBA from present noise levels (see Tahle 8).

None of the noise sensitive areas would experience an increase in noise levels in excess of 10 dRA but tieq noise levels at noise sensitive areas 3,7 and 8 will exceed the noise abatement criteria of 67 dRA for all Ruild Alternates. Based on the criteria discussed in the previnus section, noise abatement should he considered for noise sensitive areas 3,7 and 8 for all Ruild Alternates.

NSA 3
A noise barrier on the past sine of ll.S. Route 29 in the vicinity of noise sensitive area 3 would he feasible but not reasonable. A twelve foot harrier 1900 feet long would reduce noise levels at five first row houses and a church hy IV-2.1
a maximum of 6 to $7, d B A$, at a cost of $\$ 524,400$ or $\$ 66,000$ ner residence. The church is air conditioned and will not, exceed, the interior noise ahatement criteria. . Therefore, noise mitigation is not recommender at this locatinn. NSA 7

A noise harrier on the west side of U.S. Route 29 in the vicinity of noise sensitive area 7 would he feasinle hut not reasonable. A twelve foot barrier 2300 feet long would reduce the noise levels at ten, to twelve first row houses hy a maximum of 6 to 7 dRA at a cost of $\$ 635,000$ or $\$ 53,000$ ner house for Alternate $5, \$ 58,000$ ner house for Alternates 2 and 3 , and $\$ 64,000$ for Alternate 6. Therefore, noise mitigation is not recommended at this location.

NSA 8
1
A noise harrier on the east side of f.S. Route 20 in the vicinity of noise sensitive area 8 would he feasible and reasonahle. A twelve foot harrier 1100 feet long, extending from the end of the existing earth berm, would reduce noise levels at ten first and second row houses hy 5 to 10 dBA at a cost of $\$ 304,000$ or $\$ 30,000$ per house for all Ruild Alternates. Therefore, noise mitigation will he sturi ed during the design phase.

3. Construction Imnacts

As with any major construction project, areas around the construction site are likely to experience varied. periods and degrees of noise impact: This type of proiect would, probably employ the following, nieces of equinment which would likely he sources of construction noise:

IV-2.

Bulldozers and Firth movers Graders
Front Find loaders
Dump and Other Diesel Trucks Compressors

Generally, construction activity would occur during normal working hours on weekdays: Therefore, a noise intrusion from construction activities probably would not occur during critical sleep or ont door recreation periods.

Maintenance of construction equipment will he regular and thorough to minimize noise emissions because of inefficiently tuned engines, poorly lihricaued movings parts, poor ineffective muffling systems, etc.

Four (4) Build Alternates were developed and presented at the April 25, 1985 Alternates Public Meeting. Approxmately 130 people attended the meeting. The majority of the comments at this meeting supported the need for an interchange and indicated preferences for Alternates 2 or 3.

Coordination has been undertaken with appropriate resource agencies including the Maryland Department of Natural Resources, the U.S. Fish and Wildlife Service and the Maryland Historical Trust.

This project was discussed at the Quarterly Interagencv Project Review Meeting held April 19, 1984.

Continuing efforts will he made to coordinate the proposed project with the appropriate review agencies.

STATE OF MARYLAND DEPARTMENT OF NATURAL RESOURCES
CAPITAL PROGRAMS ADMINISTRATION

Mr. Louis H. Eye
Bureau of Project Planning
State Highway Administration
707 North Calvert Street
Baltimore, MD 21203
Subject: U.S. Route 29 at Broken Lands Parkway
Contract No. HO 630-101-770

Dear Mr. Ege:
The Natural Heritage Program's data base contains no record of rare species, unusual community or other significant natural feature in the vicinity of this project as delineated in your transmittal of August 10, 1984. If I can be of further assistance, please do not hesitate to contact me.

Sincerely,

Ample Nader

Arnold W. Norden
Md. Natural Heritage Program

AWN:mes

TORAEY C BROWN. M.D secretary

DEPARTMENT OF NATURAL RESOURCES
Maryland Forest, Park \& Wildlife Service
TAWES OFFICE BUILDING ANNAPOLIS, MARYLAND 21401
donalde moclauchlan DIRECTOR

August 28, 1984

Mr. Louis H. Ege, Jr.
State Highway Administration
P.0. Box 717/707 N. Calvert Street

Baltimore, Maryland 21203-0717
Dear Mr. Ege:
There are no known populations of 1 isted threatened or endangered species within the area of project influence for the proposed new interchange of U. S. Route 29 at Broken Land Parkway, as described to me in your letter of August 10, 1984.

GJT: ba
cc: Carlo Brunori

STATE OF MARYLAND
 DEPARTMENT OF NATURAL RESOURCES
 MARYLAND GEOLOGICAL SURVEY
 THE ROTUNDA
 711 W．AOTH STREET．SUITE 440 BALTIMORE．MARYLAND 21211

Division of Archeology 338－7236

8 October 1985

Mr．Louis H．Ege，Jr． Bureau of Project Planning S ta te Highway Administration P．O．Box 717／707 North Calvert Street Baltimore，Maryland 21203－0717

RE：US 29／Brokenland Parkway Howard County

Dear Mr．Ege：
On 30 September 1985，I conducted an archeological survey of the subject project．Essentially 12 tracts of land were examined，giving roughly 60% coverage for the project area．The 12 tracts，keyed to the attached map，are described below．

Tract 1．Ongoing construction is taking place，and disturbance by heavy machinery is extensive．

Tract 2．This is a grass／gravel parking lot for Merriweather Post Pavilion．One rhyolite flake was recovered；examination of numerous exposures at this location revealed broken pieces of quartz，but none could be confidently identified as being culturally modified．Hence，the rhyolite flake is viewed as an isolated artifact and，as such，is not significant．

Tract 3．Broken quartz was again observed in this grass parking area． However no definite flakes were found，and it is likely that the quartz has been fractured through crushing by automobile traffic．

Tract 4．This is the largest of three Merriweather parking lots examined；extensive portions are graveled．No artifacts were noted in less disturbed areas or around the edges of this lot．

Tract 5．Again，ongoing construction has extensively disturbed this area．

Tract 6. A cleared area beneath a powerline was examined with negative results.

Tract 7. Situated on a spur between the Little Patuxent River and one of its tributaries, this tract was considered to possess at least moderate potential for prehistoric resources. The excavation of several shovel test pits in this wooded/grassy area failed to reveal any artifacts. As with elsewhere, broken and/or tabular quartz was observed, but none appeared cultural.

Tract 8. This tract was examined with reference to an historic farmstead shown on the 1878 Howard County atlas. The area has been developed as a gas station and office complex, and no trace of the historic site remains.

Tract 9. Grading on the north side of Owen Brown Road has extensively disturbed this tract.

Tract 10. A park-and-ride lot now exists at this location.
Tract 11. This area is very low and at the time of this survey exhibited evidence of extensive flooding associated with Hurricane Gloria. In addition to being too low for likely sites, some evidence of disturbance was also noted here.

Tract 12. Extensive grading has disturbed this location.
In summary, no archeological sites were noted in the project area. Much of the area is disturbed, and even undisturbed areas are characterized by generally only low to moderate archeological potential. As a result, no additional archeological study of the project is warranted. If I can be of further assistance, please let me know.

DCC:1w

```
cc: Cynthia Simpson
    Rita Suffness
```

Attachment

Maryland Historical Trust

November 18, 1985

Mr. Louis H. Eger, Jr., Acting Chief Bureau of Project Planning
State Highway Administration Maryland Department of Transportation P.O. Box 717

707 North Calvert Street Baltimore, Maryland 21203-0717

Re: Contract No. HO 630-101-770
P.D.M.S. No. 132053
U.S. Rt. 29 at Brokenland Pkwy. Howard County, Maryland

Dear Mr. Age:
Based upon the results of the Phase I archeological reconnaissance conducted of the project area, we concur that the above-referenced project should have no effect upon significant archeological resources. Therefore, additional archeological investigations are not warranted for this particular project.

Sincerely,

Richard B. Hughes State Administrator of Archeology

RBH/BCB/bjs
cc: Mrs. Mary Louise Gramkow
Mr. Ed Shill
Ms. Rita Suffness
Mr. Tyler Bastion

Richard W. Shaw
Acting Fire Administrator
Fire Department
Oeceme howand simpano
330 court houra darve
ELUCOTT CTTY, MARYLAND 21013 420-2311 TTY-92-2023

MERSORANDUM

TO:
Doug Ermer, Project Manager

State Highway Administration
FROX:

DATE:
Commander Fdgar G. Shilling Fire Prevention Officer

SUBJECT:
December 17, 1985

Evaluation of Response Times Owen Brown Road and I..S. Route 29 Area

Howard County Fire Station 7, located on Banneker Road at Little Patuxent Parkway is the primary response station.

Howard County Fire Station 9, located in Long Reach, is the secondary response station.

Alternate \#2: This alternate would not significantly change response times for Allview Estates as long as ingress and egress is maintained at Allview Drive. If this access were not maintained, resnonse times to Allview would be increased.significantly, unless Martin Road were extended to Hickory Ridge, and the Owen Brown Road bridge constructed over Route 29. There would be no significant change to the Hickory Ridge area. ResDonse times would be improved if Martin Road were extended to Hickory Ridge. The optional local access feature would improve secondary response of the Long Reach station. Response times southbound on Route 29 and eastbound on Broken Land Parkway would he significantly improved to areas adjacent to these routes.

Alternate "3: This would have the same basic effect as Alternate \#2.
Alternate $\$ 5:$ This would have little or no impact.
Alternate $\|_{6}$: This would improve response times to all areas, excent those served by eastbound Broken Land Parkway.

It appears that Alternates 2,3 , and 6 would improve our response capability, Alternate 5 would have no impact.

EGS / ram
cc: Richard W. Shaw
Acting Fire Administrator
Thomas Harris, OP \&Z
Amer Bandel, OP\&Z
Edward Stollof, OP \&7.

Department of Police for Howard County
 3410 COURT HOUSE DRIVE. ELLICOTT CITY, MD. 21043
 992-2200

December 31, 1985
Mr. Doug Ermer, Project Manager
Maryland Department of Transportation
State Highway Administration
707 North Calvert Street
Baltimore, Maryland 21203
Dear Mr. Ermer:

I have reviewed the interchange study of U.S. Route 29 in the vicinity of Owen Brown Road, specifically to determine the impact of any of the proposed alternates on police response time.

Proposed Alternates \#5 and \#6 have no negative impact on police response time or access to surrounding communities.

Alternate Proposals \#2 and \#3 probably will increase response time minimally from Route 29, but decrease response times from one side of Columbia to the other. This increase in response time could be properly addressed by including "local access" features at Owen Brown Road if either proposal \#2 or \#3 is selected.

I should point out that the short notice precludes any in-depth study of response times or an on-site inspection. Therefore, my preceding comments reflect only generaiized observations of the impact of your project.

Thank you for the opportunity to comment on the proposed changes while still in the planning stages. Assuring you of my continued cooperation in matters of mutual concern, I remain

PHR/PNH/dmc

Colonel Paul H. Rappaport Chief of Police
cc: S.O.D.
VI. APPENDICES

Broome, C. R. et al., 1979. Rare and Endangered vascular Plant Species in Maryland. U.S. Fish and Wildlife Service.

Brush, G. S. et al., 1977. Vegetation Map of Maryland: The Existing Natural Forests. The Johns Hopkins University.

Brush, G. S. et al., 1977. The Natural Forests of Maryland, An Explanation of the Vegetation Map of Maryland.

Census of Population and Housing, 1980. U.S. Census Bureau, 1981 .

Cleaves, E. T., Edwards, and Glaser, 1968. Geologic Map of Maryland, Maryland Geological Survey.

Federal Emergency Management Agency, March 1981. "Flood Insurance Study, Howard County.

General Plan for Howard County, 1982. Howard County Office of Planning and Zoning.

Maryland Department of Natural Resources, 1982. The Quantity and Natural Quality of Groundwater in Maryland.

Maryland Department of Natural Resources. "Standards and Specifications for Soil Erosion and Sediment Control". Code of Maryland 08.-05.01.

Maryland State Highway Administration, 1980. General Highway Map, Howard County.
U.S. Department of Agriculture, Soil Conservation Service, 1970. Important Farmlands, Howard County, Maryland.

Vokes, H. E. and J. Edwards, Jr., 1957. Geography and Geology of Maryland. Maryland Geological Survey, Baltimore, Maryland.

Attachment for Environmental
Impact Documents
Revised: November 29, 1985
Bureau of Relocation Assistance
"SUMMARY OF THE RELOCATION ASSISTANCE PROGRAM OF THE
STATE HIGHWAY ADMINISTRATION OF MARYLAND"

All State Highway Administration projects must comply with the provisions of the "Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970" (Public Law 91-646) and/or the Annotated Code of Maryland, Real Property, Title 12 , Subtitle 2, Sections 12-201 thru 12-212. The Maryland Department of Transportation, State Highway Administration, Bureau of Relocation Assistance, administers the Relocation Assistance Program in the State of Maryland.

The provisions of the Federal and State Law require the State Highway Administration to provide payments and services to persons displaced by a public project. The payments that are provided include replacement housing payments and/or moving costs. The maximum limits of the replacement housing payments are $\$ 15,000$ for owner-occupants and $\$ 4,000$ for tenantoccupants. Certain payments may also be made for increased mortgage interest costs and/or incidental expenses, provided that the total of all housing benefits does not exceed the above mentioned limits. In order to receive these payments, the displaced person must occupy decent, safe and sanitary replacement housing. In addition to the replacement housing payments described above, there are also moving cost payments to persons, businesses, farms and non-profit organizations. Actual moving costs for residences include actual moving costs up to 50 miles or a schedule moving cost payment, including a dislocation allowance, up to $\$ 500$.

The moving cost payments to businesses are broken down into several categories, which include actual moving expenses and payments"in lieu of" actual moving expenses. The owner of a displaced business is entitled to receive a payment for actual reasonable moving and related expenses in moving his business, or personal property; actual direct losses of tangible personal property; and actual reasonable expenses for searching for a replacement site.

The actual reasonable moving expenses may be paid for move by a commercial mover or for a self-move. Generally, payments for the actual reasonable expenses are limited to a 50 mile radius. The expenses claimed for actual cost commercial moves must be supported by receipted bills. An inventory of the items to be moved must be prepared in all cases. In selfmoves, the State will negotiate an amount for payment, not to exceed the lowest acceptable bid obtained. The allowable expenses of a self-move may include amounts paid for equipment hired, the cost of using the business ${ }^{-}$own vehicles or equipment, wages paid to persons who physically participate in the move, the cost of actual supervision of the move, replacement insurance for the personal property moved, costs of licenses or permits required, and other related expenses.

In addition to the actual moving expenses mentioned above, the displaced business is entitled to receive a payment for the actual direct losses of tangible personal property that the business is entitled to relocate but elects not to move. These payments may only be made after an effort by the owner to sell the personal property involved. The costs of the sale are also reimbursable moving expenses. If the business is to be reestablished, and the personal property is not moved but is replaced at the new location, the payment would be the lesser of the replacement cost minus the net proceeds of sale (or trade-in value) or the estimated cost of moving the item. If the business is being discontinued or the item is not to be replaced in the reestablished business, the payment will be the lesser of the difference between the value of the item for continued use in place and the net proceeds of the sale or the estimated cost of moving the item. When personal property is abandoned without an effort by the owner to dispose of the property for sale, unless permitted by the State, the owner will not be entitled to moving expenses, or losses for the item involved.

The owner of a displaced business may be reimbursed for the actual reasonable expenses in searching for a replacement business up to $\$ 1,000$. All expenses must be supported by receipted bills. Time spent in the actual search may be reimbursed on an hourly basis, within the maximum limit.

In lieu of the payments described above, the business may elect to receive a payment equal to the average annual net earnings of the business. Such payment shall not be less than $\$ 2,500$ nor more than $\$ 10,000$. In order to be entitled to this payment, the State must determine that the business cannot be relocated without a substantial loss of its existing patronage, the business is not part of a commercial enterprise having at least one other establishment in the same or similar business that is not being acquired, and the business contributes materially to the income of a displaced owner during the two taxable years prior to displacement.

Considerations in the State's determination of loss of existing patronage are the type of business conducted by the displaced business and the nature of the clientele. The relative importance of the present and proposed locations to the displaced business, and the availability of suitable replacement sites are also factors.

In order to determine the amount of the "in lieu of" moving expenses payment, the average annual net earnings of the business is considered to be one-half of the net earnings, before taxes, during the two taxable years immediately preceding the taxable year in which the business is relocated. If the two taxable years are not representative, the State may use another two-year period that would be more representative. Average annual net earnings include any compensation paid by the business to the owner, his spouse, or his dependents during the period. Should a business be in operation less than two years, the owner of the business may still be eligible to receive the"in lieu of" payment. In all cases, the owner of the business must provide information to support its net earnings, such as income tax returns, for the tax years in question.

For displaced farms and non-profit organizations, the actual reasonable moving costs generally up to 50 miles, actual direct losses of tangible personal property, and searching costs are paid. The "in lieu of" actual moving cost payments provide that the State may determine that a displaced farm may be paid from a minimum of $\$ 2,500$ to a maximum of $\$ 10,000$, based upon the net income of the farm, provided that the farm has been discontinued or relocated. In some cases, payments "in lieu of" actual moving costs may be made to farm operations that are affected by a partial acquisition. A non-profit organization is eligible to receive "in lieu of" actual moving cost payments, in the amount of $\$ 2,500$.

A more detailed explanation of the benefits and payments available to displaced persons, businesses, farms, and nonprofit organizations is available in Relocation Brochures that will be distributed at the public hearings for this project and will also be given to displaced persons individually in the future along with required preliminary notice of possible displacment.

In the event comparable replacement housing is not available to rehouse persons displaced by public projects or that available replacement housing is beyond their financial means, replacement "housing as a last resort" will be utilized to accomplish the rehousing. Detailed studies must be completed by the State Highway Administration before "housing as a last resort" can be utilized.

The "Uniform Relocation Assistance and Real Property Acquisition Policies Act of $1970^{\prime \prime}$ requires that the State Highway Administration shall not proceed with any phase of any project which will cause the relocation of any persons, or proceed with any construction project, until it has furnished satisfactory assurances that the above payments will be provided and that all displaced persons will be satisfactorily relocated to comparable decent, safe, and sanitary housing within their financial means or that such housing is in place and has been made available to the displaced person.

