TABLE 2-8 (Continued)

SAMPLING LOCATION	SAMPLE ID			PPL Metals	Total	Total		NO2 &					
		PPL Org(a)	PPL VOAs (b)	& Al, Fe, Mn(c)	Sulfide(d)	Phosphorus(e)	TKN(e)	NO3(e)	Ammonia(e)	TOC(e)	BOD(f)	COD(e)	Cyanide(g)
ELUTRIATES													
Swan Point	SWPEL	х		х	х	х	x	х	х	х	х	х	x
Craighill Entrance/Craighill	CRE/CREL	x		х	x	х	x	х	x	х	х	х	х
Craighill Angle	CRAEL	x		х	х	х	x	х	х	х	х	х	x
Craighill Upper Range/Cutoff Angle	CRU/CUTEL	х		х	X	х	х	x	·x	х	х	х	x
Tolchester (Van Veen)	TLCEL	х		х	х	х	х	х	x	х	х	х	x
Tolchester (Gravity Core)	TLVEL	х		x	x	x	х	х	x	х	х	х	x
Brewerton, Eastern Ext. (Van Veen)	BEEL	х		х	x	х	х	х	х	x	х	х	x
Brewerton Eastern Ext. (Gravity Core)	BEVEL	x		х	x	х	х	х	x	x	х	х	x
Brewerton/Brewerton Angle	BR/BRAEL	x	•	x	x	х	x	х	х	x	х	х	x
Curtis Bay	CBEL	х		х	x	х	x	х	х	x	x	х	x
Ft. McHenry	FMHEL	х		х	х	х	x	х	х	x '	x	х	x
Ferry Bar	FBEL	х		х	х	X .	x	х	x	x	x	x	x
Northwest Branch East/NW Branch West	NBE/NBWEL	x		х	х	х	х	х	x	х	х	x	x

(a) Samples were placed in 2 (40 ml) glass VOC containers (for volatiles) and 4 (1 liter) clear glass containers (pest/pcbs, semivolatiles).

(b) Samples were placed in 2 (40 ml) glass containers.

(c) Samples were placed in a "C" bottle preserved with HNO3.

(d) Samples were placed in an "I" bottle preserved with zinc acetate.

(e) Samples were placed in a 500 ml "B" bottle preserved with H2SO4.

(f) Samples were placed in a 500 ml "A" bottle (no preservative).

(g) Samples were placed in a "G" bottle preserved with NAOH.

(h) Sample IDs and volumes used in elutriate preparation are listed in Table 2-6.

۰.

2-32

		I	ABLE 2-5	. CHEMICAI	LANAL	YSES FOR CHE	SAPEAKE	BAY ANI	D BALTIN	IORE HA	RBOR SEDI	MENT SA	MPLES				
SAMPLING LOCATION	SAMPLE ID	PPL Org(a)	PAHs(b)	PCB Congeners(b)	TBT(b)	PPL Metals & Al, Fe, Mn(b)	Total Sulfide(b)	Total Phos. (b)	TKN(b)	NO2 & NO3(b)	Ammonia(b)	TOC(b)	BOD(b)	COD(b)	Cyanide(b)	Atterberg, Moist., Grain size(b)	Elutriate Pr e p(d)
BRA1 Blind split	BRAISEDBS *	x	x	X (c)		x	х	x	x	х	x	x	x	· x	x	x '	
BRA2	BRA2SED	x	x			x	х	x	x	х	x	х	x	x	x	x	BR/BRAEL
Curtis Bay																	
CB1	CBISED	х	х			x	x	х	x	x	x	х	х	х	x	x	CBEL
CB2	CB2SED	х	х			x	х	х	x	х	x	х	x	x	x	x	CBEL
CB3	CB3SED	x	Χ.			x	х	х	х	х	x	х	x	x	x	х	CBEL
CB4	CB4SED	x	х			x	х	x	x	x	х	х	х	x	x	x	CBEL
Ft. McHenry																	
FMHI	FMH1SED	x	х			x	х	x	x	х	x	x	x	x	x	x	FMHEL
FMH2	FMH2SED	x	х			х	x	x	х	х	x	х	x	х	x	x	FMHEL
FMH3	FMH3SED	x	х			x	x	x	х	х	x	х	х	x	x	x	FMHEL
FMH4	FMH4SED	х	x			x	x	x	х	х	х	х	х	x	x	x	FMHEL
Ferry Bar							•										
FBI	FBISED	x	х			х	x	х	x	х	x	х	x	х	x	x	FBEL
FB2	FB2SED	х	х			· x	х	x	x	х	x	x	x	x	x	x	FBEL
FB3	FB3SED	х	х			x	х	х	x	х	x	x	x	х	x	x	FBEL
Northwest Branch East																	
NBE1	NBE1SED	x	х			x	x	х	х	х	x	x	х	х	x	х	NBE/NBWEL

 \mathbf{x}

х

х

х

х

х

x

х

х

х

х

х

х

х

х

х

х

х

х

· X

х

х

х

х

х

х

х

х

х

х

х

х

х

х

х

х

х

х

х

х

NBE/NBWEL

NBE/NBWEL

NBE/NBWEL

NBE/NBWEL

(a) Sample aliquots were placed in 2 (60 ml) glass VOC containers (for volatiles) and 1 (1 gal) clear wide-mouth glass containers (pert/pcbr, semivolatiles).

(b) Sample aliquots were placed in 2 (1/2 gal) clear widemouth glass containers.

:

х

х

х

х

NBE2SED

NBWISED

NBW2SED

NBW3SED

٠.

NBE2

NBW1

NBW2

NBW3

۰.

Northwest Branch West

(c) Two blind splits (of 5) were selected randomly in the field and submitted to EA Labs for analysis.

х

х

х

х

(d) Samples were placed in 1 gal clear wide-mouth glass containers. Samples with the same elutriate designation (e.g., CRE/CR) were composited by the lab to provide one sediment sample that was used in elutriate preparation.

х

х

х

х

(e) Samples were analyzed only if the total PCB concentration was > 11.6 micrograms /kilogram.

SAMPLING LOCATION	SAMPLE ID	PPL		PCB		PPL Metals	Total	Total		NO2 &						Atterberg, Moist.,	Elutriate
		Org(a)	PAHs(b)	Congeners(b)	ТВТ(Ь)	& Al, Fe, Mn(b)	Sulfide(b)	Phos. (b)	TKN(b)	NO3(b)	Ammonia(b)	TOC(b)	BOD(b)	COD(b)	Cyanide(b)	Grain size(b)	Prep(d)
Poplar Island																	
PII	PIISED	х	х	X (c)	·X	х	x	х	x	x	x	х	x	x	x	. X	
PI2	PI2SED	х	х	X (c)		x	X	х	x	х	x	х	х	x	x	х	
PI3	PI3SED	х	х	X (c)		x	X	х	х	х	x	х	х	х	x	х	
P14	PI4SED	х	х	X (c)		х	x	х	х	x	X	х	х	х	x	х	
PI5	PI5SED	х	х	X (c)	х	х	х	х	x	х	x	х	х	х	х	х	
Deep Trough																	
DTI	DTISED	х	х	X (c)		x	х	х	х	х	x	х	х	х	х	x	
DT2	DT2SED	х	х	X (e)	х	х	x	х	х	х	x	х	х	х	x	х	
DT3	DT3SED	х	х	X (e)		x	х	х	х	х	x	х	х	х	x	х	
Kent Island Deep																	
KII	KIISED	х	х	X (c)		x	х	х	х	x	x	х	x	х	x	х	
KI2	KI2SED	x	х	X (c)	x	х	х	х	х	х	x	х	х	х	x	х	
КІЗ	KI3SED	x	х	X (c)		x	х	х	х	x	x	х	х	х	x	х	
Pooles Island	·							•									
POLI	POLISED	х	х	X (c)		х	х	х	х	х	x	x	x	х	х	х	
Swan Point		•															
SWPI	SWPISED	х	х	X (c)		х	х	· x	х	x	x	х	x	х	х	х	SWPEL
SWP2	SWP2SED	х	х	X (c)	х	x	х	х	x	x	x	х	х	x	x	x	SWPEL
SWP3	SWP3SED	х	х	X (c)		x	х	х	х	х	x	х	х	х	x	х	SWPEL
Craighill Entrance											•						
CREI	CREISED	x	х	X (c)		х	х	х	х	х	x	х	х	х	x	x	CRE/CREL
CRE2	CRE2SED	х	х	X (c)	х	x	x	х	x	x	x	х	х	x	х	х	CRE/CREL
CRE3	CRE3SED	х	х	X (c)		x	x	х	x	х	x	х	х	x	x	x	CRE/CREL
Craighill																	
CRI	CRISED	х	х	X (c)		x	· x	х	x	x	x	х	х	x	x	х	CRE/CREL
CR2	CR2SED	x	· x	X (c)	x	x	х	х	х	x	x	х	x	x	x	х	CRE/CREL
CR2 Field Duplicate	CR2SEDFD	x	х	X (e)	x	x	Х	х	x	х	x	х	х	x	x	х	
CR3	CR3SED	x	х	X (c)		х	х	х	х	x	x	х	х	x	x	х	CRI:/CREL
Craighill Angle																	
CRAI	CRAISED	х	х	X (c)		x	x	x	x	x	x	x	x	x	х	х	CRAEL
CRA2	CRA2SED	х	х	X (e)		x	x	х	x	x	x	x	x	x	x	х	CRAEL
Craighill Upper Range																	
CRUI	CRUISED	x	x	X (c)		x	x	х	x	x	x	x	x	x	x	х	CRU/CUTEL
CRU2	CRU2SED	x	x	X (c)	x	x	x	x	x	x	. x	x	x	x	x	x	CRU/CUTEL
CRU3	CRUBSED	x	x	X (e)	~	x	x	x	x	x	x	x	x	x	x	x	CRU/CUTEI
0	011000000	~				~	~	~	~	~	~	~	~	~	~	<i></i>	

. 1

TABLE 2-5. CHEMICAL ANALYSES FOR CHESAPEAKE BAY AND BALTIMORE HARBOR SEDIMENT SAMPLES

2-24

<u>.</u>

SAMPLING LOCATION	SAMPLE ID	PPL		PCB		PPL Metals	Total	Total		NO2 &						Atterberg Moist	Flutriste
		Org(a)	PAHs(b)	Congeners(b)	TBT(b)	& Al. Fe. Mn(b)	Sulfide(b)	Phos. (b)	TKNĠ	NO3(b)	Ammonia(b)	TOC(h)	BOD(h)	COD(h)	Cvanide(b)	Grain size(b)	Pren(d)
Cutoff Angle		0. /		0 ()					(-)				202(0)	002(0)	0)(0)	0	1100(0)
CUTI	CUTISED	х	х	X (c)		x	X [.]	x	х	х	х	x	х	х	х	x	CRU/CUTEL
CUT2	CUT2SED	х	х	X (c)	х	х	x	х	x	x	x	x	x	x	x	×	CRU/CUTEL
CUT3	CUT3SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	CRU/CUTEL
Tolchester																	
TLCI	TLCISED	х	х	X (c)		x	x	х	х	х	х	х	х	x	х	х	TLCEL
TLC2	TLC2SED	х	x	X (c)	x	x	х	х	x	x	х	x	x	x	x	x	TLCEL
TLC2 Field Duplicate	TLC2SEDFD	х	x	X (c)	x	x	x	х	x	x	x	x	x	x	x	x	TLCEL
TLC3	TLC3SED	х	х	X (c)		х	x	х	х	х	x	x	x	x	x	х	TLCEL
TLVI	TLVISED	х	х	X (c)		x	х	х	x	x	x	x	x	x	x	x	TLVEL
TLV2	TLV2SED	х	х	X (c)		x	х	х	x	x	x	x	x	x	x	x	TLVEL
TLV3	TLV3SED	х	х	X (e)	x	x	x	х	x	x	x	x	x	x	x	x	TLVEL
TLV4	TLV4SED	x	х	X (c)		x	х	х	x	x	x	x	x	x	x	x	TLVEL
TLV5 ·	TLVSSED	х	х	X (e)		x	x	х	x	х	х	x	x	x	x	x	TLVEL
Brewerton, Eastern Ext.																	
BE1	BE1SED	х	х	X (c)		x	X .	x	x	х	х	x	x	х	x	x	BEEL
BE2	BE2SED	x	x	X (e)	х	x	x	x	x	х	· x	x	x	х	x	x	BEEL
BE3	BE3SED	х	х	X (c)		x	х	x	x	х	x	х	х	х	x	x	BEEL
BE4	BE4SED	х	х	X (e)		х	· X	x	x	х	x	х	x	x	x	x	BEEL
BEV1	BEV1SED	х	. X	X (c)		х	х	X .	x	x	x	·x	х	х	x	x	BEVEL
BEV2	BEV2SED	х	х	X (c)		х	х	х	x	х	x	х	х	x .	x	x	BEVEL
BEV3	BEV3SED	х	х	X (e)	х	х	х	х	·X ·	х	x	х	х	· x	x	x	BEVEL
BEV4	BEV4SED	х	х	X (c)		х	x	х	x	х	x	х	х	х	x	х	BEVEL
BEV5	BEVSSED	х	х	X (c)		х	х	х	x	х	x	x	х	х	x	X	BEVEL
BEV6	BEV6SED	х	х	X (c)		х	x .	х	х	x	x	х	х	х	x	x	BEVEL
Brewerton							•										
BR1	BRISED	x	х			х	х	x	x	x	x	x	x	x	x	x	BR/BRAEL
BR1 Blind split	BLIND SPLIT 1A	(c)	(c)	X (c)		(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	
BR2	BR2SED	x	х			х	х	x	х	x	x	x	x	x	x	x	BR/BRAEL
BR2 Blind split	BR2SEDBS *	(c)	(c)	X (e)		(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	
BR3	BR3SED	х	х		x	x	x	x	x	x	x	×x	x	×	x	x	BR/BRAEL
BR3 Blind split	BLIND SPLIT 2A	(c)	(c)	X (c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	
BR4	BR4SED	x	x			x	X	x	x	x	x	x	x	x	x	x	BR/BRAEL
BR4 Blind split	BR4SEDBS *	(c)	(c)	X (c)		(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	
Brewerton Angle										••			. /	. /		.,	
BRAI	BRAISED	x	х			x	x	x	х	x	x	x	x	x	х	x	BR/BRAEI

TABLE 2.5 CHEMICAL ANALYSES FOR CHESADEAKE BAY AND BALTMODE HADDOD SEDDIENT SAMPLES

.

.

.

:

.

.

. 2-25

۰.

2

SAMPLING LOCATION	SAMPLE ID			PPL Metals	Total	Total		NO2 &					
		PPL Org(a)	PPL VOAs (b)	& Al, Fe, Mn(c)	Sulfide(d)	Phosphorus(e)	TKN(e)	NO3(e)	Ammonia(e)	TOC(e)	BOD(f)	COD(e)	Cyanide(g)
WATER CHEMISTRY													
Poplar Island					•								
PII	PIIWAT	x		х	x	х	х	х	х	х	х	х	x
PI1 Field Duplicate	PIIWATFD	x		х	х	х	х	х	х	х	х	x	x
PI5 .	PI5WAT	x		х	х	х	х	·X	х	х	х	х	x
Deep Trough			7										
DT1	DTIWAT	х		х	x *	х	х	х	х	х	х	х	х
Kent Island Deep													1
KI3	KI3WAT	х		х	X ·	х	х	х	х	х	х	х	х
KI3 Field Duplicate	KI3WATFD	х		х	х	х	х	х	х	х	х	х	х
Pooles Island													
POLI	POLIWAT	х		х	х	х	x	х	х	х	х	х	х
TRIP BLANKS													
Dayl	TB102695		х										
Day 2	TB102795		x										
Day 3	TB103095		x										
Day 4	TB103195		x				•					-	
Day 5	TB110695		x										
Day 6	TB111095		x		• ,								
Day 7	TB111395		x										
Day 8	TB111795		x		:								
Day 9	TB111895		x										
Day 10	TB112895		x										
Day 11	TB112995		x										

٦

TABLE 2-8 CHEMICAL ANALYSES FOR CHESAPEAKE BAY AND BALTIMORE HARBOR REFERENCE WATER AND ELUTRIATE WATER SAMPLES

2-31

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, U.S. ARMY CORPS OF ENGINEERS P.O. BOX 1715 BALTIMORE, MD 21203-1715 March 25, 1996

REPLY TO ATTENTION OF Operations Division

Mr. Frank Hamons Manager, Harbor Development Maryland Port Administration The Maritime Center II 2310 Broening Highway Baltimore, Maryland 21224-6621

HARBOR DEVELOPMENT

Dear Mr. Hamons:

I am writing to follow-up on my February 21, 1996, letter regarding the proposed Fiscal Year 1996 - 1997 maintenance dredging of the Baltimore Harbor & Channels, 42 and 50-Foot Federal navigation projects.

Enclosed for your information is the Draft Data Report -FY 1995 Sediment Sampling and Chemical Analysis for Baltimore Harbor and Chesapeake Bay, Maryland, February 1996. Since the report is still in draft form, any comments which are received before April 10, 1996, will be addressed in the final report.

Please call me at (410) 962-5657 if you have any questions regarding this information.

Sincerely,

(millie

Jeffrey A. McKee Project Manager Operations Division

Enclosures

DRAFT DATA REPORT

FY 1995 SEDIMENT SAMPLING AND CHEMICAL ANALYSIS FOR BALTIMORE HARBOR AND CHESAPEAKE BAY, MARYLAND Volume I: Data Report and Appendices A and B

Prepared for

Department of the Army Baltimore District U.S. Army Corps of Engineers 10 South Howard Street 10th Floor HTRW Branch Baltimore, Maryland 21201

Prepared by

EA Engineering, Science, and Technology 11019 McCormick Road Hunt Valley, Maryland 21031

February 1996

CONTENTS

LIST	OF FIG	URES	<u>Page</u>
LIST	OF TA	BLES	
1	NITT	ΟΓΙΩΤΙΟΝ	
1.	INIF		. 1-1
	1.1 1.2	Background	. 1-1 . 1-1
2.	SAM	LE COLLECTION	. 2-1
	2.1 2.2	Sampling Locations	. 2-1 . 2-1
		 2.2.1 Sediment/Elutriate Sediment 2.2.2 Water/Elutriate Water 	. 2-1 . 2-2
	2.3 2.4	Equipment Decontamination	. 2-3 . 2-3
		 2.4.1 Trip Blanks 2.4.2 Field Duplicates 2.4.3 Field Blind Duplicate Samples 	. 2-3 . 2-3 . 2-3
3.	LAB	RATORY ANALYSIS	. 3-1
	3.1	Sample Analyses	. 3-1
		 3.1.1 PCB Congeners 3.1.2 Elutriate Test 3.1.3 Semivolatile Organics - PAHs 3.1.4 Pesticides 	. 3-1 . 3-2 . 3-2 . 3-2
	3.2	Laboratory QA/QC Samples	. 3-2
	·	 3.2.1 Standard Analytical Reference Material (SARM) 3.2.2 Method Blanks 3.2.3 Laboratory Control Samples (LCS) 3.3.4 Matrix Spike / Matrix Spike Duplicate (MS / MSD) 	. 3-3 . 3-3 . 3-4 . 3-4
		3.3.5 Surrogates	. 3-4

- 1	
- 44	

•	
	4.1
- SAMPLE KENULIS	4-1

4.1 Sediment Analyses

- 4.1.1 Volatiles
- 4.1.2 Semivolatiles
- 4.1.3 Semivolatile PAHs
- 4.1.4 Pesticides and PCBs
- 4.1.5 Metals
- 4.1.6 Organotins
- 4.1.7 General Chemistry
- 4.1.8 Grain Size, Atterberg Limits, Moisture Content

4.2 Reference Water/Elutriate Analyses

- 4.2.1 Volatiles
- 4.2.2 Semivolatiles
- 4.2.3 Pesticides and PCBs
- 4.2.4 Metals
- 4.2.5 General Chemistry

APPENDICES

Appendix A. Final Sampling Plan

- Appendix B. Final Quality Assurance Project Plan (QAPP)
- Appendix C. Analytical Narratives and Laboratory Results Sediment
- Appendix D Analytical Narratives and Laboratory Results Reference Water /Elutriates
- Appendix E. Trip Blank Results
- Appendix F. Chain-of-Custody Records
- Appendix G. Field Data Sheets

LIST OF FIGURES

.

.

Number	Title
2-1	Sampling stations in the Poplar Island reach.
2-2	Sampling stations in the Deep Trough reach.
2-3	Sampling stations in the Kent Island reach.
2-4	Sampling station near Pooles Island.
2-5	Sampling stations in the Swan Point reach.
2-6	Sampling stations in the Craighill Entrance and Craighill reaches.
2-7	Sampling stations in the Craighill Angle and Craighill Upper Range reaches.
2-8	Van Veen sampling stations in the Cutoff Angle and Brewerton Eastern Extension reaches.
2-9	Gravity core sampling stations in the Brewerton Eastern Extension.
2-10	Van Veen sampling stations in the Tolchester reach.
2-11	Gravity core sampling stations in the Tolchester reach.
2-12	Sampling stations in the Brewerton and Brewerton Angle reaches.
2-13	Sampling stations in the Curtis Bay, Ft. McHenry, Ferry Bar, Northwest Branch East, and Northwest Branch West reaches.

LIST OF TABLES

.

•

<u>Number</u>	Title
2-1	Sediment sampling locations.
2-2	Reference water and elutriate preparation water sampling locations.
2-3	Gravity corer sampling depths.
2-4	Required containers, preservation technique, and holding times for sediment samples.
2-5	Chemical analyses for Chesapeake Bay and Baltimore Harbor sediment samples.
2-6	Samples to be used for preparation of elutriates for Chesapeake Bay/Baltimore Harbor sediment quality analyses.
2-7	Required containers, preservation technique, and holding times for site water and elutriate water samples.
2-8	Chemical analyses for Chesapeake Bay and Baltimore Harbor reference water and elutriate water samples.
3-1	Analytical parameters and analytical methods for sediments.
3-2	Analytical parameters and analytical methods for reference water and elutriate water.
4-1	Organic data qualifiers for analytical results.
4-2	Inorganic data qualifiers for sediment results.
4-3	Sediment sample IDs, collection dates, laboratory accession numbers, and laboratory report numbers.
4-4	Volatiles results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.
4-5	Semivolatiles results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.
4-6	Semivolatile polynuclear aromatic hydrocarbons (PAHs) results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.

	4-7	Pesticide and PCB results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.
	4-8	Metals results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.
	4-9	Organotin results for selected Chesapeake Bay sediments.
	4-10	General chemistry results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.
	4-11	Grain size, Atterberg limits, and moisture content for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.
	4-12	Reference water and elutriate water sample IDs, collection dates, laboratory accession numbers, and laboratory report numbers.
	4-13	Volatiles results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.
	4-14	Semivolatiles results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.
. –	4-15	Pesticide and PCB results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.
	4-16	Metals results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.
	4-17	General chemistry results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.
	5-1	Volatiles trip blank results.

1. INTRODUCTION

1.1 BACKGROUND

Section 404 of the Federal Water Pollution Control Act of 1972 (FWPCA), Public Law 92-500, as amended by the Clean Water Act of 1977 (CWA), Public Law 95-217, requires the Environmental Protection Agency (EPA), in conjunction with the U.S. Army Corps of Engineers (USACE), to promulgate guidelines for the discharge of dredged or fill material to ensure that the proposed discharge will not result in unacceptable adverse impacts to U.S. waters. The Draft Evaluation of Dredged Material Proposed for Discharge in Inland and Near Coastal Waters - Test Manual (EPA 1994), commonly referred to as the Inland Testing Manual (ITM), establishes procedures applicable to the potential contaminant-related environmental impacts associated with the discharge of dredged material in inland waters, near coastal waters, and surrounding environs. The technical guidance in the ITM is consistent with the Guidelines [CWA Section 404 (b)(1)]. Results obtained from dredge material testing are used within the context of regulatory requirements to facilitate decision-making with regard to management of the dredged material.

1.2 SCOPE OF THIS PROJECT

The Baltimore District of the USACE required characterization of chemical concentrations in sediment proposed for dredging in FY96 and FY97 consistent with the Guidelines and technical guidance of the ITM. Approach channels considered for maintenance dredging and/or widening or realignment include the Craighill Entrance Channel, the Craighill Channel, the Craighill Angle, the Craighill Upper Range, the Cutoff Angle, the Brewerton Channel Eastern Extension, the Swan Point Channel, and the Tolchester Channel. Within Baltimore Harbor, the channels proposed for maintenance dredging include the Brewerton Channel, the Brewerton Angle, the Ft. McHenry Channel, the Curtis Bay Channel, the Ferry Bar Channel, the Northwest Branch East Channel, and the Northwest Branch West Channel. This project included analysis of sediments from the approach channels in Chesapeake Bay and the shipping channels within Baltimore Harbor. In addition, sediments from the proposed dredge material placement sites were characterized. Reference sediments and waters were collected from near Poplar Island, the Kent Island Deep Site, the proposed Deep Trough Placement Site, and the Pooles Island area.

This data report presents summaries of sediment sampling/analysis. A description of sample collection procedures is included in Chapter 2. A complete description of the sampling protocols is included in the Final Sampling Plan (EA 1995a) (Appendix A). Chapter 3 outlines the QA/QC protocols used for this project. Comprehensive QA/QC guidelines and procedures are addressed more specifically in the Quality Assurance Project Plan (QAPP) (EA 1995b) (Appendix B). Summaries of volatile, semivolatile, PCB, pesticide, metal, general chemistry, grain size, percent moisture, and Atterberg limit analyses for sediments collected from within the shipping channels and from the proposed disposal areas in Chesapeake Bay are included in Chapter 4 (section 4.1).

Chapter 4 also includes summaries of volatile, semivolatile, PCB, pesticide, metal, and general chemistry analyses for reference site water and for elutriate water prepared from sediment and water collected within each sampling reach (section 4.2). Results of QA/QC sample analyses will be presented in a Chapter 5 addendum. Summaries of Laboratory Reports for all analyses, Chain-of-Custody forms, and Field Data Sheets are included in Appendices C, D, E, F, and G.

.

2. SAMPLE COLLECTION

2.1 SAMPLING LOCATIONS

A total of sixty-nine stations (in 20 sampling reaches) were sampled during the period of October 26 to November 29, 1996 : 47 stations outside of Baltimore Harbor and 22 stations inside Baltimore Harbor. Because chemical concentration gradients were expected in Chesapeake Bay sediments, sampling began with the stations anticipated to contain the lowest chemical concentrations. Samples were collected first from the most southerly stations (Mid-Chesapeake Bay) and easterly stations, and sampling proceeded sequentially to the north and west from four reference locations: (Poplar Island, Kent Island Deep, Deep Trough, and Pooles Island). The last samples were recovered in the Inner Harbor area of Baltimore City. Station locations for each sampling reach are illustrated in Figures 2-1 through 2-13. Latitude/longitude of each station, collection technique, and station depths are presented in Tables 2-1 and 2-2. Sampling locations were determined in the field using a Magellan[®] GPS with a differential beacon receiver. All field data sheets are included in Appendix G.

2.2 SAMPLING EQUIPMENT AND PROCEDURES

Detailed sampling procedures are included in the Final Sampling Plan (EA 1995a) (Appendix A).

2.2.1 Sediment/Elutriate Sediment

Surface sediments were collected at reference sites and channel reaches (58 stations) using a Kahlsico[®] stainless steel Van Veen sampler (40 liter capacity). One grab sample was collected from each station. Samples for volatiles analysis were transferred directly from the grab sampler to sample containers, and headspace was eliminated from the volatiles sample containers by completely filling the container to the rim prior to capping. After the volatiles samples were removed, approximately one gallon of sediment was homogenized with a pre-cleaned stainless steel spoon in a pre-cleaned stainless steel mixing bowl. The homogenized sample was transferred to sample containers using a stainless steel spoon.

Gravity coring took place at 11 stations within the two reaches where undisturbed sediments may be dredged (Brewerton Eastern Extension and Tolchester). A Benthos[®] Model 2171, 8ft. Gravity Corer with polycarbonate core liners (2 ⁷/₈ inch diameter) was deployed to collect cores of consolidated material. Up to three cores were collected at each station in order to obtain the volume of sediment required for chemical and elutriate analyses. For each core, the unconsolidated surface layer was measured and discarded (approximately the top 2-18 inches of sediment), and the remaining consolidated material from each core was measured with a measuring tape and recorded to the nearest inch. The material from each core was then combined and homogenized in a pre-cleaned stainless steel bowl. All samples were transferred to holding containers using a pre-cleaned stainless steel spoon. The depth of bottom sediment sampled by each core is summarized in Table 2-3.

Volatiles samples were collected from the middle section of the first gravity core and transferred directly to the volatiles sample containers before homogenizing. Headspace was eliminated from volatiles sample containers by filling the container to the rim prior to capping. Sample container types, preservation techniques and holding times are presented in Table 2-4. A synopsis of analyses required at each station and the associated sample ID is presented in Table 2-5.

All sediment sampling equipment was decontaminated between samples, according to the procedures described in Section 2.3. Sampling inside of Rock Point/North Point was conducted under level D conditions. Gloves, coveralls and goggles were worn by all technicians handling samples.

Pre-selected sediment samples were used by the analytical laboratory to prepare elutriate samples that consisted of composites of sediments collected from one or two reaches. Instructions for elutriate composites and resulting sample IDs are presented in Table 2-6. Elutriate sediments were composited in the laboratory in pre-cleaned stainless steel bowls and approximately 3 L of the homogenized sample was removed and placed in the appropriate test container using a pre-cleaned stainless steel spoon.

2.2.2 Site Water/Elutriate Water

Reference water samples were collected from the proposed placement sites in the Bay: Poplar Island, Deep Trough, Kent Island, and Pooles Island (Table 2-2). These samples were analyzed for chemical constituents and were collected using dedicated (1.5 inch diameter) Teflon[®] bailers. Because water depth at the Deep Trough site exceeded 100 ft., a 1 liter, Teflon[®]-coated General Oceanics[®] niskin bottle was deployed by a hydraulic winch to collect water within this reach. The niskin bottle was deployed approximately 6-8 times to obtain the required sample volume. All water samples were poured directly into holding containers supplied by EA Laboratories which contained appropriate preservatives. To avoid loss of volatile chemicals, volatiles sample containers were filled first.

Elutriate water samples were collected from each reach using a peristaltic pump with polyethylene tubing (Table 2-2). Within each reach, four gallons of site water were collected from approximately 5 ft. above the bottom. If water depth was less than 5 ft, a mid-depth sample was collected. At each station, the tubing was flushed with the equivalent of 10 times the collection tubing volume prior to sample collection. Water samples were dispensed directly into appropriate holding containers. Sample container types, preservation techniques and holding times for water samples are presented in Table 2-7. A synopsis of analyses required for each station and the associated sample ID number are presented in Table 2-8.

2.3 EQUIPMENT DECONTAMINATION

To minimize cross-contamination, all non-dedicated sediment sampling equipment (stainless steel Van Veen, mixing bowls, and spoons) was rinsed with site water, scrubbed with a bristle brush, rinsed a second time with site water, and rinsed with deionized water between samples. For gravity coring, a dedicated polycarbonate liner was used at each station, and the exterior of the corer was scrubbed with a bristle brush and rinsed with site water to remove excess sediment. All dedicated sampling equipment was protected from contamination with covering (e.g. plastic wrapped, boxed) until employed for sampling.

2.4 FIELD QC SAMPLES

2.4.1 Trip Blanks

Trip blanks are samples that originate as analyte-free water placed in volatile organic vials (preserved with HCl) in the laboratory and analyzed for volatile organic compounds. Trip blanks (also called transport blanks) were analyzed to evaluate the effect of ambient site conditions and sample shipment on sample integrity and to ensure proper sample container preparation and handling techniques. For this program, trip blanks were analyzed for volatile organic compounds only. A total of eleven trip blanks were analyzed; one trip blank was analyzed per group of samples per day. All volatile samples (both water and sediment) collected on each sampling day were stored in the same cooler as the trip blank. Results of trip blanks will be presented in Chapter 5 and Appendix E.

2.4.2 Field Duplicates

Field duplicates are samples collected simultaneously from the same sampling location and are used as measures of matrix homogeneity and sampling precision. Two field duplicate samples were collected for each matrix (sediment and water). Duplicate samples were collected as individual, co-located samples. These samples were homogenized separately, or placed directly into sample containers in the case of volatiles samples. Stations where field duplicates were collected are listed in Table 2-5 (sediment) and Table 2-8 (water). Results are presented in Chapter 4 summary tables with the associated reach and sample ID.

2.4.3 Field Blind Duplicate Samples

A blind duplicate sample is a sample collected simultaneously from the same sampling location and is re-labeled as a unique sample to obscure its identity/origin. At five locations, EA collected a duplicate set of samples. Two of the five samples were blind selected, relabeled to obscure their identity, and delivered to EA Laboratories. These results were tracked as separate, unique samples. The remaining three duplicate samples were delivered to EA Laboratories and retained in storage. Stations where sediment blind duplicate samples were collected are listed in Table 2.5. (Note: Laboratory results label these samples as blind splits and these samples are referenced as

blind splits in Chapter 4 summary tables).

.

· ``,

Figure 2-3. Sampling stations in the Kent Island reach.

Figure 2-5. Sampling stations in the Swan Point reach.

Figure 2-7. Sampling stations in the Craighill Angle and Craighill Upper Range reaches.

Figure 2-9. Gravity core sampling stations in the Brewerton Eastern Extension.

Figure 2-13. Sampling stations in the Curtis Bay, Ft. McHenry, Ferry Bar, Northwest Branch East and Northwest Branch West reaches.

Sampling ReachStationLatitudeLongitudeSamplin MethodPoplar IslandPI 138° 44' 05" N76° 22' 16" WVan Veet	g Approximate d Station Depth (ft)
Poplar Island PI 1 38° 44' 05" N 76° 22' 16" W Van Vee	
	m 11
PI 2 38° 44' 59" N 76° 23' 29" W Van Vee	n 7
PI 3 38° 46' 14" N 76° 23' 07" W Van Veer	n 7
P1 4 38° 46' 40" N 76° 21' 55" W Van Veer	n 7
PI 5 38° 45' 43" N 76° 21' 41" W Van Veer	n 9
Deep Trough DT 1 38° 54' 48" N 76° 23' 13" W Van Veen	n 97
DT 2 38° 54' 59" N 76° 23' 10" W Van Veen	n 105
DT 3 38° 55' 12" N 76° 23' 18" W Van Veen	n 100
Kent Island Deep KI 1 38° 59' 42" N 76° 20' 48" W Van Veen	20
KI 2 39° 00' 51" N 76° 20' 26" W Van Veen	30
KI 3 39° 01' 31" N 76° 19' 54" W Van Veen	17
Pooles Island POL 1 39° 16' 11" N 76° 13' 34" W Van Veen	26
Swan Point SWP 1 39° 05' 11" N 76° 18' 27" W Van Veen	34
SWP 2 39° 05' 47" N 76° 18' 04" W Van Veen	35
SWP 3 39° 06' 32" N 76° 18' 11" W Van Veen	36
Craighill Entrance CRE 1 39° 02' 34" N 76° 23' 03" W Van Veen	51
CRE 2 39° 03' 18" N 76° 23' 20" W Van Veen	57
CRE 3 39° 04' 00" N 76° 23' 36" W Van Veen	58
Craighill CR 1 39° 04' 48" N 76° 23' 42" W Van Veen	52
CR 2 39° 05' 44" N 76° 23' 41" W Van Veen	53
CR 3 39° 06' 35" N 76° 23' 41" W Van Veen	57
Craighill Angle CRA 1 39° 07' 24" N 76° 23' 48" W Van Veen	54
CRA 2 39° 08' 05" N 76° 24' 09" W Van Veen	54

TABLE 2-1 SEDIMENT SAMPLING LOCATIONS

.

F

TABLE 2-1 (Continued)

Sampling Reach	Station	Latitude	Longitude	Sampling Method	Approximate Station Depth (ft)
Craighill Upper Range	CRU 1	39° 08' 43" N	76° 24' 36" W	Van Veen	52
	CRU 2	39° 09' 23" N	76° 25' 03" W	Van Veen	53
	CRU 3	39° 10' 07" N	76° 25' 36" W	Van Veen	55
Cutoff Angle	CUT I	39° 10' 26" N	76° 25' 53" W	Van Veen	54 .
	CUT 2	39° 10' 38" N	76° 26' 09" W	Van Veen	52
	CUT 3	39° 10' 45" N	76° 26' 27" W	Van Veen	52
Tolchester	TLC 1	39° 09' 39" N	76° 18' 24" W	Van Veen	35
(Van Veen)	TLC 2	39° 10' 44" N	76° 17' 12" W	Van Veen	38
	TLC 3	39° 11' 53" N	76° 15' 29" W	Van Veen	40
Tolchester (Gravity Core)	TLV 1	39° 11' 32" N	76° 16' 23" W	Gravity Core	33
	TLV 2	39° 11' 46" N	76° 16' 07" W	Gravity Core	26
	TLV 3	39° 11' 59" N	76° 15' 51" W	Gravity Core	24
	TLV 4	39° 12' 13" N	76° 15' 33" W	Gravity Core	22
	TLV 5	39° 12' 26" N	76° 15' 16" W	Gravity Core	24
Brewerton, Eastern Ext. (Van Veen)	BE 1	39° 08' 50" N	76° 20' 01" W	Van Veen	42
	BE 2	39° 09' 23" N	.76° 21' 47" W	Van Veen	41
	BE 3	39° 09' 54" N	76° 23' 27" W	Van Veen	41
	BE 4	39° 10' 24" N	76° 25' 10" W	Van Veen	39
Brewerton, Eastern Ext. (Gravity Core)	BEV 1	39° 08' 57" N	76° 19' 47" W	Gravity Core	28
	BEV 2	39° 09' 21" N	76° 21' 12" W	Gravity Core	20
	BEV 3	39° 09' 50" N	76° 22' 35" W	Gravity Core	20
	BEV 4	39° 10' 03" N	76° 23' 22" W	Gravity Core	20
	BEV 5	39° 10' 18" N	76° 24' 15" W	Gravity Core	19
	BEV 6	39° 10' 41" N	76° 25' 37" W	Gravity Core	19

TABLE 2-1 (Continued)

Sampling Reach	Station	Latitude	Longitude	Sampling Method	Approximate Station Depth (ft)
Brewerton	BR 1	39° 11' 04" N	76° 27' 22" W	Van Veen	53
	BR 2	39° 11' 19" N	76° 28' 12" W	Van Veen	53
	BR 3	39° 11' 35" N	76° 29' 06" W	Van Veen	53
	BR 4	39° 11' 52" N	76° 30' 01" W	Van Veen	53
Brewerton Angle	BRA 1	39° 12' 03" N	76° 30' 31" W	Van Veen	53
	BRA 2	39° 12' 15" N	76° 30' 52" W	Van Veen	53
Curtis Bay	CB 1	39° 13' 18" N	76° 32' 20" W	Van Veen	50
	CB 2	39° 13' 21" N	76° 32' 59" W	Van Veen	50
	CB 3	39° 13' 17" N	76° 33' 36" W	Van Veen	50
	CB 4	39° 13' 18" N	76° 34' 18" W	Van Veen	50
Ft. McHenry	FMH 1	39° 12' 47" N	76° 31' 31" W	Van Veen	50
	FMH 2	39° 13' 32" N	76° 32' 20" W	Van Veen	51
	FMH 3	39° 14' 16" N	76° 33' 02" W	Van Veen	50
	FMH 4	39° 15' 03" N	76° 33' 5 0" W	Van Veen	50
Ferry Bar	FB 1	39° 15' 18" N	76° 34' 47" W	Van Veen	35
	FB 2	39° 15' 21" N	76° 35' 06" W	Van Veen	40
	FB 3	39° 15' 20" N	76° 35' 28" W	Van Veen	42
Northwest Branch East	NBE 1	39° 15' 57" N	76° 34' 30" W	Van Veen	51
	NBE 2	39° 16' 21" N	76° 34' 31" W	Van Veen	50
Northwest Branch West	NBW 1	39° 16' 19" N	76° 34' 50" W	Van Veen	40
	• NBW 2	39° 16' 38" N	76° 35' 17" W	Van Veen	38
	NBW 3	39° 16' 38" N	76° 35' 55" W	Van Veen	26

2-20

TABLE 2-2 REFERENCE WATER AND ELUTRIATE PREPARATION WATER SAMPLING LOCATIONS

Sampling Reach	Latitude	Longitude	Sampling Method	Approximate Sample Depth (ft)	
Reference Locations					
Poplar Island	38° 44' 05" N	76° 22' 16" W	Teflon [®] bailer	6 ,	
	38° 45' 43" N	76° 21' 41" W	Teflon [®] bailer	4	
Deep Trough	38° 54' 48" N	76° 23' 13" W	Niskin	9	
Kent Island Deep	39° 01' 31" N	76° 19' 54" W	Teflon [®] bailer	12	
Pooles Island	39° 16' 11" N	76° 13' 34" W	Teflon [®] bailer	20	
Elutriate Preparation Water					
Swan Point	39° 05' 47" N	76° 18' 04" W	Pump	25	
Craighill Entrance/Craighill	39° 04' 27" N	76° 23' 41" W	Pump	51	
Craighill Angle	39° 08' 05" N	76° 24' 09" W	Pump	48	
Craighill Upper Range/ Cutoff Angle	39° 10' 26" N	76° 25' 44" W	Pump	27	
Tolchester (Van Veen)	39° 10' 44" N	76° 17' 12" W	Pump	32	
Tolchester (Gravity Core)	39° 11' 32" N	76° 16' 23" W	Pump	27	
Brewerton East. Ext. (Van Veen)	39° 10' 24" N	76° 25' 10" W	Pump	34	
Brewerton East. Ext. (Gravity Core)	39° 10' 18" N	76° 24' 15" W	Pump	15	
Brewerton/Brewerton Angle	39° 11' 56" N	76° 30' 14" W	Pump	48	
Curtis Bay	39° 13' 17" N	76° 33' 36" W	Pump	45	
Fort McHenry	39° 12' 47" N	76° 31' 31" W	Pump	45	
Ferry Bar	39° 15' 20" N	76° 35' 28" W	Pump	38	
Northwest Branch East/ Northwest Branch West	39° 16' 09" N	76° 34' 33" W	Pump	38	

Sample ID	Number of Composited Cores	Average Depth of Sediment Core (inches)	Average Depth of Unconsolidated Surface Layer (inches)
TLVISED	1	50	2.5
TLV2SED	2	46	3.1
TLV3SED	3	40.3	2.2
TLV4SED	2	37.5	4.5
TLV5SED	2	46.5	8.5
BEVISED	2	55.5	17.5
BEV2SED	2	47.5	8.8
BEV3SED	2	40	6.5
BEV4SED	2	45.5	8.5
BEV5SED	2	44	6.5

2-3 GRAVITY CORER SAMPLING DEPTHS

 \tilde{J}

2-22
TABLE 2-4REQUIRED CONTAINERS, PRESERVATION TECHNIQUE, AND
HOLDING TIMES^(a) FOR SEDIMENT SAMPLES

Parameter	Mass Required (g) ^(b)	Container ^(c)	Preservative	Holding Time				
Inorganics								
Mercury	5	Р	≤20C	30 days				
Other Metals	5	Р	≤20C	6 months				
Cyanide	50	P,G	4C	14 days				
Sulfide	10	P,G	4C	7 days				
Biochemical Oxygen Demand	10	G	4C	48 hours				
Chemical Oxygen Demand	50	P,G	≤20C	28 days				
Nitrogen (Ammonia, Total Kjeldahl, Nitrate + Nitrite)	150	P,G	4C	28 days				
Phosphorus	·							
Physical Parameters								
Total Moisture, Atterberg Limits, Grain Size	1000	P,G	≤20C	6 months				
Organics								
Tributyltin	50	Solvent rinsed glass jar with Teflon-lined lid	≤20C	6 months				
Total Organic Carbon	5	Heat treated glass vial with Teflon- lined lid	4C	14 days				
Pesticides PCB Congeners Semivolatile Organics	400	Solvent rinsed glass jar with Teflon-lined lid	≤20C	10 days until extraction 40 days after extraction				
Volatile Organics	50	Heat treated glass vial with Teflon- lined lid	≤20C	10 days				

From time of sample collection per USACE/EPA. 1991. Evaluation of Dredged Material Proposed for Ocean (a)

(b)

Disposal. 3 liters of sediment will be collected for laboratory preparation of each elutriate sample. P = plastic; G = glass. National Oceanographic and Atmospheric Administration. July, 1993. Sampling and Analytical Methods of the National Status and Trends Program. National Benthic Surveillance and Mussel Watch Projects. 1984-1992. NOS ORCA 71. NOAA, Silver Spring, Maryland. (c)

TABLE 2-6 SAMPLES USED FOR PREPARATION OF ELUTRIATE SAMPLES FOR CHESAPEAKE BAY / BALTIMORE HARBOR SEDIMENT QUALITY ANALYSES

.

.

F

Sampling Reach	Station	Sediment Sample IDs	Sediment Aliquot to be Used for Elutriate	Elutriate Water Samples	Water Vol. to be Used for Elutriate	Sample ID for Resulting Composited Elutriate Sample
Swan Point	SWP 1	SWPISED	666 ml	SWPEW	8 liters	SWPEL
	SWP 2	SWP2SED	666 ml	(1 composite)		
	SWP 3	SWP3SED	666 ml]		
Craighill Entrance	CRE 1	CREISED	333 ml	CRE/CREW	8 liters	CRE/CREI
	CRE 2	CRE2SED	333 ml	(1 composite)		CICE/CICEE
	CRE 3	CRE3SED	333 ml	1		
Craighill	CR 1	CRISED	333 ml	1		
	CR 2	CR2SED	333 ml	1		
	CR 3	CR3SED	333 ml			
Craighill Angle	CRA 1	CRA1SED	1000 ml	CRAEW	8 liters	CRAEL
	CRA 2	CRA2SED	1000 ml	(1 composite)		CIALL
Craighill Upper Range	CRU 1	CRUISED	333 ml	CRU/CUTEW	8 liters	
	CRU 2	CRU2SED	333 ml	(1 composite)		CRO/COTEL
	CRU 3	CRU3SED	333 ml			
Cutoff Angle	CUT 1	CUTISED	333 ml			
	CUT 2	CUT2SED	333 ml			
	CUT 3	CUT3SED	333 ml			
Tolchester	TLC 1	TLCISED	666 ml	TLCEW	8 liters	
	TLC 2	TLC2SED	666 ml	(1 composite)		ILCEL .
	TLC 3	TLC3SED	666 ml			
	TLV 1	TLVISED	400 ml	TLVEW	8 liters	
	TLV 2	TLV2SED 400 ml		(1 composite)	o mors	LVEL
	TLV 3	TLV3SED	400 ml			
	TLV 4	TLV4SED	400 ml			
	TLV 5	TLV5SED	400 ml			-

.

TABLE 2-6 (CONTINUED)

Sampling Reach	Station	Sediment Sample IDs	Sediment Aliquot to be Used for Elutriate	Elutriate Water Samples	Water Vol. to be Used for Elutriate	Sample ID for Resulting Composited Elutriate Sample
Brewerton, Eastern Ext.	BE I	BEISED	500 ml	BEEW	8 liters	BEEL
	BE 2	BE2SED	500 ml	(1 composite)		
	BE 3	BE3SED	500 ml			
	BE 4	BE4SED	500 ml			
	BEV 1	BEV1SED	333 ml	BEVEW	8 liters	BEVEL
	BEV 2	BEV2SED	333 ml	(1 composite)		
	BEV 3	BEV3SED	333 ml	•		
	BEV 4	BEV4SED	333 ml			
	BEV 5	BEV5SED	333 ml			
	BEV 6	BEV6SED	333 ml			
Brewerton	BR 1	BR1SED	333 ml	BR/BRAEW	8 liters	BR/BRAEL
	BR 2	BR2SED	333 ml	(1 composite)		
	BR 3	BR3SED	333 ml			
	BR 4	BR4SED	333 ml			
Brewerton Angle	BRA 1	BRA1SED	333 ml			
	BRA 2	BRA2SED	333 ml			
Curtis Bay	CB 1	CBISED	500 ml	CBEW	8 liters	CBEL
	CB 2	CB2SED	500 ml	(1 composite)		
·	CB 3	CB3SED	500 ml			
	CB 4	CB4SED	500 ml			
Ft. McHenry	FMH 1	FMH1SED	500 ml	FMHEW	8 liters	FMHEL
	FMH 2	FMH2SED	500 ml	(1 composite)		
	FMH 3	FMH3SED	500 ml			
	FMH 4	FMH4SED	500 ml]		

TABLE 2-6 (CONTINUED)

Sampling Reach	Station	Sediment Sample IDs	Sediment Aliquot to be Used for Elutriate	Elutriate Water Samples	Water Vol. to be Used for Elutriate	Sample ID for Resulting Composited Elutriate Sample						
Ferry Bar	FB 1	FBISED	666 ml	FBEW	8 liters	FBEL						
	FB 2	FB2SED	666 ml	(1 composite)	(1 composite)	(1 composite)		(1 composite)				
	FB 3	FB3SED	666 ml									
Northwest Branch East	NBE 1	NBE1SED	400 ml	NBE/NBWEW	8 liters	NBE/NBWEL						
	NBE 2	NBE2SED	400 ml	(1 composite)								
Northwest Branch West	NBW 1	NBWISED	400 mÌ									
	NBW 2	NBW2SED	400 ml									
	NBW 3	NBW3SED	400 ml									
Total No. Samples		57		13		13						

5

TABLE 2-7 REQUIRED CONTAINERS, PRESERVATION TECHNIQUE, AND HOLDING
TIMES (*) FOR SITE WATER AND ELUTRIATE WATER SAMPLES

Parameter	Volume Required (mL) ^(b)	Container ^(c)	Preservative	Holding Time
Inorganics		· · · · · · · · · · · · · · · · · · ·		
Mercury	100	Р	pH <2 with HNO ₃ Cool, 4 C	14 days
Other Metals	100	Р	pH <2 with HNO ₃ Cool, 4 C	6 months
Cyanide	500	P,G	NaOH to pH >12 Ascorbic Acid Cool, 4 C	14 days 24 hours in presence of S ²⁻
Sulfide	500	P,G	NaOH to pH >9 Zinc Acetate Cool, 4 C	7 days
Biochemical Oxygen Demand	1000	P,G	Cool, 4 C	48 hours
Chemical Oxygen Demand	50	P,G	H_2SO_4 to pH <2	28 days
Nitrogen (Ammonia, Total Kjeldahl, Nitrate + Nitrite) Total Phosphorus	1050	P,G	H₂SO₄ to pH <2 Cool, 4 C	28 days _
Organics				
Tributyltin	2000	G	Cool, 4 C	6 months
Total Organic Carbon	50	P,G	H₂SO₄ or HCl to pH <2 Cool, 4 C	28 days
Pesticides PCB Congeners Semivolatile Organics	2000	G, teflon- lined cap	Cool, 4 C	7 days until extraction 40 days after extraction
Volatile Organics	80	G, teflon- lined septum	Cool, 4 C	14 days

(a) From time of sample collection per USACE/EPA. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal.

(b) 16 liters (4 gal) of water will be collected for preparation of each elutriate sample.
(c) P = plastic; G = glass. National Oceanographic and Atmospheric Administration. July 1993. Sampling and Analytical Methods of the National Status and Trends Program. National Benthic Surveillance and Mussel Watch Projects. 1984-1992. NOS ORCA 71. NOAA, Silver Spring, Maryland.

3. LABORATORY ANALYSIS

Laboratory procedures for sample handling, analyte detection, quality assurance, and data reduction/handling are detailed in the Final Quality Assurance Project Plan (EA 1995b) (Appendix B). Summaries of analytical and QA/QC procedures are presented below.

3.1 SAMPLE ANALYSES

Upon receipt at EA Laboratories, all samples were logged for tracking purposes and stored at 4°C until processing. Copies of all laboratory Chain-Of-Custody sheets are provided in Appendix F. Aliquots of the appropriately preserved sample were distributed to each analytical group (ex. Metals, GC/MS) for analysis. The methods used for each analysis are summarized in Table 3-1 (sediments) and Table 3-2 (reference waters/elutriates). Sample preparation techniques for each matrix are also included in Tables 3-1 and 3-2. Some samples, particularly waters, had to be concentrated to achieved the target detection limits in the ITM. All cases where samples were concentrated prior to analysis are indicated in the laboratory data summary sheets in Appendices C and D.

To meet program specific regulatory requirements for chemicals of concern, all analytical methods were followed as stated in Tables 3-1 and 3-2 with exceptions as noted below:

3.1.1 PCB Congeners

For all sediment samples taken outside of Baltimore Harbor and all split samples, PCB concentrations were determined separately from pesticides and the PCB extract was acidified to remove interfering compounds. This procedure was expected to lower the MDL to approximately 10 μ g/kg for all Aroclors that would otherwise have MDL's greater than 10 μ g/kg.

The Baltimore District USACE determined that if total PCB concentration was greater than 11.6 $\mu g/kg$, congeners would be determined. Only samples from outside of Baltimore Harbor were subject to the 11.6 $\mu g/kg$ test. The laboratory determined this cutoff using a wet weight criteria. Samples taken inside the Harbor (22 samples) were not subjected to congener analysis.

In order to achieve the required detection limits for PCB Aroclors in the sediment samples taken outside the harbor, pesticides and PCBs were extracted separately using two aliquots of sample. The pesticide fraction, extracted with only one surrogate, tetrachloro-m-xylene, was analyzed in the usual manner and the extract was saved for PCB Congener analysis, if required. The PCB extract was concentrated to 2 ml (five times less than the volume specified in the standard method), subjected to acid cleanup according to SW846 Method 3665 to eliminate possible interferences, and analyzed by dual-column gas chromatography. Total arochlor concentrations in the PCB extract (from outside the Harbor) were not detected, so no congener analyses were conducted for this project.

ł

3.1.2 Elutriate Test

Each elutriate was prepared by sub-sampling approximately 1 L of the dredged material from the well-mixed original sample. The dredged material and unfiltered site water are then combined in a sediment-to-water ratio of 1:4 on a volume basis at room temperature $(22^\circ \pm 2^\circ C)$. This was accomplished by volumetric displacement. After the correct ratio was achieved, the mixture was stirred vigorously for 30 min with a magnetic stirrer. At 10-min intervals, the mixture was also stirred manually to ensure complete mixing. After the 30-min mixing period, the mixture was allowed to settle for 1 hour. The supernatant was then siphoned off and filtered through a 0.45- μ m-mesh filter to remove particulates prior to chemical analysis.

3.1.3 Semivolatile Organics - PAHs

In order to achieve the target detection limits (TDLs) referenced in QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations -Chemical Evaluations (EPA 823-B-95-001, April 1995) for sediment samples, PAHs were analyzed utilizing the alternative SW846 Method 8310 (HPLC).

3.1.4 Pesticides

For sediment samples only, a surrogate sample was prepared for pesticides analysis using TCX, a spiking compound used in QA/QC for pesticide/PCB analyses. This was done to allow for a separate PCB analysis. Several pesticides that are not typically analyzed using the standard USEPA SW-846, Method 8080 were also required for compliance with ITM requirements. These include: methyl parathion, malathion, ethyl parathion, dacthal, chlorbenside, mirex, demeton, aziphos (methyl-extraction). Water/elutriate samples had to be concentrated to meet the target detection limits for these compounds. All additional pesticides, except demeton and aziphos methyl, were analyzed using a modified Method 8080 from the original semivolatile extraction. Further details of these methods are included in the Analytical Narratives included in the Appendices C and D.

3.2 LABORATORY QA/QC SAMPLES

Quality control measurements for analytical protocols were designed to evaluate laboratory performance, and measurement biases resulting from the sample matrix and field performance.

• Laboratory method performance: All quality control criteria for method performance must be met for all target analytes for data to be reported. These criteria generally apply to instrument tune, calibration, method blanks, laboratory control samples (LCS), MDL verification sample, and Standard Analytical Reference Materials (SARM). In some instances where method criteria fail, useable data can be obtained and reported with client approval. The Analytical Narrative (Appendices C and D) includes a thorough discussion of the impact on data quality.

- Sample performance: The accuracy and precision of sample analyses are influenced by both internal and external factors. Internal factors are those associated with sample preparation and analysis. Internal factors were monitored by the use of internal quality control samples. Quality control field samples were analyzed to determine any measurement bias due to the sample matrix based on evaluation of matrix spikes (MS) and matrix spike duplicates (MSD). If acceptance criteria were not met, matrix interferences were confirmed either by reanalysis or by inspection of the LCS results to verify that laboratory method performance was within control limits. Data were reported with appropriate qualifiers or discussion.
- *Field performance:* Quality control samples were used to evaluate the effectiveness of the sampling program to obtain representative samples, eliminating any cross contamination. These include trip blanks (for volatile organics), field replicates and field blanks.

Detailed QA/QC procedures are included in the QAPP (Appendix B). The various QA/QC analyses utilized for this project are outlined briefly in the following section. Results of these analyses will be provided in the Chapter 5 Addendum to this report.

3.2.1 Standard Analytical Reference Material (SARM)

Standard Analytical Reference Materials (SARM) represent performance-based QA/QC. A standard analytical reference material is a soil/solution with a certified concentration that is analyzed as a sample and is used to monitor analytical accuracy. Standard Analytical Reference Materials (SARMs) were obtained from National Institute of Standards and Technology (NIST). Acceptance criteria are listed in QAPP (Appendix B). With concurrence of the U.S. Army Corps of Engineers, Baltimore District, a single SARM was acquired for all available target analytes for sediments only and was analyzed using the methods in Table 3-1. SARM results will be provided in the Chapter 5 Addendum to this report.

3.2.2 Method Blanks

The method (reagent) blank is used to monitor laboratory contamination. This is usually a sample of laboratory reagent water processed through the same analytical procedure as the sample (i.e., digested, extracted, distilled). One method blank was prepared and analyzed every day that samples were prepared.

The method blank must contain less than or equal to three times the method detection limit (MDL) limit for the compounds of interest. If this criteria was not met, then all sample processing was halted until corrective measures are taken and documented. All samples processed with the out-of-control method blank were reprocessed and reanalyzed. All instances of out-of control performance are detailed in the Analytical Narratives (Appendices C and D) and are flagged (if necessary) in the data summaries (Chapter 4).

3.2.3 Laboratory Control Sample (LCS)

The Laboratory Control Sample is a fortified method blank analyzed with each analytical batch of twenty (20) or fewer samples. These samples generally consist of reagent water or solid fortified with the analytes of interest for single-analyte methods and selected analytes for multi-analyte methods according to the appropriate analytical method. Laboratory Control samples were prepared and analyzed with the associated sample batch. The analyte recovery from each LCS was used to monitor analytical accuracy.

The percent recovery was calculated and plotted onto control charts with warning limits at two (2) standard deviations (95% confidence limit), and control limits at three standard deviations (99% confidence limit). Control charts are used to alert the laboratory of the need to check method procedure through trend analysis of the charts (EAL-SOP-247). Laboratory control results are detailed in Analytical Narratives in Appendices C and D.

3.2.4 Matrix Spike/Matrix Spike Duplicate (MS / MSD)

A matrix spike (MS) is a field sample to which a known amount of analyte is added before sample preparation and analysis to evaluate the potential effects of matrix interference. Analyte concentrations in the spiked and unspiked sample were used to calculate percent recovery as a measure of the extent of matrix interference. Five percent of the samples collected within each matrix (sediment and water) were designated for MS analysis (U.S. EPA 1995).

For organic methods, the MS was duplicated, providing a matrix spike duplicate (MSD). For inorganic analytes, a method duplicate was analyzed in addition to the MS. Five percent of the samples collected for each matrix (sediment and water) were designated for MSD or duplicate analysis (U.S. EPA 1995). For this sampling program, EA Laboratories analyzed four MS/MSD sediment samples and one MS/MSD water sample. Samples designated for MS/MSD analysis (organic analyses) or MS and duplicate analysis (inorganic analyses) were collected in duplicate. Sampling locations where MS/MSD samples were collected are indicated to Table 2-5 (sediment) and Table 2-8 (water). Recoveries for matrix spike and matrix spike duplicates will br presented in the Chapter 5 Addendum to this report.

3.2.5 Surrogates

Surrogates are organic compounds that are similar to analytes of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds were spiked into all blank, standards, samples, and spiked samples prior to analysis for organic parameters. Generally, surrogates are not used for inorganic analyses. Percent recoveries were calculated for each surrogate. Surrogates were be spiked into samples according to the appropriate analytical method (Section 7 of the QAPP) (Appendix B). Surrogate spike recoveries should fall within the control limits set in accordance with procedures specified in the method. Surrogate recoveries were calculated if sample dilution caused the surrogate concentration to fall below the quantitation limit. Results of surrogate analyses are included in Analytical Narratives in the Appendices C and D.

TABLE 3-1. ANALYTICAL PARAMETERS AND ANALYTICAL METHODS FOR SEDIMENTS

Parameter				Page 1 of 3	
	Method	Method Number	Matrix	Reference	
SAMPLE PREPARATION					
Semivolatile Organics Extraction	Soxhlet Extraction	2640			
Metals Digestion		.3540	SO	(2)	
U U	Niric Acid - Hydrogen Peroxide	3050	SO	(2)	
ORGANICS					
Acid Extractable Organic Compounds	Gas Chromatography/Mass Spectrometry	8270			
Base-Neutral Extractable	(and the second s	8270	SO	(2)	
Organic Compounds	Gas Chromatography/Mass Spectrometry	8270	50		
Biochemical Oxygen Demand	BOD (5 day, 20C)	0270	50	(2)	
Chemical Oxygen Demand		405.1	SO	(1)	
	Colorimetric - Manual	410.4	SO	(1)	
Halogenated Hydrocarbon Pesticides	Gas Chromatography - ECD	8080	SO	(2)	
Polychlorinated Biphenyls	Gas Chromatography - ECD	8080	00	(2)	
Polynuclear aromatic hydrocarbons (PAH)	High Performance Liquid Chromotography	0000	50	(2)	
	UV, fluorescence	8310	50		
Total Organic Carbon	Oxidation - Infrared		30	(2)	
Volatile Organic Compounds		9060	SO	(2)	
Compounds	Gas Chromatography/Mass Spectrometry	8240	SO	(2)	

•

TABLE 3-1. ANALYTICAL PARAMETERS AND ANALYTICAL METHODS FOR SEDIMENTS

Page 2 of 3 Method Method Number Reference Matrix Parameter . METALS Atomic Emission - ICP Aluminum 6010 SO (2) Atomic Emission - ICP 6010 SO (2) Antimony Atomic Emission - ICP 6010 SO (2) Arsenic Atomic Emission - ICP Beryllium 6010 SO (2) Atomic Emission - ICP 6010 SO Cadmium (2) Atomic Emission - ICP 6010 SO Calcium (2) Atomic Emission - ICP Chromium, Total 6010 SO · (2) Atomic Emission - ICP 6010 SO (2) Copper Atomic Emission - ICP Iron 6010 SO (2) Atomic Emission - ICP 6010 SO (2) Lead Atomic Emission - ICP 6010 Manganese SO (2) Atomic Absorption - Cold Vapor 7471 SO Mercury (2) Atomic Emission - ICP Nickel 6010 SO (2) Atomic Emission - ICP Selenium 6010 SO (2) Atomic Emission - ICP 6010 SO Silver (2) Thallium Atomic Absorption - Furnace 7841 SO (2)

TABLE 3-1. ANALYTICAL METHODS

			<u> </u>	Page 3 of 3
Zinc	Atomic Emission - ICP	6010	SO	(2)
INORGANIC NONMETALS				
Cyanide, Total and Amenable	Colorimetric - Automated UV	9012	SO	(2)
Nitrogen, Ammonia	Colorimetric - Automated Phenate	350.1	SO	(1)
Nitrogen, Total Kjeldahl	Colorimetric - Autoanalyzer II	351.2	SO	(1)
Nitrogen, Nitrate+Nitrite	Colorimetric - Cadmium Reduction	. 353.2	SO	(1)
Phosphorus, Total	Persulfate Digestion	365.1	SO	(1)
Sullide, total	Titrimetric	9030	SO	(2)
PHYSICAL DETERMINATIONS				
Atterburg Limits	Physical Measurement	D4318	SO	(3)
Percent Moisture	Gravimetric	D4959	SO	(3)

Matrix codes:

ר ר

SO -Soils, sludges, sediments, wastes

References:

- 1. United States Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. U.S. EPA, Cincinnati, Ohio.
- 2. United States Environmental Protection Agency. August 1993. Test Methods for Evaluating Solid Waste. Physical/Chemical Methods. EPA SW-846, 3rd edition, including Final Update 1. U.S. EPA, Washington, D.C.
- 3. American Society for Testing and Materials. Annual Book of ASTM Standards. Volume 4.08. ASTM, Philadelphia, PA.

TABLE 3-2. ANALYTICAL PARAMETERES AND ANALYTICAL METHODS FOR REFERENCE WATER AND ELUTRIATE WATER

Page 1 of 3

. .

Parameter	Method	Method Number	Matrix	Relerence
SAMPLE PREPARATION				
Organics Extraction	Continuous Extraction	3520	w	(2)
Total Metals Digestion (FAA/ICP) Total Metals Digestion (GFAA)	Nitric Aeid - Hydrochlorie Acid Nitric Acid	3010 3020	W W	(2) (2)
ORGANICS				
Acid Extractable Organic Compounds	Gas Chromatography/Mass Spectrometry	8270	w	(2)
Base-Neutral Extractable Organic Compounds	Gas Chromatography/Mass Spectrometry	8270	w	(2)
Bioehemical Oxygen Demand	BOD (5 day, 20C)	405.1M	W	(1)
Chemical Oxygen Demand	Colorimetrie - Manual	410.4M	W	(1)
Halogenated Hydrocarbon Pesticides	Gas Chromatography - ECD	8080	w	(2)
Polyehlorinated Biphenyls	Gas Chromatography - ECD	8080	w	(2)
Total Organic Carbon	Oxidation - Infrared	9060	w	(2)
Volatile Organic Compounds	Gas Chromatography/Mass Spectrometry	8240	w	(2)
METALS				a.
Aluminum	Atomie Emission - ICP	6010	w	(2)

TABLE 3-2. ANALYTICAL PARAMETERES AND ANALYTICAL METHODS FOR REFERENCE WATER AND ELUTRIATE WATER

Page 2 of 3

•

Parameter	Method	Method Number	Matrix	Reference
Antimony	Atomic Emission - ICP	6010	w	(2)
Arsenic	Atomic Absorption - Furnace	7060	w	(2)
Beryllium	Atomic Emission - ICP	6010	w	(2)
Cadmium	Atomic Emission - ICP	6010	w	(2)
Calcium	Atomic Emission - ICP	6010	w	(2)
Chromium, Total	Atomic Emission - ICP	6010	w	(2)
Copper	Atomic Emission - ICP	6010	w	(2)
Iron	Atomic Emission - ICP	6010	w	(2)
Lead	Atomic Absorption - Furnace	7421	w	(2)
Manganese	Atomic Emission - ICP	6010	w	(2)
Mercury	Atomic Absorption - Cold Vapor	7470	w	(2)
Nickel	Atomic Emission - ICP	6010	w	(2)
Selenium	Atomic Emission - ICP	6010	w	(2)
Silver	Atomic Emission - ICP	6010	w	(2)
Thallium	Atomic Emission - ICP	6010	w	(2)

				Page 3 of .
Zinc	Atomic Emission - ICP	6010	w	(2)
INORGANIC NONMETALS				
Cyanide, Total and Amenable	Colorimetric - Automated UV	9012	w	(2)
Nitrogen, Ammonia	Colorimetric - Automated Phenate	350.1	w	(1)
Nitrogen, Total Kjeldahl	Colorimetrie - Autoanalyzer II	351.2	w	(1)
Nitrogen, Nitrate+Nitrite	Colorimetrie - Cadmium Reduction	353.2	w	(1)
Phosphorus, Total	Persulfate Digestion	365.1	w	(1)
Sullide, total	Titrimetric	9030	w	(2)

Matrix codes:

•

W - Estuarine water, ground water, leachates, oeean water, surface water, and wastewater

References:

1. United States Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. U.S. EPA, Cincinnati, Ohio.

2. United States Environmental Protection Agency. August 1993. Test Methods for Evaluating Solid Waste. Physical/Chemical Methods. EPA SW-846, 3rd edition, including Final Update I. U.S. EPA, Washington, D.C.

۰.

4. SAMPLE RESULTS

Results of all analyses are presented in tabular format in the following chapter.

The qualifiers associated with these data tables are described in Table 4-1 (organic compounds) and Table 4-2 (inorganic compounds).

The analytical results are presented by matrix in the following subsections. Summaries of laboratory results are provided in Appendices C, D, and E. This chapter is organized as follows:

- 4.1 Sediment Analyses
 - 4.1.1 Volatiles
 - 4.1.2 Semivolatiles
 - 4.1.3 Semivolatile PAHs
 - 4.1.4 Pesticides and PCBs
 - 4.1.5 Metals
 - 4.1.6 Organotins
 - 4.1.7 General Chemistry
 - 4.1.8 Grain Size, Atterberg Limits, Moisture Content
- 4.2 Reference Water/Elutriate Water
 - 4.2.1 Volatiles
 - 4.2.2 Semivolatiles
 - 4.2.3 Pesticides and PCBs
 - 4.2.4 Metals
 - 4.2.5 General Chemistry

TABLE 4-1. ORGANIC DATA QUALIFIERS FOR ANALYTICAL RESULTS

ND or U Indicates a compound on the target compound list (TCL) was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and, if a soil sample, for percent moisture. For example, 10 U is used for phenol in water if the sample final volume is the protocol-specified final volume. If a 1-to-10 dilution of the extract was necessary, the reported limit is (10 x 10 U) or 100 U. For a soil sample, the value is also adjusted for percent moisture. For example, if the sample had 24% moisture and a 1-to-10 dilution factor, the soil sample quantitation limit for phenol (330 U) would be corrected as follows:

Reported limit = $(330 \text{ U}) \times \text{df} / \text{D}$

where: df = dilution factor = 10 D = (100 - % moisture) / 100 (At 24% moisture, D = (100-24) / 100 = 0.76)Reported limit = (330 U) x 10 / 0.76 = 4300 U (rounded to two significant figures)

For soil samples subjected to gel permeation chromatography (GPC) cleanup procedures, the contract required quantitation limit (CRQL) is also multiplied by 2 to account for the fact that only half of the extract is recovered. Note: If GPC procedures are employed, the factor of 2 is not included in the dilution factor reported; a "Y" is entered for GPC (Y/N).

- TR or J Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, 2) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the CRQL but greater than zero, 3) when the retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the CRQL but greater than zero. Note: the "J" code is not used and the compound is not reported as being identified for pesticide/Aroclor results less than the CRQL, if the technical judgement of the pesticide residue analysis expert determines that the peaks used for compound identification resulted from instrument noise or other interferences (column bleed, solvent contamination, etc.). For example, if the sample quantitation limit is 10 ug/L but a concentration of 3 ug/L is calculated, report it as 3 J. The sample quantitation limit must be adjusted for dilution as discussed for the U flag
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS. Single component pesticides with concentration equal to or greater than 10 ng/uL in the final extract must be confirmed by GC/MS.

B This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. This flag is used for a TIC as well as for a positively identified TCL compound.

E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis. This flag does not apply to pesticides/PCBs analyzed by GC/EC methods. If one or more compounds have a response greater that full scale, the sample or extract must be diluted and reanalyzed according to the specifications listed in the SOW. All such compounds with a response greater than full scale should have a concentration flagged with an "E" on Form I for the original analysis. If the dilution of the extract causes any compounds identified in the first analysis to be below the calibration range in the second analysis, then the results of both analyses are reported on separate Forms I. The Form I for the diluted sample will have the "DL" suffix appended to the sample number. NOTE: For total xylenes, where three isomers are quantified as two peaks, the calibration range of each peak is considered separately; e.g., a diluted analysis is not required for total xylenes unless the concentration of either peak separately exceeds 200 ug/L.

- D This flag identifies all compounds identified in the analysis at a secondary dilution factor. If a sample or extract is reanalyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and all concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X Other specific flags may be required to properly define the results. If used, they are fully described and such description attached to the Sample Data Summary Package and the Case Narrative. The flags begin by using "X". If more that one flag is required, "Y" and "Z" are used, as needed. For instance, the "X" flag might combine the "A", "B", and "D" flags for some sample.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- P This Ilag is used for GC analyses when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".

TABLE 4-2. INORGANIC DATA QUALIFIERS FOR ANALYTICAL RESULTS

C (Concentration) qualifiers:

- **B** Reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- U Analyte analyzed for but not detected (concentration is less than IDL).

Q (Quality control) qualifiers:

- **E** Reported value is estimated because of presence of interference.
- M Duplicate injection precision not met.
- N Spiked sample recovery is not within control limits.
- S Reported value is determined by the method of standard additions (MSA).
- W Postdigestion spike for furnace AAS analysis is out of control limits (85-115%) and sample absorbance is less than 50% of spike absorbance.
- * Duplicate analyses is not within control limits.
- + Correlation coefficient for MSA is less than 0.995.
- M (Method) qualifiers:
 - P Inductively Coupled Plasma (ICP)
 - A Flame Atomic Absorption Spectrophotometric (AAS)
 - **F** Furnace AAS
 - CV Cold Vapor AAS
 - AV Automated Cold Vapor AAS
 - AS Semiautomated Spectrophotometric
 - C Manual Spectrophotometric
 - T Titrimetric
 - NR Analyte is not required to be determined.

4.1 SEDIMENT ANALYSES

.

.

1

,

1

.

TABLE 4-3 SEDIMENT SAMPLE IDS, COLLECTION DATES, LABORATORY ACCESSION NUMBERS, AND
LABORATORY REPORT NUMBERS.

REACH	STATION / SAMPLE TYPE	SAMPLE ID	COLLECTION DATE	LABORATORY ACCESSION NUMBER	LABORATORY REPORT NUMBER
Poplar Island	Pli	PHSED	10-26-95	9515621	951703
	P12	PI2SED	10-26-95	9515620	951703
	PI3	PI3SED	10-27-95	9515671	951703
	P14	PI4SED	10-27-95	9515672	951703
	P15	P15SED	10-27-95	9515673	951703
Deep Trough	DT1	DTISED	10-30-95	9515769	951721
-	DT2	DTSED	10-30-95	9515770	951721
	DT3	DT3SED	10-30-95	9515771	951721
Kent Island Deep	, КП	KIISED	10-31-95	9515820	951721
	K12	K12SED	10-30-95	9515772	951721
	КІЗ	KI3SED	10-30-95	9515773	951721
Pooles Island	POL1	POLISED	11-13-95	9516355	951789
Swan Point	SWP1	SWPISED	10-31-95	9515821	951721
	SWP2	SWP2SED	11-06-95	9516025	951753
	SWP3	SWP3SED	11-06-95	9516026	951753
Craighill Entrance	CRE1	CREISED	11-17-95	9516701	951820
	CRE2	CRE2SED	11-17-95	9516702	951820
	CRE3	CRE3SED	11-17-95	9516703	951820

TABLE 4-3 CONTINUED.

REACH	STATION / SAMPLE TYPE	SAMPLE ID	COLLECTION DATE	LABORATOR Y ACCESSION NUMBER	LABORATOR Y REPORT NUMBER
Craighill	CR1	CRISED	11-17-95	9516704	951820
	CR2	CR2SED	11-17-95	9516705	951820
	CR2FD (Field Duplicate)	CR2SEDFD	11-17-95	9516706	951820
	CR3	CR3SED	11-17-95	9516707	951820
Craighill Angle	CRA1	CRAISED	11-17-95	9516711	951822
	CRA2	CRA2SED	11-17-95	9516712	951822
Craighill Upper Range	CRUI	CRUISED	11-17-95	9516715	951824
	CRU2	CRU2SED	11-17-95	9516716	951824
	CRU3	CRU3SED	11-18-95	9516734	951824
Cutoff Angle	CUTI	CUTISED	11-18-95	9516735	951824
	CUT2	CUT2SED	11-18-95	9516736	951824
	CUT3	CUT3SED	11-18-95	9516737	951824
Tolchester (Van Veen)	TLCI	TLCISED	11-13-95	9516350	951752
	TLC2	TLC2SED	11-13-95	9516351	951752
	TLC2FD (Field Duplicate)	TLCS2SEDFD	11-13-95	9516352	951752
	TLC3	TLC3SED	11-10-95	9516214	951752
Tolchester (Gravity Core)	TLVI	TLVISED	11-10-95	9516211	951752
	TLV2	TLV2SED	11-10-95	9516212	951752
	TLV3	TLV3SED	11-10-95	9516213	951752
	TLV4	TLV4SED	11-06-95	9516022	951752
	TLVS	TLV5SED '	` 11-06-95	9516023	951752

TABLE 4-3CONTINUED.

REACH	STATION / SAMPLE TYPE	SAMPLE ID	COLLECTION DATE	LABORATOR Y ACCESSION NUMBER	LABORATORY REPORT NUMBER
Brewerton, Eastern Ext.	BEI	BEISED	11-28-95	9517142	951885
(Van Veen)	BE2	BE2SED	11-28-95	9517143	951885
	BE3	BE3SED	11-28-95	9517144	951885
	BE4	BE4SED	11-28-95	9517145	951885
Brewerton, Eastern Ext.	BEVI	BEV1SED	11-28-95	9517147	951886
(Gravity Core)	BEV2	BEV2SED	11-28-95	9517148	951886
	BEV3	BEV3SED	11-28-95	9517149	951886
	BEV4	BEV4SED	11-28-95	9517150	951886
	BEV5	BEV5SED	11-28-95	9517151	951886
	BEV6	BEV6SED	11-28-95	9517152	951886
Brewerton	BRI	BRISED	11-28-95	9517173	951882
	BR2	BR2SED	11-28-95	9517129	951882
	BR3	BR3SED	11-28-95	9517130	951882
	BR4	BR4SED	11-28-95	9517131	951882
	BR1 (Blind Duplicate)	BLINDSPLITIA	11-28-95	9517136	951883
	BR3 (Blind Duplicate)	BLINDSPLIT2A	11-28-95	9517137	951883
Brewerton Angle	BRA1	BRAISED	11-28-95	9517132	951882
	BRA2	BRA2SED	11-28-95	9517133	951882

-

TABLE 4-3 CONTINUED.

REACH	STATION / SAMPLE TYPE	SAMPLE ID	COLLECTION DATE	LABORATORY ACCESSION NUMBER	LABORATORY REPORT NUMBER
Ft. McHenry	FMH1	FMH1SED	11-29-95	9517175	951893
	FMH2	FMH2SED	11-29-95	9517176	951893
	FMH3	FMH3SED	11-29-95	9517177	951893
	FMH4	FMH4SED	11-29-95	9517178	951893
Curtis Bay	CB1	CB1SED	11-29-95	9517180	951894
	CB2	CB2SED	11-29-95	9517181	951894
	CB3	CB3SED	11-29-95	9517182	951894
	CB4	CB4SED	11-29-95	9517183	951894
Ferry Bar	FB1	FBISED	11-29-95	9517187	951896
	FB2	FB2SED	11-29-95	9517188	951896
	FB3	FB3SED	11-29-95	9517189	951896
Northwest Branch East	NBE1	NBEISED	11-29-95	9517192	951898
	NBE2	NBE2SED	11-29-95	9517193	951898
Northwest Branch West	NBWI	NBWISED	11-29-95	9517194	951898
	NBW2	NBW2SED	11-29-95	9517195	951898
	NBW3	NBW3SED	11-29-95	9517196	951898

Table 4-4. Volatiles results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.

POPLAR ISLAND

•

Analyte		PHSE	D(a)			P12SF	ED(a)	×		PI3S	ED			PI4S	ED			PISS	ED	, <u></u> (
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		1x	0.6	ND		1x	2	ND		1x	0.5	ND		Ix	0.6	ND		1x	0.6
1,1-Dichloroethene	ND		1x	0.6	ND		l x	2	ND		1x	0.5	ND		lx	0.6	ND		1 x	0.6
1,1,1-Trichloroethane	ND		1x	0.4	ND		1x	1	ND		1 x	0.4	ND		lx	0.4	ND		1x	0.5
1,1,2-Trichloroethane	ND		1x	0.9	ND		1 x	3	ND		1 x	0.8	ND		1x	0.9	ND		1 x	1/
1,1,2,2-Tetrachloroethane	ND		1x	0.6	ND		Ιx	2	ND		1x	0.5	ND		Ix	0.6	ND		ר אור x	0.6
I,2-Dichloroethane	ND		1x	0.9	ND		Iх	3	ND		1 X	0.8	ND		Ix	0.9	ND		1x	1
I,2-Dichloropropane	ND		1x	1	ND		Iх	3	ND		1 x	0.9	ND		Ix	1	ND		1x	I
2-Butanone	ND		1x	1	ND		Iх	4	ND		1x	1	ND		Ix	I	ND		1 x	1
2-Chlorocthyl vinyl ether	ND		1 x	0.6	ND		1 x	2	ND		1x	0.5	ND		lx	0.6	ND		1 x	0.6
Acrolein	ND		1x	7	ND	(b)	1 X	22	ND		l x	6	ND		Ix	7	ND		1x	7
Acrylonitrile	ND		Ix	5	ND		Iх	15	ND		Iх	4	ND		1 x	4	ND		1 x	5
Benzene	ND		1 X	0.6	ND		1x	2	ND		1x	0.5	ND		lx	0.6	ND		1 x	0.6
Bromodichloromethane	ND		1x	0.7	ND		Ix	2	ND		1x	0.6	ND		Ix	0.7	ND		1 x	0.8
Bromoform	ND		1 x	0.6	ND		Ix	2	ND		1 x	0.5	ND		Ix	0.6	ND		1 x	0.6
Bromomethane	ND		1x	0.7	ND		1x	2	ND		1x	0.6	ND		Ix	0.7	ND		1 x	0.8
Carbon tetrachloride	ND		1x	0.3	ND		1x	1	ND		1 x	0.3	ND		lx	0.3	ND		1 x	0.3
Chlorobenzene	ND		1x	0.4	ND		1x	1	ND		1x	0.4	ND		Ix	0.4	ND		1x	0.5
Chloroethane	ND		Ix	1	ND		1x	4	ND		1x	1	ND		1 x	1	ND		1 x	1
Chlororform	ND		Ix	0.6	ND		1 x	2	ND		1x	0.5	ND		lx	0.6	ND		1x	0.6
Chloromethane	ND		l x	1	ND		1x	4	ND		1x	1	ND		Ix	I	ND		1x	1
cis-1,3-Dichloropropene	ND		1 x	0.4	ND		1x	I	ND		1x	0.4	ND		1x	0.4	ND		1 x	0.5
Dibromochloromethane	ND		lx	0.9	ND		1x	3	ND		1x	0.8	ND		1x	0.9	ND		1x	1
Dichlorodifluoromethane	ND		1 x	0.9	ND		1x	3	ND		lx	0.8	ND		łx	0.9	ND		lx	1
Ethylbenzene	ND		Ix	0.7	ND		1x	2	ND		Ix	0.6	ND		1x	0.7	ND		lx	0.8
Methylene chloride	ND		Ix	0.9	ND		1x	3	ND		Ix	0.8	ND		1x	0.9	ND		1x	1
Tetrachlorethene	ND		1 x	0.7	ND		1x	2	ND		Ix	0.6	ND		1x	·0.7	ND		1x	0.8
Toluene	ND		1 x	0.4	ND		Ix	1	ND		IX	0.4	ND		1x	0.4	ND		1x	0.5
trans-1,2-Dichloroethene	ND		1x	0.9	ND		1x	3	ND		1x	0.8	ND		1x	0.9	ND		Ix	1
trans-1,3-Dichloropropene	ND		1x	0.7	ND		Ix	2	ND		Ix	0.6	ND		Ix	0.7	ND		1 x	0.8
Trichloroethene	ND		1x	0.4	ND		1x	1	ND		Ix	0.4	ND		Ix	0.4	ND		Ix	0.5
Trichlorofluoromethane	ND		1x	0.7	ND		1 x	2	ND		Ix	0.6	ND		1x	0.7	ND		Ix	0.8
Vinvl chloride	ND		<u>1x</u>	0.6	ND		<u>1x</u>	2	ND		<u>1x</u>	0.5	<u>ND</u>		<u>lx</u>	0.6	_ND		<u>Ix</u>	0.6

ND=Not detected

(a)=Samples analyzed one day beyond project specified holding time(10 days from collection date).

.

DEEP TROUGH

Analyte		DTI	SED			DT2	SED			DT3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	1)il.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		1x	2	ND		1x	0.9	ND		1x	2
1,1-Dichloroethene	ND		1 x	2	ND		1 x	0.9	ND		1 x	2
1,1,1-Trichloroethane	ND		1 x	2	ND		1x	0.7	ND		1x	1
1,1,2-Trichloroethane	ND		1 x	3	ND		1 x	1	ND		1 x	3
1,1,2,2-Tetrachloroethane	ND		1 X	2	ND		1 x	0.9	ND		1 x	2
1,2-Dichloroethane	ND		1x	3	ND		1 x	1	ND		1x	3
1,2-Dichloropropane	ND		1 x	4	ND		1x	2	ND		1 x	3
2-Butanone	ND		1x	4	ND		1 x	2	110		1 x	4
2-Chloroethyl vinyl ether	ND		1 x	2	ND		1x	0.9	ND		1 x	2
Acrolein	ND		1 x	24	ND		1x	10	ND	(b)	1x	22
Acrylonitrile	ND		1 x	16	ND		1x	7	ND		1x	15
Benzene	ND		1 x	·2	ND		1 x	0.9	ND		1x	2
Bromodichloromethane	ND		1x	2	ND		1 x	1	ND		1 x	2
Bromoform	ND		1 x	2	ND		1 x	0.9	ND		1x	2
Bromomethane	ND		1x	2	ND		1 x	1	ND		1x	2
Carbon tetrachloride	ND		1x	1	ND		1 x	0.4	ND		1x	1
Chlorobenzene	ND		1 x	2	ND		1 x	0.7	ND		1 x	1
Chloroethane	ND		1x	4	ND		1 x	2	ND		1x	4
Chlororform	ND 1		1x	2	ND		1x	0.9	ND		1x	2
Chloromethane	ND		1x	4	ND		1x	2	ND		1x	4
cis-1,3-Dichloropropene	ND		1x	2	ND		1x	0.7	ND		1x	1
Dibromochloromethane	ND		1x	3	ND		1x	1	ND		1 x	3
Dichlorodifluoromethane	ND		1x	3	ND		1x	1	ND		1x	3
Ethylbenzenc	ND		1x	2	ND		1x	1	ND		1x	2
Methylene chloride	ND		1 x	3	ND		1 x	1	ND		1 x	3
Tetrachlorethene	ND		1x	2	ND		1 x	1	ND		1x	2
Toluene	ND		1x	2	ND		1 x	0.7	ND		1x	1
trans-1,2-Dichloroethene	ND		1x	3	ND		1 x	1	ND		1x	3
trans-1,3-Dichloropropene	ND		1x	2	ND		1 x	1	ND		1x	2
Trichloroethene	ND		1x	2	ND		1 x	0.7	ND		1x	1
Trichlorofluoromethane	ND		1 x	2	ND		1 x	1	ND		1x	2
Vinyl chloride	_ND_		<u>1x</u>	2	<u>ND</u>		<u> </u>	0.9	ND		<u> 1x </u>	2

ND=Not detected (b)=Analyte not recovered in MS/MSD.

KENT ISLAND DEEP

Analyte		KIIS	ED			K129	SED		n	KIBS	SED	v
ug/kg	Result	Qual.	_DiJ.	Limit	Result	Qual.	1)il.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		1x	0.5	ND		1x	1	ND		1x	0.6
1,1-Dichloroethene	ND		1 x	0.5	ND		1x	1	ND		1 x	0.6
1,1,1-Trichloroethane	ND		1 x	0.4	ND		1x	0.9	ND		1 x	0.4
1,1,2-Trichloroethane	ND		1 x	0.8	ND		1 x	2	ND		1 x	0.9
1, 1, 2, 2-Tetrachloroethane	ND		1 x	0.5	ND		1 x	1	ND		1x	0.6
1,2-Dichloroethane	ND		1x	0.8	ND		1x	2	ND		1 x	0.9
1,2-Dichloropropane	ND		1x	0.9	ND		1x	2	ND		1x	1
2-Butanone	ND		1 x	1	ND		1 x	2	ND		1 x	1
2-Chloroethyl vinyl ether	ND		1 x	0.5	ND		1 X	1	ND		1 x	0.6
Aerolein	ND		1 x	6	ND		1x	14	ND		1 x	7
Aerylonitrile	ND		1x	4	ND		1 x	9	ND		1 x	4
Benzene	ND		1x	0.5	ND		1 X	1	ND		1 x	0.6
Bromodichloromethane	ND		1 x	0.7	ND		1 x	1	ND		1 x	0.7
Bromoform	ND		1x	0.5	ND		1x	1	ND		1x	0.6
Bromomethane	ND		1x	0.7	ND		1 x	1	ND		1x	0.7
Carbon tetrachloride	ND		1x	0.3	ND		1 x	0.6	ND		1 x	0.3
Chlorobenzene	ND		1x	0.4	ND		1 x	0.9	ND		1 x	0.4
Chloroethane	ND		1 x	1	ND		1 x	3	ND		1x	1
Chlororform	ND		1x	0.5	ND		1x	1	ND		1 x	0.6
Chloromethane	ND		1x	1	ND		1 x	3	ND		1 x	1
cis-1,3-Dichloropropene	ND		1x	0.4	ND		1x	0.9	ND		١x	0.4
Dibromochloromethane	ND		1 x	0.8	ND		1x	2	ND		1 x	0.9
Dichlorodifluoromethane	ND		1x	0.8	ND		1x	2	ND		1 x	0.9
Ethylbenzene	ND		١x	0.7	ND		1 x	1	ND		1 x	0.7
Methylene chloride	ND		1 x	0.8	ND		lx	2	ND		1 x	0.9
Tetrachlorethene	ND		١x	0.7	ND		١x	1	ND		1 x	0.7
Toluene	ND		١x	0.4	ND		1 x	0.9	ND		1 x	0.4
trans-1,2-Dichloroethene	ND		١x	0.8	ND		١x	2	ND		lx	0.9
trans-1,3-Dichloropropene	ND		١x	0.7	ND		١x	1	ND		1 x	0.7
Trichloroethene	ND		١x	0.4	ND		1x	0.9	ND		1x	0.4
Trichlorofluoromethane	ND		١x	0.7	ND		1x	1	ND		1 x	0.7
Vinyl chloride	ND		<u>1x</u>	0.5	ND		<u>1x</u>	1			<u>1x</u>	<u>0.6</u>

ND=Not detected

.

POOLES ISLAND

Analyte		POLISED	· · · ·
ug/kg	Result	Qual. Dil.	Limit
1,1-Dichloroethane	ND	1x	1
1,1-Dichloroethene	ND	1x	1
1, 1, 1 - Trichloroethane	ND	1 x	0.8
1,1,2-Trichloroethane	ND	1 x	· 2
1,1,2,2-Tetrachloroethane	ND	1x	1
1,2-Dichloroethane	ND	1 x	2
1,2-Dichloropropane	ND	lx	2
2-Butanone	ND	lx	2
2-Chloroethyl vinyl ether	ND	1x	1
Acrolein	ND	lx	_ 12
Acrylonitrile	ND	1x	8
Benzene	ND	lx	1
Bromodichloromethane	ND	1x	1
Bromoform	ND	1x	1
Bromomethane	ND	lx	1
Carbon tetrachloride	ND	1x	0.8
Chlorobenzene	ND	1x	0.8
Chloroethane	ND	lx	2
Chlororform	ND	1x	1
Chloromethane	ND	lx	2
cis-1,3-Dichloropropene	ND	lx	0.8
Dibromochloromethane	ND	Ix	2
Dichlorodifluoromethane	ND	lx	2
Ethylbenzene	ND	lx	1
Methylene chloride	ND	1x	2
Tetrachlorethene	ND	1x	1
Tolucne	ND	1x -	0.8
trans-1,2-Dichloroethene	ND	1x	2
trans-1,3-Dichloropropene	ND	1x	1
Trichloroethene	ND	1x	0.8
Trichlorofluoromethane	ND	1x	1
Vinyl chloride	ND	1x	. 1

SWAN POINT CHANNEL

Analyte	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SWPI	SED		27.272 2 2	SWP	2SED			SWP3SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual Dil	. Limit
1, 1-Dichloroethane	ND		1x	2	ND		1x	2	ND	lx	2
1, 1-Dichloroethene	ND		1x	2	ND		1x	2	ND	lx	2
1, 1, 1-Trichloroethane	ND		1x	1	ND		1x	1	ND	lx	1
1,1,2-Trichloroethane	ND		1x	3	ND		1x	3	ND	lx	2
1,1,2,2-Tetrachloroethane	ND		1x	2	ND		1x	2	ND	lx	2
1,2-1Dichloroethane	ND		1x	3	ND		1x	3	ND	lx	2
1,2-Dichloropropane	ND		1x	3	ND		1x	3	ND	lx	3
2-13utanone	ND		1x	3	ND		1x	4	140	lx	3
2-Chloroethyl vinyl ether	ND		1x	2	ND		1x	2	ND	lx	2
Acrolein	ND		1x	20	ND		lx	21	ND	lx	19
Acrylonitrile	ND		1 x	13	ND		1x	14	ND	1x	12
Benzene	ND		1 x	2	ND		1x	2	ND	lx	2
Bromodichloromethane	ND		lx	<u>,</u> 2	ND		1 x	2	ND	1x	2
Bromoform	ND		lx	2	ND		1x	2	ND	1x	2
Bromomethane	ND		1x	2	ND		1x	2	ND	lx	2
Carbon tetrachloride	ND		1x	0.0	ND		1x	1	ND	1x	1
Chlorobenzene	ND		1x	1	ND		1x	1	ND	1x	1
Chloroethane	ND		1x	4	ND		1 x	4	ND	1x	4
Chlororform	ND		1x	2	ND		1x	2	ND	1x	2
Chloromethane	ND		lx	4	ND		1x	4	ND	1x	4
cis-1,3-Dichloropropene	ND		lx	1	ND		1x	1	ND	1x	1
Dibromochloromethane	ND		1x	3	ND		1x	3	ND	lx	2
Dichlorodifluoromethane	ND		1x	3	ND		1x	3	ND	lx	2
Ethylbenzene	ND		1x	2	ND		1x	2	ND	lx	2
Methylene chloride	ND		1x	3	ND		1 x	3	ND	1x	3
Tetrachlorethene	ND		lx	2	ND		1x	2	ND	1x	· 2
Toluene	ND		lx	1	ND		1x	1	ND	lx	1
trans-1,2-Dichloroethene	ND		lx	3	ND		1x	3	ND	1x	2
trans-1,3-Dichloropropene	ND		1 x	2	ND		1x	2	ND	lx	2
Trichloroethene	ND		lx	1	ND		1x	1	ND	lx	1
Trichlorofluoromethane	ND		l x	2	ND		1x	2	ND	1x	2
Vinyl chloride	<u>ND</u>		<u>lx</u>		ND		<u>lx</u>	2	ND	lx	_2

ND=Not detected

.

Analyte		CREI	SED			CRE	2SED		<u>,</u>	CREASE	<u>1</u>	·
ug/kg	Result	Qu <u>al.</u>	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Out 1	20	
1,1-Dichluroethane	ND		1x	1	ND		1x			Qual 1	лі. 1 v	
1, 1-Dichloroethene	ND		1 x	1	ND		1x	i	ND		1A 1	0.9
1,1,1-1 richloroethane	ND		1 x	0.8	ND		lx	07	ND		1	0.5
1,1,2-1 richloruethanc	ND		1x	2	ND		1x	1	ND		1 X 1	0.
1, 1, 2, 2-Tetrachluroethane	ND		1x	1	ND		lx	i	MD		IX I	
1,2-Dichloroethane	ND		lx	2	ND		lx		NID		X	0.9
1,2-Dichloropropane	ND		lx	2	ND		1 1		NID	· .	x	
2-Butanone	ND		lx	2	ND		1.	2	NID		x	
2-Chloroethyl vinyl ether	ND		1x	1	ND		1 1 1	2	ND	1	x	
Acrolein	ND		lx	12	ND		1			1	x	0.9
Acrylonitrile	ND		lx	8	ND		1.		ND ND	1	x	11
Benzene	ND		1x	ī	ND		1.	°,	ND	1	х	1
Bromodichloromethane	ND		1x	i	ND		1.		ND	1	x	0.9
Bromoform	ND		lx	il	ND		1.		ND	1	x	1
Bromomethane .	ND		lx	il	ND		1X	! !	ND	1	х	0.9
Carbon tetrachloride	ND		lx	0.5	ND		1.		ND	1	x	1
Chlorobenzene	ND		lx	0.9	ND		1X	0.5	ND	1:	x	0.5
Chloroethane	ND		1x	2.0	ND		1X	0.7	ND	1:	x	0.7
Chlororform	ND		1 1	1	ND		IX	2	ND	1:	x	2
Chloromethane	ND		14				IX	1	ND	1:	ĸ	0.9
is-1.3-Dichloropropene	ND		1.	0.0			IX	2	ND	12	ĸ	2
Dibromochloromethane	ND		1.	0.0	ND		IX	0.7	ND	1:	¢	0.7
Dichlorodifluoromethane	ND		1.	2	ND		IX	1	ND	1:	¢	1
thylbenzene	ND		1.	2	ND		1x	1	ND	15	٢	1
fethviene chloride	ND		1.		ND		Ix	1	ND	b	۲.	1
ctrachlorethene	ND		1.	2	ND		Ix	1	ND	1x		1
oluene	ND		1.0		ND		1x	1	ND	1 x		1
ans-1 2-Dichlorocthene	ND		1.	0.8	ND		lx	0.7	ND	l x	:	0.7
ans-1.3-Dichloropropene	ND		1.X	2	ND		Ix	1	ND	1x		1
richloroethene	ND		17		ND		1x	1	ND	1 x		1
richlorofluoromethane	ND		1X	0.8	ND		1x	0.7	ND	lx		0.7
invl chloride			1X	1	ND		1x	1	ND	lx		1
	÷≌		<u>.IX</u>	<u> </u>	ND		1x	. 1	ND	1x		0.0

CRAIGHILL ENTRANCE

.

.•

Analyte	1	CRI	SED			CR2	SED		r	CR2SF	010			CDA	0512	
ug/kg	Result	Qual.	<u>1)il</u>	Limit	Result	Qual.	Dil.	Limit	Result	Oual	1)//	limit	Durinte		SED .	
1,1-Dichloroethane	ND		1x	0.6	ND		1x	0.9	ND		1x	<u></u>	NI)	Qual		<u></u>
1,1-Dichlorocthene	ND		1 x	0.6	ND		1x	0.9	ND		1x	i i			1X	
1,1,1-Trichloroethane	ND		1x	0.4	ND		1x	0.6	ND		14	1			1X	1
1,1,2-Trichloroethane	ND		1 x	0.9	ND		1x	1	ND		14	2	NID		1 X	0.7
1,1,2,2-Tetrachloroethane	ND		1x	0.6	ND		1x	0.9	ND		14	2	ND		1X	1
1,2-Dichloroethane	ND		1x	0.9	ND		1 x	1	ND		12	2	ND		1X	1
1,2-Dichloropropane	ND		1.x	1	ND		1x	i	ND		1	2			IX 1	
2-Butanone	ND		1x	1	ND		1x	2	ND		1 1	2	NID		IX 1	2
2-Chloroethyl vinyl ether	ND		1 x	0.6	ND		1x	0.9	ND		14	1			1X	2
Aerolein	ND		1x	7	ND		1 x	10	ND		11	16	MD		IX I	
Aerylonitrile	ND		1 x	4	ND		1x	7	ND		1.2	10			IX	
Benzene	ND		1 x	0.6	ND		1x	0.9	ND		12	10	ND		IX 1	8
Bromodichloromethane	ND		1 x	0.7	ND		1x	1	ND		14	2	NID		IX	1
Bromoform	ND		1 x	0.6	ND		1 x	0.9	ND		1 1 1	1	ND		IX	
Bromomethane	ND		1 x	0.7	ND		1x	1	ND		14	2	ND		1X	1
Carbon tetrachloride	ND		1 x	0.3	ND		1x	0.4	ND		1.	0.7			IX	1
Chlorobenzene	ND		1x	0.4	ND		1x	0.6	ND		12	0.7			IX	0.5
Chloroethane	ND		1x	1	ND		1x	2	ND		1.2				IX	0.7
Chlororform	ND		1x	0.6	ND		lx	0.9	ND		1.2	3	ND		1x	2
Chloromethane	ND		1x	1	ND		lx	2	ND		1.		ND		1x	1
eis-1,3-Diehloropropene	ND		1 x	0.4	ND		1x	0.6	ND		1.		ND		IX	2
Dibromochloromethane	ND		1x	0.9	ND		1x	0.0	ND		1.		ND		IX	0.7
Dichlorodifluoromethane	ND		1x	0.9	ND		1x	i	ND		1.	2			1x	1
Ethylbenzene	ND		1x	0.7	ND		1x	i i	ND		1	2	ND		1x	1
Methylene chloride	ND		1x	0.9	ND		1x		ND		1.	2	ND		lx	1
Tetraehlorethene	ND		1x	0.7	ND		1 x	1	NID		1	2	ND		1x	1
Toluene	ND		1 x	0.4	ND		1x	06	ND		1.4	2	ND		1x	1
trans-1,2-Diehloroethene	ND		1x	0.9	ND		1 x	0.0			1.	<u>'</u>	ND		1x	0.7
trans-1, 3-Dichloropropene	ND		1x	0.7	ND		1x				1X 15	2			1x	1
Trichloroethene	ND		1x	0.4	ND		1x	0.6	ND		13	2			Ix	1 [
Trichlorofluoromethane	ND		1x	0.7	ND		1x	1	ND		1.0	<u>'</u>	ND		1x	0.7
Vinyl chloride	ND		1x	0.6	ND		1x	0 0	ND		1X 1	2	ND		1x	1
								0.21			<u></u>	Ц	<u>ND</u>		<u>X</u>	

CRAIGHILL CHANNEL

CRAIGHILL ANGLE

.

c

Analyte		CRAI	SED			CRA2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		1x	1	ND		1 x	1
1,1-Dichloroethene	ND		1x	1	ND		1 x	1
1, 1, 1-Trichloroethane	ND		lx	0.9	ND		1 x	1
1,1,2-Trichloroethane	ND		1x	2	ND		1 x	2
1,1,2,2-Tetrachloroethane	ND		1 x	1	ND		1 x	1
1,2-Dichloroethane	ND		1 x	2	ND		1 x	2
1,2-Dichloropropane	ND		1x	2	ND		lx	3
2-Butanone	140		1x	2	ND		1x	3
2-Chloroethyl vinyl ether	ND		1x	1	ND		1 x	1
Acrolein	ND		1x	14	ND		l x	17
Acrylonitrile	ND		1x	9	ND		l x	11
Benzene	ND		lx	1	ND		1 x	1
Bromodichloromethane	ND		1x	2	ND		l x	2
Bromoform	ND		l x	1	ND		l x	1
Bromomethane	ND		lx	2	ND		l x	2
Carbon tetrachloride	ND		1x	0.6	ND		1x	0.7
Chlorobenzene	ND		lx	0.9	ND		l x	1
Chloroethane	ND		1x	3	ND		1 x	3
Chlororform	ND		1x	1	ND		l x	1
Chloromethane	ND		lx	3	ND		1x	3
cis-1,3-Dichloropropene	ND		1x	0.9	ND		1 x	1
Dibromochloromethane	ND		1x	2	ND		1x	2
Dichlorodifluoromethane	ND		1x	2	ND		1 X	2
Ethylbenzene	ND		1x	2	ND		l x	2
Methylene chloride	ND		1x	2	ND		1x	2
Tetrachlorethene	ND		1x	2	ND		1x	2
Toluene	ND		1x	0.9	ND		1x	1
trans-1,2-Dichloroethene	ND		1x	2	ND		1x	2
trans-1,3-Dichloropropene	ND		1x	2	ND		1x	2
Trichloroethene	ND		1x	0.9	ND		1x	1
Trichlorofluoromethane	ND		1 x	2	ND		1 x	2
Vinyl chloride	ND		1x	1	ND		1x	1

Analyte		CRUI	SED			CRU	2SED			CRU	SED	<u> </u>
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual	_Dil.	Limit
1, 1-Dichloroethane	ND		1x	i	ND		1x	0.6	ND		lx	0.9
1,1-1)ichloroethene	ND		lx	1	ND		1x	0.6	ND		1x	0.9
1, 1, 1-Trichloroethane	ND		Ix	1	ND		1x	0.5	ND		' 1x	0.7
1, 1, 2-Trichloroethane	ND		lx	2	ND		lx	1	ND		1x	1
1, 1, 2, 2-Tetrachloroethane	ND		lx	1	ND		lx	0.6	ND		١x	0.9
1,2-1)ichloroethane	ND		lx	2	ND		lx	1	ND		lx	1
1,2-Dichloropropane	ND		1x	2	ND		١x	1	ND		1x	2
2-Butanone	ND		İx	3	ND		lx	1	ND [.]		lx	2
2-Chloroethyl vinyl ether	ND		lx	1	ND		lx	0.6	ND		1x	0.9
Acrolein	ND		1x	17	ND		lx	7	ND		1x	
Acrylonitrile	ND		lx	11	ND		lx	5	ND		1x	7
Benzene	ND		lx	1	ND		lx	0.6	ND		lx	0.9
Bromodichloromethane	ND		lx	2	ND		lx	0.8	ND		lx	1
Bromoform	ND		lx	1	ND		lx	0.6	ND		1x	0.9
Bromomethane	ND		lx	2	ND		lx	0.8	ND		1 x	1
Carbon tetrachloride	ND		lx	0.7	ND		lx	0.3	ND		lx	0.5
Chlorobenzene	ND		lx	1	ND		1x	0.5	ND		lx	0.7
Chloroethane	ND		lx	3	ND		1x	1	ND		lx	2
Chlororform	ND		lx	1	ND		1x	0.6	ND		1x	0.9
Chloromethane	ND		1 x	3	ND		1x	1	ND		1x	2
cis-1,3-Dichloropropene	ND		lx	1	ND		lx	0.5	ND		lx	0.7
Dibromochloromethane	ND		1x	2	ND		1x T	1	ND		١x	1
Dichlorodifluoromethane	ND		lx	2	ND		1x	1	ND		lx	1
Ethylbenzene	ND		lx	2	ND		1x	0.8	ND		١x	1
Methylene chloride	ND		lx	2	ND		lx	1	ND		lx	1
Tetrachlorethene	ND		lx	2	ND		lx	0.8	ND		lx	1
Toluene	ND		1x	1	ND		lx	0.5	ND		1 x	0.7
trans-1,2-Dichloroethene	ND		1x	2	ND		lx	1	ND		lx	1
trans-1,3-Dichloropropene	ND		1x	2	ND		lx	0.8	ND		l x	1
Trichloroethene	ND		1x	1	ND		lx	0.5	ND		1x	0.7
Trichlorofluoromethane	ND		lx	2	ND		1x	0.8	ND		1x	1
Vinyl chloride	ND		<u>lx</u>	1	ND		<u>lx</u>	0.6	ND		<u>lx</u>	0.9

CRAIGHILL UPPER RANGE

Analyte		CUTI	SED			CUT	2SED			CUT	SED	
ug/kg	Result	Oual.	Dil.	Limit	Result	Oual.	Dil.	Limit	Result	Oual	1)il	L imit
,1-Dichloroethane	ND		1x	1	ND		lx	2	ND		1x	1
,1-Dichloroethene	ND		1x	1	ND		1x	2	ND		1x	i
1,1-Trichloroethane	ND		1x	1	ND		1x	1	ND		1x	0.9
,1,2-Trichloroethane	ND		1x	2	ND		1x	2	ND		1x	2
,1,2,2-Tetrachloroethane	ND		1x	1	ND		1x	2	ND		1 x	1
,2-Dichloroethane	ND		1 x	2	ND		1x	2	ND		1x	2
.2-1)ichtoropropane	ND		1 x	2	ND		1 x	3	ND		lx	2
2-Butanone	ND		1x	3	ND		1x	3	ND		1 x	2
Chloroethyl vinyl ether	ND		1x	1	ND		l x	2	ND		łx	1
Acrolein	ND		1 x	16	ND		lx	19	ND		1 x	15
\crylonitrile	ND		1 x	10	ND		1x	12	ND		1x	10
Benzene	ND		1 x	1	ND		1x	2	ND		1 x	1
3romodichloromethane	ND		1 x	2	ND		1 x	2	ND		1x	2
Bromoform	ND		1 x	1	ND		İx	2	ND		1x	1
Bromomethane	ND		1 x	2	ND		1 x	2	ND		1 x	2
Carbon tetrachloride	ND		1x	0.7	ND		1 x	0.8	ND		1 x	0.6
Chlorobenzene	ND		1 x	1	ND		1 x	1	ND		1x	0.9
Chloroethane	ND		1x	3	ND		1x	4	ND		1 x	3
Chlororform	ND		1x	1	ND		1 x	2	ND		1 x	1
Chloromethane	ND		1x	3	ND		1x	4	ND		1 x	3
is-1,3-Dichloropropene	ND		1 x	1	ND		1 x	1	ND		1 x	0.9
Dibromochloromethane	ND		1 x	2	ND		l x	2	ND		lx l	2
Dichlorodifluoromethane	ND		1 x	2	ND		1 ×	2	ND		1 x	2
Ethylbenzene	ND		1x	2	ND		1x	2	ND		1x	2
Aethylene chloride	ND		1x	2	ND		1x	2	ND		1x	2
etrachlorethene	ND		1x	2	ND		1 x	2	ND		1 x	2
oluene	ND		1x	1	ND		1 x	1	ND		1x	0.9
rans-1,2-1)ichloroethene	ND		1 x	2	ND		1x	2	ND		1 x	2
rans-1,3-Dichloropropene	ND		1 x	2	ND		1 x	2	ND		1x	2
nchloroethene	ND		1 x	1	ND	•	1 x	1	ND		1x	0.9
richlorofluoromethane	ND		1x	2	ND		1x	2	ND		1x	2
/inyl chloride	ND		<u> </u>	1	ND		<u>lx</u>	2	<u>_ND_</u>		<u>lx</u>	1

CUTOFF ANGLE

.

.

Analyte		TLCI			TLC2	SED			TLC2S	EDFD		TI.C3SED				
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual. D	il Limi	ť
1,1-Dichloroethane	ND		lx	0.8	ND		1x	0.8	ND		1x	0.9	ND		X	ïİ
1,1-Dichloroethene	ND		1 x	. 0.8	ND		1x	0.8	ND		1 x	0.9	ND	1	x	1
1,1,1-Trichloroethane	ND		1 x	0.6	ND		1x	0.6	ND		1 x	0.7	ND	1	x 0	.9
1,1,2-Trichloroethane	ND		lx i	1	ND		1x	1	ND		1x	1	ND	. 1	x	2
1, 1, 2, 2-Tetrachloroethane	ND		1x	0.8	ND		1x	• 0.8	ND		1 x	0.9	ND	1	x	1
1,2-Dichloroethane	ND		1x	· 1	ND		1 x	1	ND		1x	1	ND	1	x	2
1,2-Dichloropropane	ND		1x	. 1	ND		1x	1	ND		1x	2	ND	. i	x	2
2-Butanone	ND		1x	2	ND		1x	2	88		1x	2	160	1	x	2
2-Chloroethyl vinyl ether	ND		1 x	1	ND		lx	1	ND		1x	1	ND	1	x	1
Acrolein	ND		1 x	9	ND		lx	10	ND		1 x	10	ND	1	x I	4
Acrylonitrile	ND		1x	6	ND		1x	6	ND		1 x	7	ND	1	x	9
Benzene	ND		l x	0.8	ND		1 x	U.8	ND		l x	0.9	ND	1	x	1
Bromodichloromethane	ND		l x	1	ND	. ž	l x	1	ND		1x	1	ND	1	x	1
Bromoform	ND		lx	0.8	ND		1 x	U.8	ND		1x	0.9	ND	1	x	1
Bromomethane	ND		1x	1	ND		1 x	1	ND		1 x	1	ND	1	x	1
Carbon tetrachloride	ND		1x	0.6	ND	•	1 x	0.6	ND		1x	0.7	ND	1	x 0	.9
Chlorobenzene	ND		1x	0.6	ND		<u> </u> 1x	0.6	ND		1 x	0.7	ND	1	x 0	.9
Chloroethane	ND		1 x	2	ND		lx	2	ND		1 x	2	ND	1	x	3
Chlororform	ND		1x	0.8	ND		1x	0.8	ND		1x	0.9	ND	1	x	1
Chloromethane	ND		1x	2	ND		lx	2	ND		1x	2	ND	1	x	3
cis-1,3-Dichloropropene	ND		1x	0.6	ND		1 x	0.6	ND		1x	0.7	ND	1	x 0.	9
Dibromochloromethane	ND		1 x	1	ND		lx	1	ND		1x	1	ND	1	x	2
Dichlorodifluoromethane	ND		1x	1	ND		1x	1	ND		1 x	1	ND	. 1	x	2
Ethyloenzene	ND		1 x	1	ND		1x	1	ND		1x	1	ND	1	x	1
Methylene chloride	ND		1x	1	ND		1x	1	ND		1x	2	ND	1	x	2
Tetrachlorethene	ND		1 x	1	ND		1x	1	ND		1x	1	ND	1	x	1
Toluene	ND		1x	0.6	ND		1 x	0.6	ND		1x	0.7	ND	1	x 0.	9
trans-1,2-Dichloroethene	ND		1 x	1	ND		l x	1	ND		1 x	1	ND	1	x	2
trans-1,3-Dichloropropene	ND		1 x	1	ND		1x	1	ND		1x	1	ND	1	x	1
Trichloroethene	ND		1 x	0.6	ND		1 x	0.6	ND		1x	0.7	ND	1	x 0.	9
Trichlorofluoromethane	ND		1 x	1	ND		1 x	1	ND		lx	1	ND	1	x	1
Vinyl chloride	ND		<u> x</u>	0.8	ND		<u>lx</u>	0.8	<u>ND</u>		<u>lx</u>	0.9	ND		<u>x</u>	1

TOLCHESTER CHANNEL-VAN VEEN

Analyte		TLVI	SED		<u> </u>	11.V	SED	#7_1. 77722		TI Vaci	50					-			
ug/kg	Result	Qual.	Dil.	Limit	Result	Oual	Dil	Limit	Desult		<u>רט</u>			IL_V4	SED			TLV5SED	
1,1-Dichlorocthane	ND		lx	0.8	ND		1x	0.9	NT	Qual	1		Result	Qual.	<u> </u>	Limit	Result	Qual. Dil.	Limit
1,1-Dichloroethene	ND		1x	0.8	ND		1 1	0.8			IX I	0.8	ND		1x	0.9	ND	lx	0.9
1, 1, 1-Trichloroethane	ND		1x	0.6	ND		1 x	0.6			IX 1	0.8	ND		1x	0.9	ND	lx	0.9
1,1,2-Trichloroethane	ND		1x	1	ND		1 x	0.0	ND		1X	0.6	ND		lx	0.7	ND	lx	0.7
1,1,2,2-Tetrachloroethane	ND		lx	0.8	ND		1 1		NTO		TX 1		ND		1x	1	ND	1 x	1
1,2-1)ichloroethane	ND		lx	1	ND		1 1	0.8	ND		1X 1	0.8	ND		lх	0.9	ND	lx	0.9
1,2-1)ichloropropane	ND		1x	i	ND		1x		ND		1X 1	!]	ND		1x	1	ND	1x	1
2-13utanone	ND		lx	2	ND		1 1				1X		ND		lx	2	ND	1x	2
2-Chloroethyl vinyl ether	ND		lx	1	ND		1 1	1			IX Lu	2	ND		1x	2	ND	lx	2
Acrolein	ND		1x	10	ND		1 1				1X	1	ND		1x	1	ND	1x	1
Acrylonitrile	ND		1x	6	ND		1 1	é	ND		IX L	9	ND		lx	10	ND	lx	10
Benzene	ND		1x	0.8	ND		1 1	0.6			1X	6	ND		1x	7	ND	lx	7
Bromodichloromethane	ND		lx	1	ND		1 1	0.0	ND		1 X	0.8	ND		1x	0.9	ND	1x	0.9
Bromoform	ND		1x	0.8	ND		1 1		NID		IX Lu	1	ND		1 x	1	ND	. lx	1
Bromomethane	ND		lx	1	ND		lx.	1			1X	0.8	ND		1x	0.9	ND	lx	0.9
Carbon tetrachloride	ND		lx	0.6	ND		1 x	0.6	NID		1X 1		ND		1x	1	ND	lx	1
Chlorobenzene	ND		lx	0.6	ND		1 x	0.6	NID		1X	0.6	ND		1x	0.7	ND	1x	0.7
Chloroethane	ND		1x	2	ND		1x	2			1X	0.6	ND		lx	0.7	ND	1 x	0.7
Chlororform	ND		1x	0.8	ND		1 x	0.0			1X	2	ND		1 x	2	ND	1 x	2
Chloromethane	ND		lx	2	ND		1 1	2			1X	0.8	ND		1x	0.9	ND	1 x	0.9
cis-1,3-Dichloropropene	ND		1x	0.6	ND		l v	0.6	NTO		1X	2	ND		1x	2	ND	lx	2
Dihromochloromethane	ND		1x	1	NI)		1 1				1 X	0.6	ND		1 x	0.7	ND	lx	0.7
Dichlorodifluoromethane	ND		1x	i	ND		lx				IX I	1	ND		1x	1	ND	lx	1
Ethylbenzene	ND		lx	il	ND		1 1		ND	1	IX I		ND		1x	1	ND	lx	1
Methylene chloride	ND		1x	il	ND		1.		ND		IX	1	ND		1x	1	ND	lx	i
Tetrachlorethene	ND		1x	·	ND		1.				IX.	1	ND		1x	2	ND	lx	2
Toluene	ND		lx	0.6	ND		lx			1	IX.	.1	ND		lx	1	ND	lx	ī
rans-1,2-Dichloroethene	ND		lx	1	ND		1.	0.0		ļ	IX.	0.6	ND		1x	0.7	ND	lx	0.7
rans-1,3-Dichloropropene	ND		lx	il	ND		1.	;		1	x	1	ND		1x	1	ND	lx	1
richlorocthene	ND		lx	0.6	ND		14	0.4		1	x	1	ND		1x	1	ND	lx	
richlorofluoromethane	ND		1x	1	ND		1.	0.0			x	0.6	ND		1x	0.7	ND	lx	0.7
/inyl chloride	ND		1x	0.8	ND		1.			1	x	1	ND		1x	1	ND	lx	1
				0.01	<u></u>			<u><u><u> </u></u></u>	IND]	<u>x</u>	0.8	ND		<u>1x</u>	0.9	ND		0.0

.

TOLCHESTER CHANNEL-GRAVITY CORE

.

ND=Not detected

-

.

Analyte		BEIS			BE2S	ED			BE3S	ED		BE4SED				
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	1.imit
1,1-Dichloroethane	ND		1x	2	ND		1x	1	ND		1x	1	ND		lx	1
1,1-Dichloroethene	ND		1x	2	ND		1 x	1	ND		1x	1	ND		1x	1
1, 1, 1-Trichloroethane	ND		1x	1	ND		1x	0.9	ND		1x	0.9	ND		1x	1
1,1,2-Trichloroethane	ND		1x	2	ND		1 x	2	ND		1x	2	ND		1x	2
1,1,2,2-Tetrachloroethane	ND		1x	2	ND		1x	1	ND		١x	1	ND		1 x	1
1,2-Dichloroethane	ND		1x	2	ND		1x	2	ND		1 x	2	ND		1 x	2
1,2-Dichloropropane	ND		1x	3	ND		1x	2	ND		١x	2	ND		1 x	2
2-Butanone	ND		1x	3	ND		1 x	2	ND		1x	2	ND		1 x	<u>`</u> 3
2-Chloroethyl vinyl ether	ND		1 x	2	ND		1x	1	ND		1 x	1	ND		lx	1
Aerolein	ND		1 x	20	ND		1 x	14	ND		1x	14	ND	(b)	1 x	17
Acrylonitrile	ND		1x	13	ND)		1x	9	ND		1x	9	ND		1 x	11
Benzene	ND		1 x	2	ND		1x	1	ND		1x	1	ND		1 x	1
Bromodicbloromethane	ND		1x	2	ND		1x	2	ND		1x	1	ND		1 x	2
Bromoform	ND		1 x	2	ND		1 x	1	ND		İx	1	ND		1x	1
Bromoinethane	ND		1 x	2	ND		1x	2	ND		İx	1	ND		1 x	2
Carbon tetrachloride	ND		i x	0.8	ND		1 x	0.6	ND		1 x	0.6	ND		١x	0.7
Chlorobenzene	ND		1 x	1	ND		1x	0.9	ND		1x	0.9	ND		lx	1
Chloroethane	ND		1x	4	ND		1x	3	ND		1 x	3	ND		1 x	3
Chlororform	ND		1x	2	ND		1x	1	ND		l x	1	ND		lx	1
Chloromethane	ND		1x	4	ND		1 x	3	ND		1x	3	ND		1 x	3
eis-1,3-Dichloropropene	ND		1x	1	ND		1 x	0.9	ND		1 x	0.9	ND		1 x	1
Dibromochloromethane	ND		1x	2	ND		1 x	2	ND		1x	2	ND		1 x	2
Dichlorodifluoromethane	ND		1x	2	ND		1 x	2	ND		1x	2	ND		1x	2
Ethylbenzene	ND		1 x	2	ND		1x	2	ND		1x	1	ND		1x	2
Methylene chloride	ND		1 x	2	ND		1x	2	ND		1x	2	ND		1x	2
Tetrachlorethene	ND		1x	2	ND		1 x	2	ND		1 x	1	ND		1 x	2
Toluene	ND		1 x	1	ND		1 x	0.9	ND		1x	0.9	ND		1x	1
trans-1,2-Dichloroethene	ND		1x	2	ND		1 x	2	ND		1 x	2	ND		1x	2
trans-1,3-Dichloropropene	ND		1x	2	ND		1x	2	ND		1 x	1	ND		1x	2
Trichloroethene	ND		1x	1	ND		1x	0.9	ND		1 x	0.9	ND		1x	1
Trichlorofluoromethane	ND		1x	2	ND		1 x	2	ND		1x	1	ND		1x	2
Vinyl chloride	ND_		lx	2	ND		<u> 1x</u>	<u>1</u>	ND		1x	1	ND		lx]

BREWERTON EASTERN EXTENSION-VAN VEEN

ND=Not detected (b)=Analyte not recovered in MS/MSD.
.

BREWERTON EASTERN EXTENSION -GRAVITY CORE

.

Analyte		BEVISED		1	BEVISEDR	.(c)	1	BEV2	2SED			BEV2SE	EDRE(c)			BEV	BSED		_ محمد مم	BEV3SED	RF(c)	······································
ug/kg	Result	Qual. D	I. Limit	Result	Qual. D	l. Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Oual.	Dil.	Limit
1,1-Dichloroethane	ND	1:	1	ND	1	<	ND		lx	0.9	ND		lx	0.9	ND		lx	1	ND		1x	<u>, sur</u>
1,1-Dichlorocthene	ND	1:	: I	ND	1:	ĸ	ND		1x	0.9	ND		1x	0.9	ND		1x	1	ND		lx	1
1,1,1-Trichloroethane	ND	1:	. 0.7	ND	1:	c 0.	ND		1x	0.7	ND		1 x	0.7	ND		1 x	0.7	ND		1 x	0.7
1,1,2-Trichloroethane	ND	1:	: 1	ND	1:	κ .	I ND		1x	1	ND		1 x	1	ND		1x	1	ND		1x.	1
1,1,2,2-Tetrachloroethane	ND	1:	с I	ND	1:	(I ND		1 x	0.9	ND		1 x	0.9	ND		lx.	1	ND		1x	1
1,2-Dichloroethane	ND	1:	: 1	ND	1:	ĸ	ND		1 x	1	ND		l x	1	ND		1x	1	ND		1x	1
1,2-1)ichloropropane	ND	1:	: 2	ND	1:	د	2 ND		1 x	2	ND		1 x	2	ND		1x	2	ND		1x	2
2-13utanone	190	1:	: 2	ND	1:	(2 ND		1 x	2	ND		1x	2	ND		1 x	2	ND		1x	2
2-Chloroethyl vinyl ether	ND	1:	: 1	ND	1:	¢ (I ND		1x	0.9	ND		1x	0.9	ND		lx	1	ND		1x	1
Acrolein	ND	1:	: 11	ND	1:	c 1	I ND		1 x	11	ND		1 x	11	ND		1 x	11	ND		1x	11
Acrylonitrile	ND	1:	: 7	ND	1:	۲ K	ND		1x	7	ND		1x	7	ND		1x	7	ND		1x	7
Benzene	ND	1:	: 1	ND	1:	K C	IND		1x	0.9	ND		1x	0.9	ND		1x	1	ND		1x	1
Brnmndichloromethane	ND	1:	: 1	ND	1:	(I ND		1x	1	ND		lx	1	ND		1x	1	ND		1x	1
Bromoform	ND	1:	: 1	ND	1:	(I ND		1x	0.9	ND		1x	0.9	ND		1x	1	ND		lx	1
13romomethane	ND	1:	: 1	ND	1:	K C	I ND		1x	1	ND		1x	1	ND		lx	1	ND		lx j	1
Carbon tetrachloride	ND	1:	с 0.5	ND	1:	κ Ο.	5 ND		1x	0.5	ND		1x	0.5	ND		1x	0.5	ND		1x	Ð.5
Chlorobenzene	ND	1:	. 0.7	ND	1:	κ 0 .	ND		1x	0.7	NÐ		1x	0.7	ND		lx	0.7	ND		1x	0.7
Chlorocthane	ND	1:	: 2	ND	1:	(2 ND		1x	2	ND		1x	2	ND		1 x	2	ND		1x	2
Chlororform	ND	1:	: 1	ND	1:	K '	IND		1x	0.9	ND		1x	0.9	ND		1 x	1	ND		1x	1
Chloromethane	ND	1:	: 2	ND	1:	K .	2 ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
cis-1,3-1Dichloropropene	ND	1:	. 0.7	ND	1:	c 0.	ND		1x	0.7	ND		Ix	0.7	ND		1x	0.7	ND		1x	0.7
Dibromochloromethane	ND	1:	с I	ND	1:	(IND		1x	1	ND		İx	1	ND		1x	1	ND		1x	1
Dichlorodifluoromethane	ND	1:	с I	ND	1:	ĸ	I ND		1x	1	ND		1x	1	ND)		1 x	1	ND		1x	1
Ethylbenzene	ND	1:	с 1	ND	1:	(ND		1x	1	ND		Ix	1	ND		1x	1	ND		1x	1
Methylene chloride	ND	1:	<u>د</u> ۱	ND	1:	(ND		1x	1	ND		1x	1	ND		1x	1	ND		1 x	1
Tetrachlorethene	ND	1:	: 1	ND	L	κ	ND		İx	1	ND		Ix	1	ND		1x	1	ND		1x	1
Toluene	ND	1:	к 0.7	ND	1:	κ 0.1	ND		1x	0.7	ND		İx	0.7	ND		1x	0.7	ND		1x	0.7
trans-1,2-1Dichlorocthene	ND	1:	: 1	ND	1:	(ND		Ix	1	ND		lx	1	ND		1x	1	ND		1x	1
trans-1,3-Dichloropropene	ND	1:	: 1	ND	1:	(ND		1x	1	ND		Ix	1	ND		1x	1	ND		1 x	1
Trichloroethene	ND	1:	. 0.7	ND	1:	κ Ο.	ND		Ix	0.7	ND		1x	0.7	ND		Ix	0.7	ND		1x	0.7
Trichlorofluoromethane	ND	1:	r 1	ND	1:	(ND		Ix	1	ND		1x	1	ND		1x	1	ND		1x	1
Vinyl chloride	ND	<u>l</u> ;	<u> </u>	ND	l;	(I ND		<u> </u>	0.9	<u>ND</u>		<u> </u>	<u>0.9</u>	<u>ND</u>		<u>lx</u>		<u>_ND</u>		1x	<u> </u>

ND=Not detected

(c)=Sample reanalyzed because recoveries of surrogates were outside of QC limits.

Analyte		BEV4	SED			BEV4SE	DRE(c)			BEVS	SED			DEV	CED -		7			
ug/kg	Result	Qual.	Dil.	Limit	Result	Oual.	Dil.	Limit	Result	Oual	Dil	Limit	Degult	DEV0	SED			BEV6SE	DRE(c)	
1,1-Dichloroethane	ND		1x	0.9	ND		lx	0.9	ND		17	1	NT	Qual	<u>_170.</u>	Limit	Result	Qual.	<u>1)il.</u>	Limit
1,1-Dichloroethene	ND		lx	0.9	ND		lx	0.9	ND		1.		ND		Ix	1	ND		1x	1
1,1,1-Trichloroethane	ND		1x	0.7	ND		1x	0.7	ND		1.				Ix	1	ND		lx	1
1,1,2-Trichloroethane	ND		1x	1	ND		1x	1	ND		1.	0.0	ND		IX	0.8	ND		lx	0.8
1,1,2,2-Tetrachloroethane	ND		1x	0.9	ND		1x	0.9	ND		1.	2			IX	2	ND		1x	2
1,2-Dichloroethane	ND		1x	1	ND		1x	1	ND		1.				IX	1	ND		lx	1
1,2-1)ichloropropane	ND		1x	2	ND		lx	2	ND		1.	2	ND		IX	2	ND		lx	2
2-Butanone	ND		lx	2	ND		lx	2	ND		1.	2	ND		IX	2	ND		1x	2
2-Chloroethyl vinyl ether	ND		lx	0.9	ND		lx	0.9	ND		1.	2	ND		IX	2	ND		1x	2
Acrolein	ND		lx	10	ND		lx	10	ND		1.		ND		Ix	1	ND		lx	1
Acrylonitrile	ND		1 x	7	ND		1x	7	ND		1.	12	ND		IX	12	ND		lx -	12
Benzene	ND		lx	0.9	ND		1x	0.9	ND		14	:	ND		lx	8	ND		lx	8
Bromodichloromethane	ND		1x	1	ND		lx	1	ND		1.				IX	1	ND		lx	1
Bromoform	ND		1x	0.9	ND		lx	0.9	ND		1.		ND		lx	1	ND		1x	1
Bromomethanc	ND		1x	1	ND		lx	1	ND		1.		ND		1x	1	ND		1 x	1
Carbon tetrachloride	ND		1x	0.4	ND		lx	0.4	ND		1.	0.5	ND		IX	1	ND		lx	1
Chlorobenzene	ND		lx	0.7	ND		lx	0.7	ND		1.	0.5	ND		Ix	0.5	ND		lx	0.5
Chlorocthane	ND		1x	2	ND		lx	2	ND		1.	0.0	ND		IX	0.8	ND		1x	0.8
Chlororform	ND		lx	0.9	ND		lx	0.9	ND		1.	2	ND		IX	2	ND)		lx	2
Chloromethane	ND		lx	2	ND		lx	2	ND		1.		ND		1x	1	ND		1x	1
cis-1,3-Dichloropropene	ND		lx	0.7	ND		lx	0.7	ND		1.	0.0			1X	2	ND		lx	2
Dibromochloromethane	ND		1x	1	ND		1x	1	ND		1.	0.0			Ix	0.8	ND		lx	0.8
Dichlorodifluoromethane	ND		lx	1	ND		lx	il	ND		1.	2			IX	2	ND		lx	2
Ethylbenzene	ND		lx	1	ND		lx	il	ND		1.		ND		IX	2	ND		lx	2
Methylene chloride	ND		lx	1	ND		lx	il	ND		1.		ND		Ix	1	ND		lx	1
Tetrachlorethene	ND		lx	1	ND		lx	il	ND		1.		ND		lx	2	ND		lx	2
Toluene	ND		lx	0.7	ND		lx	07	ND		1.		ND		1x	1	ND		lx	1
trans-1,2-Dichloroethene	ND		1x	1	ND		lx	1	ND		14	0.8	ND		IX	0.8	ND		lx	0.8
trans-1,3-Dichloropropene	ND		lx	1	ND		lx	il	ND		17	2			IX	2	ND		lx	2
Trichloroethene	ND		1x	0.7	ND		lx	07	ND		17	1			IX	1	ND		1x	1
Trichlorofluoromethane	ND		lx	1	ND		lx	1	ND		1.	0.8	UNI		IX	0.8	ND		lx	0.8
Vinyl chloride	ND		1x	0.9	ND		lx	0.9	ND		1.		ND		lx	1	ND		lx	1
								<u> </u>			<u></u>	<u></u>			1X	<u>1</u>	ND		lx	

BREWERTON EASTERN EXTENSION -GRAVITY CORE

ND=Not detected

(c)=Sample reanalyzed because recoveries of surrogates were outside of QC limits.

Analyte		BR1 S	SED			BR2	SED			BR3	SED			BR4	SED	1
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		lx	1	ND		lx	1	ND		lx	1	ND		1x	1
1,1-Dichloroethene	ND		lx	1	ND		1x	1	ND		1x	1	ND		1 x	1
1,1,1-Trichloroethane	ND		1 x	1	ND		lx	0.9	ND		1x	0. 9	ND		lx	1
1,1,2-Trichloroethane	ND		lx	2	ND		1x	2	ND		1x	2	ND		1 x	2
1,1,2,2-Tetrachloroethane	ND		1x	1	ND		1x	1	ND		1 x	1	ND		1 x	1
1,2-Dichloroethane	ND		1 x	2	ND		lx	2	ND		1x	2	ND		1x	2
1,2-Dichloropropane	ND		1x	2	ND		1x	2	ND		1x	2	ND		lx	2
2-Butanone	ND		1x	3	ND		1x	2	ND		1 x	2	ND		lx	.3
2-Chloroethyl vinyl ether	ND		lx	1	ND		1x	1	ND		lx	1	ND		lx	1
Acrolein	ND		1x	16	ND		1x	15	ND		1 x	14	ND	(b)	1x	16
Acrylonitrile	ND		1x	10	ND		lx	10	ND		1x	9	ND		1x	11
Benzene	ND		1x	1	ND		1x	1	ND		1x	1	ND		1x	1
Bromodichloromethane	ND		1 x	2	ND		1x	2	ND		1x	2	ND		1x	2
Bromoform	ND		1x	1	ND		1x	1	ND		1x	1	ND		lx	1
Bromomethane	ND		1x	2	ND		1x	2	ND		1x	2	ND		lx	2
Carbon tetrachloride	ND		1x İ	0.7	ND		1x	0.6	ND		1x	0.6	ND		1x	0.7
Chlorobenzene	ND		1 x	1	ND		1 x	0.9	ND		1x	0.9	ND		1 x	1
Chloroethane	ND		1x	3	ND		1 x	3	ND		łx	3	ND		lx	3
Chlororform	ND		1x	1	ND		1x	1	ND		1x	1	ND		lx	1
Chloromethane	ND		1x	3	ND		1x	3	ND		1x	3	ND		1x	3
cis-1,3-Dichloropropene	ND		1x	1	ND		lx	0.9	ND		1x	0.9	ND		lx	1
Dibromochloromethane	ND		1 x	2	ND		lx	2	ND		lx	2	ND		lx	2
Dichlorodifluoromethanc	ND		1x	2	ND		1 x	2	ND		l x	2	ND		1 x	2
Ethylbenzene	ND		1x	2	ND		1 x	2	ND		l x	2	ND		1 x	2
Methylene chloridc	ND		lx	2	ND		1x	2	ND		l x	2	ND		1x	2
Tetrachlorethene	ND		lx	2	ND		1 x	2	ND		1 x	2	ND		1x	2
Toluene	ND		1x	1	ND		1 x	0.9	ND		1 x	0.9	ND		1 x	1
trans-1,2-Dichloroethene	ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
trans-1,3-Dichloropropene	ND		1x	2	ND		1x	2	ND		lx	2	ND		1x	2
Trichloroethene	ND		1x	1	ND		1x	0.9	ND		' lx	0.9	ND		1x	1
Trichlorofluoromethane	ND		1 x	2	ND		1 x	2	ND		1x	2	ND		1x	2
Vinyl_chloride	ND		1x	1	ND		<u> </u>	1	<u>ND</u>		<u>lx</u>	1	ND		<u>lx</u>	1

BREWERTON REACH

ND=Not detected (b)=Analyte not recovered in MS/MSD.

BLIND SPLITS

Analyte	Bl	INDSPL	IT I A(BF	(1)	BI	.INDSPL	IT2A(B	(3)
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		lx	1	ND		1x	1
1,1-Dichloroethene	ND		lx	1	ND		lx	1
1,1,1-Trichlorocthane	ND		1x	0.9	ND		lx	0.8
1,1,2-Trichloroethane	ND		lx	2	ND		lx	2
1, 1, 2, 2-Tetrachloroethane	ND		1x	1	ND		lx	1
1,2-Dichloroethane	ND		lx	2	ND		lx	2
1,2-Dichloropropanc	ND		1x	2	ND		lx	2
2-Butanone	ND		lx	2	120		lx	2
2-Chloroethyl vinyl cther	ND		1x	1	ND		lx	1
Acrolein	ND		1x	14	ND		lx	13
Acrylonitrile	ND		1x	9	ND		1x	8
Benzene	ND		1x	1	ND		lx	1
Bromodichloromethane	ND	. <i>х</i>	1x	2	ND		lx	1
Bromoform	ND		1x	1	ND		lx	1
Bromomethane	ND		lx	2	ND		lx	1
Carbon tetrachloride	ND		1x	0.6	ND		lx	0.5
Chlorobenzene	ND		1x	0.9	NÐ		lx	0.8
Chloroethane	ND		lx	3	ND		lx	2
Chlororform	ND		lx	1	ND		1x	1
Chloromethane	ND		lx	3	ND		lx	2
cis-1,3-Dichloropropene	ND		lx	0.9	ND		lx	0.8
Dibromochloromethane	ND		lx	2	ND		lx	2
Dichlorodifluoromethane	ND		lx	2	ND		lx	2
Ethylbenzene	ND		lx	2	ND		lx	1
Methylene chloride	ND		lx	2	ND		lx	2
Tetrachlorethene	ND		lx	2	ND		1x	1
Toluene	ND		lx	0.9	ND		lx	0.8
trans-1,2-Dichloroethene	ND		lx	2	ND		1x	2
trans-1,3-Dichloropropene	ND		lx	2	ND		1x	1
Trichloroethene	ND		lx	0.9	ND		lx	0.8
Trichlorofluoromethane	ND		Ix	2	ND		lx	1
Vinyl chloride	ND		lx	1	ND		<u>lx</u>	1

.

,

.

Analyte		BRAI	SED			BRA1 SI	EDRE(c)			BRA2	SED			BRA2 SEI	DRE(c)	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result_	Qual.	<u>Dil</u>	1.imit	Result	Qual.	Dil.	Limit
1,1-Dichlorocthane	ND		1x	1	ND		1x	1	ND		1x	1	ND		lx	1
1,1-Dichloroethene	ND		1x	1	ND		1x	1	ND		lx	1	ND		1x	1
1, 1, 1-Trichloroethanc	ND		1x	1	ND		1x	1	ND		lx	1	ND		1x	1
1,1,2-Trichloroethane	ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
1,1,2,2-Tetrachlorocthane	ND		1x	1	ND		1x	1	ND		lx	1	ND		1x	1
1,2-Dichloroethane	ND		1x	2	ND		1x	2	ND		lx	2	ND		1x	2
1,2-Dichloropropane	ND		1x	3	ND		1x	3	ND		İx	2	ND		1x	2
2-Butanone	320		1x	3	280		1x	3	ND		1x	3	ND		1x	3
2-Chloroethyl vinyl ether	ND		lx	1	ND		lx	- 1	ND		1x	1	ND		1x	1
Acrolein	ND		1x	17	ND		1x	17	ND		1x	17	ND		1x	17
Acrylonitrile	ND		1x	11	ND		1x	11	ND		1x	11	ND		1x	11
Benzene	ND		1x	1	ND		1x	1	ND		1x	1	ND		1x	1
Bromodichloromethane	ND		1x	2	ND		1x	2	ND		1x	2	ND		1 x	2
Bromoform	ND		1x	1	ND		1x	1	ND		lx	1	ND		1x	1
Bromomethane	ND	•	1x	2	ND		lx	2	ND		1x	2	ND		1 x	2
Carbon tetrachloride	ND		1x	0.7	ND		1x	0.7	ND		1x	0.7	ND		1x	0.7
Chlorobenzene	ND		1x	1	ND		1x	1	ND		1x	1	ND		1x	1
Chloroethanc	ND		1x	3	ND		1x	3	ND		1x		ND		1x	3
Chlororform	ND		1x	1	ND		1x	1	ND		1x	1	ND		1x	1
Chloromethane	ND		lx	3	ND		lx	3	ND		1x	3	ND		١x	3
cis-1,3-Dichloropropene	ND		lx	1	ND		lx	1	ND		1x	1	ND		1x	1
Dibromochloromethanc	ND		Ix	2	ND		1x	2	ND		1x	2	ND		1x	2
Dichlorodifluoromethane	ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
Ethylbenzene	ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
Methylene chloride	ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
Tetrachlorethene	ND		1x	2	ND		1x	2	ND		1x	2	ND		lx	2
Toluene	ND		1x	1	ND		1x	1	ND		lx	1	ND		1x	1
trans-1,2-Dichloroethene	ND		lx	2	ND		1x	2	ND		1x	2	ND		lx	2
trans-1,3-Dichloropropene	ND		1x	2	ND		lx	2	ND		1x	2	ND		1x	2
Trichloroethene	ND		1x	1	ND		lx	1	ND		İx	1	ND		1x	1
Trichlorofluoromethane	ND		1x	2	ND		1x	2	ND		1x	2	ND		1x	2
Vinyl chloride	ND		lx	1	ND		<u>1x</u>	1	ND		1x_	1	ND		<u>lx</u>	1

.

.

BREWERTON ANGLE REACH

ND=Not detected

(c)=Sample reanalyzed because internal standards were below laboratory QC limit.

Analyte		FMIII	SED			FMH2	SED			FMH3	SED			FMI	4 SED	۱. · · · · · · · · · · · · · · · · · · ·
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil,	Limit	Result	Qual.	_Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethane	ND		lx	1	ND		1x	2	ND		1x	1	ND		lx	1
1,1-Dichlorocthene	ND		lx	1	ND		lx	2	ND		1x	1	ND		1x	1
1,1,1-Trichloroethane	ND		lx	1	ND		lx	1	ND	•	1x	0.9	ND		1x	0.8
1,1,2-Trichloroethane	ND		lx	2	ND		1 x	2	ND		1x	2	ND		lx	2
1,1,2,2-Tetrachloroethane	ND		lx	1	ND		lx	2	ND		1x	1	ND		lx	1
1,2-Dichloroethanc	ND		lx	2	ND		1 x	2	ND		1x	2	ND		1x	2
1,2-Dichloropropane	ND		lx	2	ND		lx	3	ND		1x	2	ND		lx	2
2-Butanone	ND		lx	3	ND		lx	3	ND		1x	2	ND		1x	2
2-Chlorocthyl vinyl ether	ND		lx	1	ND		lx	2	ND		1 x	1	ND		lx	1
Acrolein	ND		lx	16	ND		lx	18	ND		1 x	14	ND	(b)	1x	12
Acrylonitrile	ND		1x	10	ND		lx	12	ND		l x	9	ND		1 x	8
Benzene	ND		1x	1	ND		lx	2	ND		l x	1	ND		lx	1
Bromodichloromethane	ND		1 x	2	ND		1x	2	ND		1x	1	ND		1x	1
Bromoform	ND		lx	1	ND		lx	2	ND		lx	1]	ND		1x	1
Bromomethane	ND		lx	2	ND		1 x	2	ND		l x	1	ND		lx	1
Carbon tetrachloride	ND		1 x	0.7	ND		1x	0.8	ND		l x	0.6	ND		1x	0.5
Chlorobenzene	ND		1x	1	ND		l x	1	ND		1 x	0.9	ND		1x	0.8
Chlorocthane	ND		1 x	3	ND		1x	3	ND		l x	3	ND		1x	2
Chlororform	ND		1 x	1	ND		lx	2	ND		1 x	1	ND		lx	1
Chloromethane	ND		1 x	3	ND		1x	3	ND		1x	3	ND		1 x	2
cis-1,3-Dichloropropene	ND		1x	1	ND		lx	1	ND		1x	0.9	ND		lx	0.8
Dibromochloromethane	ND		1 x	2	ND		l x	2	ND		1 x	2	ND		lx	2
Dichlorod fluoromethane	ND		1x	2	ND		lx	2	ND		1x	2	ND		lx	2
Ethylbenzene	ND		lx	2	ND		lx	2	ND		1x	1	ND		1x	1
Methylenc chloride	ND		lx	2	ND		1x	2	ND		l x	2	ND	•	lx	2
Tetrachlorethene	ND		lx	2	ND		1x	2	ND		l x	1	ND		lx	1
Toluenc	ND		lx	1	ND		lx	1	ND		1x	0.9	ND		lx	0.8
trans-1,2-Dichloroethene	ND		lx	2	ND		1 x	2	ND		lx	2	ND		lx	2
trans-1,3-Dichloropropene	ND		1x	2	NÐ		l x	2	ND		l x	1	ND		lx	1
Trichloroethene	ND		1x	1	ND		lx	1	ND		1x	0.9	ND		lx	0.8
Trichlorofluoromethane	ND		lx	2	ND		lx	2	ND		1x	1	ND		lx	1
Vinyl chloride	ND		lx_	1	ND		lx_		ND		1x	1	ND		lx	1

FT MeHENRY REACH

ND=Not detected (b)=Analyte not recovered in MS/MSD

)

Analyte		CB1 S	SED			CB2	SED			CB3 S	SED			CB4	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichloroethanc	ND		lx	2	ND		1x	0.8	ND		lx	2	ND		lx	2
1,1-Dichlorocthene	ND		1x	2	ND		1x	0.8	ND		1x	2	ND		1x	2
1,1,1-Trichloroethaue	ND		lx	1	ND		1x	0.6	ND		1x	1	ND		lx	1
1,1,2-Trichloroethane	ND		1x	3	ND		1x	1	ND		1x	2	ND		lx	3
1,1,2,2-Tetrachloroethane	ND		1x	2	ND		lx	0.8	ND		lx	2	ND		1x	2
1,2-Dichloroethane	ND		1x	3	ND		1x	1	ND		1x	2	ND		1x	.3
1,2-Dichloropropane	ND		1x	3	ND		1x	1	ND		1x	3	ND		1x	3
2-Butanone	ND		1x	3	ND		lx	2	220		lx	3	160		lx	3
2-Chloroethyl vinyl ether	ND		lx	2	ND		lx	0.8	ND		lx	2	ND		lx	2
Acrolein	ND		lx	20	ND		1x	10	ND		lx	19	ND		1 x	20
Acrylonitrile	ND		lx	13	ND		1×	6	ND		lx	12	ND		1x	13
Benzene	ND		1x	2	ND		1x	0.8	ND		1x	2	ND		1x	2
Bromodichloromethane	ND		lx	2	ND		1x	1	ND		lx	2	ND		lx	2
Bromoform	ND		lx	2	ND		1x	0.8	ND		1x	2	ND		lx	2
Bromomethane	ND		1x	2	ND		lx	· 1	ND		lx	2	ND		1x	2
Carbon tetrachloride	ND		1x	0.9	ND		1x	0.4	ND		1x	0.8	ND		lx	0.9
Chlorobenzene	ND		lx	1	ND		1x	0.6	ND		1x	1	ND		1x	1
Chloroethane	ND		lx .	. 4	ND		1x	2	ND		1x	4	ND		lx	4
Chlororform	ND		lx	2	ND		1x	0.8	ND		1x	2	ND		1x	2
Chloromethane	ND		lx	4	ND		lx	2	ND		lx	- 4	ND		1x	4
cis-1,3-Dichloropropene	ND		lx	1	ND		1x	0.6	ND		lx	1	ND		1x	1
Dibromochloromethane	ND		1x	3	ND		1x	1	ND		lx	2	ND		1x	3
Dichlorodifluoromethane	ND		1x	3	ND		1x	1	ND		1x	2	ND		1x	3
Ethylbenzene	ND		1x	2	ND		1x	1	ND		1x	2	ND		lx	2
Methylene chloride	ND		1x	3	ND		1x	· 1	ND		lx	2	ND		1x	3
Tetrachlorethene	ND		1×	2	ND		1x	1	ND		1x	2	ND		1x	2
Toluene	ND		1x	1	ND		1x.	0.6	ND		1x	1	ND		lx	1
trans-1,2-Dichloroethene	ND		1x	3	ND		1x	1	ND		1x	2	ND		lx	3
trans-1,3-Dichloropropene	ND		1×	2	ND		1x	1	ND		1x	2	ND		1x	2
Trichloroethcnc	ND		1x	1	ND		1x	0.6	ND		1x	1	ND		1x	1
Trichlorofluoromethane	ND		1×	2	ND		lx	1	ND		1x	2	ND		1x	2
Vinyl chloride	ND		1x	2	ND		<u>lx</u>	0.8	ND		<u>lx</u>	2	_ND		<u>lx</u>	2

CURTIS BAY REACII

\nalyte		FB1 S	SED			FB2	SED	· · · · · · · · · · · · · · · · · · ·		1133 9	SI:D	
ug/kg	Result_	Qual.	Dil.	Limit	Result	Qual.	<u> </u>	Limit	Result	Qual	Dil.	Limit
,1-Dichloroethane	ND		1x	2	ND		1x	2	ND		1x	2
,1-Dichloroethene	ND		1x	2	ND		1x	2	ND		1 x	2
,1,1-Trichloroethane	ND		1x	1	ND		1x	2	ND		1 x	1
,1,2-Trichloroethane	ND		1x	3	ND		1x ⁻	3	ND		1 x	2
,1,2,2-Tctrachloroethane	ND		1x	2	ND		1 x	2	ND		1 x	2
,2-Dichlorocthane	ND		1x	3	ND		1x	3	ND		1x	2
,2-Dichloropropanc	ND		1 x	3	ND		1x	4	ND		1 x	3
2-Butanone	290		1x	4	350		1 x	4	220		1 x	3
Chloroethyl vinyl ether	ND		lx	2	ND		1 x	2	ND		1x	2
Acrolein	ND		1x	21	ND		1x	24	ND		1x	19
Acrylonitrile	ND		1x	14	ND		1x	16	ND		1x	12
Benzene	ND		1 x	2	ND		1 x	2	ND		1 x	2
Bromodichloromethane	ND		1x	2	ND		lx	2	ND		1x	2
Bromoform	ND		1x	2	ND		1 x	2	ND		1x	2
Bromomethane	ND		1x	2	ND		1 x	2	ND		1x	2
Carbon tetrachloride	ND		1x	0.9	ND		1x	1	ND		1x	0.8
Chlorobenzene	ND		1x	1	ND		lx	2	ND		1x	1
Chloroethane	ND		1x	4	ND		1x	4	ND		1x	4
Chlororform	ND		1x	2	ND		1x	2	ND		1x	2
Chloromethane	ND		1x	4	ND		1x	4	ND		1x	4
is-1,3-Dichloropropene	ND		1x	1	ND		lx	2	ND		1x	1
Dibromochloromethane	ND		1x	3	ND		1x	3	ND		1x	2
Dichlorodifluoromethane	ND		1x	3	ND		1x	.3	ND		1x	2
thylbenzenc	ND		1x	2	ND		1x	2	ND		1x	2
Aethylenc chloride	ND		1x	3	ND		1x	3	ND		1x	2
etrachlorethene	ND		1x	2	ND		1x	2	ND		1x	2
olucne	ND		1x	1	ND		lx	2	ND		1x	1
rans-1,2-Dichloroethene	ND		1x	3	ND		1x	3	ND		1x	2
rans-1,3-Dichloropropene	ND		lх	2	ND		lx	2	ND		lx	2
richloroethene	ND		1x	1	ND		lx	2	ND		1 x	1
richlorofluoromethane	ND		1x	2	ND		lx	2	ND		1 x	2
/inyl_chloride	ND		1x	2	ND		lx	2	ND		<u>lx</u>	2

FERRY BAR REACH

NORTHWEST BRANCH EAST

Analyte		NBE 1	SED			NBE2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,1-Dichlorocthane	ND		lx	2	ND		lx	2
1,1-Dichloroethene	ND		lx	2	ND		lx	2
1,1,1-Trichloroethane	ND		lx	1	ND		lx	2
1,1,2-Trichloroethane	ND '		lx	3	ND		lx	3
1,1,2,2-Tetrachloroethane	ND		1x	2	ND		lx	2
1,2-Dichloroethane	ND		lx	3	ND		lx	3
1,2-Dichloropropane	ND		lx	3	ND		lx	4
2-Butanonc	260		lx	4	330		lx	4
2-Chloroethyl vinyl ethcr	ND ·		lx	2	ND		lx	2
Acrolein	ND		1x	21	ND		lx	25
Acrylonitrile	ND		lx	14	ND		lx	16
Benzene	ND		lx	2	ND		lx	2
Bromodichloromethane	ND		lx	2	ND		lx	3
Bromoform	ND		1x	2	ND		lx	2
Bromomethane	ND		lx	2	ND		lx	3
Carbon tetrachloride	ND		lx	0.9	ND		lx	1
Chlorobenzenc	ND		lx	1	ND		lx	2
Chloroethane	ND		1x	4	ND		lx	5
Chlororform	ND		1x	2	ND		1x	2
Chloromethane	ND		lx	4	ND		lx	5
cis-1,3-Dichloropropene	ND		lx	1	ND		lx	. 2
Dibromochloromethane	ND		1x	3	ND		lx	3
Dichlorodifluoromethane	ND		lx	3	ND		1x	3
Ethylbenzene	ND		lx	2	ND		1x	3
Methylene chloride	ND		lx	3	ND		1x	3
Tetrachlorcthene	ND		lx	2	ND		1x	3
Toluene	ND		lx	1	ND		lx	2
trans-1,2-Dichloroethene	ND		lx	3	ND		lx	3
trans-1,3-Dichloropropene	ND		lx	2	ND		lx	3
Trichloroethene	ND		1x	1	ND		lx	2
Trichlorofluoromethane	ND		lx	2	ND		lx	3
Vinyl chloride	ND.		_1x	2	ND		lx	2

		NBWI	SED			NBW2	SED		ан (р. 2011). тр.	NBW	SED	1
ue/ke	Result	Oual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
1-Dichloroethane	ND		1x	1	ND		1x	0.9	ND		lx	2
.1-Dichloroethene	ND		1x	1	ND		1x	0.9	ND		1x	2
1.1-Trichloroethane	ND		1x	0.9	ND		lx	0.7	ND		1x	1
1.2-Trichloroethane	ND	•	1x	2	ND		1x	1	ND		lx	3
1,2,2-Tetrachloroethane	ND		lx	1	ND		lx	0.9	ND		lx	2
,2-Dichloroethane	ND		1 x	2	ND		1x	1	ND		lx	3
,2-Dichloropropane	ND		lx	2	ND		1x	2	ND		1x	3
Butanone	ND		1x	2	50		1x	2	350		lx	3
-Chloroethyl vinyl ether	ND		lx	1	ND		lx	0.9	ND		1x	2
Acrolein	ND		1x	14	ND		lx	11	ND	(b)	1x	20
Acrylonitrile	ND		1x	9	ND		1x	7	ND		lx	13
Benzene	ND		1x	1	ND		lx	0.9	ND .		1x	2
Bromodichloromethane	ND		1x	× 1	ND		lx	1	ND		1x	2
Bromoform	ND		lx	1	ND		1x	0.9	ND		1x	2
Bromomethane	ND		1x	1	ND		lx	1	ND		1x	2
Carbon tetrachloride	ND		lx	0.v	ND		lx	0.5	ND		1 x	0.9
hlorobenzene	ND		1x	0.9	ND		lx	0.7	ND		1x	1
Chloroethane	ND		1x	3	ND		1x	2	ND		1x	4
Chlororform	ND		1x	1	ND		1x	0.9	ND		1x	2
Chloromethane	ND		1x	3	ND		1x	2	ND		1x	4
is-1,3-Dichloropropene	ND		1x	0.9	ND		1x	0.7	ND		lx	1
Dibromochloromethane	ND		1x	2	ND		1x	1	ND		1x	. 3
Dichlorodifluoromethane	ND		1x	2	ND		lx	1	ND		lx	3
thylbenzene	ND		lx	1	ND		1x	1	ND		lx	2
Acthylene chloride	ND		lx	2	ND		lx	1	ND		lx	3
etrachlorethene	ND		l×	1	ND		lx	1	ND		1x	2
l'oluenc	ND		1x	0.9	ND		lx	0.7	ND		1x	1
rans-1,2-Dichloroethene	ND		1x	2	ND		lx	1	ND		lx	3
rans-1,3-Dichloropropene	ND		1x	1	ND		1x	1	ND		lx	2
Frichloroethene	ND		1×	0.9	ND		1x	0.7	ND		lx	1
Frichlorofluoromethane	ND		1x	1	ND		lx	1	ND		1x	2
/inyl chloride	ND		<u>1x</u>	1	ND		<u>lx</u>	0,9	<u>ND</u>		<u> </u>	2

NORTHWEST BRANCH WEST

ND=Not detected (b)=Analyte not recovered in MS/MSD

Table 4-5. Semivolatiles results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.

.

POPLAR ISLAND

Analyte		P11 SEE)	<u> </u>	P12 SED			P13 S	SED			P14 3	SED			P15 :	SED	
ug/kg	Result	Qual [il. Limit	Result	Qual. Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit
1,2-Dichlorobenzene	ND		x 28	DN D	1x	900	ND	•	lx	240	ND		1x	270	ND		1x	300
1,2-Diphenylhydrazine	ND		lx 5	3 ND	lx	170	ND		1x	46	ND		lx	51	ND		lx	57
1,2,4-Trichlorobenzene	ND		lx 21	0 ND	lx	670	ND		1x	180	ND		lx	200	ND		lx	220
1,3-Dichlorobenzene	ND		lx 28	0 ND	lx	900	ND		lx	240	ND		lx	270	ND		1x	300
1,4-Dichlorobenzene	ND		lx 26	DN 0	lx	860	ND		lx	230	ND		lx	260	ND		lx	290
2-Chloronaphthalene	ND		lx 8	7 ND	lx	280	ND		lx	76	ND		lx	84	ND		1x	94
2-Chlorophenol	ND		x 18	DN 0	lx	570	ND		lx	150	ND		1x	170	ND		lx	190
2-Methyl-4,6-dinitrophenol	ND		lx 9	I ND	lx	300	ND		1x	79	ND		lx	89	ND		lx	98
2-Methylphenol	ND		lx 12	0 ND	lx	400	ND		lx	110	ND		1x	120	ND		lx	130
2-Nitroaniline	ND		ix 8	5 ND	lx	280	ND		lx	74	ND		· lx	83	ND		lx	92
2-Nitrophenol	ND		lx 16	0 ND	lx	520	ND		١x	140	ND		1x	160	ND		1x	170
2,2'-oxybis(1-Chloropropane)	ND		ix 18	DN 0	lx	570	ND		lx	150	ND		1x	170	ND		lx	190
2,4-Dichlorophenol	ND		lx 9	0 ND	lx	290	ND		lx	78	ND		lx	87	ND		1x	97
2,4-Dimethylphenol	ND		lx 24	0 ND	1x	760	ND		1x	210	ND		1x	230	ND		lx	250
2,4-Dinitrophenol	ND		IX 16	ND ND	lx	520	ND		1x	140	ND		lx	160	ND		lx	170
2,4-Dinitrotoluene	ND		lx 7	6 ND	lx	250	ND		18	67	ND		1x	74	ND		1x	83
2,4,5-Trichlorophenol	ND		x −4	7 ND	1x	150	ND		1x	41	ND		1x	46	ND		lx	51
2,4,6-Trichlorophenol	ND		lx 8	8 ND	lx	290	ND		1x	77	ND		1x	86	ND		lx	95
2,6-Dinitrotoluene	ND		l x 1 0	0 ND	lx	330	ND		1x	90	ND		1x	100	ND		1x	110
3-Nitroaniline	ND		IX 31	DN 0	lx	1000	ND		lx	270	ND		1x	300	ND		lx	340
3+4-Methylphenol	ND		lx 12	0 ND	lx	380	ND		lx	100	ND		1x	110	ND		1 x	130
3,3'-Dichlorobenzidine	ND		lx 43	0 ND	1x	1400	ND		İx	370	ND		1x	410	ND		1x	460
4-Bromophenyl phenyl ether	ND		lx 4	6 ND	lx	150	ND		lx	40	ND		lx	44	ND		lx	49
4-Chloro-3-methylphenol	ND		ix 7	I ND	lx	230	ND		1x	62	ND		lx	69	ND		lx	76
4-Chloroaniline	ND ·		lx 39	0 ND	lx	1300	ND		1x	340	ND		lx	380	ND		lx	420
4-Chlorophenyl phenyl ether	ND		lx 9	6 ND	1x	310	ND		lx	83	ND		1x	93	ND		lx	100
4-Nitroaniline	ND		lx 13	0 ND	lx	410	ND		1x	110	ND		1x	120	ND		1x	140
4-Nitrophenol	ND		lx 9	1 ND	lx	300	ND		lx	79	ND		lx	89	ND		lx	98
Benzidine	ND		lx 41	0 ND	lx	1300	ND		1x	360	ND		lx	400	ND		lx	440
Benzoic acid	ND		lx 56	0 ND	1x	1800	ND		1x	490	ND		lx	550	ND		lx	610
Benzyl alcohol	ND		lx 13	0 ND	1x	430	ND		lx	120	ND		1x	130	ND		lx	140
Benzyl butyl phthalate	ND		lx 13	0 ND	lx	410	ND		lx	110	ND		lx	120	ND		lx	140
bis(2-Chloroethoxy)methane	ND		lx 12	0 ND	lx	390	ND		1x	100	ND		lx	120	ND		lx	130
bis(2-Chloroethyl) ether	ND		IX 21	0 ND	l×	670	ND		lx	180	ND		lx	200	ND		lx	220
bis(2-Ethylhexyl) phthalate	ND		lx19	0 ND	lx	620	<u>ND</u>		<u>lx</u>	170	ND		<u>lx</u>	190	ND		lx.	210

analyte list continued on following page

ND=Not detected

ŧ.

,

۰.

Analyte		P11 S	SED			P12 S	ED			P13 S	SED			P14 :	SED			P15	SED	1
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil	Limit
Carbazole	ND		1x	72	ND		lx	230	ND		lx	63	ND		1x	70	ND		lx	78
Cyclohexanone	ND		lx	290	ND		lx	940	ND		lx	250	ND		lx	280	ND		1x	310
Dibenzofuran	ND		lx	65	ND		lx	210	ND		lx	56	ND		lx	63	ND		lx	70
Diethyl phthalate	ND		lx	71	ND		lx	230	ND		1x	62	ND		lx	69	ND		lx	76
Dimethyl phthalate	ND		lx	60	ND		1x	200	ND		lx	53	ND		lx	59	ND		lx	65
Di-n-butyl phthalate	ND		lx	72	660		lx	230	180		lx	63	150		1x	70	ND		lx	78
Di-n-octyl phthalate	ND		lx	50	ND		lx	160	ND		lx	44	ND		1x	49	ND		lx	54
Hexachlorobenzene	ND		lx	88	ND		1x	290	ND		lx	77	ND		lx	86	ND		1x	95
Hexachlorobutadiene	ND		1x	220	ND		1x	710	ND		1x	190	ND		lx	210	ND		lx	240
Hexachlorocyclopentadiene	ND		lx	110	ND		1x	350	ND		1x	95	ND		lx	110	ND		lx	120
Hexachloroethane	ND		1x	260	ND		1x	860	ND		lx	230	ND		lx	260	ND		lx	290
Isophorone	ND		lx	110	ND		1x	360	ND		1x	97	ND		lx	110	ND		lx	120
Nitrobenzene	ND		lx	180	ND		lx	570	ND		1x	150	ND		1x	170	ND		lx	190
N-Nitrosodimethylamine	ND		١x	240	ND		lx	760	ND		lx	210	ND		lx	230	ND		lx	250
N-Nitrosodi-n-propylamine	ND		lx	120	ND		lx	380	ND		lx	100	ND		lx	110	ND		lx	130
N-Nitrosodiphenylamine	ND		lx	90	ND		1x	290	ND		lx	78	ND		lx	87	ND		İx	97
Pentachlorophenol	ND		lx	100	ND		lx	330	ND		1x	88	ND		lx	99	ND		lx	110
Phenol	ND		lx	130	ND		1x	430	ND		1x	120	ND		lx	130	140	J	1x	140
Pyridine	ND		<u> lx </u>	170	ND		<u>1x</u>	560	ND		<u>lx</u>	150	ND		lx_	170	ND		1x	190

POPLAR ISLAND

Analyte		DTI	SED			DT2	SED			DT3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
,2-Dichlorobenzene	ND		1x	950	ND		1x	410	ND	•	lx	900
,2-Diphenylhydrazine	ND		lx	180	ND		1x	78	ND		1x	170
,2,4-Trichlorobenzene	ND		1x	700	ND		lx	300	ND		1x	670
,3-Dichlorobenzene	ND		1x	950	ND		1x	410	ND		1x	900
,4-Dichlorobenzene	ND		1x	900	ND		lx	390	ND		1x	860
2-Chloronaphthalene	ND		1x	300	ND		lx	130	ND		1x	280
2-Chlorophenol	ND		1x	600	ND		lx	260	ND		lx	570
2-Methyl-4,6-dinitrophenol	ND		lx	310	ND		lx	130	ND		1x	300
2-Methylphenol	ND		1x	420	ND		1x	180	ND		1x	400
2-Nitroaniline	ND		lx	290	ND		1x	130	ND		lx	280
2-Nitrophenol	ND		1x	, 550	ND		1x	240	ND		lx	520
2,2'-oxybis(1-Chloropropane)	ND		lx "	600	ND		1x	260	ND		1x	570
2,4-Dichlorophenol	ND		lx	300	ND		1x	130	ND		lx	290
2,4-Dimethylphenol	ND		1x	800	ND		1x	350	ND		lx	760
2,4-Dinitrophenol	ND		lx	550	ND		1x	240	ND		1x	5 20
2,4-Dinitrotoluene	ND		1x	260	ND		1x	110	ND		1x	250
2,4,5 Trichlorophenol	ND		1x	160	ND		1x	70	ND		1x	150
2,4,6-Trichlorophenol	ND		1x	300	ND		1x	130	ND		1x	290
2,6-Dinitrotoluene	ND		lx	350	ND		l x	150	ND		1x	330
3-Nitroaniline	ND		lx	1100	ND		1x	460	ND		lx	1000
8+4-Methylphenol	ND		lx	400	ND		1x	170	740		lx	380
3,3'-Dichlorobenzidine	ND		1x	1400	ND		1x	630	ND		lx	1400
Bromophenyl phenyl ether	ND		lx	160	ND		lx	67	ND		lx	150
+Chloro-3-methylphenol	ND		lx	240	ND		1x	100	ND		lx	230
4-Chloroaniline	ND		1x	1300	ND		lx	580	ND		1x	1300
4-Chlorophenyl phenyl ether	ND	•	1x	320	ND		١x	140	ND		1x	310
4-Nitroaniline	ND		1x	430	ND		1x	190	ND		lx	410
4-Nitrophenol	ND		1x	310	ND		1x	130	ND		lx	300
Benzidine	ND		lx	1400	ND		lx	610	ND		lx	1300
Benzoic acid	ND		1x	1900	ND		lx	830	ND		1x	1800
Benzyl alcohol	ND		1x	450	ND		1x	200	ND		1x	430
Benzyl butyl phthalate	ND		lx	430	ND		1x	190	ND		1x	410
ois(2-Chloroethoxy)methane	ND		١x	400	ND		1x	180	ND		lx	390
ois(2-Chloroethyl) ether	ND		lx	700	ND		1x	300	ND		lx	670
ois(2-Ethylhexyl) phthalate	ND		1x	650	ND		lx	280	ND		lx	620

DEEP TROUGH

analyte list continued on following page

ND=Not detected

.

Analyte		DTI	SED			DT2	SED			DT3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	240	ND		lx	110	ND		lx	230
Cyclohexanone	ND		lx	990	ND		lx	430	ND		1 x	940
Dibenzofuran	ND		1x	220	ND		lx	96	ND		1x	210
Diethyl phthalate	ND		lx	240	ND		lx	100	ND		1x	230
Dimethyl phthalate	ND		1x	200	ND		lx	89	ND		1x	200
Di-n-butyl phthalate	ND		lx	240	190		lx	110	ND		1x	230
Di-n-octyl phthalate	ND		lx	170	ND		lx	74	ND		1 x	160
Hexachlorobenzene	ND		lx	300	ND		lx	130	ND		1x	290
Hexachlorobutadiene	ND		1x	750	ND		1x	330	ND		1x	710
Hexachlorocyclopentadiene	ND		lx	370	ND		1x	160	ND		1x	350
Hexachloroethane	ND		1x	900	ND		1x	390	ND		1x	860
Isophorone	ND		lx	380	ND		1x	170	ND		lx	360
Nitrobenzene	ND		lx	600	ND		lx	260	ND		lx	570
N-Nitrosodimethylamine	ND		1x	800	ND		lx	350	ND		lx	760
N-Nitrosodi-n-propylamine	ND		lx	400	ND		lx	170	ND		lx	380
N-Nitrosodiphenylamine	ND		lx	300	ND		lx	130	ND		lx	290
Pentachlorophenol	ND		lx	340	ND		lx	150	ND		lx	330
Phenol	ND		lx	460	ND		lx	200	ND		lx	430
Pyridine	ND_		lx	590	ND		lx	260	ND		. 1x	560

٩

.

DEEP TROUGH

Analyte		KI1 S	SED			KI2 S	ED			K135	ED]
ug/kg	Result	Qual	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Díl.	Limit
,2-Dichlorobenzene	ND		1x	250	ND		lx	560	ND		lx	280
,2-Diphenylhydrazine	ND		lx	48	ND		l x	110	ND		l x	52
2,4-Trichlorobenzene	ND		1x	190	ND		lx	410	ND		lx	200
3-Dichlorobenzene	ND		1x	250	ND		1x	560	ND		lx	280
,4-Dichlorobenzene	ND		1x	240	ND		lx	530	ND		١x	260
-Chloronaphthalene	ND		1x	79	ND		lx	170	ND		lx	86
-Chlorophenol	ND		1x	160	ND		1x	350	ND		lx	170
-Methyl-4,6-dinitrophenol	ND		1x	83	ND		lx	180	ND		1x	90
-Methylphenol	ND		1x	110	ND		1x	250	ND		1x	120
-Nitroaniline	ND		1x	77	ND		1x	170	ND		1x	84
-Nitrophenol	ND		1x	150	ND		1x	320	ND		1x	160
,2'-oxybis(1-Chloropropane)	ND		lx	160	ND		1x	350	ND		lx	170
4-Dichlorophenol	ND		lx	81	ND		1x	180	ND		lx	88
4-Dimethylphenol	ND		1x	210	ND		1x	470	ND		lx	230
4-Dinitrophenol	ND		1x	150	ND		1x	320	ND		1x	160
4-Dinitrotoluene	ND		1x	69	ND		1x	150	ND		lx	75
4,5-Trichlorophenol	ND		1x	43	ND		1x	94	ND		lx	46
4,6-Trichlorophenol	ND		1x	80	ND		lx	180	ND		lx	87
6-Dinitrotoluene	ND		1x	93	ND		1x	210	ND		lx	100
-Nitroaniline	ND		1x	280	ND		1x	630	ND		1x	310
+4-Methylphenol	ND		1x	110	390		1x	240	ND		١x	120
,3'-Dichlorobenzidine	ND		1x	390	ND		lx	850	ND		١x	420
-Bromophenyl phenyl ether	ND		١x	41	ND		Lx.	91	ND		lx	45
-Chloro-3-methylphenol	ND		1x	64	ND		lx	140	ND		lx	70
-Chloroaniline	ND		١x	350	ND		1x	780	ND		lx	390
-Chlorophenyl phenyl ether	ND		١x	87	ND		lx	190	ND		1x	94
-Nitroaniline	ND		1x	110	ND		lx	250	ND		lx	120
-Nitrophenol	ND		lx	83	ND		1x	180	ND		1x	90
Benzidine	ND		١x	370	ND		lx	820	ND		١x	410
Benzoic acid	ND		lx	510	ND		1x	1100	ND		lx	560
Benzyl alcohol	ND		lx	120	ND		1x	260	ND		1x	130
Benzyl butyl phthalate	ND		١x	110	ND		1x	250	ND		lx	120
is(2-Chloroethoxy)methane	ND		lx	110	ND		1x	240	ND		lx	120
ois(2-Chloroethyl) ether	ND		lx	190	ND		1x	410	ND		١x	200
is(2-Ethylhexyl) phthalate	ND_		lx	170	ND		lx	380	ND		1x	190

KENT ISLAND DEEP

analyte list continued on following page

١,

Analyte		KII SE	D			K12 :	SED			K135	ED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit	Result	Qual.	Dil	Limit
Carbazole	ND		1x	65	ND		lx	140	ND		lx	71
Cyclohexanone	ND		1 x	260	ND		lx	580	ND		l x	290
Dibenzofuran	ND		1x	59	ND		lx	130	ND		1 x	64
Diethyl phthalate	ND.		1x	64	ND		lx	140	ND		lx	70
Dimethyl phthalate	ND		1x	55	ND		lx	120	ND		lx	59
Di-n-butyl phthalate	ND		lx	65	ND		lx	140	ND		1x	71
Di-n-octyl phthalate	ND		1x	45	ND		lx	100	ND		1 x	49
Hexachlorobenzene	ND		lx	80	ND		lx	180	ND		1x	87
Hexachlorobutadiene	ND		١x	200	ND		1 x	440	ND		lx	220
Hexachlorocyclopentadiene	ND		1x	99	ND		1x	220	ND		l x	110
Hexachloroethane	ND		١x	240	ND		1x	530	ND		1x	260
Isophorone	ND		1x	100	ND		lx	220	ND		1 x	110
Nitrobenzene	ND		1x	160	ND		lx	350	ND		lx	170
N-Nitrosodimethylamine	ND		1x	210	ND		lx	470	ND		lx	230
N-Nitrosodi-n-propylamine	ND		1x	110	ND		lx	230	ND		1x	110
N-Nitrosodiphenylamine	ND		lx	81	ND		lx	180	ND		1x	88
Pentachlorophenol	ND		1x	92	ND		1x	200	ND		1x	100
Phenol	ND		1x	120	ND		lx	270	ND		1x	130
Pyridine	_ND		<u> x</u>	160	ND		<u>lx</u>	350	ND		lx.	170

KENT ISLAND DEEP

POOLES ISLAND

Analyte		POLIS	ED	
ug/kg	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	480
1,2-Diphenylhydrazine	ND		1x	90
1,2,4-Trichlorobenzene	ND		1 x	350
1,3-Dichlorobenzene	ND		1x	480
1,4-Dichlorobenzene	ND		١x	450
2-Chloronaphthalene	ND		١x	150
2-Chlorophenol	ND		lx	300
2-Methyl-4,6-dinitrophenol	ND		lx	160
2-Methylphenol	ND		lx	210
2-Nitroaniline	ND		١x	140
2-Nitrophenol	ND		lx	280
2,2'-oxybis(1-Chloropropane)	ND		lx	300
2,4-Dichlorophenol	ND		1x	150
2,4-Dimethylphenol	ND		1 x	400
2,4-Dinitrophenol	ND		1 x	280
2,4-Dinitrotoluene	ND		lx	130
2,4,5-Trichlorophenol	ND		lx	80
2,4,6-Trichlorophenol	ND		lx	150
2,6-Dinitrotoluene	ND		lx	180
3-Nitroaniline	ND		lx	530
3+4-Methylphenol	ND		lx	200
3,3'-Dichlorobenzidine	ND		lx	720
4-Bromophenyl phenyl ether	ND		1 x	78
4-Chloro-3-methylphenol	ND		lx	120
4-Chloroaniline	ND		lx	660
4-Chlorophenyl phenyl ether	ND		lx	160
4-Nitroaniline	ND		lx	220
4-Nitrophenol	ND		lx	160
Benzidine	ND		lx	700
Benzoic acid	ND		lx	960
Benzyl alcohol	ND		١x	220
Benzyl butyl phthalate	ND		١x	220
bis(2-Chloroethoxy)methane	ND	•	١x	200
bis(2-Chloroethyl) ether	ND		١x	350
bis(2-Ethylhexyl) phthalate	ND		١x	320

analyte list continued on following page

POOLES ISLAND

Analyte		POLIS	ED	1
ug/kg	Result	Qual	Dil	Limit
Carbazole	ND		lx	120
Cyclohexanone	ND		lx	500
Dibenzofuran	ND		lx	110
Diethyl phthalate	ND		lx	120
Dimethyl phthalate	ND		lx	100
Di-n-butyl phthalate	ND		ix	120
Di-n-octyl phthalate	ND		lx	85
Hexachlorobenzene	ND		lx	150
Hexachlorobutadiene	ND		lx	380
Hexachlorocyclopentadiene	ND		lx	. 180
Hexachloroethane	ND		lx	450
lsophorone	ND		lx	190
Nitrobenzene	ND		lx	300
N-Nitrosodimethylamine	ND		lx	400
N-Nitrosodi-n-propylamine	ND		1x	200
N-Nitrosodiphenylamine	ND		lx	150
Pentachiorophenol	ND		1x	170
Phenol	ND		lx	230
Pyridine	ND		lx	300

Analyte	SWPI SED					SWP2	SED			SWP:	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	440	ND		1 x	830	ND		lx	760
1,2-Diphenylhydrazine	ND		1 x	84	ND		1x	160	ND		1x	. 140
1,2,4-Trichlorobenzene	ND		1x	330	ND		lx	610	ND		1x	560
1,3-Dichlorobenzene	ND		1x	440	ND		1x	830	ND		1x	760
1,4-Dichlorobenzene	ND		1x	420	ND		lx	780	ND		lx	720
2-Chloronaphthalene	ND		1x	140	ND		lx	260	ND		lx	240
2-Chlorophenol	ND		1x	280	ND		lx	520	ND		1x	480
2-Methyl-4,6-dinitrophenol	ND.		1x	140	ND		lx	270	ND		1x	250
2-Methylphenol	ND		1 x	200	ND		lx	370	ND		lx	340
2-Nitroaniline	ND		1 x	130	ND		lx	250	ND		lx	230
2-Nitrophenol	ND		1x	. 260	ND		lx	480	ND		lx	440
2,2'-oxybis(1-Chloropropane)	ND		1x	280	ND		lx	520	ND		1x	480
2,4-Dichlorophenol	ND		1 x	140	ND		lx	270	ND		1x	240
2,4-Dimethylphenol	ND		1 x	.370	ND		1 x	700	ND		1x	640
2,4-Dinitrophenol	ND		1x	260	ND		lx	480	ND		lx	440
2,4-Dinitrotoluene	ND		1x	120	ND		lx	230	ND		lx	210
2,4,5-Trichlorophenol	ND		1 x	74	ND		lx	140	ND		1x	130
2,4,6-Trichlorophenol	ND		1 x	140	ND		lx	260	ND		1x	240
2,6-Dinitrotoluene	ND		lx	160	ND		1 x	300	ND		1x	280
3-Nitroaniline	ND		lx	500	ND		1 x	930	ND		1x	850
3+4-Methylphenol	170	J	1x	190	310	J	1 x	350	310	j	1x	320
3,3'-Dichlorobenzidine	ND		lx	670	ND		lx	1 3 0 0	ND		1x	1200
4-Bromophenyl phenyl ether	ND		lx	72	ND		lx	130	ND		1x	120
4-Chloro-3-methylphenol	ND		1x	110	ND		lx	210	ND		1x	190
4-Chloroaniline	ND		1 x	620	ND		lx	1200	ND		1x	1100
4-Chlorophenyl phenyl ether	ND		1 x	150	ND		1x	280	ND		lx	260
4-Nitroaniline	ND		1 x	200	ND		lx	370	ND		lx	340
4-Nitrophenol	ND		1x	140	ND		1x	270	ND		lx	250
Benzidine	ND		1x	650	ND		1 x	1200	ND		lx	1100
Benzoic acid	ND		1x	890	ND		1x	1 700	ND		lx	1500
Benzyl alcohol	ND		1x	210	ND		lx	390	ND		lx	360
Benzyl butyl phthalate	ND		lx	200	ND		1x	370	ND		lx	340
bis(2-Chloroethoxy)methane	ND		1x	190	ND		lx	350	ND		lx	320
bis(2-Chloroethyl) ether	ND		lx	330	ND		lx	610	ND		lx	560
bis(2-Ethylhexyl) phthalate	ND		1x	300	ND		<u>lx</u>	570	ND		1x	520

SWAN POINT CHANNEL

analyte list continued on following page

ND=Not detected J=Estimated

Ē

Allalyte		SWPI			SWP2	SED			SUD	CED.		
ug/kg	Result	Qual.	Dil.	Limit	Result	Oual.	Dil	Limit	Perult		SED	
Carbazole	ND		1x	110	ND		1 v	210	ND	Qual.	D_{1}	Limit
Cyclohexanone	ND		1x	460	ND		1	210	ND		1x	200
Dibenzofuran	ND		1x	100			1.	800	ND		1 x	790
Diethyl phthalate	ND		1x	110	ND		IX	190	ND		lx	180
Dimethyl phthalate	ND		1 x	05			IX	210	ND		1x	190
Di-n-butyl phthalate	ND		1.	110			IX	180	ND		lx	160
Di-n-octyl phthalate	ND		1.	70			lx	210	ND		lx	200
Hexachlorobenzene	ND		1.	19	ND		1x	150	ND		1x	140
lexachlorobutadiene	ND		1.	140	ND		1x	260	ND		1x	240
lexachlorocyclopentadiene			1X	350	ND		1x	650	ND		lx	600
lexachloroethane	NTO		IX	170	ND		lx	320	ND		1x	300
sophorone			IX ·	420	ND		lx	780	ND		1x	770
Vitrobenzene	ND		IX	180	ND		lx	330	ND		1 1	200
J. Nitrosodimethylamia	ND		IX	280	ND		lx	520	ND		1.	490
I Nitroadi a anaturia	ND		lx	370	ND		lx	700	ND		1.	400
I Nitesand have a	ND		lx	180	ND		lx	340	ND		1.	220
Nitrosodiphenylamine	ND		lx	140	ND		lx	270	ND		1	320
entachlorophenol	ND		lx	160	ND		lx	300	ND		IX	240
henol	ND		lx –	210	ND		1x	400			IX ·	280
yridine	ND		lx	270	ND		1.	5101			IX	360
							14		ND		<u>lx</u>	470

SWAN POINT CHANNEL

...

Analyte		CRE1	SED			CRE2	SED			CRE3	SED	
ug/kg	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	_Dil.	Limit
,2-Dichlorobenzene	ND		lx	490	ND		lx	460	ND		lx	440
,2-Diphenylhydrazine	ND		1x	92	ND		lx	88	ND		lx	84
,2,4-Trichlorobenzene	ND		1x	360	ND		1x	340	ND		lx	330
,3-Dichlorobenzene	ND		lx	490	ND		lx	460	ND		lx	440
,4-Dichlorobenzene	ND		lx	460	ND		1x	440	ND		lx	420
-Chloronaphthalene	ND		lx	150	ND		1x	140	ND		lx	140
-Chlorophenol	ND		lx	310	ND		lx	290	ND		lx	280
-Methyl-4,6-dinitrophenol	ND		lx	160	ND		lx	150	ND		lx	140
-Methylphenol	ND		1x	220	ND		1x	200	ND		lx	200
-Nitroaniline	ND		l x l	150	ND		1x	140	ND		1x	130
-Nitrophenol	ND		lx	280	ND		lx	270	ND		lx	260
,2'-oxybis(1-Chloropropane)	ND		lx	310	ND		1x	290	ND		lx	280
,4-Dichlorophenol	ND		lx	160	ND		1x	150	ND		lx	140
,4-Dimethylphenol	ND		1x	410	ND		1x	390	ND		lx	370
,4-Dinitrophenol	ND		lx	280	ND		1x	270	ND		lx	260
,4-Dinitrotoluene	ND		lx	130	ND		1x	130	ND		lx	120
,4,5-Trichlorophenol	ND		1x	82	ND		lx	78	ND		lx	74
,4,6-Trichlorophenol	ND		lx	150	ND		lx	150	ND		lx	140
,6-Dinitrotoluene	ND		lx	180	ND		1x	170	ND		lx	160
-Nitroaniline	ND		lx	550	ND		1x	520	ND		lx	500
+4-Methylphenol	ND		lx	210	ND		1x	200	ND		lx	190
,3'-Dichlorobenzidine	ND		lx	740	ND		lx	710	ND		1 x	670
-Bromophenyl phenyl ether	ND		1x	79	ND		lx	76	ND		lx	72
-Chloro-3-methylphenol	ND		lx	120	ND		1x	120	ND		lx	110
-Chloroaniline	ND		lx	680	ND		1x	650	ND		lx	620
-Chlorophenyl phenyl ether	ND		lx	170	ND		lx	160	ND		lx	150
-Nitroaniline	ND		lx	220	ND		lx	210	ND		lx	200
-Nitrophenol	ND		lx	160	ND		1x	150	ND		lx	140
Benzidine	ND		lx	720	ND		1x	680	ND		lx	650
Senzoic acid	ND		lx	980	ND		lx	940	ND		lx	890
enzyl alcohol	ND		lx	230	ND		lx	220	ND		lx	210
enzyl butyl phthalate	ND		1 x	220	ND		1x	210	ND		lx	200
is(2-Chloroethoxy)methane	ND		lx	210	ND		lx	200	ND		1x	190
is(2-Chloroethyl) ether	ND		lx	360	ND		1x	340	ND		lx	330
is(2-Ethylhexyl) phthalate	ND		1x	330	ND		lx	320	ND		1x	300

CRAIGHILL ENTRANCE

analyte list continued on following page

.

Analyte		CREI	SED			CRE2	SED			CRE3	SED	
ug/k	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
Carbazole	ND		lx	130	ND		lx	120	ND		1x	110
Cyclohexanone	ND		1x	510	ND		lx	480	ND		lx	460
Dibenzofuran	ND		1x	110	ND		lx	110	ND		1x	100
Diethyl phthalate	ND		lx	120	ND		1x	120	ND		1x	110
Dimethyl phthalate	ND		1x	110	ND		lx	100	ND		1x	95
Di-n-butyl phthalate	270		1x	130	ND		1x	120	ND		lx	110
Di-n-octyl phthalate	ND		1x	87	ND		١x	83	ND		1x	79
Hexachlorobenzene	ND		1x	150	ND		lx	150	ND		lx	140
Hexachlorobutadiene	ND		lx	380	ND		1 x	370	ND		1x	350
Hexachlorocyclopentadiene	ND		lx	190	ND		lx	180	ND		lx	170
Hexachloroethane	ND		lx	460	ND		lx	440	ND		lx	420
Isophorone	ND		1x	190	ND		1x	190	ND		1x	180
Nitrobenzene	ND		1x	310	ND		lx	290	ND		1x	280
N-Nitrosodimethylamine	ND		lx	410	ND		1x	390	ND		1x	370
N-Nitrosodi-n-propylamine	ND		lx	200	ND		lx	190	ND		1x	180
N-Nitrosodiphenylamine	ND		1x	160	ND		lx	150	ND		1x	140
Pentachlorophenol	ND		lx	180	ND		1x	170	ND		1x	160
Phenol	ND		lx	230	ND		1x	220	ND		1x	210
Pvridine	ND.		1x	300	ND		1x	290	ND		1x	270

CRAIGHILL ENTRANCE

CRAIGHILL CHANNEL

.

Analyte	CR1 SED				CR2 S	SED			CR2FL) SED			CR3	SED		
ug/kg	Result	Qual.	Dil,	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1.2-Dichlorobenzene	ND		lx	280	ND		1x	400	ND		lx	630	ND		lx	460
1.2-Diphenylhydrazine	ND		١x	52	ND		1x	77	ND		1 x	120	ND		lx	88
1.2.4-Trichlorobenzene	ND		1x	200	ND		1x	300	ND		lx	470	ND		1x	340
1.3-Dichlorobenzene	ND		1x	280	ND		1x	400	ND		lx	630	ND		1x	460
1.4-Dichlorobenzene	ND		1x	260	ND		1x	380	ND		1x	600	ND		1x	440
2-Chloronaphthalene	ND		1x	86	ND		lx.	130	ND		ŀx	200	ND	•	lx	140
2-Chlorophenol	ND		1x	170	ND		1x	260	ND		1x	400	ND		1x	290
2-Methyl-4,6-dinitrophenol	ND		1x	90	ND		lx	130	ND		1x	210	ND		lx	150
2-Methylphenol	ND		lx	120	ND		lx	180	ND		1x	280	ND		1 x	200
2-Nitroaniline	ND		lx	84	ND		lx	120	ND		1x	190	ND		lx	140
2-Nitrophenol	ND		1x	160	ND		İx	230	ND		1x	370	ND		lx	270
2.2'-oxybis(1-Chloropropane)	ND		1x	170	ND		lx	260	ND		1x	400	ND		lx	290
2,4-Dichlorophenol	ND		1x	88	ND		1x	130	ND		1x	200	ND		lx	150
2,4-Dimethylphenol	ND		1 x	230	ND		1x	340	ND		1x	530	ND		lx	390
2,4-Dinitrophenol	ND		1x	160	ND		1 x	230	ND		1x	370	ND		lx	270
2,4-Dinitrotoluene	ND		1x	75	ND		1x	110	ND		lx	170	ND		lx	130
2,4,5-Trichlorophenol	ND		1x	46	ND		lx	68	ND		1x	110	ND		lx	78
2,4,6-Trichlorophenol	ND		1x	87	ND		lx	130	ND		1x	200	ND		1x	150
2,6-Dinitrotoluene	ND		1x	100	ND		1x	150	ND		1x	230	ND		lx	170
3-Nitroaniline	ND		1x	310	ND		lx	450	ND		1x	710	ND		lx	520
3+4-Methylphenol	ND		1x	120	ND		1x	170	940		1x	270	ND		lx	200
3,3'-Dichlorobenzidine	ND		lx	420	ND		lx	620	ND		lx	970	ND		1x	710
4-Bromophenyl phenyl ether	ND		lx	45	ND		lx	66	ND		1 x	100	ND		1x	76
4-Chloro-3-methylphenol	ND		lx	70	ND		1x	100	ND		١x	160	ND		lx	120
4-Chloroaniline	ND		lx	390	ND		lx	570	ND		1 x	890	ND		1x	650
4-Chlorophenyl phenyl ether	ND		lx	94	ND		1x	140	ND		lx	220	ND		lx	160
4-Nitroaniline	ND		1x	120	ND		1x	180	ND		١x	290	ND		1x	210
4-Nitrophenol	ND		lx	90	ND		lx	130	ND		lx	210	ND		lx	150
Benzidine	ND		1x	410	ND		1x	600	ND		lx	930	ND		lx	680
Benzoic acid	ND		1x	560	ND		lx	820	ND		lx	1300	ND		lx	940
Benzyl alcohol	ND		1x	130	ND		lx	190	ND		lx	300	ND		1x	220
Benzyl butyl phthalate	ND		1x	120	ND		lx	180	ND		1x	290	ND		1x	210
bis(2-Chloroethoxy)methane	ND		lx	120	ND		lx	170	ND		1x	270	ND		1x	200
bis(2-Chloroethyl) ether	ND		1x	200	ND		lx	300	ND		1x	470	ND		· 1x	340
bis(2-Ethylberyl) phthalate	ND		1x	190	ND		lx	280	ND		lx	430	ND		1x	320

analyte list continued on following page

ND=Not detected

.

Analyte	CRI SED					CR2	SED			CR2FI) SED			CR3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	_ Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		1x	71	ND		lx	100	ND		1x	160	ND		1x	120
Cyclohexanone	ND		lx	290	ND		1x	420	ND		lx	660	ND		1x	480
Dibenzofuran	ND		lx	64	ND		1x	94	ND		1x	150	ND		1x	110
Diethyl phthalate	ND		lx	70	ND		1x	100	ND		1x	160	ND		1x	120
Dimethyl phthalate	ND		lx	59	ND		lx	87	ND		1x	140	ND		١x	100
Di-n-butyl phthalate	780		lx	71	1100		1x	100	ND		lx	160	ND		lx	120
Di-n-octyl phthalate	ND		1 x	49	ND		lx	· 72	ND		1x	110	ND		lx	` 83
Hexachlorobenzene	ND		1x	87	ND		lx	130	ND		lx	200	ND		lx	150
Hexachlorobutadiene	ND		lx	220	ND		lx	320	ND		lx	500	ND		lx	370
Hexachlorocyclopentadiene	ND		lx	110	ND		lx	160	ND		1x	250	ND		1x	180
Hexachloroethane	ND		lx	260	ND		1x	380	ND		1x	600	ND		1x	440
Isophorone	ND		lx	110	ND		1x	160	ND		lx	250	ND		lx	190
Nitrobenzene	ND		lx	170	ND		1x	260	ND		lx	400	ND		lx	290
N-Nitrosodimethylamine	ND		1x	230	ND		1x	340	ND		lx	530	ND		lx	390
N-Nitrosodi-n-propylamine	ND		1 x	110	ND		lx	170	ND		1x	260	ND		lx	190
N-Nitrosodiphenylamine	ND		lx	88	ND		lx	130	ND		lx	200	ND		lx	150
Pentachlorophenol	ND		lx	100	ND		lx	150	ND		lx	230	ND		lx	170
Phenol	ND		1 x	130	ND		1x	190	ND		lx	300	ND		lx	220
Pyridine	ND		<u>lx</u>	170	ND		lx_	250	ND		lx	390	ND		1x	290

CRAIGHILL CHANNEL

, ·

Analyte		CRAI	SED			CRA2	SED	٦
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
1,2-Dichlorobenzene	ND .		1x	580	ND		1x	700
1,2-Diphenylhydrazine	ND		lx	110	ND		1x	130
1,2,4-Trichlorobenzene	ND		1x	420	ND		lx	520
1,3-Dichlorobenzene	ND		1x	580	ND		lx	700
1,4-Dichlorobenzene	ND		lx	550	ND		1x	670
2-Chloronaphthalene	ND		lx	180	ND		lx	220
2-Chlorophenol	ND		lx	360	ND		1x	440
2-Methyl-4,6-dinitrophenol	ND		lx	190	ND		lx	230
2-Methylphenol	ND		lx	250	ND		lx	310
2-Nitroaniline	ND		lx	180	ND		1x	210
2-Nitrophenol	ND .		1x	330	ND		1x	410
2,2'-oxybis(1-Chloropropane)	ND		lx	360	ND		lx	440
2,4-Dichlorophenol	ND		1x	180	ND		1x	230
2,4-Dimethylphenol	ND		1x	480	ND		lx	590
2,4-Dinitrophenol	ND	•	1x	330	ND		lx	410
2,4-Dinitrotoluene	ND		1x	160	ND		lx	190
2,4,5-Trichlorophenol	ND		1 x	97	ND		lx	120
2,4,6-Trichlorophenol	ND		lx	180	ND		lx.	220
2,6-Dinitrotoluene	ND		1 x	210	ND		lx	260
3-Nitroaniline	ND		lx	650	ND		lx	790
3+4-Methylphenol	720		1x	240	460		lx	300
3,3'-Dichlorobenzidine	ND		1 x	880	ND		1x	1100
4-Bromophenyl phenyl ether	ND		1 x	94	ND		lx	110
4-Chloro-3-methylphenol	ND		lx	150	ND		lx	180
4-Chloroaniline	ND		lx	810	ND		1x	990
4-Chlorophenyl phenyl ether	ND		lx	200	ND		lx	240
4-Nitroaniline	ND		lx	260	ND		lx	320
4-Nitrophenol	ND		lx	190	ND		1x	230
Benzidine	ND		lx	850	ND		lx	1000
Benzoic acid	ND		1x	1200	ND		lx	1400
Benzyl alcohol	ND		lx	270	ND		lx	330
Benzyl butyl phthalate	ND [.]		1x	260	ND		1x	320
bis(2-Chloroethoxy)methane	ND		1x	250	ND		lx	300
bis(2-Chloroethyl) ether	ND		lx	420	ND		1x	520
bis(2-Ethylhexyl) phthalate	ND		1x	390	ND		1x	480

CRAIGHILL ANGLE

analyte list continued on following page

•

Analyte	ļ	CRAI	SED			CRA2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Oual.	Dil	Limit
Carbazole	ND		lx	150	ND		1 x	180
Cyclohexanone	ND		lx	600	ND		14	720
Dibenzofuran	ND		lx	130	ND		1.	130
Diethyl phthalate	ND		lx	150	ND		1	100
Dimethyl phthalate	ND		lx	120	ND		1	180
Di-n-butyl phthalate	210		lx	150	1500		1X	150
Di-n-octyl phthalate	ND		1x	100	ND		1X	180
Hexachlorobenzene	ND		1 r	180	ND		1X	130
Hexachlorobutadiene	ND		14	100			1x	220
Hexachlorocyclopentadiene	ND		14	220			Ix	560
Hexachloroethane	ND		14	220	ND		Ix	270
Isophorone	ND		1.	220			Ix	670
Nitrobenzene	ND		1X	230	ND		lx	280
N-Nitrosodimethylamine	ND		1X	360	ND		lx	440
N-Nitrosodi-n-propylamine	ND		1X	480	ND		lx	590
Nitrosodiphenylamine			IX	240	ND		lx	290
entachlorophenol			Ix	180	ND		lx	230
2henol	UN ND		Ix	210	ND		lx	260
	ND		lx	280	ND		1x	340
ynaine	_ND		1x		ND		lx	440

CRAIGHILL ANGLE

.

Analyte		CRUI SI	ED			CRU2	SED			CRU3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	680	ND		1x	300	ND		1 x	440
1,2-Diphenylhydrazine	ND		1x	130	ND		1x	57	ND		lx	84
1,2,4-Trichlorobenzene	ND		lx	500	ND		lx	220	ND		1x	330
1,3-Dichlorobenzene	ND		lx	680	ND		1x	300	ND		1x	440
1,4-Dichlorobenzene	ND		1x	640	ND		1x	290	ND		1 x	420
2-Chloronaphthalene	ND		1x	210	ND		1x	94	ND		lx	140
2-Chlorophenol	ND		lx	430	ND		1x	190	ND		1x	280
2-Methyl-4,6-dinitrophenol	ND		1x	220	ND		1x	98	ND		lx	140
2-Methylphenol	ND		1x	300	ND		1x	130	ND		1 x	200
2-Nitroaniline	ND		1x	210	ND		1x	92	ND		1x	130
2-Nitrophenol	ND		1x	390	ND		1x	170	ND		1x	260
2,2'-oxybis(1-Chloropropane)	ND		1x	430	ND		1x	190	ND		1x	280
2,4-Dichlorophenol	ND		1x	220	ND		1x	97	ND		lx	140
2,4-Dimethylphenol	ND		1x	570	ND		lx	250	ND		lx	370
2,4-Dinitrophenol	ND		1x	390	ND		lx	170	ND		1 x	260
2,4-Dinitrotoluene	ND		1x	190	ND		1x	83	ND		lx	120
2,4,5-Trichlorophenol	ND		1x	110	ND		lx	51	ND		lx	74
2,4,6-Trichlorophenol	ND		1x	210	ND		lx	95	ND		1x	140
2,6-Dinitrotoluene	ND		1x	250	ND		lx	110	ND		lx	160
3-Nitroaniline	ND		1x	760	ND		lx	340	ND		1x	500
3+4-Methylphenol	350		1x	290	110	J	lx	130	ND		1x	190
3,3'-Dichlorobenzidine	ND		1x	1000	ND		lx	460	ND		1x	670
4-Bromophenyl phenyl ether	ND		1x	110	ND		lx	49	ND		1 x	72
4-Chloro-3-methylphenol	ND		1x	170	ND		1 x	76	ND		1x	110
4-Chloroaniline	ND		1x	950	ND		1x	420	ND		1x	620
4-Chlorophenyl phenyl ether	ND		1x	230	ND		1 x	100	ND		lx	150
4-Nitroaniline	ND		lx	310	ND		1 x	140	ND		1x	200
4-Nitrophenol	ND		1xj	220	ND		1x	98	ND		lx	140
Benzidine	ND		1x	1000	ND		lx	440	ND		lx	650
Benzoic acid	ND		1x	1400	ND		lx	610	ND		lx	890
Benzyl alcohol	ND		1x	320	ND		1x	140	ND		1x	210
Benzyl butyl phthalate	ND		lx	310	ND		1x	140	350		1x	200
bis(2-Chloroethoxy)methane	ND		lx	290	ND		1x	130	ND		lx	190
bis(2-Chloroethyl) ether	ND		1x	500	ND		1x	220	ND		1x	330
bis(2-Ethylhexyl) phthalate	ND_		1x	460	ND		<u>lx</u>	210	180	J	<u>1x</u>	300

CRAIGHILL UPPER RANGE

.

,

analyte list continued on following page

ND=Not detected J=Estimated

Analyte		CRUI	SED			CRU2	SED			CRU3	SED	
ug/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	180	ND		1x	78	ND		1x	110
Cyclohexanone	ND		lx	710	ND		1x	310	ND		1x	. 460
Dibenzofuran	ND		lx	160	ND		lx	70	ND		lx	100
Diethyl phthalate	ND		lx	170	ND		1x	76	ND		lx	110
Dimethyl phthalate	ND		lx	150	ND		1x	65	ND		lx	95
Di-n-butyl phthalate	ND		lx	180	ND		1x	78	ND		lx	110
Di-n-octyl phthalate	ND		lx	120	ND		1x	54	ND		lx	79
Hexachlorobenzene	ND		lx	210	ND		1x	95	ND		lx	140
Hexachlorobutadiene	ND		lx	540	ND		1x	240	ND		lx	350
Hexachlorocyclopentadiene	ND		lx	260	ND		1x	120	ND		18	170
Hexachloroethane	ND		lx	640	ND		1x	290	ND		1x	420
Isophorone	ND		1x	270	ND		lx	120	ND		1x	180
Nitrobenzene	ND		lx	430	ND		1x	190	ND		1x	280
N-Nitrosodimethylamine	ND		lx	570	ND		1x	250	ND		1x	370
N-Nitrosodi-n-propylamine	ND		1x	280	ND		1x	130	ND		1x	180
N-Nitrosodiphenylamine	ND		1x	220	ND		1x	97	ND		1x	140
Pentachlorophenol	ND		1x	250	ND		lx	110	ND		1x	160
Phenol	ND		lx	320	ND		lx	140	ND		1x	210
Pyridine	ND		1x	420	ND		lx	190	ND		<u>1x</u>	270

CRAIGHILL UPPER RANGE

٠

Analyte		CUTI	SED			CUT2	SED			CUT3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit
,2-Dichlorobenzene	ND		1x	630	ND		lx	760	ND		lx	590
1,2-Diphenylhydrazine	ND		1x	120	ND		1x	140	ND		1x	110
1,2,4-Trichlorobenzene	ND		1x	470	ND		1x	560	ND		lx	440
,3-Dichlorobenzene	ND		1x	630	ND		1 x	760	ND		1x	590
1,4-Dichlorobenzene	ND		1x	600	ND		1x	720	ND		1x	560
2-Chloronaphthalene	ND		1x	200	ND		1x	240	ND		1x	180
2-Chlorophenol	ND		1x	400	ND		1x	480	ND		1x	380
2-Methyl-4,6-dinitrophenol	ND		1x	210	ND		1x	250	ND		1x	190
2-Methylphenol	ND		1x	280	ND		1x	340	ND		1x	260
2-Nitroaniline	ND		1x	190	ND		1x	230	ND		lx	180
2-Nitrophenol	ND		1x	370	ND		1x	440	ND		1x	340
2,2'-oxybis(1-Chloropropane)	ND		1x	400	ND		1x	480	ND		1x	380
2,4-Dichlorophenol	ND		1x	200	ND		1x	240	ND		lx	190
2,4-Dimethylphenol	ND		1 x	530	ND		1x	640	ND		lx	500
2,4-Dinitrophenol	ND		lx	370	ND		1x	440	ND		lx	340
2,4-Dinitrotoluene	ND		1x	170	ND		lx	210	ND		lx	160
2,4,5-Trichlorophenol	ND		1x	110	ND		1 x	130	ND		1x	100
2,4,6-Trichlorophenol	ND		1x	200	ND		lx	240	ND		18	190
2,6-Dinitrotoluene	ND		lx	230	ND		lx	280	ND		1x	220
3-Nitroaniline	ND		lx	710	ND		1x	850	ND		lx	670
3+4-Methylphenol	360		1x	270	430		lx	320	370		1x	250
3,3'-Dichlorobenzidine	ND		lx	970	ND		lx	1200	ND		lx	910
4-Bromophenyl phenyl ether	ND		lx	100	ND		lx	120	ND		lx	97
4-Chloro-3-methylphenol	ND		lx	160	ND		lx	190	ND		lx	150
4-Chloroaniline	ND		lx	890	ND		lx	1100	ND		1x	830
4-Chlorophenyl phenyl ether	ND		lx	220	ND		lx	260	ND		lx	200
4-Nitroaniline	ND		lx	290	ND		lx	340	ND		1x	270
4 Nitrophenol	ND		lx	210	ND		lx	250	ND		1x	190
Benzidine	ND		lx	930	ND		lx	1100	ND		1x	880
Benzoic acid	ND		1x	1300	ND		1x	1500	ND		lx	1200
Benzyl alcohol	ND		1x	300	ND		lx	360	ND		1x	280
Benzyl butyl phthalate	ND		1x	290	ND		1x	340	ND		1x	270
bis(2-Chloroethoxy)methane	ND		1x	270	ND		lx	320	ND		1x	250
bis(2-Chloroethyl) ether	ND		1x	470	ND		1x	560	ND		lx	440
his(2-Ethylberyl) phthalate	ND		1x	430	ND		lx	520	ND		1x	410

CUTOFF ANGLE

analyte list continued on following page

CUTOFF ANGLE

Analyte		CUTI	SED			CUT2	SED			CUT3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		1x	160	ND		1x	200	ND		lx	150
Cyclohexanone	ND		1x	660	ND		1 x	790	ND		١x	620
Dibenzofuran	ND		1x	150	ND		lx	180	ND		lx	140
Diethyl phthalate	ND		lx	160	ND		lx	190	ND		lx	150
Dimethyl phthalate	ND		1x	140	ND		1 x	160	ND		lx	130
Di-n-butyl phthalate	370		1x	160	270		lx	200	ND		1x	150
Di-n-octyl phthalate	ND		1x	110	ND		1x	140	ND		1 x	110
Hexachlorobenzene	ND		1x	200	ND		1x	240	ND		1 x	190
Hexachlorobutadiene	ND		1x	500	ND		1x	600	ND		1x	470
Hexachlorocyclopentadiene	ND		lx	250	ND		lx	300	ND		١x	230
Hexachloroethane	ND		1x	600	ND		1x	720	ND		lx	560
Isophorone	ND		lx	250	ND		lx	300	ND		1x	240
Nitrobenzene	ND		1 x	400	ND		lx	480	ND		1x	380
N-Nitrosodimethylamine	ND		lx	530	ND		1x	640	ND		1x	500
N-Nitrosodi-n-propylamine	ND		lx	260	ND		1x	320	ND		1x	250
N-Nitrosodiphenylamine	ND		1x	200	ND		1x	240	ND		1x	190
Pentachlorophenol	ND		1x	230	ND		1x	280	ND		1x	220
Phenol	ND		1x	300	ND		١x	360	ND		1x	280
Pyridine	ND		<u> x</u>	390	ND		<u> </u>	470	ND		18	370

. .

C

.

r dialyte		<u>1LC</u>	1 SED	··		TLC2	SED			TLC2F	DISED		1	TIO		
ug/	g Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Oual	Dil	Limit	Basula	<u> </u>	SED	
1,2-Dichlorobenzene	ND		lx	370	ND		lx	400	ND		1x	420	ND	Qual.	<u>Dil</u> .	Limit
1,2-Dipnenyinydrazine	ND		1x	69	ND		lx	75	ND		14	720			Ix	560
1,2,4- I fichlorobenzene	ND		lx	270	ND		lx	290	ND		14	210			Ix	110
1,3-Dichlorobenzene	ND		1x	370	ND		lx	400	ND		14	420			Ix	410
1,4-Dichlorobenzene	ND		Ix	350	ND		1x	380	ND		12	420			Ix	560
2-Chloronaphthalene	ND		lx	110	ND		lx	120	ND		1.	400			lx	530
2-Chlorophenol	ND		lx	230	ND		lx	250	ND		1.	270			lx	170
12-Methyl-4,6-dinitrophenol	ND		1x .	120	ND		1x İ	130	ND		1.	2/0	ND		1x	350
2-Methylphenol	ND		1x	160	ND		Ix	180	ND		1.	140	ND		lx.	180
2-Nitroaniline	ND		lx	110	ND		lx	120	ND		1	190	ND		lx	250
2-Nitrophenol	ND		1x	210	ND.		lx	230			1X	130	ND		1x	170
2,2'-oxybis(1-Chloropropane)	ND		lx	230	ND		lx	250			1X	240	ND		l x	320
2,4-Dichlorophenol	ND		1x	120	ND		1x	130	ND		1X	2/0	ND		lx	350
2,4-Dimethylphenol	ND		lx	310	ND		1x	330	ND		1X	140	ND		1x	180
2,4-Dinitrophenol	ND		lx	210	ND		lx	230			1X	360	ND		lx	470
2,4-Dinitrotoluene	ND	·	1 x	100	ND		İx	110			IX I	240	ND		lx	320
2,4,5-Trichlorophenol	ND		lx	62	ND		1x	67			IX	120	ND		lx	150
2,4,6-Trichlorophenol	ND		lx	120	ND		1x	120			1X	71	ND		lx	94
2,6-Dinitrotoluene	ND		lx	130	ND		lx	150			IX N	130	ND		i x	180
3-Nitroaniline	ND		lx	410	ND		1x	100			IX	160	ND		lx	210
3+4-Methylphenol	140	J	lx	150	ND		lx	170			IX	470	ND		lx	630
3,3'-Dichlorobenzidine	ND		lx	560	ND		l v	600			IX	180	300		lx	240
4-Bromophenyl phenyl ether	ND		1x	60	ND		l v	65			ix	640	ND		lx	850
4-Chloro-3-methylphenol	ND		lx	92	ND		14	100			IX	69	ND		lx	91
4-Chloroaniline	ND		Ix	510	ND		1x	5501			IX	110	ND		lx	140
4-Chlorophenyl phenyl ether	ND		Ix	120	ND		lv.	1.10			Ix	590	ND		lx	780
4-Nitroaniline	ND		lx	170	ND		1A Iv	190			lx	140	ND		lx	190
4-Nitrophenol	ND		lx	120	ND		14	100			lx	190	ND		lx	250
Benzidine	ND		Ix	540	ND		1.	130			lx	140	ND		lx	180
Benzoic acid	ND		lx	740	ND		17	580	ND		lx	620	ND		lx	820
Benzyl alcohol	ND		lx	170	ND		14	100	ND		lx	850	ND		lx	1100
Benzyl butyl phthalate	ND		lx	170	ND		17	190	ND		Ix	200	ND		lx	260
bis(2-Chloroethoxy)methane	ND		1x	160	ND		1.	180	ND		1x	190	ND		lx	250
bis(2-Chloroethyl) ether	ND		lx	270	ND		1X 1	170	ND		1x	180	ND		lx	240
ois(2-Ethylhexyl) phthalate	ND		1x	250	ND		1X 1	290	ND		lx	310	ND		lx	410
	analyte list	continue	d on follo	wing nage			17	2/0	170	<u> J </u>	lx	290	ND		Ix	380

TOLCHESTER CHANNEL-VAN VEEN

analyte list continued on following page

ND=Not detected J=Estimated

.

Analyte		TLCI	SED			TLC2	SED			TLC2F	D SED			TLC3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		1x	94	ND		1x	100	ND		1x	110	ND		1x	140
Cyclohexanone	ND		1x	380	ND		lx	410	ND		lx	440	ND		1x	580
Dibenzofuran	ND		1x	85	ND		١x	92	ND		lx	98	ND		lx	130
Diethyl phthalate	ND		1×	92	ND		١x	100	ND		lx	110	ND		1x	140
Dimethyl phthalate	ND		1x	79	ND		lx	85	ND		lx	91	ND		lx	120
Di-n-butyl phthalate	ND		1x	94	ND		lx	100	ND		lx	110	ND		lx	140
Di-n-octyl phthalate	ND		1x	65	ND		lx	71	ND		1x	76	ND		lx	100
Hexachlorobenzene	ND		'lx	120	ND		lx	120	ND		1x	130	ND		lx	180
Hexachlorobutadiene	ND		1x	290	ND		lx	310	ND		lx	330	ND		lx	440
Hexachlorocyclopentadiene	ND		1x	140	ND		lx	150	ND		lx	160	ND		lx	220
Hexachloroethane	ND		1x	350	ND		lx	380	ND		lx	400	ND		1x	530
Isophorone	ND		1x	150	ND		lx	160	ND		lx	170	ND		1x	220
Nitrobenzene	ND		1x	230	ND		lx	250	ND		1x	270	ND		lx	350
N-Nitrosodimethylamine	ND		1x	310	ND		lx	330	ND		lx	360	ND		lx	470
N-Nitrosodi-n-propylamine	ND		1x	150	ND		lx	160	ND		1x ·	180	ND		lx	230
N-Nitrosodiphenylamine	ND		1 x	120	ND		lx	130	ND		1x	140	ND		1x	180
Pentachlorophenol	ND		1 x	130	ND		lx	140	ND		lx	150	ND		lx	200
Phenol	ND		1 x	180	ND		١x	190	ND		lx	200	ND		lx	270
Pyridine	ND		<u> </u>	230	ND		<u>lx</u>	250	ND		<u> x</u>	260	ND		<u>lx</u>	350

\$

TOLCHESTER CHANNEL-VAN VEEN

TOLCHESTER CHANNEL-GRAVITY CORE

٠

Analyte		τινι	SED			TLV2	SED			TLV3	SED			TLV4	SED			TLVS	SED]
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual	Dil.	Limit
1.2-Dichlorobenzene	ND		lx	390	ND		lx	370	ND		lx	380	ND		lx	420	ND		lx	410
1.2-Diphenylhydrazine	ND		lx	73	ND		lx	69	ND		lx	72	ND		lx	80	ND		lx	78
1.2.4-Trichlorobenzene	ND		lx	290	ND		lx	270	ND		lx	280	ND		1x	310	ND		lx	300
1,3-Dichlorobenzene	ND		lx	390	ND		lx	370	ND		lx	380	ND		lx	420	ND		lx	410
1,4-Dichlorobenzene	ND		lx	370	ND		lx	350	ND		1x	360	ND		lx	400	ND		lx	390
2-Chloronaphthalene	ND		lx	120	ND		lx	110	ND		lx	120	ND		lx	130	ND		lx	130
2-Chlorophenol	ND		lx	240	ND		1x	230	ND		lx	240	ND		1x	270	ND		1x	260
2-Methyl-4,6-dinitrophenol	ND		lx	130	ND		lx	120	ND		lx	120	ND		lx	140	ND		lx	130
2-Methylphenol	ND		lx	170	ND		lx	160	ND		lx	170	ND		1x	190	ND		lx	180
2-Nitroaniline	ND		1x	120	ND		lx	110	ND		1x	120	ND		lx	130	ND		lx	130
2-Nitrophenol	ND		1x	220	ND		lx	210	ND		1x	220	ND		1x	240	ND		lx	240
2,2'-oxybis(1-Chloropropane)	ND		lx	240	ND		lx	230	ND		1x	240	ND		1x	270	ND		lx	260
2,4-Dichlorophenol	ND		lx	120	ND		lx	120	ND		1x	120	ND		lx	140	ND		1x	130
2,4-Dimethylphenol	ND		1x	330	ND		lx	310	ND		1x	320	ND		lx	360	ND		lx	350
2,4-Dinitrophenol	ND		lx	220	ND .		lx	210	ND		1x	220	ND		lx	240	ND		lx	240
2,4-Dinitrotoluene	ND		lx	110	ND		lx	100	ND		lx	100	ND		1x	120	ND		lx	110
2,4,5-Trichlorophenol	ND		1x	65	ND		lx	62	ND		IX	64	ND		1x	71	ND		lx	70
2,4,6-Trichlorophenol	ND		1x	120	ND		lx	120	ND		IX	120	ND		lx	130	ND		lx	130
2,6-Dinitrotoluene	ND		1x	140	ND		lx	130	ND		Ix	140	ND		1x	160	ND		lx	150
3-Nitroaniline	ND		lx	430	ND		lx	410	ND		Ix	430	ND		1x	470	ND		lx	460
3+4-Methylphenol	680		lx	160	460		lx	150	500		Ix	160	430		1x	180	590		1x	170
3,3'-Dichlorobenzidine	ND		lx	590	ND		IX	260	ND		IX	580	ND		IX ·	640	ND		1x	630
4-Bromophenyl phenyl ether	ND		lx	63	ND		IX	60	ND		IX	62	ND		1X	69	ND		1x	67
4-Chloro-3-methylphenol	ND		lx	98	ND		IX 1	92	ND		IX	90	ND		IX	110			IX	100
4-Chloroaniline	ND		lx	540	ND		IX 1	510	ND		1X	230	ND		1X 1	590			1×	580
4-Chlorophenyl phenyl ether	ND		IX	130	ND		1X	120	ND		1X	130			IX 1	140			IX	140
4-Nitroaniline	ND		IX	180	ND		IX 1	170	ND		1X	170	ND		1X 1	190			IX	190
4-Nitrophenol	ND		1x	130	ND		1	120	ND		1X	120			1	140			IX	130
Benzidine	ND		IX	570	ND		1X	740	ND		1.	J00 770			1 X	020			IX	610
Benzoic acid	ND		IX	/80	ND		1X	140			1.	1/0			1X	000			IX	830
Benzyl alcohol	ND		IX	180	ND		1X	170			1	100			1	200			IX	200
Benzyl butyl phthalate	ND		IX	180			1X	1/0			1X	170			1.	190			IX Lu	190
bis(2-Chloroethoxy)methane	ND		IX	170			1.	100			1X	100			1X	180			IX	180
bis(2-Chloroethyl) ether	ND		IX	290	ND		IX	270			IX	280			IX	310			IX	300
bis(2-Ethylhexyl) phthalate	_ND_		lx	270	<u>ND</u>		<u> </u>	250	ND			260			1X	<u>290</u>	I ND		<u>lx</u>	280

analyte list continued on following page

TOLCHESTER CHANNEL-GRAVITY CORE

Analyte		TLVI	SED			TLV2	SED			TLV3	SED			TLV4	SED			TLV5	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual	_Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
Carbazole	ND		1x	100	ND		lx	94	ND		1x	98	ND		lx	110	ND		1x	110
Cyclohexanone	ND		1x	400	ND		lx	380	ND		lx	400	ND		lx	440	ND		lx	430
Dibenzofuran	ND		1x	90	ND		lx	85	ND		1 x	88	ND		lx	98	ND		lx	96
Diethyl phthalate	ND		1x	98	ND		lx	92	ND		1x	96	ND		lx	110	ND		lx	100
Dimethyl phthalate	ND		lx	84	ND		lx	79	ND		lx	82	ND		lx	91	ND		1x	89
Di-n-butyl phthalate	ND		1x	100	ND		lx	94	ND		1x	98	770		lx	110	ND		1x	110
Di-n-octyl phthalate	ND		lx	69	ND		lx	65	ND		1x	68	ND		lx	76	ND		lx	74
Hexachlorobenzene	ND		lx	120	ND		lx	120	ND		1x	120	ND		lx	130	ND		lx	130
Hexachlorobutadiene	ND		lx	310	ND		lx	290	ND		1x	300	ND		lx	330	ND		lx	330
Hexachlorocyclopentadiene	ND		lx	150	ND		lx	140	ND		1x	150	ND		lx	160	ND		lx	160
Hexachloroethane	ND		lx	370	ND		lx	350	ND		1 x	360	ND		lx	400	ND		lx	390
lsophorone	ND		1x	160	ND		1x	150	ND		lx	150	ND		lx	170	ND		1x	170
Nitrobenzene	ND		lx	240	ND		lx	230	ND		lx	240	ND		lx	270	ND		lx	260
N-Nitrosodimethylamine	ND		1x	330	ND		lx	310	ND		lx	320	ND		1x	360	ND		lx	350
N-Nitrosodi-n-propylamine	ND		lx	160	ND		lx	150	ND		1x	160	ND		1x	180	ND	•	lx	170
N-Nitrosodiphenylamine	ND		lx	120	ND		1x	120	ND		lx	120	ND		1x	140	ND		lx	130
Pentachlorophenol	ND		lx	140	ND		lx	130	ND		1x	140	ND		lx	150	ND		lx	150
Phenol	ND		lx	190	ND		lx	180	ND		1x	180	ND		lx	200	ND		lx	200
Pyridine	ND		_1x_	240	ND		<u>lx</u>	230	<u>ND</u>		<u>1x</u>	240	ND		<u> x</u>	260	ND		lx	260

Analyte		BEI	SED			BE2 SEE)			BE3	SED	_		BE4 S	SED	· · · · · · · · · · · · · · · · · · ·
ug/kg	Result	Qual.	Dil	Limit	Result	Qual D	Dil.	Limit	Result	Qual	Dil.	Limit	Result	Qual.	Dil	Limit
1,2-Dichlorobenzene	ND		lx	790	ND	1	lx 🛛	580	ND		1x	560	ND		lx	680
1,2-Diphenylhydrazine	ND		1x	150	ND	1	lx	110	ND		1x	110	ND		1x	1 30
1,2,4 Trichlorobenzene	ND		lx	580	ND	1	l x	420	ND		lx	410	ND		lx	500
1,3-Dichlorobenzene	ND		1x	790	ND	I	l x	580	ND		١x	560	ND		1x	680
1,4-Dichlorobenzene	ND		1x	750	ND	1	lx 🛛	550	ND		lx	530	ND		lx	640
2-Chloronaphthalene	ND		lx	250	ND	1	lx	180	ND		1x	170	ND		lx	210
2-Chlorophenol	ND	-	lx	500	ND	1	lx	360	ND		1x	350	ND		lx	430
2-Methyl-4,6-dinitrophenol	ND		lx	260	ND	1	lx	190	ND		1x	180	ND		lx	220
2-Methylphenol	ND		lx	350	ND	1	lx	250	ND		lx	250	ND		lx	300
2-Nitroaniline	ND		lx	240	ND	1	lx	180	ND		1x	170	ND		lx	210
2-Nitrophenol	ND		lx	460	ND	1	lx	330	ND		lx	320	ND		lx	390
2,2'-oxybis(1-Chloropropane)	ND		lx	500	ND	1	lx	360	ND		lx	350	ND		lx	430
2,4-Dichlorophenol	ND		lx	250	ND	1	lx	180	ND		lx	180	ND		lx	220
2,4-Dimethylphenol	ND		lx	670	ND	1	lx	480	ND		lx ·	470	ND		lx	570
2,4-Dinitrophenol	ND		lx	460	ND	1	lx	330	ND		1x	320	ND		1x	390
2,4-Dinitrotoluene	ND		lx	220	ND	1	lx	160	ND		lx	150	ND		lx	190
2,4,5-Trichlorophenol	ND		lx	130	ND	1	l x	97	ND		lx	94	ND		lx	110
2,4,6-Trichlorophenol	ND		lx	250	ND	1	l x	180	ND		lx	180	ND		lx	210
2,6-Dinitrotoluene	ND		lx	290	ND	1	l x	210	ND		1x	210	ND		lx	250
3-Nitroaniline	ND		lx	890	ND	1	lx –	650	ND		lx	630	ND		lx	760
3+4-Methylphenol	ND		1x	330	ND	_ 1	lx	240	ND		lx	240	ND		lx	290
3,3'-Dichlorobenzidine	ND		lx	1200	ND	1	lx	880	ND		lx	850	ND		lx	1000
4-Bromophenyl phenyl ether	ND		lx	130	ND	1	lx	94	ND		1x	91	ND		lx	110
4-Chloro-3-methylphenol	ND		lx	200	ND	1	lx	150	ND		1x	140	ND		1x	170
4-Chloroaniline	ND		lx	1100	ND	1	lx	810	ND		lx	780	ND		lx	950
4-Chlorophenyl phenyl ether	ND		lx	270	ND	1	l x	200	ND		1x	190	ND		lx	230
4-Nitroaniline	ND		lx	360	ND	1	lx	260	ND		lx	250	ND		lx	310
4-Nitrophenol	ND		1x	260	ND	1	lx	190	ND		lx	180	ND		lx	220
Benzidine	ND		1x	1200	ND	1	lx	850	ND		lx	820	ND		lx	1000
Benzoic acid	ND		lx	1600	ND	1	l x	1200	ND		lx	1100	ND		lx	1400
Benzyl alcohol	ND		lx	380	ND	1	lx	270	ND		lx	260	ND		lx	320
Benzyl butyl phthalate	ND		1x	360	ND	1	lx	260	ND		1x	250	ND		lx	310
bis(2-Chloroethoxy)methane	ND		lx	340	ND	1	lx	250	ND		lx	240	ND		lx	290
bis(2-Chloroethyl) ether	ND		lx	580	ND	1	lx	420	ND		1x	410	ND		lx	500
bis(2-Ethylhexyl) phthalate	ND_		lx.	540	ND	1	lx	390	ND		1x	380	ND		1x	460

BREWERTON EASTERN EXTENSION-VAN VEEN

analyte list continued on following page

Analyte			BEI	SED			BE2	SED			BE3	SED			BE4	SED	
	ıg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dit.	Limit	Result	Qual	Dil.	Limit	Result	Qual.	Dit	Limit
Carbazole		ND		lx	200	ND		1x	150	ND		lx	140	ND		1x	180
Cyclohexanone		ND		١x	820	ND		١x	600	ND		lx	580	ND		lx	710
Dibenzofuran		ND		lx	180	ND		lx	130	ND		lx	130	ND		lx	160
Diethyl phthalate		ND		lx	200	ND		1x	150	ND		lx	140	ND		lx	170
Dimethyl phthalate		ND		1x	170	ND		lx	120	ND		1x	120	ND		lx	150
Di-n-butyl phthalate	1	ND		1x	200	ND		1x	150	ND		lx	140	ND		lx	180
Di-n-octyl phthalate		ND		1x	140	ND		lx	100	ND		1x	100	ND		· lx	120
Hexachlorobenzene	í	ND		lx	250	ND		1x	180	ND		lx	180	ND		lx	210
Hexachlorobutadiene		ND		1x	620	ND		lx	450	ND		1x	440	ND		lx	540
Hexachlorocyclopentadiene		ND		lx	310	ND		1x	220	ND		1x	220	ND		lx	260
Hexachloroethane		ND		1x	750	ND		1x	550	ND		lx	530	ND		١x	640
Isophorone		ND		lx	320	ND		1x	230	ND		lx	220	ND		1x	270
Nitrobenzene		ND		lx	500	ND		1x	360	ND		1x	350	ND		lx	430
N-Nitrosodimethylamine		ND		1x	670	ND		1 x	480	ND		lx	470	ND		lx	570
N-Nitrosodi-n-propylamine		ND		1x	330	ND		lx	240	ND		lx	240	ND		lx	280
N-Nitrosodiphenylamine		ND		lx	250	ND		lx	180	ND		lx	180	ND		lx	220
Pentachlorophenol		ND		1x	290	ND		1x	210	ND		1x	200	ND		lx	250
Phenol		ND		1x	380	ND		lx	280	ND		ix	270	ND		1x	320
Pyridine		ND		1x_	490	ND		<u>lx</u>	360	ND		İx	350	ND		lx_	420

BREWERTON EASTERN EXTENSION-VAN VEEN
BREWERTON EASTERN EXTENSION-GRAVITY CORE

.

Analyte			BEVI	SED			BEV2	SED			BEV3	SED			BEV4 S	SED			BEV5	SED	1		BEV6	SED	
ug/k	œ	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene		ND		1x	450	ND		1x	430	ND		1x	450	ND		1x	420	ND		lx	490	ND		lx	480
1,2-Diphenylhydrazine		ND		١x	86	ND		lx	82	ND		lx	86	ND		lx	80	ND		lx	92	ND		1x	90
1,2,4-Trichlorobenzene		ND		lx	330	ND		`lx	320	ND		1x	330	ND		lx	310	ND	•	lx	360	ND		1x	350
1,3-Dichlorobenzene		ND		1x	450	ND		lx	430	ND		lx	450	ND		1x	420	ND		lx	490	ND		1x	480
1,4-Dichlorobenzene		ND		lx	430	ND		1x	410	ND		lx	430	ND		1x	400	ND		1x	460	ND		1x	450
2-Chloronaphthalene		ND		lx	140	ND		1x	130	ND		lx	140	ND		1x	130	ND		1x	150	ND		1x	150
2-Chlorophenol		ND		1x	290	ND		lx	270	ND		lx	290	ND		lx	270	ND		lx	310	ND		1x	300
2-Methyl-4,6-dinitrophenol		ND		1x	150	ND		lx	140	ND		lx	150	ND		1x	140	ND		1x	160	ND		1x	160
2-Methylphenol		ND		1x	200	ND		1x	190	ND		lx	200	ND		lx	190	ND		1x	220	ND		1x	210
2-Nitroaniline		ND		1x	140	ND		lx	130	ND		lx	140	ND		lx	130	ND		lx	150	ND		1x	140
2-Nitrophenol		ND		1x	260	ND		lx	250	ND	•	lx	260	ND		lx	240	ND		1x	280	ND		1x	280
2,2'-oxybis(1-Chloropropane)		ND		1x	290	ND		lx	270	ND ^{. J}		1x	290	ND		1x	270	ND		1x	310	ND		1x	300
2,4-Dichlorophenol		ND		1x	150	ND		1x	140	ND		1x	150	ND		lx	140	ND		1x	160	ND		lx	150
2,4-Dimethylphenol		ND		1x	380	ND		1x	360	ND		lx	380	ND		lx	360	ND		1x	410	ND		1x	400
2,4-Dinitrophenol		ND		1x	260	ND		1 x	250	ND		1x	260	ND		lx	240	ND		1 x	280	ND		lx	280
2,4-Dinitrotoluene		ND		lx	120	ND		1x	120	ND		lx	120	ND		lx	120	ND		lx	130	ND		łx	130
2,4,5-Trichlorophenol		ND		lx	76	ND		1x	73	ND		1x	76	ND		lx	71	ND		1x	82	ND		lx	80
2,4,6-Trichlorophenol		ND		1x	140	ND		1x	140	ND		1x	140	ND		lx	130	ND		lx	150	ND		lx	150
2,6-Dinitrotoluene		ND		lx	170	ND		1 x	160	ND		łx	170	ND		lx	160	ND		lx	180	ND		łx	180
3-Nitroaniline		ND		1x	510	ND		1x	480	ND		1x	510	ND		lx	470	ND		1x	550	ND		łx	530
3+4-Methylphenol		ND		1x	190	ND		1x	180	660		lx	190	ND		lx	180	ND		lx	210	ND		łx	200
3,3'-Dichlorobenzidine		ND		· Ix	690	ND		1x	660	ND		1x	690	ND		1x	640	ND	•	1x	740	ND		łx	720
4-Bromophenyl phenyl ether		ND		lx	74	ND		1x	70	ND		1x	74	ND		1x	69	ND		lx	79	ND		lx	78
4-Chloro-3-methylphenol		ND		1x	110	ND		1x	110	ND		1x	110	ND		lx	110	ND		lx	120	ND		lx	120
4-Chloroaniline		ND		lx	630	ND		lx	600	ND		1x	630	ND		lx	590	ND		lx	680	ND		lx.	660
4-Chlorophenyl phenyl ether		ND		lx	150	ND		1x	150	ND		łx	150	ND		1x	140	ND		1x	170	ND		1x	160
4-Nitroaniline		ND		lx	200	ND		1x	200	ND		1x	200	ND		1x	190	ND		1x	220	ND		łx	220
4-Nitrophenol		ND		lx	150	ND		lх	140	ND		łx	150	ND		lx	140	ND		1x	160	ND		1x	160
Benzidine		ND		1x	670	ND		1x	640	ND		łx	670	ND		lx	620	ND		1x	720	ND		1x	700
Benzoic acid		ND		1x	910	ND		lx	870	ND		1x	910	ND		1x	850	ND		1x	980	ND		lx	960
Benzyl alcohol		ND		łx	210	ND		1x	200	ND		lx	210	ND		lx	200	ND		1x	230	ND		lx	220
Benzyl butyl phthalate		ND		lx	200	ND		lx	200	ND		1x	200	ND		1x	190	ND		lx	220	ND		1x	220
bis(2-Chloroethoxy)methane		ND		1x	190	ND		1x	180	ND		łx	190	ND		łx	180	ND		1x	210	ND		1x	200
bis(2-Chloroethyl) ether		ND		١x	330	ND		lx	320	ND		1x	330	ND		١x	310	ND		lx	360	ND		1x	350
bis(2-Ethylhexyl) phthalate		ND		1x	310	ND		<u>1x</u>	300	ND		1x	310	ND		lx	290	ND		1x	330	ND		1x	320

analyte list continued on following page

BREWERTON EASTERN EXTENSION-GRAVITY CORE

Analyte	1		BEVI	SED			BEV2	SED			BEV	SED			BEV4	SED			BEV5	SED			BEV6	SED	
u	e/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil_	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
Carbazole		ND		lx	120	ND		lx	110	ND	_	lx	120	ND		lx	110	ND		lx	130	ND		lx	120
Cyclohexanone		ND		lx	470	ND		lx	450	ND		lx	470	ND		lx	440	ND		1x	510	ND		1x	500
Dibenzofuran		ND		1x	100	ND		1x	100	ND	•	1x	100	ND		lx	98	ND		lx	110	ND		lx	110
Diethyl phthalate		ND		lx	110	ND		1x	110	ND		lx	110	ND		lx	110	ND		lx	120	ND		1x	120
Dimethyl phthalate		ND		1x	98	ND		lx	93	ND		lx	98	ND		lx	91	ND		1x	110	ND		1x	100
Di-n-butyl phthalate		ND		lx	120	ND		lx	110	ND		1x	120	ND		lx	110	ND		lx	130	ND		1x	120
Di-n-octyl phthalate		ND		lx	81	ND		1x	77	ND		lx	81	ND		lx	76	ND		1x	87	ND		1x	85
Hexachlorobenzene		ND		1x	140	ND		1x	140	ND		lx	140	ND		lx	130	ND		lx	150	ND		١x	1 50
Hexachlorobutadiene		ND		lx	360	ND		lx	340	ND		lx	360	ND		lx	330	ND		1x	380	ND		lx	380
Hexachlorocyclopentadiene		ND		lx	180	ND		lx	170	ND		lx	180	ND		lx	160	ND		1x	190	ND		1x	180
Hexachloroethane		ND		1x	430	ND		1 x	410	ND		lx	430	ND		lx	400	ND		1x	460	ND		1x	450
Isophorone		ND		lx	180	ND		lx	170	ND		lx	180	ND		lx	170	ND		1x	190	ND		lx	190
Nitrobenzene		ND		lx	290	ND		lx	270	ND		1x	290	ND		lx	270	ND		1x	310	ND		lx	300
N-Nitrosodimethylamine		ND		1x	380	ND		1x	360	ND		1x	380	ND		lx	360	ND		1x	410	ND		lx	400
N-Nitrosodi-n-propylamine		ND		1x	190	ND		1x	180	ND		lx	190	ND		lx	180	ND		1x	200	ND		1x	200
N-Nitrosodiphenylamine		ND		1x	150	ND		1x	140	ND		lx	150	ND		lx	140	ND		1x	160	ND		lx	150
Pentachlorophenol		ND		1x	160	ND		1x	160	ND		lx	160	ND		lx	150	ND		1x	180	ND		lx	· 170
Phenol		ND		1x	220	ND		1x	210	ND		1x	220	ND		lx	200	ND		1x	230	ND		lx	230
Pyridine		ND_		<u>1x</u>	280	ND		<u>lx</u>	270	ND		<u>lx</u>	280	ND		<u>lx</u>	260	<u>ND</u>		1x	300	ND		lx_	300

Tabl	e 4-5.	Continu	ed

Analyte		BRI	SED			BR2 SED			BR3 SED			BR4 S	ED	
ug/kg	Result	Qual	Dil	Limit	Result	Qual. Di	Limit	Result	Qual. Dil.	Limit	Result	Qual,	Dil	Limit
1,2-Dichlorobenzene	ND		1x	630	ND	1×	590	ND	lx	580	ND		1x	660
1,2-Diphenylhydrazine	ND		lx	120	ND	18	110	ND	lx	110	ND		lx	120
1,2,4-Trichlorobenzene	ND		lx	470	ND	1 x	440	ND	lx	420	ND		1x	480
1,3-Dichlorobenzene	ND		lx	630	ND	18	590	ND	lx	580	ND		lx	660
1,4-Dichlorobenzene	ND		lx	600	ND	L×	560	ND	lx	550	ND		1x	620
2-Chloronaphthalene	ND		lx	200	ND	1×	180	ND	lx	180	ND		lx	200
2-Chlorophenol	ND		lx	400	ND	1x	380	ND	1x	360	ND		1x	410
2-Methyl-4,6-dinitrophenol	ND		lx	210	ND	1x	190	ND	lx	190	ND		1x	210
2-Methylphenol	ND		lx	280	ND	Lx	260	ND	lx	250	ND		lx	290
2-Nitroaniline	ND		١x	190	ND	1×	180	ND	lx	180	ND		1x	200
2-Nitrophenol	ND		١x	370	ND	lx	340	ND	lx	330	ND		1x	380
2,2'-oxybis(1-Chloropropane)	ND		lx	400	ND	18	380	ND	lx	360	ND		1 x	410
2,4-Dichlorophenol	ND		١x	200	ND	1 א	190	ND	lx	180	ND		lx	210
2,4-Dimethylphenol	ND		١x	530	ND	l x	500	ND	lx	480	ND		1x	550
2,4-Dinitrophenol	ND		١x	370	ND	1x	340	ND	lx	330	ND		lx	380
2,4-Dinitrotoluene	ND		lx	170	ND	1×	160	ND	lx	160	ND		lx	180
2,4,5-Trichlorophenol	ND		١x	110	ND	18	100	ND	1 x	97	ND		lx	110
2,4,6-Trichlorophenol	ND		١x	200	ND	1×	190	ND	1 x	180	ND		1x	210
2,6-Dinitrotoluene	ND		lx	230	ND	1 ×	220	ND	lx	210	ND		1x	240
3-Nitroaniline	ND		lx	710	ND	1 x	670	ND	1x	650	ND		1x	730
3+4-Methylphenol	ND		lx	270	ND	1x	250	ND	lx	240	ND		1x	280
3,3'-Dichlorobenzidine	ND		١x	970	ND	18	910	ND	lx	880	ND		lx	1000
4-Bromophenyl phenyl ether	ND		lx	100	ND	1×	97	ND	lx	94	ND		lx	110
4-Chloro-3-methylphenol	ND		lx	160	ND	1x	150	ND	lx	1 50	ND		lx	170
4-Chloroaniline	ND		1x	890	ND	1×	830	ND	lx	810	ND		1x	920
4-Chlorophenyl phenyl ether	ND		1x	220	ND	1×	200	ND	lx	200	ND		lx	220
4-Nitroaniline	ND		1x	290	ND	1×	270	ND	lx	260	ND		lx	300
4-Nitrophenol	ND		1x	210	ND	1x	190	ND	lx	190	ND		lx	210
Benzidine	ND		lx	930	ND	1x	880	ND	lx	850	ND		lx	970
Benzoic acid	ND		lx	1300	ND	1x	1200	ND	lx	1200	ND		1x	1300
Benzyl alcohol	ND		lx	300	ND	lx	280	ND	lx	270	ND		lx	310
Benzyl butyl phthalate	ND		1 x	290	ND	1x	270	ND	lx	260	ND		lx	300
bis(2-Chloroethoxy)methane	ND		lx	270	ND	1x	250	ND	lx	250	ND		lx	280
bis(2-Chloroethyl) ether	ND		1x	470	ND	1x	440	ND	1x	420	ND		lx	480
bis(2-Ethylhexyl) phthalate	ND		1x.	430	ND_	1×	410	ND	<u> </u>	390	ND.		1x	450

BREWERTON REACH

.

analyte list continued on following page

Analyte		BR1	SED			BR2	SED			BR3	SED			BR4	SED	
ug/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	160	ND		1x	150	ND		1x	150	ND		lx	170
Cyclohexanone	ND		1x	660	ND		lx	620	ND		1x	600	ND		lx	680
Dibenzofuran	ND		lx	150	ND		1x	140	ND		1x	130	ND		lx	150
Diethyl phthalate	ND		lx	160	ND		1x	150	ND		1x	150	ND		lx	170
Dimethyl phthalate	ND		1x	140	ND		lx	130	ND		lx	120	ND		lx	140
Di-n-butyl phthalate	ND		lx	160	ND		1x	150	ND		1x	150	ND		lx	170
Di-n-octyl phthalate	ND		1x	110	ND		lx	110	ND		1x	100	ND		lx	120
Hexachlorobenzene	ND		1x	200	ND		lx	190	ND		lx	180	ND		1x	210
Hexachlorobutadiene	ND		1x	500	ND		1x	470	ND		lx	450	ND		1x	520
Hexachlorocyclopentadiene	ND		lx	250	ND		lx	230	ND		lx	220	ND		lx	260
Hexachloroethane	ND		lx	600	ND		1x	560	ND		lx	550	ND		1x	620
Isophorone	ND		lx	250	ND		lx	240	ND		1x	230	ND		lx	260
Nitrobenzene	ND		lx	400	ND		lx	380	ND		1x	360	ND		lx	410
N-Nitrosodimethylamine	ND		1x	530	ND		lx	500	ND		1x	480	ND		lx	550
N-Nitrosodi-n-propylamine	ND		1x	260	ND		1x	250	ND		1x	240	ND		lx	270
N-Nitrosodiphenylamine	ND		1×	200	ND		1x	190	ND		lx	180	ND		lx	210
Pentachlorophenol	ND		lx	230	ND		lx	220	ND		1x	210	ND		lx	240
Phenol	ND		1x	300	ND .		lx	280	ND		lx	280	ND		1x	310
Pyridine	ND		1x	390	ND		1x	370	ND		1x	360	ND		lx	410

.

BREWERTON REACH

.

BLIND SPLITS

Analyte	BL	INDSPL	ITIA(BI	RI)	BL	INDSPL	IT2A(B	3)
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	580	ND		lx	510
1,2-Diphenylhydrazine	ND		1x	110	ND		1x	97
1,2,4-Trichlorobenzene	ND		lx	420	ND		lx	380
1,3-Dichlorobenzene	ND		١x	580	ND		١x	510
1,4-Dichlorobenzene	ND		lx	550	ND		١x	490
2-Chloronaphthalene	ND		١x	180	ND		lx	160
2-Chlorophenol	ND		١x	360	ND		١x	320
2-Methyl-4,6-dinitrophenol	ND		lx	190	ND		1x	170
2-Methylphenol	ND		1x	250	ND		1x	230
2-Nitroaniline	ND		1x	180	ND		١×	160
2-Nitrophenol	ND		l×	330	ND		lx	300
2,2'-oxybis(1-Chloropropane)	ND		1x	360	ND		lx	320
2,4-Dichlorophenol	ND		1x	180	ND		lx	160
2,4-Dimethylphenol	ND		lx	480	ND		lx	430
2,4-Dinitrophenol	ND		1x	330	ND		lx	300
2,4-Dinitrotoluene	ND		lx	160	ND		1x	140
2,4,5-Trichlorophenol	ND		lx	97	ND		1x	86
2,4,6-Trichlorophenol	ND		1x	180	ND		1x	160
2,6-Dinitrotoluene	ND		1x	210	ND		lx	190
3-Nitroaniline	ND		1x	650	ND		lx	580
3+4-Methylphenol	ND		lx	240	ND		lx	220
3,3'-Dichlorobenzidine	ND		lx	880	ND		1x	780
4-Bromophenyl phenyl ether	ND		lx	94	ND		lx	84
4-Chloro-3-methylphenol	ND		lx	150	ND		lx	130
4-Chloroaniline	ND		lx	810	ND		lx	720
4-Chlorophenyl phenyl ether	ND		lx	200	ND		lx	180
4-Nitroaniline	ND		lx	260	ND		lx	230
4-Nitrophenol	ND		lx	190	ND		lx	170
Benzidine	ND		lx	850	ND		lx	760
Benzoic acid	ND		lx	1200	ND		lx	1000
Benzyl alcohol	ND		lx	270	ND		lx	240
Benzyl butyl phthalate	ND		lx	260	ND		1x	230
bis(2-Chloroethoxy)methane	ND		lx	250	ND		lx	220
bis(2-Chloroethyl) ether	ND		lx	420	ND		lx	380
bis(2-Ethylhexyl) phthalate	ND		lx	390	ND		lx	350

analyte list continued on following page

BLIND SPLITS

.

Analyte	BL	INDSPL	ITIA(BF	(1)	BL	INDSPL	IT2A(BI	3)
ug/kg	Result	Qual.	Dil.	Limit_	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	150	ND		lx	130
Cyclohexanone	ND		lx	600	ND		lx	540
Dibenzofuran	ND		lx	130	ND		lx	120
Diethyl phthalate	ND		lx	150	ND		lx	130
Dimethyl phthalate	ND		lx	120	ND		lx	110
Di-n-butyl phthalate	ND		lx	150	ND		1x	130
Di-n-octyl phthalate	ND		lx	100	ND		1x	92
Hexachlorobenzene	ND		lx	180	ND		lx	160
Hexachlorobutadiene	ND		lx	450	ND		1x	410
Hexachlorocyclopentadiene	ND		lx	220	ND		lx	200
Hexachloroethane	ND		lx	550	ND		lx	490
Isophorone	ND		lx	230	ND		lx	210
Nitrobenzene	NE 🦯		lx	360	ND		lx	320
N-Nitrosodimethylamine	ND		lx	480	ND		lx	430
N-Nitrosodi-n-propylamine	ND		lx	240	ND		lx	210
N-Nitrosodiphenylamine	ND	·	lx	180	ND		lx	160
Pentachlorophenol	ND		1x	210	ND		lx	190
Phenol	ND		lx	280	ND		lx	250
Pyridine	ND		lx.	360	ND		lx	320

BREWERTON ANGLE

Analyte		BRAI	SED			BRA2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene	ND		1x	700	ND		lx	680
1,2-Diphenylhydrazine	ND		1x	130	ND		1x	130
1,2,4-Trichlorobenzene	ND		lx	520	ND		1x	500
1,3-Dichlorobenzene	ND		1x	700	ND		1x	680
1,4-Dichlorobenzene	ND		1x	670	ND		1x	640
2-Chloronaphthalene	ND		١x	220	ND		lx	210
2-Chlorophenol	ND		1x	440	ND		١x	430
2-Methyl-4,6-dinitrophenol	ND		1x	230	ND		1x	220
2-Methylphenol	ND		1x	310	ND		1x	300
2-Nitroaniline	ND		1x	210	ND		1x	210
2-Nitrophenol	ND		1x	410	ND		1x	390
2,2'-oxybis(1-Chloropropane)	ND		1x	440	ND		1x	430
2,4-Dichlorophenol	ND		1x	230	ND		1x	220
2,4-Dimethylphenol	ND		1x	590	ND		1x	570
2,4-Dinitrophenol	ND		1x	410	ND		1x	390
2,4-Dinitrotoluene	ND		1x	190	ND		1x	190
2,4,5-Trichlorophenol	ND		1x	-120	ND		1x	110
2,4,6-Trichlorophenol	ND		1x	220	ND		1x	210
2,6-Dinitrotoluene	ND		1x	260	ND		1x	250
3-Nitroaniline	ND		1x	790	ND		1x	760
3+4-Methylphenol	320		1x	300	ND		1x	290
3,3'-Dichlorobenzidine	ND		lх	1100	ND		1x	1000
4-Bromophenyl phenyl ether	ND		1x	110	ND		1x	110
4-Chloro-3-methylphenol	ND		lx	180	ND		1x	170
4-Chloroaniline	ND		1x	990	ND		1x	950
4-Chiorophenyl phenyl ether	ND		1 x	240	ND		1x	230
4-Nitroaniline	ND		1x	320	ND		1x	310
4-Nitrophenol	ND		1x	230	ND		1x	220
Benzidine	ND		1x	1000	ND		lx	1000
Benzoic acid	ND		1x	1400	ND		1x	1400
Benzyl alcohol	ND		lx	330	ND		lx	320
Benzyl butyl phthalate	ND		1x	320	ND		1x	310
bis(2-Chloroethoxy)methane	ND		1x	300	ND		1x	290
bis(2-Chloroethyl) ether	ND		lx	520	ND		1x	500
his(2-Ethylhexyl) phthalate	ND		lx	480	ND		1x	460

analyte list continued on following page

Analyte		BRAI	SED			BRA2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit
Carbazole	ND		lx	180	ND		1x	180
Cyclohexanone	ND		lx	730	ND		lx	710
Dibenzofuran	ND		1x	160	ND		1x	160
Diethyl phthalate	ND		lx	180	ND		lx	170
Dimethyl phthalate	ND		lx	150	ND		lx	150
Di-n-butyl phthalate	ND		1x	180	ND		lx	180
Di-n-octyl phthalate	ND		1x	130	ND		1x	120
Hexachlorobenzene	ND		1x	220	ND		lx	210
Iexachlorobutadiene	ND		lx	560	ND		lx	540
Hexachlorocyclopentadiene	ND		lx	270	ND		1x	260
Iexachloroethane	ND		lx	670	ND		lx	640
sophorone	ND		1x	280	ND		1x	270
Nitrobenzene	ND		lx	440	ND		lx	430
N-Nitrosodimethylamine	ND		lx	590	ND		lx	570
N-Nitrosodi-n-propylamine	ND		lx	290	ND		1x	280
N-Nitrosodiphenylamine	ND		lx	230	ND		lx	220
Pentachlorophenol	ND		1x	260	ND		lx	250
Phenol	ND		lx	340	ND		lx	320
Pyridine	ND		1x	440	ND		1x	420

BREWERTON ANGLE

·

Analyte		FMHI	SED			FMH2 SED			FMH3	SED			FMH4	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual, Dil.	Limit	Result	Qual	Dil	Limit	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	630	ND	lx.	730	ND		lx	560	ND		lx	480
1,2-Diphenylhydrazine	ND		lx	120	ND	lx	140	ND		lx	110	ND		1x	90
1,2,4-Trichlorobenzene	ND		lx	470	ND	lx	540	ND		lx	410	ND		lx	350
1,3-Dichlorobenzene	ND		lx	630	ND	lx	730	ND		lx	560	ND		lx	480
1,4-Dichlorobenzene	ND		lx	600	ND	lx	690	ND		lx	530	ND		lx	450
2-Chloronaphthalene	ND		lx	200	ND	lx	230	ND		lx	170	ND		lx	1 50
2-Chlorophenol	ND		lx	400	ND	lx	460	ND		lx	350	ND		lx	300
2-Methyl-4,6-dinitrophenol	ND		lx	210	ND	lx	240	ND		lx	180	ND		1x	160
2-Methylphenol	ND		lx	280	ND	lx	320	ND		lx	250	ND		lx	210
2-Nitroaniline	ND		1x	190	ND	lx	220	ND		lx	170	ND		1x	140
2-Nitrophenol	ND		1x	370	ND	lx	420	ND		lx	320	ND		lx	280
2,2'-oxybis(1-Chloropropane)	ND		lx	400	ND	lx	460	ND		lx	350	ND		lx	300
2,4-Dichlorophenol	ND		lx	200	ND	lx	230	ND		lx	180	ND		1x	150
2,4-Dimethylphenol	NÐ		lx	530	ND	lx	620	ND		lx	470	ND		lx	400
2,4-Dinitrophenol	ND		lx	370	ND	lx	420	ND		lx	320	ND		lx	280
2,4-Dinitrotoluene	ND		.1x	170	ND	lx	200	ND		lx	150	ND		1x	130
2,4,5-Trichlorophenol	ND		lx	110	ND	lx	120	ND		lx	94	ND		lx	80
2,4,6-Trichlorophenol	ND		1x	200	ND	lx	230	ND		lx	180	ND		lx	150
2,6-Dinitrotoluene	ND		lx	230	ND	lx	270	ND		lx	210	ND		1x	180
3-Nitroaniline	ND		lx	710	ND	1x	820	ND		1x	630	ND		lx	530
3+4-Methylphenol	ND		lx	270	ND	1x	310	ND		lx	240	ND		lx	200
3,3'-Dichlorobenzidine	ND		lx	970	ND	lx	1100	ND		lx	850	ND		1x	720
4-Bromophenyl phenyl ether	ND		1x	100	ND	lx	120	ND		1 x	91	ND		lx	78
4-Chloro-3-methylphenol	ND		lx	160	ND	lx	180	ND		lx	140	ND		lx	120
4-Chloroaniline	ND		lx	890	ND	lx	1000	ND		lx	780	ND		lx	660
4-Chlorophenyl phenyl ether	ND		lx	220	ND	lx	250	ND		lx	190	ND		lx	160
4-Nitroaniline	ND		1x	290	ND	lx	330	ND		lx	250	ND		lx	220
4-Nitrophenol	ND		1x	210	ND	lx	240	ND		lx	180	ND		lx	160
Benzidine	ND		lx	930	ND	lx	1100	ND		lx	820	ND		1x	700
Benzoic acid	ND		1x	1300	ND	lx	1500	ND		lx	1100	ND		lx	960
Benzyl alcohol	ND		lx	300	ND	lx	350	ND		lx	260	ND		lx	220
Benzyl butyl phthalate	ND		lx	290	ND	lx	330	ND		1x	250	ND		lx	220
bis(2-Chloroethoxy)methane	ND		lx	270	ND	lx	310	ND		lx	240	ND		lx	200
bis(2-Chloroethyl) ether	ND		lx	470	ND	lx	540	ND		1x	410	ND		1x	350
bis(2-Ethylhexyl) phthalate	ND_		<u> </u>	430	ND_	lx	500	ND		lx	380	ND		1x	320

FT. MCHENRY REACH

analyte list continued on following page

[<u>___</u>

Analyte		FMHI	SED			FMH2	SED			E (U	SED					
ug/kg	Result	Qual.	Dil.	Limit	Result	Oual	Dil	Limit	Perult	- FMH	SED		L	FMH4	SED	
Carbazole	ND		lx	160	ND		<u> </u>	100	ND	Qual.	Dil	<u>Limit</u>	Result	Qual.	Dil.	Limit
Cyclohexanone	ND		lx	660	ND		12	190			lx	140	ND		lx	120
Dibenzofuran	ND		lx	150	ND		14	100	ND		lx	580	ND		lx	500
Diethyl phthalate	ND		1x	160	ND		1	1/0	ND		lx	130	ND		1x	110
Dimethyl phthalate	ND		lx	140	ND		1.	180	ND		lx	140	ND.		lx	120
Di-n-butyl phthalate	ND		lx	160	ND		1X	160	ND		lx	120	ND		lx	100
Di-n-octyl phthalate	ND		lx	110	ND		IX	190	ND		lx	140	ND		lx	120
Hexachlorobenzene	ND		lx	200	ND		1X	130	ND		lx	100	ND		lx	80
Hexachlorobutadiene	ND		1x	500	ND		IX .	230	ND		lx	180	ND		lx	150
Hexachlorocyclopentadiene	ND		lx.	250	ND		IX	580	ND		lx	440	ND		1x	380
lexachloroethane	ND		lx.	600	ND		1X	280	ND		lx	220	ND		lx	180
sophorone	ND		1x	250	ND		1X	690	ND		1x	530	ND		lx	450
Nitrobenzene	ND		11	400			IX	290	ND		1x	220	ND		1x	100
N-Nitrosodimethylamine	ND		1.	520			IX	460	ND		1x	350	ND		1x	300
V-Nitrosodi-n-propylamine	ND		14	260			1x	620	ND		l x	470	ND		lx.	400
-Nitrosodiphenvlamine	ND		1.	200	ND		lx	300	ND		1x	230	ND		12	100
entachlorophenol	ND		1.	200	ND		lx	230	ND		lx	180	ND		1.	200
henol	ND		1.	230	ND		lx	270	ND		lx	200	ND		1.	130
vridine	ND		1.	300	ND		lx	350	ND		lx	270	ND		14	170
			<u></u>	390	ND		<u>lx</u>	450	ND		1x	350	ND		1X	230
															1X	300

FT. MCHENRY REACH

· .

٠

Analyte		CB1 S	SED			CB2 SED			CB3 S	ED			CB4 S	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	830	ND	1x	390	ND		lx	760	ND		lx	830
1,2-Diphenylhydrazine	ND		lx	160	ND	lx	73	ND		lx	140	ND		lx	160
1,2,4-Trichlorobenzene	ND		١x	610	ND	lx	290	ND		lx	560	ND		lx	610
1,3-Dichlorobenzene	ND		1x	830	ND	lx	390	ND		1x	760	ND		lx	830
1,4-Dichlorobenzene	ND		lx	780	ND	lx	370	ND		lx	720	ND		lx	780
2-Chloronaphthalene	ND		1x	260	ND	· 1x	120	ND		lx	240	ND		lx	260
2-Chlorophenol	ND		lx	520	ND	lx	240	ND		lx	480	ND		lx	520
2-Methyl-4,6-dinitrophenol	ND		lx	270	ND	lx	130	ND		lx	250	ND		lx	270
2-Methylphenol	ND		1x	370	ND	lx	170	ND		lx	340	ND		lx	370
2-Nitroaniline	ND		lx	250	ND	lx	120	ND		lx	230	ND		lx	250
2-Nitrophenol	ND		lx	480	ND	lx	220	ND		lx	440	ND		lx	480
2,2'-oxybis(1-Chloropropane)	ND		lx	520	ND	lx	240	ND		lx	480	ND		lx	520
2,4-Dichlorophenol	ND		lx	270	ND	1x	120	ND		lx	240	ND		lx	270
2,4-Dimethylphenol	ND		lx	700	ND	lx	330	ND		lx	640	ND		lx	700
2,4-Dinitrophenol	ND		lx	480	ND	lx	220	ND		lx	440	ND		lx	480
2,4-Dinitrotoluene	ND		lx	230	ND	lx	110	ND		lx	210	ND		lx	230
2,4,5-Trichlorophenol	ND		lx	140	ND	lx	65	ND		lx	130	ND		lx	140
2,4,6-Trichlorophenol	ND		lx	260	ND	lx	120	ND		lx	240	ND		lx	260
2,6-Dinitrotoluene	ND		lx	300	ND	lx	140	ND		lx	280	ND		1x	300
3-Nitroaniline	ND		1x	930	ND	lx	430	ND		lx	850	ND		1x	930
3+4-Methylphenol	ND		lx	350	ND	1x	160	ND		lx	320	ND		1x	350
3,3'-Dichlorobenzidine	ND		lx	1300	ND	1x	590	ND		lx	1200	ŊD		lx	1300
4-Bromophenyl phenyl ether	ND		lx	130	ND	lx	63	ND		lx	120	ND		1x	130
4-Chloro-3-methylphenol	ND		١x	210	ND	lx	98	ND		lx	190	ND		lx	210
4-Chloroaniline	ND		lx	1200	ND	lx	540	ND		1x	1100	ND		lx	1200
4-Chlorophenyl phenyl ether	ND		lx	280	ND	lx	130	ND		lx	260	ND		lx	280
4-Nitroaniline	ND		1x	370	ND	lx	180	ND		lx	340	ND		lx	370
4-Nitrophenol	ND		lx	270	ND	lx	130	ND		lx	250	ND		lx	270
Benzidine	ND		1x	1200	ND	lx	570	ND		١x	1100	ND		lx	1200
Benzoic acid	ND		lx	1700	ND	1x	780	ND		1x	1500	ND		lx	1700
Benzyl alcohol	ND		lx	390	ND	1x	180	ND		1x	360	ND		lx	390
Benzyl butyl phthalate	ND		1x	370	ND	1x	180	ND		١x	340	ND		lx	370
bis(2-Chloroethoxy)methane	ND		lx	350	ND	lx	170	ND		lx	320	ND		lx	350
bis(2-Chloroethyl) ether	ND		lx	610	ND	lx	290	ND		lx	560	ND		lx	610
bie(2-Ethylberryl) phthalate	ND		1x	570	ND	lx	270	ND		lx	520	ND		lx	570

-

CURTIS BAY REACH

analyte list continued on following page

Analyte		CB1	SED			CB2	SED			CB3	SED			CB4	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	210	ND		İx	100	ND		1x .	200	ND		lx	210
Cyclohexanone	ND		1x	860	ND		lx	400	ND		1 x	790	ND		lx '	860
Dibenzofuran	ND		lx	190	ND		lx	90	ND		1 x	180	ND		lx	190
Diethyl phthalate	ND		1x	210	ND		1x	98	ND		l×	190	ND		lx	210
Dimethyl phthalate	ND		1x	180	ND		1x	84	ND		1x	160	ND		lx	180
Di-n-butyl phthalate	ND		1x	210	ND		1x	100	ND		lx	200	ND		lx	210
Di-n-octyl phthalate	ND		1x	150	ND		lx	69	ND		1x	140	ND		lx	150
Hexachlorobenzene	ND		lx	260	ND		1x	120	ND		lx	240	ND		lx	260
Hexachlorobutadiene	ND		lx	650	ND		1x	310	ND		lx	600	ND		lx	650
Hexachlorocyclopentadiene	ND		lx -	320	ND		lx	150	ND		1x	300	ND		lx	320
Hexachloroethane	ND		lx	780	ND		lx	370	ND		1x	720	ND		1x	780
Isophorone	ND		lx	330	ND		lx	160	ND		1x	300	ND		lx	330
Nitrobenzene	ND		lx	520	ND	•	1x	240	ND		1x	480	ND		lx	520
N-Nitrosodimethylamine	ND		lx	700	ND		1x	330	ND		lx	640	ND		lx	700
N-Nitrosodi-n-propylamine	ND		lx	340	ND		lx	160	ND		lx	320	ND		1x	340
N-Nitrosodiphenylamine	ND		1x	270	ND	•	lx	120	ND		lx	240	ND		lx	270
Pentachlorophenol	ND		1x	300	ND		1x	140	ND		1x	280	ND		lx	300
Phenol	ND		١x	400	ND		lx	190	ND		lx	360	ND		lx	400
Pyridine	ND I		Jx	510	ND		<u>lx</u>	240	ND		lx	470	ND		1x	510

CURTIS BAY REACH

-

nalyte		FB1 SED			FB2	SED			FB3	SED	
ug/kg	Result	Qual. Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual	_Dil.	Limit
,2-Dichlorobenzene	ND	lx	860	ND		lx	950	ND		1x	760
,2-Diphenylhydrazine	ND	1x	160	ND		1x	180	ND		1x	140
,2,4-Trichlorobenzene	ND	1x	640	ND		lx	700	ND		lx	560
,3-Dichlorobenzene	ND	1x	860	ND		1x	950	ND		lx	760
,4-Dichlorobenzene	ND	lx	820	ND		1x	900	ND		1x	720
-Chloronaphthalene	ND	lx	270	ND		1×	300	ND		lx	240
-Chlorophenol	ND	1x	550	ND		lx	600	ND		1x	480
-Methyl-4,6-dinitrophenol	ND	1×	280	ND		1×	310	ND		lx	250
-Methylphenol	ND	lx	380	ND		1x	420	ND		1x	340
-Nitroaniline	ND	lx	260	ND		lx	290	ND		lx	2 30
-Nitrophenol	ND	lx	500	ND		lx	550	ND		lx	440
2'-oxybis(1-Chloropropane)	ND	lx	5 50	ND		lx	600	ND		lx	480
4-Dichlorophenol	ND	1×	280	ND		lx	300	ND		1x	240
,4-Dimethylphenol	ND	lx	730	ND		lx	800	ND		lx	640
,4-Dinitrophenol	ND	lx	500	ND		lx	550	ND		1x	440
4-Dinitrotoluene	ND	lx	240	ND		lx	260	ND		lx	210
2,4,5-Trichlorophenol	ND	l×	150	ND		1×	160	ND		lx	130
2,4,6-Trichlorophenol	ND	lx	270	ND		1×	300	ND		1x	240
,6-Dinitrotoluene	ND	lx	320	ND		1x	350	ND		lx	280
3-Nitroaniline	ND	1x	970	ND		1x	1100	ND		1x	850
+4-Methylphenol	ND	lx	360	ND		1x	400	ND		lx	320
3,3'-Dichlorobenzidine	ND	lx	1300	ND		1x	1400	ND		lx	1200
4-Bromophenyl phenyl ether	ND	1×	140	ND		lx	160	ND		lx	120
4-Chloro-3-methylphenol	ND	1x	220	ND		lx	240	ND		lx	190
4-Chloroaniline	ND	1x	1200	ND		lx	1300	ND		lx	1100
4-Chlorophenyl phenyl ether	ND	lx	300	ND		1×	320	ND		lx	260
4-Nitroaniline	ND	lx	390	ND		1×	430	ND		1×	340
4-Nitrophenol	ND	lx	280	ND		lx	310	ND		lx	250
Benzidine	ND	1x	1300	ND		l×	1400	ND		lx	1100
Benzoic acid	ND	1x	1700	ND		lx	1900	ND		lx	1500
Benzyl alcohol	ND	1x	410	ND		lx	450	ND		lx	360
Benzyi butyi phthalate	ND	1×	390	ND		1x	430	ND		lx	340
bis(2-Chloroethoxy)methane	ND	1x	370	ND		1x	400	ND		lx	320
bis(2-Chloroethyl) ether	ND	1x	640	ND		lx	700	ND		lx	560
his(2-Ethylhexyl) phthalate	ND	1x	590	ND		<u>lx</u>	650	ND		lx	520

FERRY BAR REACH

analyte list continued on following page

ND=Not detected

.

Analyte	1	FB1	SED			FB2	SED			FB3	SED	
ug/kj	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual	Dil.	Limit
Carbazole	ND		lx	220	ND		1x	240	ND		lx	200
Cyclohexanone	ND		1x	900	ND		1x	990	ND		lx	790
Dibenzofuran	ND		lx	200	ND		1x	220	ND		lx	180
Diethyl phthalate	ND		1x	220	ND		lx	240	ND		1x	190
Dimethyl phthalate	ND		lx	190	ND		1x	200	ND		1x	160
Di-n-butyl phthalate	ND		lx	220	ND		1x	240	ND		lx	200
Di-n-octyl phthalate	ND		1x	150	ND		1x	170	ND		lx	140
Hexachlorobenzene	ND		1x	270	ND		1x	300	ND		1x	240
Hexachlorobutadiene	ND		lx	680	ND		1x	750	ND		1x	600
Hexachlorocyclopentadiene	ND		lx	340	ND		1x	370	ND		1x	300
Hexachloroethane	ND		lx	820	ND		lx	900	ND		lx	720
Isophorone	ND		lx	350	ND		1x	380	ND		1x	300
Nitrobenzene	ND		lx	550	ND		1x	600	ND		1x	480
N-Nitrosodimethylamine	ND		lx	730	ND		1x	800	ND		1x	640
N-Nitrosodi-n-propylamine	ND		1x	360	ND		1x	400	ND		lx	320
N-Nitrosodiphenylamine	ND		lx	280	ND		lx	300	ND		lx	240
Pentachlorophenol	ND		lx	310	ND		1x	340	ND		1x	280
Phenol	ND		1x	410	ND		1x	460	ND		lx	360
Pyridine	ND		1x_	540	ND		1x	590	ND		lx	470

FERRY BAR REACH

.

...

٤.,

٠

.

Analyte		NBE	SED			NBE2	SED	
ug/kg	Result	Qual.	Dil	Limit	Result	Qual	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	860	ND		1x	1000
1,2-Diphenylhydrazine	ND		lx	160	ND		1x	190
1,2,4-Trichlorobenzene	ND		lx	640	ND		1x	740
1,3-Dichlorobenzene	ND		lx	860	ND		1x	1000
1,4-Dichlorobenzene	ND		1x	820	ND		lx	950
2-Chloronaphthalene	ND		lx	270	ND		1x	310
2-Chlorophenol	ND		1x	550	ND		١x	630
2-Methyl-4,6-dinitrophenol	ND		lx	280	ND		lx	330
2-Methylphenol	ND		1x	380	ND		lx	440
2-Nitroaniline	ND		lx	260	ND		1x	310
2-Nitrophenol	ND		lx	500	ND		١x	580
2,2'-oxybis(1-Chloropropane)	ND		1x	550	ND		lx	630
2,4-Dichlorophenol	ND		1x	280	ND		lx	320
2,4-Dimethylphenol	ND		1x	730	ND		lx	840
2,4-Dinitrophenol	ND		lx	500	ND		lx	580
2,4-Dinitrotoluene	ND		lx	240	ND		lx	270
2,4,5-Trichlorophenol	ND		1x	150	ND		1x	170
2,4,6-Trichlorophenol	ND		1 x	270	ND		1 x	320
2,6-Dinitrotoluene	ND		lx	320	ND		lx	370
3-Nitroaniline	ND		lx	970	ND		lx	1100
3+4-Methylphenol	ND		1x	360	ND		lx	420
3,3'-Dichlorobenzidine	ND		١x	1 300	ND		lx	1500
4-Bromophenyl phenyl ether	ND		1x	140	ND		lx	160
4-Chloro-3-methylphenol	ND		1x	220	ND		lx	250
4-Chloroaniline	ND		lx	1200	ND		1x	1400
4-Chlorophenyl phenyl ether	ND		lx	300	ND		1x	340
4-Nitroaniline	ND		1×	390	ND		lx	450
4-Nitrophenol	ND		lx	280	ND		lx	330
Benzidine	ND		1x	1 300	ND		lx	1500
Benzoic acid	ND		l×	1700	ND		lx	2000
Benzyl alcohol	ND		lx	410	ND		1x	470
Benzyl butyl phthalate	ND		lx	390	ND		lx	450
bis(2-Chloroethoxy)methane	ND		lx	370	ND		lx	430
bis(2-Chloroethyl) ether	ND		l x	640	ND		1x	740
bis(2-Ethylhexyl) phthalate	ND		<u>1x</u>	590	ND		lx.	680

NORTHWEST BRANCH EAST

analyte list continued on following page

NORTHWEST BRANCH EAST

Analyte		NBE1	SED			NBE2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	220	ND		lx	260
Cyclohexanone	ND		1x	900	ND		lx	1000
Dibenzofuran	ND		lx	200	ND		lx	230
Diethyl phthalate	ND		lx	220	ND		lx	250
Dimethyl phthalate	ND		lx	190	ND		lx	220
Di-n-butyl phthalate	ND		lx	220	ND		lx	260
Di-n-octyl phthalate	ND		lx	150	ND		lx	180
Hexachlorobenzene	ND		lx	270	ND		1x	320
Hexachlorobutadiene	ND		lx	680	ND .		lx	790
Hexachlorocyclopentadiene	ND		1x	340	ND		lx	390
Hexachloroethane	ND		lx	820	ND		lx	950
Isophorone	ND		lx	350	ND		lx	400
Nitrobenzene	ND		1x	550	ND		lx	630
N-Nitrosodimethylamine	ND		1x	730	ND		lx	840
N-Nitrosodi-n-propylamine	ND		1x	360	ND		lx	420
N-Nitrosodiphenylamine	ND		1x	280	ND		lx	320
Pentachlorophenol	ND		lx	310	ND		lx	360
Phenol	ND		1x	410	ND		1x	480
Pyridine	ND		1x	540	ND		lx	620

•

-··· ·

Г

nalyte		NBWI	SED			NBW	2 SED			NBW:	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual,	Dil	Limit	Result	Qual.	Dil	Limit
,2-Dichlorobenzene	ND		lx	560	ND		١x	430	ND		lx	830
,2-Diphenylhydrazine	ND		1 x	110	ND		lx	82	ND		lx	160
,2,4-Trichlorobenzene	ND	•	1 x	410	ND		1 x	320	ND		lx	610
,3-Dichlorobenzene	ND		lx	560	ND		1 x	430	ND		lx	830
,4-Dichlorobenzene	ND		1x	530	ND		lx	410	ND		lx	780
-Chloronaphthalene	ND		1x	170	ND		1 x	130	ND		١x	260
-Chlorophenol	ND		1x	350	ND		lx	270	ND		1x	520
-Methyl-4,6-dinitrophenol	ND		1×	180	ND		lx	140	ND		lx	270
-Methylphenol	ND		1×	250	ND		lx	190	ND		1x	370
-Nitroaniline	ND		lx	170	ND		lx	130	ND		lx	250
-Nitrophenol	ND		lx	320	ND		lx	250	ND		lx	480
,2'-oxybis(1-Chloropropane)	ND		1 x	350	ND		1 x	270	ND		lx	520
4-Dichlorophenol	ND		lx	180	ND		١x	140	ND		1x	270
,4-Dimethylphenol	ND		١x	470	ND		١x	360	ND		1x	700
,4-Dinitrophenol	ND		١x	320	ND		١x	250	ND		١x	480
2,4-Dinitrotoluene	ND		١x	150	ND		١x	120	ND		1x	230
4,5-Trichlorophenol	ND		lx	94	ND		1x	73	ND		1x	140
2,4,6-Trichlorophenol	ND		1x	180	ND		1×	140	ND		١x	260
,6-Dinitrotoluene	ND		1x	210	ND		1 x	160	ND		lx	300
-Nitroaniline	ND		lx	630	ND		1 x	480	ND		lx	930
1+4-Methylphenol	ND		lx	240	ND		1x	180	ND		lx	350
3,3'-Dichlorobenzidine	ND		lx	850	ND		lx	660	ND		lx	.1300
-Bromophenyl phenyl ether	ND		lx	91	ND		1 x	70	ND		١x	130
-Chloro-3-methylphenol	ND		lx	140	ND		lx	110	ND		lx	210
+Chloroaniline	ND		1x	780	ND		1 x	600	ND		١x	1200
-Chlorophenyl phenyl ether	ND		l×	190	ND		lx	150	ND		lx	280
L-Nitroaniline	ND		1x	250	ND		łx	200	ND		lx	370
4-Nitrophenol	ND		١x	180	ND		lx	140	ND		1x	270
Benzidine	ND		1×	820	ND		lx	640	ND		lx	1 200
Benzoic acid	ND		1x	1100	ND		1 x	870	ND		lx	1700
Benzyl alcohol	ND		1x	260	ND		1 x	200	ND		1x	390
Benzyl butyl phthalate	ND		1x	250	ND		lx	200	ND		1x	370
ois(2-Chloroethoxy)methane	ND		1×	240	ND		' lx	180	ND		1x	350
bis(2-Chloroethyl) ether	ND		lx	410	ND		lx	320	ND		lx	610
bis(2-Ethylhexyl) phthalate	ND_		1×	380	ND_		<u>1x</u>	300	640		lx	570

NORTHWEST BRANCH WEST

analyte list continued on following page

Analyte		NBWI	SED			NBW2	SED			NBW3	SED	
ug/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil	Limit	Result	Qual	Dil.	Limit
Carbazole	ND		lx	140	ND		1x	110	ND		lx	210
Cyclohexanone	ND		1x	580	ND		1x	450	ND		lx	860
Dibenzofuran	ND		lx	130	ND		lx	100	ND		1x	190
Diethyl phthalate	ND		1x	140	ND		lx	110	ND		lx	210
Dimethyl phthalate	ND		lx	120	ND		1x	93	ND		lx	180
Di-n-butyl phthalate	ND		lx	140	ND		lx	110	ND		lx	210
Di-n-octyl phthalate	ND		lx	100	ND		lx	77	ND		lx	150
Hexachlorobenzene	ND		lx	180	ND		lx	140	ND		lx	260
Hexachlorobutadiene	ND		lx	440	ND		lx	340	ND		1x	650
Hexachlorocyclopentadiene	ND		1x	220	ND		lx	170	ND		lx	320
Hexachloroethane	ND		1x	530	ND		lx	410	ND		1x	780
lsophorone	ND		lx	220	ND		lx	170	ND		lx	330
Nitrobenzene	ND		″_ Ix _	350	ND		lx	270	ND		lx	520
N-Nitrosodimethylamine	ND		lx	470	ND		lx	360	ND		lx	700
N-Nitrosodi-n-propylamine	ND		lx	230	ND		1x	180	ND		lx	340
N-Nitrosodiphenylamine	ND		lx	180	ND		lx	140	ND		lx	270
Pentachlorophenol	ND		lx	200	ND		lx	160	ND		lx	300
Phenol	ND		lx	270	ND		lx	210	ND		lx	400
Pyridine	ND		1x	350	ND		<u>lx</u>	270	ND		<u>lx</u>	510

NORTHWEST BRANCH WEST

Table 4-6. Semivolatile polynuclear aromatic hydrocarbons (PAHs) results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.

POPLAR ISLAND

Analyte		PI1 S	ED			PI2	SED			PI3 :	SED			PI4 S	ED			PIS S	ED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methyinaphthalene	ND		1x	20	ND		1 x	67	ND		1x	18	ND		1x	20	ND		1x	22
2-Methylnaphthalene	ND		1 x	20	ND		1x	67	ND		1x	18	ND		1x	20	ND		1x	22
Acenaphthene	ND		1 x	20	ND		1x	67	ND		١x	18	ND		1 x	20	ND		1 x	22
Acenaphthylene	ND		1x '	35	ND		1x	110	ND		1x	31	ND		1x	34	ND		1x	38
Anthracene	ND		1x	2	ND		1 x	6.7	ND		1x	1.8	ND		Ix	2	ND		1 x	2.2
Benzo[a]pyrene	ND		Ix	2.8	ND	•	1x	9	ND		1x	2.4	ND		1x	2.7	ND		1 x	3
Benzo[b]fluoranthene	ND		Ix	3.1	ND		1x	10	ND		1 x	2.7	ND		1x	3	ND		1 x	3.3
Benzo[g,h,i]perylene	ND		1x	2.8	ND		1x	. 9	ND		1x	2.4	ND		1x	2.7	ND		1 x	3
Benzo[k]fluoranthene	ND		1x	1.3	ND		1x	4.1	ND		1x	1.1	ND		1x	1.2	ND		1x	1.4
Benz[a]anihracene	ND		l x	1	ND		1 x	3.3	ND		1x	0.88	ND		1x	0.98	ND		1 x	1.1
Chrysene	ND		1x	1.3	ND		1 x	4. `	ND		1x	1.1	ND		1 x	1.3	ND		1 x	1.4
Dibenz[a,h]anthracene	ND		1x	1.4	ND		1x	4.6	ND		1x	1.2	ND		1x	1.4	ND		lx	1.5
Fluoranthene	ND		1x	2.8	ND		1 x	9	ND		1 x	2.4	ND		1 x	2.7	ND		1x	3
Fluorene	ND		Ix	4.2	ND		1x	14	ND		1x	3.7	ND		1 x	4.1	ND		1x	4.6
Indeno[1,2,3-cd]pyrene	ND		1 x	2.3	ND		1.x	7.6	ND		1x	2	ND		1x	2.3	ND		1x	2.6
Naphthalene	ND		1x	20	ND		1x	67	ND		1x	18	ND		1x	20	ND		1x	22
Phenanthrene	1.4		1 x	1.2	4.7		l x	4	1.1		1x	1.1	ND		1x	1.2	2.8		1 x	1.3
Pyrene	ND		1x	2.6	ND		1 x	8.6	ND		1x	2.3	ND		1x	2.6	ND		1x	2.9

...

DEEP TROUGH

Analyte		DTI	SED			DT2	SED			DT3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1x	70	ND		1x	30	ND		1x	66
2-Methylnaphthalene	ND		1x	70	ND		1 x	30	ND		1x	66
Acenaphthene	ND		1x	70	ND		1 X	30	ND		1x	66
Acenaphthylene	ND		1x	120	ND		1x	52	ND		1x	110
Anthracene	ND		1x	7	ND		1x	3	ND		1x	6.6
Benzo[a]pyrene	ND		1x	9.5	ND		1x	4.1	ND		1x	9
Benzo[b]fluoranthene	ND		lx	11	ND		1x	4.5	ND		1x	9.9
Benzolg, h, i perviene	ND		1x	9.5	ND		1x	4.1	ND		1x	9
Benzo[k]fluoranthene	ND		1x	4.4	ND		1x	1.9	ND		1x	4.1
Benzfalanthracene	ND		lx	3.5	ND		1x	1.5	ND		1x	3.3
Chrysene	ND		1x	4.5	ND		1x	1.9	ND		1x	4.2
Dibenzla hlanthracene	ND		1x	4.9	ND		1x	2.1	ND		1x	4.6
Fluoranthene	ND		1x	9.5	ND		1x	4.1	ND		18	9
Fluorene	ND		1x	15	ND		1x	6.2	17		1x	13.68
Indeno[1,2,3-cd]pyrene	ND		1x	8	ND		1x	3.4	ND		1x	7.5
Naphthalene	ND		1x	70	ND		1x	30	ND		1x	66
Phenanthrene	4.6		1x	4.22	ND		1x	1.8	11		1x	3.96
Pyrene	ND		1x	9	ND		1x	3.9	ND		1x	8.5

KI2 SED Analyte KI1 SED KI3SED Limit Result Qual. Dil. Result Qual. Dil. Limit Result Qual. ug/kg Dil. Limit 19 1-Methylnaphthalene 1x ND 1x 42 ND 20 ND 1x 42 ND 19 ND ND 2-Methylnaphthalene 1x 1x 1x 20 ND 1x 19 ND 1x 42 ND 1x 20 Acenaphthene 32 ND 71 Acenaphthylene ND 1x 1x ND 1x 35 1.9 Anthracene ND 1x ND 1x 4.2 ND 1x 2 4.7 1x 2.52 ND 5.6 6.8 2.73 Benzo[a]pyrene 1 x 1x 1x 2.79 ND 6.2 10 3.02 Benzo[b]fluoranthene 7 1x 1x Benzo[g,h,i]perylene 4.1 1 x 2.52 ND 1x 5.6 5.2 1x 2.73 1.15 ND 2.6 3.3 Benzo[k]fluoranthene 2.1 1x 1x 1x 1.25 Benz[a]anthracene 0.92 ND 2 3.7 1x 1x 6.3 1x 0.99 4.2 1x 1.18 ND 1x 2.6 7.1 lx 1.28 Chrysene ND 2.9 Dibenz[a,h]anthracene ND 1x 1.3 1x ND 1x 1.4 7.7 1x 2.52 ND 1 x 5.6 8.2 2.73 1x Fluoranthene 4.7 1x 3.85 12 8.61 5.7 Fluorene 1x 1x 4.17 ND 1x 2.1 ND 1 x 4.7 3.3 2.30 Indeno[1,2,3-cd]pyrene 1x 19 ND 42 Naphthalene ND 1x 1x ND 1x 20 2.49 7.2 1x 1.11 7.2 1x 6.5 1x 1.21 Phenanthrene 8.1 1x 2.39 ND 5.3 7.6 1x 2.59 Рутепе 1x

KENT ISLAND DEEP

POOLES ISLAND

Analyte		POLI	SED	
ug/kg	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1x	35
2-Methylnaphthalene	ND		1x	35
Acenaphthene	ND		1x	35
Acenaphthylene	ND		1 x	59
Anthracene	ND		1x	3.5
Benzo[a]pyrene	ND		1x	4.7
Benzo[b]fluoranthene	59		1x	4.1
Benzo[g,h,i]perylene	ND		1x	4.7
Benzo[k]fluoranthene	ND		1 x	2.1
Benz[a]anthracene	ND		1x	1.7
Chrysene	ND		1 x	2.2
Dibenz[a,h]anthracene	ND		1x	2.4
Fluoranthene	ND		1 x	4.7
Fluorene	ND		1 x	7.2
Indeno[1,2,3-cd]pyrene	ND		1 x	4
Naphthalene	ND		1x	35
Phenanthrene	5.8		1x	1.6
Рутепе	ND		<u>1x</u>	4.4

.

.

-

SWP1 SED SWP2 SED SWP3 SED Analyte Result Qual. Dil. Limit Result Dil. Limit Result Dil. Qual. Qual. Limit ug/kg 1-Methylnaphthalene ND 1x 60 ND 1x 63 ND 1x 56 2-Methylnaphthalene ND 1x 60 ND 63 100 56 1x 1x 60 ND ND 63 ND 56 Acenaphthene 1x 1x 1x Acenaphthylene ND 1x 100 ND 1 x 110 ND. 96 1x ND 1x ND 1 x 6.3 10 5.6 Anthracene 6 1x Benzo[a]pyrene ND 1x 8.2 ND 1x 8.6 13 1x 7.6 1x 9.05 20 1x 9.50 8.4 Benzo[b]fluoranthene 13 19 1x ND 1x 8.2 ND 8.6 9.9 Benzo[g,h,i]perylene 1x 1x 7.6 Benzo[k]fluoranthene ND 1x 3.8 4.3 1 x 3.94 5.2 1x 3.48 1x 2.97 5.1 Benz[a]anthracene 4.5 1x 3.12 8.9 1x 2.76 5.9 1x 3.84 7.2 1 x 4.03 12 1x Chrysene 3.56 4.2 ND ND 1x 1x 4.4 ND 3.9 Dibenz[a,h]anthracene 1x Fluoranthene 8.9 1x 8.19 14 1 x 8.60 19 1x 7.6 60 1x 12.5 62 1x 13.12 Fluorene 320 1x 11.6 ND 1x 6.9 7.8 1x 7.24 Indeno[1,2,3-cd]pyrene 10 1x 6.4 76 1x 60.34 77 1x 63.35 280 56 Naphthalene 1x 23 1x 3.62 25 42 3.36 Phenanthrene 1x 3.80 1x 7.76 19 Pyrene 14 1x 1x 8.14 22 1x 7.2

.

SWAN POINT CHANNEL

.

.

Analyte		CREI	SED			CRE2	2 SED			CRE3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1 x	35	ND		1 x	34	ND		1x	. 33
2-Methylnaphthalene	69		1 x	35.44	ND		1 x	34	ND		1x	33
Acenaphthene	39		1 x	35.44	ND		1 x	34	ND		1 x	33
Acenaphthylene	ND		1 x	61	ND		1 x	58	ND		1 x	56
Anthracene	6.7		1 x	3.54	ND		1x	3.4	ND		1x	3.3
Benzo[a[pyrene	11		1 x	4.81	ND		1x	4.6	ND		1x	4.4
Benzo[b]fluoranthene	17		1x	5.32	ND		1 x	5.1	8.5		1 x	4.92
Benzo(g,h,i)perylene	10		1x	4.81	ND		1x	4.6	ND		1 x	4.4
Benzo[k]fluoranthene	6		1x	2.20	ND		1x	2.1	ND		1 x	2
Benz[a]anthracene	10		1 x	1.75	ND		lx	1.7	ND		1x	1.6
Chrysene	16		1 x	2.25	ND		1 x	2.2	3.5		1 x	2.08
Dibenz[a,h]anthracene	ND		1x	2.5	ND		lx	2.3	ND		1x	2.3
Fluoranthene	23		1x	4.81	ND		1x	4.6	4.5		1x	4.45
Fluorene	ND		1 x	7.3	ND		1 x	7	13		1x	6.79
Indeno[1,2,3-cd]pyrene	6.4		1x	4.05	ND		1x	3.9	ND		1 x	3.7
Naphthalene	ND		1 x	35	ND		1x	34	ND		1 x	33
Phenanthrene	24		1x	2.13	ND		1x	2	9		1 x	1.97
Pyrene	19		1 <u>x</u>	4.56	ND		1x	4.4	6.5		1x	4.22

CRAIGHILL ENTRANCE

.

Analyte		CRI SED				CR2	SED			CR2FI) SED			CR3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		lx	20	ND		lx	30	ND		lx	47	ND		1 x	34
2-Methylnaphthalene	ND		1 x	20	ND		lx	30	ND		lx	47	ND		1 x	34
Acenaphthene	ND		1 x	20	ND		lx	30	ND		lx	47	ND		1 x	34
Acenaphthylene	ND		1 x	35	ND		1x	52	ND		1x	80	ND		1 x	58
Anthracene	ND		1x	2	ND		lx	3	ND	-	lx	4.7	ND		lx	3.4
Benzo[a]pyrene	ND		lx	· 2.8	5.4		lx j	4.09	ND		1x	6.4	ND		1 x	4.6
Benzo[b]fluoranthene	12		1 x	3.04	8.5		lx	4.52	10		1 x	7	5.8		1 x	5.10
Benzo[g,h,i]perylene	ND		1 x	2.8	4.4		1 x	4.09	ND		1 x	6.4	ND		1 x	4.6
Benzo[k]fluoranthene	ND		1 x	1.3	2.7	<i></i>	lx	1.87	ND		1x	2.9	ND		1 x	2.1
Benz[a]anthracene	ND		1 x	1	ND		lx	1.5	3.3		1 x	2.3	ND		1 x	1.7
Chrysene	7.3		1x	1.29	4.2		1x	1.91	3.5		1x	2.97	ND		1 x	2.2
Dibenz[a,h]anthracene	ND		1x	1.4	ND		lx	2.1	ND		1 x	3.2	ND		lx	2.4
Fluoranthene	ND		1 x	2.8	ND		lx	4.1	9.1		1 x	6.33	ND		lx	4.6
Fluorene	6.8		1 x	4.20	8.9		lx	6.24	29		1 x	9.67	ND		lx	7.1
Indeno[1,2,3-cd]pyrene	ND		1 x	2.3	ND		lx	3.4	ND		lx	5.4	ND		1 x	3.9
Naphthalene	ND		lx	20	ND		lx	30	ND		lx	47	ND		1 x	34
Phenanthrene	5		1 x	1.22	9.2		lx	1.81	17		lx	2.8	4.2		1x	2.04
Pyrene	2.9		lx	2.61	6.9		lx	3.87	13		lx	6	ND		1x	4.4

CRAIGHILL CHANNEL

Analyte		CRAI	SED			CRA2	SED]
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1x	42	ND		1x	53
2-Methylnaphthalene	ND		1x	42	ND		1x	53
Acenaphthene	ND		1x	42	ND		1x	53
Acenaphthylene	ND		1x	72	ND		1x	90
Anthracene	ND		1 x	4.2	ND		1x	5.3
Benzo[a]pyrene	ND		1x	5.7	ND		1x	7.1
Benzo[b]fluoranthene	6.5		łx	6.3	ND		1x	7.9
Benzo[g,h,i]perylene	ND		1x	5.7	ND		1x	7.1
Benzo[k]fluoranthene	ND		łx	2.6	ND		1x	3.3
Benz[a]anthracene	ND		1x	2.1	2.6		1x	2.6
Chrysene	5.4		łx	2.7	ND		lx -	3.3
Dibenz[a,h]anthracene	ND		łx	2.9	ND		lx	3.6
Fluoranthene	6.2		łx	5.7	7.6		1x	7.1
Fluorene	18		łx	8.7	20		1x	11
Indeno[1,2,3-cd]pyrene	ND		1x	4.8	ND		1x	6
Naphthalene	67		1x	42	ND		1x	53
Phenanthrene	11		1x	2.5	14		1x	3.2
Pyrene	8		1x	5.4	13		1x	6.8

CRAIGHILL ANGLE

١

CRAIGHILL UPPER RANGE

•

.

Analyte		CRUI	SED			CRU	2 SED			CRU3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1 x	50	ND		1x	22	ND		1x	33
2-Methylnaphthalene	ND		1x	50	ND		1 x	22	ND		1 x	33
Acenaphthene	ND		1x	50	ND		1x	22	ND		1 x	33
Acenaphthylene	ND		1x	85	ND		1x	38	ND		1x	56
Anthracene	ND		1x	5	ND		1x	· 2.2	3.3		1 x	3.27
Benzo[a]pyrene	13		1x	6.74	ND		1 x	3	7.3		1 x	4.44
Benzo[b]fluoranthene	20		1x	7.45	5		1 x	3.32	15		1 x	4.91
Benzo[g,h,i]perylene	13		1x	6.74	ND		1 x	3	5.9		1x	4.44
Benzo[k]fluoranthene	6.6		1x	3.09	ND		1x	1.4	2.9		1 x	2.03
Benz[a]anthracene	9.9		1x	2.45	ND		1 x	1.1	3.4		1 x	1.61
Chrysene	11		lx	3.16	ND		1 x	1.4	5.5		1x	2.08
Dibenz[a,h]anthracene	6.6		1x	3.44	ND		1 x	1.5	ND		1 x	2.3
Fluoranthene	15		1x	6.74	3		1 x	3.01	5.8		1 x	4.44
Fluorene	22		1x	10.28	6.5		1 x	4.59	28		1 x	6.78
Indeno[1,2,3-cd]pyrene	9.5		1x	5.67	ND		1 x	2.5	ND		1x	3.7
Naphthalene	ND		1x	50	30		1 x	22.15	45		1 x	32.71
Phenanthrene	18		1x	2.98	4.8		1 x	1.33	12		1x	1.96
Pyrene	18		1x	6.38	4.2		1x	2.85	8.9		1x	4.21

Analyte		CUT	SED			CUT	2 SED			C11 177		
ug/kg	Result	Qual.	Dil.	Limit	Result	Oual	Dil	T inte		CUT	SED	
1-Methylnaphthalene	ND		1x	47	ND	Qual.		Limit	Result	Qual.	Dil.	Limit
2-Methylnaphthalene	ND		Ix	47			IX	56	ND		1 x	44
Acenaphthene	ND		1x	47			IX	56	ND		1 x	44
Acenaphthylene	ND		1.	91			IX	56	ND		1x	44
Anthracene	ND		14	10	ND		1x	96	ND		1x	75
Benzolalpyrene	15		1.	4.7	ND		1 x	5.6	ND		1x	4.4
Benzol b) fluoranthene	17		1X	6.40	11		l x	7.57	13		1x	5.97
Benzolg h ilperviene	17		IX ·	7.07	21		1 x	8.37	18		1x	6 60
Benzo[k]fluoranthana	13		IX	6.40	10		1 x	7.57	11		1x	5 07
Benzialantheasan	5.5		Ix	2.93	4.5		1x	3.47	5.4		1.	2 74
Cherrane	8.8		İx	2.32	6.9		1 x	2.75	9		1.	2.74
Ditanet	10		1x	3.00	7.6		Ix	3.55	11		1	2.17
Dibenzia, njanthracene	ND		lx	3.3	ND		1x	39	ND		1.	2.80
Fluoranthene	16		lx	6.40	14		lx.	7 57	15		IX	3.1
Fluorene	36		1 x	9.76	24		1 x	11.55	17		IX	5.97
Indeno[1,2,3-cd]pyrene	9.1		1 x	5.39	ND		l.v.		17		1x	9.12
Naphthalene	73		1x	47.14	ND		14	0.4	0.1		lx	5.03
Phenanthrene	22		1x	2.83	18		14	56	66		lx	44.03
Рутепе	22		Ix	6.06	18		IX	3.35	15		l x	2.64
					10		1x	7.17	17		<u>lx</u>	5.66

CUTOFF ANGLE

.

.

Analyte	1	TLCI	SED			TLC2	SED	· . · . ·		TLC2F	D SED			TLC3	SED	·
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1 x	27	ND		lx	29	ND		1x	31	ND		1 x	41
2-Methylnaphthalene	37		1x	27.08	ND		1 x	29	ND		1 x	31	ND		.1x	41
Acenaphthene	ND		1x	27	ND		1 x	29	ND		1x	31	ND		1 x	41
Acenaphthylene	ND		1 x	46	ND		1 x	50	ND		+ 1x.	53	ND		1 x	71
Anthracene	9.2		1 x	2.71	ND		1 x	2.9	ND		lx	3.1	ND		lx	4.1
Benzo[a]pyrene	14		lx	3.68	ND		1x	4	ND		1x	4.2	20		1 x	5.62
Benzo[b]fluoranthene	49		1 x	4.06	98		1 x	4.41	52		1x	4.62	30		1x	6.21
Benzo[g,h,i]perylene	12		1x	3.68	ND		1 x	4	ND		1 x	4.2	12		1 x	5.62
Benzo[k]fluoranthene	4.5		1 x	1.68	ND		1 x	1.8	ND		1 x	1.9	7.3		1 x	2.57
Benz[a]anthracene	8.5		1 x	1.33	ND		1 x	1.4	ND		1 x	1.5	13		1 x	2.04
Chrysene	10		1 x	1.72	ND		1x	1.9	ND		1x	2	16		1 x	2.63
Dibenz[a, h]anthracene	ND		1x	1.9	ND		1 x	2	ND		1x	2.1	ND		1 x	2.9
Fluoranthene	24		1 x	3.68	4.5		1 x	3.99	ND		1 x	4.2	21		1x	5.62
Fluorene	180		1x	5.61	21		1 x	6.09	ND		1x	6.4	27		1 x	8.58
Indeno[1,2,3-cd]pyrene	11		1 x	3.09	ND		1 x	3.4	ND		1 x	3.5	13		1 x	4.73
Naphthalene	160		1x	27.08	ND		1 x	29	ND		1 x	31	ND		1x	41
Phenanthrene	32		1x	1.62	12		1 x	· 1.76	2.7		1x	1.85	16		1x	2.49
Pyrene	27		1x	3.48	8.5		1 x	3.78	4.5		1x	3.96	21		1x	5.33

TOLCHESTER CHANNEL-VAN VEEN

.

TOLCHESTER CHANNEL-GRAVITY CORE

Analyte		TLVI	SED	·····		TLV2	SED			TLV3	SED			TLV	4 SED			TLV4	SEDDL			TLV5	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1x	28	ND		1x	27	ND		1x	28	170		1x	30.91	120		4x	123.6	ND		1x -	30
2-Methylnaphthalene	59		1 x	28.28	44		1x	26.72	75		1x	27.78	380		1x	30.91	320		4x	123.6	75		1x	30.43
Acenaphthene	51		1 x	28.28	40		1x	26.72	60		1x	27.78	180		1x	30.91	150		4x	123.6	61		1x	30.43
Acenaphthylene	ND		1 x	48	ND		1x	46	ND		1x	48	ND		1x	53	ND		4x	210	ND		1x	52
Anthracene	19		1 x	2.83	7.6		1x	2.67	10		1x	2.78	42		1x	3.09	40		4x	12.36	12		1x	3.04
Benzo[a]pyrene	31		1 x	3.84	19		1x	3.63	34		1x	3.77	57		1x	4.19	81		4x	16.78	28		1x	4.13
Benzo[b]fluoranthene	43		1x	4.24	22		1x	4.01	43		1 x	4.17	120		1x	4.64	110		4x	18.54	87		1x	4.57
Benzo[g,h,i]perylene	14		1 x	3.84	10		1x	3.63	20		1 x	3.77	46		1x	4.19	25		4x	16.78	22		1x	4.13
Benzo[k]fluoranthene	13		1x	1.76	7.4		1 x	1.66	13		lx	1.73	24		1x	1.92	25		4x	7.68	11		1x	1.89
Benz[a]anthracene	19		1 x	1.39	14		1x	1.32	24		1x	1.37	44		1x	1.52	41		4x	6.09	20		1x	1.5
Chrysene	22		1x	1.80	16		1x	1.70	28		1x	1.77	56		1x	1.96	52		4x	7.86	27		1x	1.93
Dibenz[a,h]anthracene	2.8		1 x	1.96	ND		1x	1.9	2.8		1x	1.92	5.7		1x	2.14	9.5		4x	8.57	2.5		1x	2.11
Fluoranthene	36		1 x	3.84	28		1x	3.63	47		1x	3.77	120		1x	4.19	120		4x	16.78	55		1x	4.13
Fluorene	260		1 x	5.86	140		1x	5.53	1 30		1x	5.75	1100	E	1x	6.40	1100		4x	25.61	150		1x	6.30
Indeno[1,2,3-cd]pyrene	23		1 x	3.23	12		1x	3.05	23		1x	3.17	41		1x	3.53	70		4x	14.13	22		1x	3.48
Naphthalene	89		1 x	28.28	99		lx	26.72	120		1 x	27.78	650		lx	30.91	510		4x	123.6	75		1x	30.43
Phenanthrene	41		1 x	1.70	25 ·		1 x	1.60	32		1 x	1.67	160		1x	1.85	170		4x	7.42	48		1x	1.83
Pyrene	15		1x	3.64	21		1x	3.44	33		<u>1x</u>	3.57	110		1x	3.97	110		4x	15.89	49		1x	3.91

ND= Not detected E=Outside calibration range

BE1 SED BE2 SED BE3 SED BE4 SED Analyte Limit Result Limit Limit Limit Result Qual. Dil. Qual. Dil. Result Qual. Dil. Result Qual. Dil. ug/kg ND 1-Methylnaphthalene ND 1 x 59 1 X 42 ND 1x 42 ND 1x 50 ND 1x 59 ND 1 x 42 ND 42 ND 50 2-Methylnaphthalene 1x 1x 59 59 41.92 42 ND 1 x 1x ND 1x ND 1x 50 Acenaphthene 100 ND 1x 72 ND 71 ND 85 ND 1 x Acenaphthylene 1 x 1 x 5.9 4.7 4.19 ND 4.2 ND ND 1x 1x 1x 1 x 5 Anthracene ND 7.9 14 1x 5.69 ND 5.6 ND 6.8 1 X 1x Benzo[a[pyrene 1x 8.75 28 6.29 Benzo[b]fluoranthene 9 1 x 1x 9.2 1x 6.23 8.7 1x 7.47 7.9 8.4 5.69 ND ND ND 1x 1x 5.6 6.8 Benzo[g,h,i[perylene 1 x 1 x ند. 3.6 6.2 1 x 2.60 ND 2.6 ND ND 1 x 3.1 Benzo[k[fluoranthene 1x 1x 2.9 7.3 1 x 2.07 3.4 2.05 ND 1 x 1 x 3.2 1x 2.46 Benz[a[anthracene ND 1 x 3.7 39 1x 2.66 4.1 1 x 2.64 ND 1x 3.2 Chrysene 4.1 ND 2.9 ND 2.9 ND 1 x 1x 3.5 Dibenz[a,h]anthracene ND 1 x 1x 7.9 ND ND 1 X 24 1x 5.69 1x 5.6 ND 1x 6.8 Fluoranthene 12 170 1x 8.68 ND 8.6 ND ND 1x 1x 1x 10 Fluorene ND 1x 6.7 9 1x 4.79 5.3 1x 4.75 ND 1x 5.7 Indeno[1,2,3-cd]pyrene ND 59 72 1x 41.92 ND 1 x 42 ND 50 Naphthalene 1x 1 x 3.5 18 2.52 4.3 2.49 3.9 1x 1 x 1x 4.1 1x 2.99 Phenanthrene 7.5 22 5.39 7.5 5.34 8.1 1x 1x 1x 6.7 1x 6.41 Pyrene

BREWERTON EASTERN EXTENSION-VAN VEEN

.

.

BREWERTON EASTERN EXTENSION-GRAVITY CORE

Analyte		BEVI	SED			BEV2	SED			BEV3	SED			BEV4	SED			BEVS	SED			BEV6	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1x	33	ND		1x	32	78		1 x	33.41	ND		1x	31	ND		lx	36	ND		lx.	35
2-Methylnaphthalene	ND		1x	33	ND		lx	32	190		1x	33.41	ND		lx	31	ND		1x	36	ND		1x	35
Acenaphthene	ND		1x	33	ND		lx	32	420		lx	33.41	ND		lx	31	ND		1x	36	ND		lx	35
Acenaphthylene	ND		1x	57	ND		lx	55	ND		1x	57	ND		lx	54	ND		1x	61	ND		lx	60
Anthracene	3.7		lx	3.30	ND		lx	3.2	44		1x	3.34	3.3		1x	3.14	ND		1x	3.6	ND		lx	3.5
Benzo]a]pyrene	14		1x	4.48	4.8		1x	4.34	120		1x	4.53	9.9		1x	4.26	ND		1x	4.9	ND		1x	4.8
Benzo[b]fluoranthene	25		lx	4.95	10		lx	4.79	160		1 x	5.01	21		1x	4.71	12		lx	5.37	ND		1x	5.3
Benzo[g,h,i]perylene	11		1x	4.48	4.7		1x	4.34	89		1 x	4.53	12		lx	4.26	ND		1x	4.9	ND		1x	4.8
Benzo]k]fluoranthene	6.3		1x	2.05	ND		1x	2	62		1 x	2.08	4.1		1x	1.95	ND		lx	2.2	ND		1x	2.2
Benz]a]anthracene	11		1x	1.63	3.1		1x	1.58	96		lx	1.65	7.5		1x	1.55	1.9		1x	1.76	ND		1x	1.7
Chrysene	14		1x	2.10	3.5		1 x	2.03	120		lx	2.12	8.8		lx	2.00	2.4		lx	2.28	ND		1x	2.2
Dibenz[a,h]anthracene	ND		1x	2.3	ND		1x	2.2	12		1x	2.32	ND		1x	2.2	ND		1x	2.5	ND		1x	2.4
Fluoranthene	19		lx	4.48	6.1		1 x	4.34	290		lx	4.53	14		lx	4.26	ND		1x	4.9	ND		lx	4.8
Fluorene	36		1x	6.84	24		1x	6.62	77		lx	6.92	23		1x	6.50	ND		1x	7.4	ND		1x	7.3
Indeno[1,2,3-cd]pyrene	9.8		lx	3.77	ND		1 x	3.7	98		1 x	3.82	8.8		lx	3.59	ND		lx	4.1	ND		1x	4
Naphthalene	110		1x	33.02	ND		1x	32	73		1 x	33.41	ND		lx	31	ND		1x	36	ND		lx	35
Phenanthrene	15		1x	1.98	8.4		1x	1.92	170		1x	2.00	10		lx	1.88	ND		lx	2.1	ND		1x	2.1
Pyrene	19		1x	4.25	8.1		1x	4.11	150		<u>1x</u>	4.30	12		lx	4.04	ND		1x	4.6	ND		1x	4.5

L.

Analyte		BRI	SED		1	DP2	SED.						-			
ug/kj	Result	Qual.	Dil.	Limit	Result		DU			BR3	SED			BR4	SED	
1-Methylnaphthalene	ND		1x	46	ND	Qual.	<u></u>	_Limit	Result	Qual.	Dil.	Limit	Result	Oual.	Dil	- I imie
2-Methylnaphthalene	ND		1x	46			IX	44	ND		lx	42	ND		<u> </u>	Limit
Acenaphthene	ND		1 1	40			Ix	44	150		lx	41.79	ND		1.	47
Acenaphthylene	ND		14	40			lx	44	400		lx	41.79	54		1	49
Anthracene	ND		1.	19	ND		lx	75	ND		lx	72	ND		1.	48.95
Benzolalovrene	72		1X	4.6	ND		lx	4.4	55		lx	4 18	12		IX	84
Benzolblfluoranthene	1.5		IX	6.29	ND		lx	5.9	97		lx	5.67	37		Ix	4.90
Benzola h ilessiter			Ix	6.95	ND		lx	6.6	160		1.	6.27	37		lx	6.64
Benzo (k) fluence at	6.9		İx	6.29	ND	,	lx	5.9	64		1.	0.27	96		lx	7.34
Denzojk ji luorantnene	3.2		lx	2.88	ND		lx	2.7	55		1.	5.67	39		lx	6.64
Denzja janthracene	4		lx	2.28	ND		lx	2.2	120		IX	2.60	22		lx	3.04
Chrysene	3.8		lx	2.95	ND		lx	2.8	120		IX	2.06	31		lx	2.41
Dibenz[a,h]anthracene	ND		lx	3.2	ND		1x	2.0	130		Ix	2.66	38		lx	3.11
Fluoranthene	6.9		lx	6.29	ND		1	5	15		lx	2.90	5		lx	3.39
Fluorene	ND		lx	9.6	ND		1.	3.9	260		lx	5.67	65		1x	6 64
Indeno[1,2,3-cd]pyrene	ND		lx	53	NTO		1.	9.1	72		1x	8.66	26		İx	10.14
Naphthalene ·	ND		ly.	46	ND		IX .	5	67		lx	4.78	37		t.v.	5.50
Phenanthrene	4.4		1.	2 70			Ix	44	56		lx	41.79	ND		1.	3.39
yrene	93		1. 1.	2.70	ND		Ix	2.6	120		İx	2.51	28		1	49
╶╦╼╌═╴═╴═╴┈╴┈╴╢			1X	3.96	ND		lx	5.6	160		1x	5 37	57		IX	2.94
												3.57			<u>IX</u>	6.29

BREWERTON REACH

.

.

Analyte	BL	INDSPL	IT1A(B	R1)	BI	.INDSPL	IT2A(BI	(3)
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
1-Methylnaphthalene	ND		1x	42	ND		1x	38
2-Methylnaphthalene	ND		1x	42	ND		1x	38
Acenaphthene	ND		1x	42	ND		1x	38
Acenaphthylene	ND		1x	73	ND		1x	64
Anthracene	ND		1x	4.2	ND		1x	3.8
Benzo[a]pyrene	ND		1x	5.8	7.8		1x	5.08
Benzo[b]fluoranthene	12		1x	6.36	16		1x	5.62
Benzo[g,h,i]perylene	6.5		1x	5.76	7.9		1×	5.08
Benzo[k]fluoranthene	ND		1x	2.6	4.3		1x	2.33
Benz[a]anthracene	3.4		1x	2.09	4.7		1x	1.84
Chrysene	4.4		1x	2.70	5.6		1x	2.38
Dibenz[a,h]anthracene	ND		1x	2.9	ND		1x	2.6
Fluoranthene	ND		1x	5.8	6		1x	5.08
Fluorenc	ND		1x	8.8	ND		1x	7.8
Indeno[1,2,3-cd]pyrene	7.9		lx	4.85	7.8		1x	4.28
Naphthalene	ND		1x	42	ND		1x	38
Phenanthrene	3.1		1 x	2.55	3.2		1x	2.25
Pyrene	7.6		1x	5.45	9.4		1x	4.81

BLIND SPLITS

Ŀ.

BREWERTON ANGLE REACH

1

Analyte		BRAI	SED			BRA	2 SED	
_ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		lx	51	ND		lx	49
2-Methylnaphthalene	ND		1x	51	ND		lx	49
Acenaphthene	ND		lx	51	ND		lx	49
Acenaphthylene	ND		1 x	88	ND		lx	85
Anthracene	ND		1 x	5.1	ND		lx	4.9
Benzo[a]pyrene	14		lx	6.96	8.1		lx	6.71
Benzo[b]fluoranthene	24		lx	7.69	21		lx	7.42
Benzo[g,h,i]perylene	17		1 x	6.96	8.6		lx	6.71
Benzo[k]fluoranthene	6.1		l x	3.19	4		lx	3.07
Benz[a]anthracene	9.2		lx	2.53	5.3		lx	2.44
Chrysene	11		1x	3.26	6.3		lx	3.14
Dibenz[a,h]anthracene	ND		1 x	3.5	ND		lx	3.4
Fluoranthene	15		lx	6.96	8.6		lx	6.71
Fluorene	ND		1 x	11	ND		1x	10
Indeno[1,2,3-cd]pyrene	14		1 x	5.86	ND		lx	5.7
Naphthalene	ND		1x	51	ND		lx	49
Phenanthrene	8.2		lx	3.08	8.4		lx	2.97
Pyrene	21		lx	6.59	14		lx	6.36

Analyte	-	FMHI	SED			FMH	2 SED			FMH3	SED			FMH4	SED	
_ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
I-Methylnaphthalene	ND		lx	47	ND		lx	54	ND		lx	41	ND		lx	35
2-Methylnaphthalene	ND		1x	47	110		lx	54.26	ND		1x	41	ND		· Ix	35
Acenaphthene	63		lx	46.98	140		lx	54.26	ND		İx	41	ND		lx	35
Acenaphthylene	ND		1x	81	ND		lx	93	ND		İx	71	ND		1 x	60
Anthracene	10		1x	4.70	30		lx	5.43	ND		İx	4.1	ND		l x	3.5
Benzo[a]pyrene	30		1x	6.38	59		lx	7.36	ND		İx	5.6	10		lx	4.71
Benzo[b]fluoranthene	72		lx	7.05	170		lx	8.14	15		İx	6.18	21		1x	5.21
Benzo[g,h,i]perylene	24		1x	6.38	51		lx	7.36	6.2		İx	5.59	13		lx	4.71
Benzo[k]fluoranthene	17		1x	2.92	33		lx	3.37	ND		İx	2.6	6.1		lx	2.16
Benz[a]anthracene	26		1x	2.32	46		lx	2.67	3.8		İx	2.03	6.6		lx	1.71
Chrysene	34		1x	2.99	62		lx	3.45	19		İx	2.62	11		1x	2.21
Dibenz[a,h]anthracene	3.6		İx	3.26	7.1		İx	3.76	ND		lx	2.9	ND		lx	2.4
Fluoranthene	57		1x	6.38	120		1x	7.36	9.1		lx	5.59	12		lx	4.71
Fluorene	26		lx	9.73	95		lx	11.24	ND		1x	8.5	7.7		lx	7.20
Indeno[1,2,3-cd]pyrene	25		İx	5.37	54		lx	6.20	ND		lx	4.7	13		lx	3.97
Naphthalene	ND		1x	47	69		l x	54.26	ND		lx	41	ND		lx	35
Phenanthrene	25		lx	2.82	64		1x	3.26	13		İx	2.47	6.2		1x	2.08
Pyrene	50		1x	6.04	90		lx	6.98	9.3		lx	5.29	14		lx	4.47

FT. McHENRY REACH
Analyte		CB1	SED			CB2	SED			CB3	SED			CB4	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil,	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1x	61	ND		lx	29	ND		lx	57	ND		lx	61
2-Methylnaphthalene	ND		1x	61	ND		1x	29	ND		1x	57	67		lx	60.87
Acenaphthene	ND		lx	61	ND		1x	29	ND		1x	57	81		1x	60.87
Acenaphthylene	ND		1x	100	ND		lx	49	ND		1x	97	ND		1x	100
Anthracene	8.7		1x	6.09	ND		1 x	2.9	ND		1 x	5.7	8.6		lx	6.09
Benzo[a]pyrene	29		1 x	8.26	9.7		1x	3.87	9.6		1 x	7.72	20		1x	8.26
Benzo[b]fluoranthene	52		lx	9.13	21		1x	4.28	21		1x	8.54	43		1x	9.13
Benzo[g,h,i]perylene	27	•	1 x	8.26	9		1x	3.87	11		1x	7.72	19		1x	8.26
Benzo[k]fluoranthene	15		lx	3.78	5.1		. AX	1.77	5.5		1 x	3.54	11		1x	3.78
Benz[a]anthracene	22		1x	3	7.1		lx	1.41	7.2		1x	2.80	17		1x	3
Chrysene	29		1x	3.87	10		1x	1.81	11		1 x	3.62	29		lx	3.87
Dibenz[a,h]anthracene	ND		1x	4.2	ND		1x	2	ND		1x	3.9	ND		1x	4.2
Fluoranthene	41		1x	8.26	15		1x	3.87	14		1x	7.72	38		lx	8.26
Fluorene	23		1x	12.61	7.4		1x	5.91	12		1x	11.79	17		1x	12.61
Indeno[1,2,3-cd]pyrene	27		1x	6.96	8.9		1x	3.26	8.7		1 x	6.50	17		1x	6.96
Naphthalene	67		lx	60.87	ND		1x	29	ND		1 x	57	ND		1x	61
Phenanthrene	22		1x	3.65	6.7		1x	1.71	9.5		1 x	3.41	24		1x .	3.65
Pyrene	39		1x	7.83	15		lx	3.67	17		1x	7.32	33		1x	7.83

CURTIS BAY REACH

Analyte		FB1	SED			FB2	SED			FB3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		1 x	65	ND		1x	69	ND		1x	55
2-Methylnaphthalene	85		1x	64.81	ND		lx	69	120		lx	55.12
Acenaphthene	130		lx	64.81	ND		lx	69	180		lx	55.12
Acenaphthylene	ND		ìx	110	ND		1x	120	ND		1 x	94
Anthracene	23		lx	6.48	ND		lx	6.9	24		1x	5.51
Benzo[a]pyrene	47		1x	8.80	19		lx	9.41	54		1x	7.48
Benzo[b]fluoranthene	80		lx	9.72	34		1 x	10.4	140		1 x	8.27
Benzo[g,h,i]perylene	36		lx	8.80	19		lx	9.41	49		lx	7.48
Benzo[k]fluoranthene	26		lx	4.03	9.2		lx	4.31	30		1 x	3.43
Benz[a]anthracene	39		lx	3.19	13		lx	3.42	40		lx	2.72
Chrysene .	65		lx	4.12	20		lx	4.41	69		lx	3.50
Dibenz(a,h (anthracene	4.9		lx	4.49	ND		lx	4.8	6.1		1 x	3.82
luoranthene	100		1 x	8.80	36		lx	9.41	130		lx	7.48
Fluorene	36		1 x	13.43	17		1x	14.36	62		lx	11.42
Indeno[1,2,3-cd]pyrene	32		lx	7.41	17		lx	7.92	51		1x	6.30
Naphthalene	ND		lx	65	ND		lx	69	ND		1x	55
Phenanthrene	46		lx	3.89	24		lx	4.16	52		i lx	3.31
Pyrene	85		lx	8.33	32		lx	8.91	98		lx	7.09

.

FERRY BAR REACH

NORTHWEST BRANCH EAST

٨

۰.

Analyte		NBEI	SED			NBE2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		lx	64	ND		1x	73
2-Methylnaphthalene	77		lx	64.22	220		lx	73.3
Acenaphthene	96 ·		lx	64.22	250		1x	73.3
Acenaphthylene	ND		1x	110	ND		1x	130
Anthracene	22		lx	6.42	58		lx	7.33
Benzo[a]pyrene	34		lx	8.72	76		1x	9.95
Benzo[b]fluoranthene	75		1x	9.63	170		1x	10.99
Benzo[g,h,i]perylene	33		lx	8.72	57		1x	9.95
Benzo[k]fluoranthene	20		1 x	3.99	47		1x	4.56
Benz[a]anthracene	43		lx	3.17	180		1x	3.61
Chrysene	86		1x	4.08	150		lx	4.66
Dibenz[a,h]anthracene	4.6		lx	4.45	10		lx	5.08
Fluoranthene	88		lx	8.72	220		1x	9.95
Fluorene	31		lx	13.3	64		1x	15.18
Indeno[1,2,3-cd]pyrene	34		lx	7.34	53		1x	8.38
Naphthalene	ND		1x	64	ND		1x	73
Phenanthrene	32		lx	3.85	70		1x	4.40
Рутепе	71		1x	8.26	170		1x	9.42

ND= Not detected

.

Analyte	-	NBW	SED			NBW:	2 SED			NBW3	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
1-Methylnaphthalene	ND		lx	42	ND		1x	32	ND		1x	61
2-Methylnaphthalene	ND		lx	42	230		1x	31.89	310		lx	60.61
Acenaphthene	ND		lx	42	230		1 <u>x</u>	31.89	680		1x	60.61
Acenaphthylene	ND		1x	71	ND		1x	55	ND		lx	100
Anthracene	ND		1x	4.2	50		1x	3.19	34		1x	6.06
Benzo[a]pyrene	ND		1x	5.6	67		1x	4.33	130		1x	8.23
Benzo[b]fluoranthene	11		lx	6.23	150		1x	4.78	180		1x	9.09
Benzo[g,h,i]perylene	ND		lx	5.6	61		1x	4.33	120		1x	8.23
Benzo[k]fluoranthene	ND		1x	2.6	40		1x	1.98	74		1 x	3.77
Benz[a]anthracene	ND		1x	2	54		1x	1.57	140		1x	2.99
Chrysene	14		1x	2.64	270		1x	2.03	230		1x	3.85
Dibenz[a,h]anthracene	ND		lx	2.9	8.5		1x	2.21	14		1x	4.20
Fluoranthene	9.1		1x	5.64	220		1 x	4.33	350		1x	8.23
1 iuorene	ND		1x	8.6	35		1x	6.61	23		1x	12.55
Indeno[1,2,3-cd]pyrene	ND		1x	4.7	52		1 x	3.64	130		1x	6.93
Naphthalene	ND		1x	42	44		1x	31.89	ND		1x	61
Phenanthrene	ND		1x	2.5	47		1 x	1.91	140		1x	3.64
Pyrene	11		1x	5.34	160		<u>1x</u>	4.1	260		1x	7.79

NORTHWEST BRANCH WEST

Table 4-7. Pesticide and PCB results for Chesapeake Bay and Baltimore Harbor sediments presented by sample reach.

.

Analyte		P11 S	ED			P12 S	SED			P13 S	SED			P14	SED			1915 S	ED	
ug/kg	Result	Qual.	_Dil	Limit	Result	Qual	Dil.	Limit	Result	Qual.	_Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1 x	3	ND		1 X	32	ND		1x	2.3	ND		lx	2.8	ND		1x	3.6
4,4'-DDE	ND		1x	0.62	ND		1 x	6.6	ND		1 x	0.48	ND		1 x	0.59	ND		1x	0.74
4,4'-DDT	ND		1x	3.4	ND		1x	36	ND		1 x	2.6	ND		1x	3.2	ND		1x	4.1
Aldrin	ND		1x	0.34	ND		1x	0.76	ND		1x	0.2	ND		lx	0.32	ND		1 x	0.41
alpha-BHC	ND		1x	2.4	ND		1x	25	ND		1x	1.8	ND		lx	2.2	ND		1 x	2.8
Azinphos methyl	ND		1x	4.9	ND		1x	16	ND		1 x	4.3	ND		1 x	4.8	ND		1 x	5.3
beta-BHC	ND		1 x	0.21	ND		lx	2.3	ND		1x	0.16	ND		1 x	0.2	ND		1x	0.25
Chlordane, technical	ND		1x	7.9	ND		1 x	84	ND		1x	6.1	ND		1 x	7.5	ND		1 x	9.4
Chlorobenside	ND		1 x	4.9	ND		1 x	16	ND		1 x	4.2	ND		1 x	4.7	ND		1 x	5.2
Dacthal	ND		1 x	4.9	ND		1 x	16	ND		1x	4.2	ND		1 x	4.7	ND		1 x	5.2
delta-BHC	ND		1 x	0.36	ND		1 x	3.9	ND		1x	0.28	ND		1 x	0.34	ND		1 x	0.43
Demeton	ND		l x	4.9	ND		1x	16	ND		1x	4.3	ND)		1x	4.8	ND		1x	5.3
Dieldrin	ND -		1 x	2.8	ND		1 x	29	ND		1 x	2.1	ND)		1x	2.6	ND		1x	3.3
Endosull'an 1	ND		1 x	0.21	ND		1x	2.3	ND		1 x	0.16	ND		1 x	0.2	ND		1 x	0.25
Endosulfan II	ND		1 x	0.49	ND		1 x	5.2	ND		1 x	0.38	ND		1 x	0.47	ND		1x	0.58
Endosulfan sulfate	ND		1 x	1.1	ND		1 x	12	ND		1x	0.84	ND		1 x	1	ND		1 x	1.3
Endrin	ND		1x	3	ND		1x	32	ND		1 x	2.3	ND		1 x	2.8	ND		1 x	3.6
Endrin aldehyde	ND		1 x	0.21	ND		1 x	2.3	ND		1x	0.16	ND		1 x	0.2	ND		1 x	0.25
Ethyl parathion	ND		1 x	4.9	ND		1 x	16	ND		1 x	4.2	ND		1x	4.7	ND		1 x	5.2
gamma-BHC	ND		1 x	1.6	ND		1x	17	ND		1 x	1.2	ND		1 x	1.5	ND		1x	1.9
Heptachlor	ND		1 X	1.8	ND		1x	19	ND		1x	1.4	ND		1 x	1.7	ND		1 x	2.1
l leptachlor epoxide	ND		1x	0.15	ND		1x	0.48	ND		1x	0.13	ND		1 x	0.14	ND		1 x	0.16
Malathion	ND		1x	4.9	ND		1x	16	ND		1x	4.2	ND		1 x	4.7	ND		1x	5.2
Methoxychlor	ND		1 x	18	ND		1x	57	ND		1x	15	ND		1 x	17	ND		1x	19
Methyl parathion	ND		1x	4.9	ND		1x	16	ND		1x	4.2	ND		1 x	4.7	ND		1x	5.2
Mirex	ND		1x	4.9	ND		1x	16	ND		1x	4.2	ND		1 x	4.7	ND		1 x	5.2
Toxaphene	ND		1x	110	ND		1x	1200	ND		1x	87	ND		1 x	110	ND		1x	130
Aroclor-1016	ND		1x	5.9	ND		1 x	19	ND		1x	5.1	ND		1x	5.7	ND		1x	6.4
Aroclor-1221	ND		1x	15	ND		1 x	48	ND		1x	13	ND		1x	14	ND		1 x	16
Aroclor-1232	ND		1x	4.4	ND		1 x	14	ND		1x	3.8	ND		1 x	4.3	ND		1x	4.8
Aroclor-1242	ND		1x	5.9	ND		1 x	19	ND		1x	5.1	ND		1 x	5.7	ND		1 x	6.4
Aroclor-1248	ND		1 x	1.5	ND		1x	4.8	ND		1x	1.3	ND		1 x	1.4	ND		1 x	1.6
Aroclor-1254	ND		1x	2.9	ND		1 x	10	ND		1x	2.6	ND		1 x	2.8	ND		1x	3.2
Aroclor-1260	ND		<u>lx</u>	1.5	ND		<u>1x</u>	4.8	ND		1x	1.3	ND		<u> </u>	1.4	ND		<u>1x</u>	1.6

POPLAR ISLAND

÷

Analyte		DTI	SED			DT2	SED			DT3	SED	
ug/kg	<u>Result</u>	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
,4'-DDD	ND		İx	35	ND		lx	6.5	ND		1x	31
,4'-DIDE	ND		İx	7.3	ND		lx	1.3	ND		1x	. 6.5
,4'-DDT	ND		1 x	40	ND		İx	7.4	ND		1x	36
Aldrin	ND		1 x	4	ND		1 x	0.74	ND		1x	3.6
Ipha-BHC	ND		İx	28	ND		1 x	5.1	ND		1x	24
Azinphos methyl	ND		1x	17	ND		1 x	7.2	ND		1x	16
eta-BHC	ND		İx	2.5	ND		1 x	0.46	ND		1x	2.2
Chlordane, technical	ND		1x	93	ND		1 x	17	ND		1x	82
Chlorobenside	ND		1x	17	ND		1x	7.2	ND		1x	16
Dacthal	ND		1x	17	ND		1x	7.2	ND		1x	16
leita-BI IC	ND		İx	. 4.3	ND		1 x	0.79	ND		1x	3.8
Demeton	ND		1 x	17	ND		1 x	7.2	ND		1x	16
Dieldrin	ND		1x	33	ND		1 x	6	ND		1x	29
ndosullan l	ND		1x	2.1.	ND		1x	0.46	ND		lx.	2.2
indosulfan II	ND		1x	5.8	ND		1x	1.1	ND		1x	5.1
ndosulfan sulfate	ND		1x	13	ND		1x	2.4	ND		1x	- 11
indrin	ND		1x	35	ND		1 x	6.5	ND		1x	31
indrin aldehyde	ND		1x	2.5	ND		1x	0.46	ND		lx	2.2
thyl parathion	ND		1 x	17	ND		1x	7.2	ND		1x	16
amma-BHC	ND		1 x	3.7	ND		1x	3.4	ND		1x	16
leptachlor	ND		1x	21	ND		1x	3.8	ND		lx	18
leptachlor epoxide	ND		1x	0.5	ND		1 x	0.22	ND		1x	0.47
/lalathion	ND		1 x	17	ND		1x	7.2	ND		lx	16
Acthoxychlor	ND		1 x	60	ND		1 x	· 26	ND		1x	57
fethyl parathion	ND		İx	17	ND		1x	7.2	ND		1x	16
/lirex	ND		1x	17	ND		1 x	7.2	ND		1x	16
oxaphene	ND		1x	1300	ND		İx	250	ND		1x	1200
roclor-1016	ND		1x	20	ND		1x	8.6	ND		1x	19
roclor-1221	ND		1x	50	ND	•	1x	22	ND		1x	47
roclor-1232	ND		İx	15	ND		1 x	6.5	ND		1 x	14
roclor-1242	ND		1 x	20	ND		1x	8.6	ND		1x	19
roclor-1248	ND		1 x	5	ND		1x	2.2	ND		1x	4.7
troclor-1254	ND		1x	10	ND		1x	4.3	ND		1x	9.4
roclor-1260	ND		<u>lx</u>	5	ND		<u> x</u>	4.8	ND		lx	4.7

DEEP TROUGH

•

Analyte		<u>KII SE</u>	<u>D</u>			KI2 :	SED			KI3S	ED	
ug/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	_ Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	1.9	ND		1x	4.1	ND		1x	2
4,4'-DDE	ND		1 X	0.39	ND		1 x	0.85	ND		1x	0.42
4,4'-DDT	ND		1 x	2.1	ND		1x	4.7	ND		1x	2.3
Aldrin	ND		1x	0.21	ND		1 x	0.47	ND		1 x	0.23
alpha-BHC	ND		1x	1.5	ND		1x	3.2	ND		1 x	1.6
Azinphos methyl	ND		1x	4.4	ND		1x	9.8	ND		1 x	4.8
beta-BHC	ND		1 x	0.13	ND		1 X	0.29	ND		1x	0.14
Chlordane, technical	ND		1x	4.9	ND		1x	11	ND		1x	5.4
Chlorobenside	ND		1 x	4.4	ND		1x	9.7	ND		1 x	4.8
Dacthal	ND		1 x	4.4	ND		t x	9.7	ND		1 x	4.8
ielta-BHC	ND		1 x	0.23	ND		1 x	0.5	ND		1 x	0.25
Demeton	ND		1 x	4.4	ND		1 x	9.8	ND		1 x	4.8
Dieldrin	ND		1x	1.7	ND		1 x	3.8	ND		1 x	1.9
Endosulfan 1	ND		1x	0.13	ND		1 x	0.29	ND		1 x	0.14
Endosulfan II	ND		1x	0.31	ND		1 x	0.68	ND		1 x	0.33
Endosulfan sullate	ND		1 x	0.68	ND		1 x	1.5	ND		1 x	0.74
Endnin	ND		1 x	1.9	ND		1 x	4.1	ND		1 x	2
Endrin aldehyde	ND		1x	0.13	ND		t x	0.29	ND		1 x	0.14
Ethyl parathion	ND		1 x	4.4	ND		1 x	9.7	ND		1 x	4.8
gamma-BHC	ND		1 x	0.97	ND		1 x	2.1	ND		1 x	1.1
Teptachlor	ND		1 x	1.1	ND		1x	2.4	ND		1 x	1.2
leptachlor epoxide	ND		1 x	0.13	ND		1x	0.29	ND		1x	0.14
Malathion	ND		1 X	4.4	ND		1 x	9.7	ND		1 x	4.8
Methoxychlor	ND		1 x	16	ND		1 X	35	ND		1 x	17
Methyl parathion	ND		1 x	4.4	ND		1 X	9.7	ND		1 x	4.8
Mirex	ND		1 x	4.4	ND		1 X	9.7	ND		1x	4.8
Toxaphene	ND		1 X	71	ND		1 x	160	ND		1x	77
Aroclor-1016	ND		1x	5.3	ND		1x	12	ND		1x	5.8
Aroclor-1221	ND		1x	13	ND		1x	30	ND		1x	14
Aroclor-1232	ND		1x	4	ND		1x	8.9	ND		1x	4.3
Aroclor-1242	ND		1x	5.3	ND		1x	12	ND		1x	5.8
Aroclor-1248	ND		1x	1.3	ND		1x	3	ND		1x	1.4
Aroclor-1254	ND		1x	2.7	ND		1x	5.9	ND		1x	2.9
Aroclor-1260	ND		1x	1.3	ND		1x	4.6	ND		1x	4.6

KENT ISLAND DEEP

POOLES ISLAND

.

Analyte	1	POL	ISED	
ug/kg	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	3.5
4,4'-DDE	ND		1 x	0.72
4,4'-DDT	ND		1x	4
Aldrin	ND		1x	0.4
alpha-BHC	ND		1x	2.8
Azinphos methyl	ND		1 x	2
beta-BHC	ND		1 x	0.25
Chlordane, technical	ND		1 x	9.2
Chlorobenside	ND		1x	17
Dacthal	ND		1 x	17
delta-BHC	ND		1x	0.42
Demeton	ND		lx	2
Dieldrin	ND		1 x	3.2
Endosulfan 1	ND		1 x	0.25
Endosulfan II	ND		1x	0.57
Endosulfan sulfate	ND		lx	1.3
Endrin	ND		1x	3.5
Endrin aldehyde	DN D		lx	0.25
Ethyl parathion	ND		1 x	17
gamma-BHC	ND		1 x	1.8
Heptachlor	ND		1x	2.1
Heptachlor epoxide	ND		lx	0.25
Malathion	ND		1x	17
Methoxychlor	ND		1x	30
Methyl parathion	ND		1x	17
Mirex	ND		1x	17
Toxaphene	ND		1 x	130
Aroclor-1016	ND		1 x	9.9
Aroclor-1221	ND		1x	25
Aroclor-1232	ND		1x	7.4
Aroclor-1242	ND		1x	9.9
Aroclor-1248	ND		1x	2.5
Aroclor-1254	ND		1x	4.9
Aroclor-1260	ND		1x	2.5

~

Analyte		SWPI	SED			SWP2	SED			SWP3	SED]
ug/kg	Result	Qual.	Dil,	Limit	Result	Qual.	<u> </u>	Limit	Result	Qual,	Dil.	Limit
4,4'-DDD	ND		lx	6.1	ND		1x	6.1	ND		lx	5.6
4,4'-DDE	ND		Ix	1.3	ND		lx	1.3	ND ·		lx	1.2
4,4'-DDT	ND		1 x	7	ND		lx	7	ND		lx	6.4
Aldrin	ND		1x	0.7	ND		1 x	0.7	ND		1x	0.64
alpha-BHC	ND		lx	4.8	ND		lx	4.8	ND		1x	4.4
Azinphos methyl	ND		lx	14	ND		1 x	29	ND		1x	27
beta-BHC	ND		lx	0.43	ND		lx	0.43	ND		1x	0.4
Chlordane, technical	ND		1x	16	ND		1x	16	ND		1x	15
Chlorobenside	ND		1x	14	ND		1x	2.9	ND		1x	2.7
Dacthal	ND I		1x	14	ND		lx	2.9	ND		1x	2.7
delta-BHC	ND		1x	0.74	ND		lx	0.74	ND		lx	0.68
Demeton	ND		1x	14	ND		1x	29	ND		1x	27
Dieldrin	ND		1x	5.7	ND		lx	5.7	ND		1x	5.2
Endosulfan 1	ND		lx	0.43	ND		1x	0.43	ND		1x	0.4
Endosulfan II	ND		1 x	1	ND		1 x	1	ND		1x	0.92
Endosulfan sulfate	ND		lx	2.2	ND		1x	2.2	ND		1x	2
Endrin	ND		1x	6.1	ND		lx	6.1	ND		1x	5.6
Endrin aldehyde	ND		1x	0.43	ND		1x	0.43	ND		1x	0.4
Ethyl parathion	ND		lx	14	ND		1x	2.9	ND		1x	2.7
gamma-BHC	ND		1x	3.2	ND		1x	3.2	ND		1 x	2.9
l leptachlor	ND		tx	3.6	ND		1x	3.6	ND		1x	3.3
leptachlor epoxide	ND		1x	0.43	ND		1x	0.43	ND		1x	0.4
Malathion	ND		1 x	14	ND		1x	2.9	ND		1x	2.7
Methoxychlor	ND		1x	52	ND		ix	52	ND		1x	48
Methyl parathion	ND		lx	14	ND		İx	2.9	ND		1x	2.7
Mirex	ND		1x	14	ND		tx	2.9	ND		1x	2.7
l'oxaphene	ND		1x	230	ND		1x	230	ND		1x	210
Aroclor-1016	ND		1x	17	ND		1x	18	ND		1x	16
Aroclor-1221	ND		1x	43	ND		lx	44	ND		1x	40
Aroclor-1232	ND		1x	13	ND		lx	13	ND		1x	12
Aroclor-1242	ND		1 x	17	ND		lx	18	ND		Ix	16
Aroclor-1248	ND		1x	4.3	ND		lx	4.4	ND		1 x	4
Aroclor-1254	ND		lx	8.6	ND		Ix	8.8	ND		lx	8.1
Aroclor-1260	ND		lx	4.3	ND		<u> </u>	4.4	ND		<u>lx</u>	4

SWAN POINT CHANNEL

Analyte		CREI	SED			CRE2	SED			CRE3 S	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	3.5	ND		1x	3.4	ND		1x	3.3
4,4'-DDE	ND		1 x	0.73	ND		1x	0.7	ND		1 x	0.68
4,4'-DDT	11	р	1 x	4.1	ND		1x	3.9	ND		1 x	3.7
Aldrin	ND		1 x	0.41	ND		1 x	0.39	ND		1 x	0.37
Ipha-BHC	ND		1 x	2.8	ND		1 x	2.7	NÐ		1 x	2.6
Azinphos methyl	ND		1 x	17	ND		1 x	16	ND ·		1 x	16
oeta-BHC	ND		1 x	0.25	ND		1 x	0.24	ND		1 x	0.23
Chlordane, technical	ND		1 x	9.4	ND		1 x	9	ND		1 x	8.7
Chlorobenside	ND		1 x	1.7	ND		1 x	1.6	ND		1 x	1.6
Dacthal	ND		1 x	1.7	ND		1 x	1.6	ND		1 x	1.6
lelta-BHC	ND		1 x	0.43	ND		1 x	0.41	ND		1 x	0.4
Demeton	ND		1 x	17	ND		1x	16	ND		١x	16
Dieldrin	ND		1 x	3.3	ND		1 x	3.1	ND		1 x	3
Endosulfan 1	ND		1 x	0.25	ND		1x	0.24	ND		1 x	0.23
Endosulfan II	ND		1 x	0.58	ND		lx	0.56	ND		1 x	0.54
Endosulfan sulfate	ND		1 x	1.3	ND		1 x	1.2	ND	•	1 x	1.2
Endrin	ND		1 x	3.5	ND		1 x	3.4	ND		1 x	3.3
Endrin aldehyde	ND		1 x	0.25	ND		1 x	0.24	ND		1 x	0.23
Ethyl parathion	ND		1 x	1.7	ND		1 x	1.6	ND		1 x	1.6
amma-BHC	ND		1 x	1.8	ND		1x	1.8	ND		1 x	1.7
leptachlor	ND		1 x	2.1	ND		1 x	2	ND		1 x	1.9
leptachlor epoxide	ND		1 x	0.25	ND		1x	0.24	ND		1x	0.23
Malathion	ND		1 x	1.7	ND		1 x	1.6	ND		1 x	1.6
Methoxychlor	ND		1 x	25	ND		1x	24	ND		1 x	23
vlethyl parathion	ND		1 x	1.7	ND		1 x	1.6	ND		1 x	1.6
Mirex	ND		1 x	1.7	ND		1 x	1.6	ND		1x	1.6
l'oxaphene	ND		l x	130	ND		1 x	130	NÐ		1 X	120
Aroclor-1016	ND		1 x	10	ND		1 x	9.8	ND		1 x	9.3
Aroclor-1221	ND		1 x	26	ND		1 x	24	ND		1 x	23
Aroclor-1232	ND		1 x	7.7	ND		1 x	7.3	ND		1x	7
Aroclor-1242	ND		1x	10	ND		1x	9.8	ND		1 x	9.3
Aroclor-1248	ND		l x	2.6	ND		lx	2.4	ND		1x	2.3
Aroclor-1254	ND		1 x	5.1	ND		1 x	4.9	ND		1x	4.7
Aroclor-1260	ND		1 x	2.6	ND		1x	2.4	ND		1x	23

CRAIGHILL ENTRANCE

4

ND=Not detected P=Inductively coupled plasma

Analyte		CR1 SED			CR2	SED			CR2FE	SED			CR3	SED		
ug/kg	Result	Qual.	<u>Dil.</u>	Limit	Result	Qual.	<u>Dil</u>	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	1)il.	Limit
4,4'-DDD	ND		lx	·2	ND		1x	3	ND		1x	4.7	ND		1x	3.4
4,4'-DDE	ND		1x	0.42	ND		1x	0.62	ND		l x	0.97	ND		1x	0.7
4.4'-DDT	ND		1x	2.3	ND		1x	3.4	ND		1x	5.3	ND		1 x	3.9
Aldrin	ND		1x	0.23	ND		1x	0.34	ND		1x	0.53	ND		1 x	0.39
alpha-BHC	ND		1x	1.6	ND		1x	2.4	ND		1x	3.7	ND		1x	· 2.7
Azinphos methyl	ND		1x	9.7	ND		1x	14	ND		1 x	22	ND		1x	16
beta-BHC	ND		1x	0.14	ND		1x	0.21	ND		1x	0.33	ND		1 x	0.24
Chlordane, technical	ND		1x	5.4	ND		1x	7.9	ND		1x	12	ND		1x	9
Chlorobenside	ND		1x	0.97	ND		lx	1.4	ND		1x	2.2	ND		1x	1.6
Dacthal	ND		1x	0.97	ND		lx	1.4	ND		l x	2.2	ND		1x	1.6
delta-BHC	ND		1x	0.25	ND		1x	0.36	ND		1x	0.57	ND		1x	0.41
Demeton	ND		1x	9.7	ND		1x	14	ND		1x	22	ND		1x	16
Dicldrin	ND		1x	1.9	ND		1x	2.8	ND		1x	4.3	ND		1x	3.2
Endosulfan 1	ND		1x	0.14	ND		1x	0.21	ND		1 x	0.33	ND		1x	0.24
Endosulfan II	ND		1x	0.33	ND		1x	0.49	ND		1x	0.77	ND		1x	0.56
Endosulfan sulfate	ND		1x	0.74	ND		1x	1.1	ND		1x	1.7	ND		1x	1.2
Endrin	ND		1 x	2	ND		1x	3	ND		1x	4.7	ND		1x	3.4
Endrin aldehyde	ND		1x	0.14	ND		1x	0.21	ND		1 x	0.33	ND		1x	0.24
Ethyl parathion	ND		1x	0.97	ND		1x	1.4	ND		1 x	2.2	ND		1x	1.6
gamma-BHC	ND		1x	1.1	ND		1x	1.6	ND		1x	2.4	ND		1x	1.8
Heptachlor	ND		l x	1.2	ND		1x	1.8	ND		l x	2.8	ND		lx	2
l leptachlor epoxide	ND		1x	0.14	ND		1x	0.21	ND		1 x	0.33	ND		1x	0.24
Malathion	ND		1x	0.97	ND		1x	1.4	ND		1 x	2.2	ND		1x	1.6
Methoxychlor	ND		l x	14	ND		lx	24	ND		1 x	33	ND		1x	21
Methyl parathion	ND		1x	0.97	ND		1x	1.4	ND		1x	2.2	ND		1x	1.6
Mirex	ND)		lx	0.97	ND		1 x	1.4	ND		1x	2.2	ND		1x	1.6
Toxaphene	ND		1x	77	ND		1 x	110	ND		1 x	180	ND		1 x	130
Aroclor-1016	ND		1x	5.8	ND		1 x	8.5	ND		1x	13	ND		1x	9.8
Aroclor-1221	ND		1x	14	ND		1x	21	ND		1x	33	ND		1x	24
Aroclor-1232	ND		1x	4.3	ND		1x	6.4	ND		1x	10	ND		1x	7.3
Aroclor-1242	ND		1 x	5.8	ND		1x	8.5	ND		1x	13	ND		1x	9.8
Aroclor-1248	ND		1 x	1.4	ND		1 x	2.1	ND		1x	3.3	ND		1x	2.4
Aroclor-1254	ND		1 x	2.9	ND		1x	4.3	ND		1x	6.7	ND		1x	4.9
Aroclor-1260	ND	<u> </u>	1x	1.4	ND		<u>1x</u>	2.1	ND		lx	3.3	ND		<u>1x</u>	2.4

CRAIGHILL CHANNEL

ND=Not detected

١,

Analyte	1	CRAI	SED		[CRA	2 SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	1.imit
4,4'-DDD	ND		İx	4.2	ND		1x	5.2
4,4'-DDE	ND		1 x	0.87	ND		1x	1.1
4,4'-DDT	ND		1x	4.8	ND		lx	6
Aldrin	ND		1x	0.48	ND		1 x	0.6
alpha-BHC	ND		1x	3.3	ND		lx	4.1
Azinphos methyl	ND		1 x	20	ND		1 x	25
beta-BHC	ND		1x	0.3	ND		1x	0.37
Chlordane, technical	ND		1x	11	ND		1 x	14
Chlorobenside	ND		1x	2	ND		1x	2.5
Daethal	ND		1x	2	ND		lx	2.5
delta-BHC	ND	. ř	lx	0.51	ND		1 x	0.64
Demeton	ND		1x	20	ND		1x	25
Dieldrin	ND		1x	3.9	ND		1x	4.9
Endosulfan I	ND	•	1x	0.3	ND		1x	0.37
Endosulfan II	ND		1x	0.69	ND		1x	0.86
Endosulfan sulfate	ND		lx	1.5	ND		1x	1.9
Endrin	ND		lx	4.2	ND		lx	5.2
Endrin aldehyde	ND		lx	0.3	ND		1x	0.37
Ethyl parathion	ND		lx	2	ND		1x	2.5
gamma-BHC	ND		İx	2.2	ND		1x	2.7
Heptachlor	ND		lx	2.5	ND		1x	3.1
l leptachlor epoxide	ND		lx	0.3	ND		1x	0.37
Malathion	ND		1x	2	ND		lx	2.5
Methoxychlor	ND		1x	30	ND		1x	37
Methyl parathion	ND		1x	2	ND		lx	2.5
Mirex	ND		lx	2	ND		1x -	2.5
Toxaphene	ND		1x	160	ND		İx	200
Aroclor-1016	ND		1x	12	ND		1x	15
Aroclor-1221	ND		1x	30	ND		1x	37
Aroclor-1232	ND		lx	9.1	ND		lx	11
Aroclor-1242	ND		lx	12	ND		lx	15
Aroclor-1248	ND		lx	3	ND		1x	3.7
Aroclor-1254	ND		1x	6.1	ND		1x	7.4
Aroclor-1260	ND		<u>1x</u>	3	ND		1x	3.7

CRAIGHILL ANGLE

Analyte		CRUI	SED			CRUZ	2 SED			CRU3 SED	
ug/kg	Result	Qual, _	Dil.	Limit	Result	Qual.	<u>1)il</u> .	Limit	Result	Qual. Dil.	1_imit
4,4'-DDD	ND		lx	5	ND		1x	2.2	ND	lx	3.3
4,4'-DDE	ND		lx	1	ND		1 x	0.46	ND	lx	0.68
4,4'-DDT	ND		1x	5.7	ND		1x	2.5	ND	lx	3.7
Aldrin	ND		1x	0.57	ND		1x	0.25	ND	lx	0.37
alpha-BHC	ND		1x	3.9	ND		1 x	1.7	ND	lx	2.6
Azinphos methyl	ND		1 x	24	ND		1 x	11	ND	1x	16
beta-BHC	ND		1x	0.35	ND		١x	0.16	ND	1x	0.23
Chlordane, technical	ND		1 x	13	ND		lx	5.9	ND	lx	8.6
Chlorobenside	ND		lx	2.4	ND		١x	1.1	ND	lx	1.6
Dacthal	ND		lx	2.4	ND		١x	1.1	ND	1x	1.6
delta-I3HC	ND		1x	0.6	ND		1 X	0.27	ND	lx	0.4
Demeton	ND		1x	24	ND		lx	11	ND	lx	16
Dieldrin	ND		1x	4.6	ND		lx	2.1	ND	1x	3
Endosulfan I	ND		1x	0.35	ND		1 x	0.16	ND	1x	0.23
Endosulfan II	ND		1x	0.82	ND		1 x	0.36	ND	1x	0.54
Endosulfan sulfate	ND		1x	1.8	ND		1x	0.81	ND	1x	1.2
Endrin	ND		1x	5	ND		1x	2.2	ND	1x ⁻	3.3
Endrin aldchydc	ND		1 x	0.35	ND		1x	0.16	ND	lx	0.23
Ethyl parathion	ND		1 x	2.4	ND		1x	1.1	ND	1x	1.6
gamma-BHC	ND		1 x	2.6	ND		lx	1.2	ND	1x	1.7
leptachlor	ND		1x	2.9	ND		lx	1.3	ND	lx	1.9
Heptachlor epoxide	ND		1x	0.35	ND		1x	0.16	ND	lx	0.23
Malathion	ND		1x	2.4	ND		1 x	1.1	ND	lx	1.6
Methoxychlor	ND		1x	35	ND		1 x	16	ND	1x	23
Methyl parathion	ND		1 x	2.4	ND		1x	1.1	ND	lx	1.6
Mirex	ND		1 x	2.4	ND		1 x	1.1	ND	1x	1.6
Toxaphene	ND		1 x	190	ND		1 x	84	ND	1x	120
Aroclor-1016	ND		1 x	14	ND		1 x	6.3	ND	lx	9.3
Aroclor-1221	ND		1 x	36	ND		1 x	16	ND	lx	23
Aroclor-1232	ND		1x	11	ND		1x	4.8	ND	1x	7
Aroclor-1242	ND		1x	14	ND		1x	6.3	ND	1x	9.3
Aroclor-1248	ND		1 x	3.6	ND		1x	1.6	ND	lx	2.3
Aroclor-1254	ND		1 x	7.1	ND		1x	3.2	ND	lx	4.7
Aroclor-1260	ND		<u>1x</u>	3.6	ND		<u>1x</u>	1.6	_ND	lx	5

.

CRAIGHILL UPPER RANGE

· ND=No1 detected

CUTOFF ANGLE

Analyte		CUTI	SED		· · · · · ·	CUT:	2 SED	1	- 1	сйтэ	SED	• • • • •
ug/kg	Result	Qual.	Dil.	L.imit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	4.7	ND		1x	5.6	ND		1x	4.4
4,4'-DDE	ND		1x	0.98	ND		l x	1.2	ND		1 x	0.91
4,4'-DDT	ND		1x	5.4	ND		1x	6.4	ND		1 x	. 2
Aldrin	ND		1x	0.54	ND		1x	0.64	ND		1x	0.5
alpha-1314C	ND)		lx	3.7	ND		1x	4.4	ND		lx	3.5
Azinphos methyl	ND		lx	22	ND		1x	27	ND		1x	21
beta-BHC	ND		1 x	0.34	ND		1 x	0.4	ND		1x	0.31
Chlordane, technical	ND		1 x	12	ND.		1x	15	ND		1x	12
Chlorobenside	ND		1x	2.2	ND		1x	2.7	ND		1 x	2.1
Dacthal	ND		l x	2.2	ND		lx	2.7	ND		1 x	2.1
delta-BHC	ND		1x	0.57	ND		1x	0.68	ND		lx	0.53
Demeton	ND		1x	22	ND		1x	27	ND		1x	21
Dieldrin	ND		1 x	4.4	ND		1 x	5.2	ND		1x	4.1
Endosulfan 1	ND		1 x	0.34	ND		1x	0.4	ND		1x	0.31
Endosulfan II	ND		1x	0.77	ND		1 x	0.92	ND		1 x	0.72
Endosulfan sulfate	ND		1x	1.7	ND		1x	2	ND		1x	1.6
Endrin	ND		1x	4.7	ND		1 x	5.6	ND		1 x	4.4
Endrin aldehyde	ND		1 x	0.34	ND		1 x	0.4	ND		1 x	0.31
Ethyl parathion	ND		1 x	2.2	ND		1x	2.7	ND		1x	2.1
gamma-BHC	ND		1x	2.5	ND		1 x	2.9	ND		1x	2.3
leptachlor	ND		1 x	2.8	ND		1x	3.3	ND		1x	2.6
Heptachlor epoxide	ND		1 x	0.34	ND		1x	0.4	ND		1x	0.31
Malathion	ND		1x	2.2	ND		1 x	2.7	ND		1x	2.1
Methoxychlor	ND		1x	34	ND		1 x	40	ND		1 x	31
Methyl parathion	ND		1 x	2.2	ND		lx	2.7	ND		lx	2.1
Mirex	ND		1 x	2.2	ND		1 x	2.7	ND		1 x	2.1
Foxaphene	ND		1 x	180	ND		l x	210	ND		1x	170
Aroclor-1016	ND		l x	13	ND		lx	16	ND		1x	13
Aroclor-1221	ND		l x	33	ND		1 x	40	ND		lx	31
Aroclor-1232	ND		1 x	10	ND		1x	12	ND		1 x	9.4
Aroclor-1242	ND)		1x	13	ND		1 x	16	ND		1x	13
Aroclor-1248	ND		l x	3.3	ND		1 x	4	ND		1x	3.1
Aroclor-1254	ND		1 x	6.7	ND		1x	8	ND		1 x	6.3
Aroclor-1260	ND		<u>lx</u>	3.3	<u>ND</u>		<u>lx</u>	9	ND		<u>lx</u>	3.1

Analyte		TLCI SED			TLC2 SED		I	TLC2FD SED			11.C3 SED	l
ug/kg	Result	Qual. Dil.	<u>l,imit</u>	Result	Qual. Dil.	Limit	Result	Qual. Dil.	1.imit_	Result	Qual. Dil.	Limit
4,4'-DDD	ND	lx	2.7	ND	1x	2.9	ND	lx	3.1	ND	1x	4.1
4,4'-DDE	ND	1x	0.56	ND	lx	0.6	ND	lx	0.64	ND	1 x	0.85
4,4'-DDT	ND	1x	3.1	ND	lx	3.3	ND	lx	3.6	ND	1x	4.7
Aldrin	ND	lx	0.31	ND	lx	0.33	ND	1x	0.36	ND	lx	0.47
alpha-BHC	ND)	1x	2.1	ND	lx	2.3	ND	1x	2.4	ND	1x	3.2
Azinphos methyl	ND	1x	13	ND	1x	14	ND	lx	15	ND	lx	20
beta-BHC	ND	1x	0 <u>.</u> 19	ND	lx	0.21	ND	1 x	0.22	ND	1 x	0.29
Chlordane, technical	ND	1x	7.1	ND	1x	7.7	ND	1 x	8.2	ND	lx	11
Chlorobenside	ND	Ix	1.3	ND	1x	1.4	ND	lx	1.5	ND	lx	1.9
Dacthal	ND	Ix	1.3	ND	1x	1.4	ND	lx	1.5	ND	lx	1.9
delta-BHC	ND	1x	0.33	ND	1x	0.35	ND	1x	0.38	ND	lx	0.5
Demeton	ND	1x	13	ND	1x	14	ND	1x	15	ND	1x	20
Dieldrin	ND	1x	2.5	ND	lx	2.7	ND	lx	2.9	ND	1x	3.8
Endosulfan 1	ND	1x	0.19	ND	1x	0.21	ND	1x	0.22	ND	1x	0.29
Endosulfan II	ND	1x	0.44	ND	1x	0.48	ND	1x	0.51	ND	1x	0.68
Endosulfan sulfate	ND	1x	0.98	ND	lx	1.1	ND	lx	1.1	ND	1x	1.5
Endrin	ND	1x ·	2.7	ND	1x	2.9	ND	lx	3.1	ND	1x	4.1
Endrin aldehyde	ND	lx	0.19	ND	1x	0.21	ND	1 x	0.22	ND	1x	0.29
Ethyl parathion	ND	1x	1.3	ND	1x	1.4	ND	1x	1.5	ND	1x	1.9
gamma-BHC	ND	1x	1.4	ND	1x	1.5	ND	lx	1.6	ND	1 x	2.1
Heptachlor	ND	lx	1.6	ND	lx	1.7	ND	lx	1.8	ND	1x	2.4
Heptachlor epoxide	ND	1x	0.19	ND	1x	0.21	ND	1x	0.22	ND	lx	0.29
Malathion	ND	1x	1.3	ND	lx	1.4	ND	1x	1.5	ND	1x	1.9
Methoxychlor	ND	1x	23	ND	lx	25	ND	1x	27	ND	· 1x	35
Methyl parathion	ND	lx	1.3	ND	lx	1.4	ND	lx	1.5	ND	1x	1.9
Mirex	ND	Ix	1.3	ND	lx	1.4	ND	lx	1.5	ND	1x	1.9
Toxaphene	ND	lx	100	ND	lx	110	ND	lx	120	ND	lx	160
Aroclor-1016	ND	1x	7.7	ND	lx	8.4	ND	1x	8.8	ND	1x	12
Aroclor-1221	ND	lx	19	ND	1x	21	ND	1x	22	ND	1x	30
Aroclor-1232	ND	lx	5.8	ND	1x	6.3	ND	lx	6.6	ND	1x	8.9
Aroclor-1242	ND	1 x	7.7	ND	1x	8.4	ND	1x	8.8	ND	1x	12
Aroclor-1248	ND	lx	1.9	ND	1x	2.1	ND	lx	2.2	ND	1x	3
Aroclor-1254	ND	lx	3.9	ND	1x	4.2	ND	1x	4.4	ND	lx	5.9
Aroclor-1260	ND	<u> </u>	1.9	ND	<u>lx</u>	2.1	ND	<u>lx</u>	2.2	ND	<u>lx</u>	3

. TOLCHESTER CHANNEL-VAN VEEN

.

Analyte		TLVI	SED			TLV2	SED			TLV3	SED			TL.V4	SED			TLV5 SED	
ug/kg	Result	Qual.	<u>_Dil.</u>	Limit	Result	Qual.	<u>Dil.</u>	<u>Limit</u>	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual. Dil.	Limit
4,4'-DDD	ND		Ix	2.9	ND		1x	2.7	ND		1 x	2.8	ND		1x	3.1	ND	lx	3
4,4'-DDE	ND		lx	0.59	ND		Ιx	0.56	ND		1x	0.58	ND		Ix	0.64	ND	1x	0.63
4,4'-DIDT	ND		Ix	3.3	ND		1 x	3.1	ND		Ix	3.2	ND		1x	3.6	ND	İx	3.5
Aldrin	ND		1x	0.33	ND		1 x	0.31	ND		Iх	0.32	ND		1x	0.36	ND	Ix	0.35
alpha-BHC	ND		1x	2.2	ND		1 x	2.1	ND		1x	2.2	ND		1 x	2.4	ND	1x	2.4
Azinphos methyl	ND		1x	14	ND		1x	13	ND		Ix	13	ND -		1 x	15	ND	1x	14
beta-BIIC	ND		Ix	0.2	ND		1x	0.19	ND		Iх	0.2	ND		Ix	0.22	ND	1x	0.22
Chlordane, technical	ND		Ix	7.6	ND		Ix	7.1	ND		Ix	7.4	ND		1x	8.2	ND	1x	8
Chlorobenside	ND		1 x	1.3	ND		1x	1.3	ND		1x	1.3	ND		1x	1.5	ND	1x	1.4
Dacthal	ND		1x	1.3	ND		1 x	1.3	ND	·	l x	1.3	ND		1x	1.5	ND	1x	1.4
delta-BIIC	ND		1 x	0.35	ND		Iх	0.33	ND		Ix	0.34	ND		1x	0.38	ND	1x	0.37
Demeton	ND		1x	14	ND		1x	13	ND		l x	13	ND		Iх	15	ND	1x	14
Dieldrin	ND		1x	2.7	ND		1 x	2.5	ND		1x	2.6	ND		1 x	2.9	ND	1x	2.8
Endosulfan 1	ND		1 X	0.2	ND		1x	0.19	ND		1 x	0.2	ND		1x	0.22	ND	1x	0.22
Endosulfan II	ND		1x	0.47	ND		1 x	0.44	ND		Ix	0.46	ND		1x	0.51	ND	1x	0.5
Endosulfan sulfate	ND		1x	1	ND		1 X	0.98	ND		Ix	1	ND		1x	1.1	ND	1x	I.1
Endrin	ND		1x	2.9	ND		1x	2.7	ND		İx	2.8	ND		1x	3.1	ND	1 x	3
Endrin aldehyde	ND		1x	0.2	ND		1 x	0.19	ND		1x	0.2	ND		1x	0.22	ND	1x	0.22
Ethyl parathion	ND		1x	1.3	ND		1 x	1.3	ND		1x	1.3	ND		l x	1.5	ND	1x	1.4
gamma-BHC	ND		1x	1.5	ND		Ix	1.4	ND		1x	1.5	ND		1 x	1.6	ND	lx	1.6
l leptachlor	ND		I x	1.7	ND		Ix	1.6	ND		1x	1.7	ND		1x	1.8	ND	lx	1.8
l leptachlor epoxide	ND		İx	0.2	ND		1x	0.19	ND		1x	0.2	1.2	P	1x	0.22	ND	1x	0.22
Malathion	ND		1x	1.3	ND		1x	1.3	ND		1x	1.3	ND		1x	1.5	ND	1 x	1.4
Methoxychlor	ND		İx	24	ND		1x	23	ND		Ix	24	ND		1x	27	ND	lx	26
Methyl parathion	ND		1x	1.3	ND		1 x	1.3	ND		1x	1.3	ND		1x	1.5	ND	1x	1.4
Mirex	ND		1 x	1.3	ND		1 x	1.3	ND		1x	1.3	ND		Ix	1.5	ND	1x	1.4
Toxaphene	ND		1x	110	ND		Ix	100	ND		Ix	110	ND)		1 x	120	NI)	1x	120
Aroclor-1016	ND		1x	8.1	ND		1 x	7.6	ND		1x	7.9	ND		1x	8.9	ND	1x	8.7
Aroclor-1221	ND		1x	20	ND		Ix	19	ND		Iх	20	ND		1x	22	ND	1x	22
Aroclor-1232	ND		1x	6.1	ND		1 x	5.7	ND		1x	6	ND		1x	6.7	ND	1x	6.5
Aroclor-1242	ND		Ix	8.1	ND		1 x	7.6	ND		İx	7.9	ND		1x	8.9	ND	lx	8.7
Aroclor-1248	ND		1x	2	ND		1x	1.9	ND		1x	2	ND		1 x	2.2	ND	Ix	2.2
Aroclor-1254	ND		Ix	4	ND		1 x	3.8	ND		Ix	4	ND		Ix	4.5	ND	1 x	4.3
Aroclor-1260	ND		<u> </u>	2	ND		<u>1x</u>	1.9	ND		<u> </u>	2	ND		<u>Ix</u>	2.2	ND	<u>1x</u>	2.2

TOLCHESTER CHANNEL-GRAVITY CORE

.

.

ND= Not detected P=Inductively coupled plasma

Analyte		BE1 S	ED			BE2 5	SED			BE3 SI	D			BE4 SED	1
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	_Qual Dil.	Limit
4,4'-DDD	ND		lx	5.8	ND		1x	4.2	ND		1x	4.1	ND	lx	5
4,4'-DDE	1.5		1 x	1.2	ND		lx	0.88	ND		1 x	0.85	ND	1x	1
4,4'-DD'T	ND		1x	6.7	ND		1 x	4.8	ND		1x	4.7	ND	1x	5.7
Aldrin	ND		1x	0.67	ND		1x	0.48	ND		1 x	0.47	ND	1x	0.57
alpha-BHC	ND		1x	4.6	ND		lx	3.3	ND		1 x	3.2	ND	1x	3.9
Azinphos methyl	ND		1 x	28	ND		lx	20	ND		1x	20	ND	lx	24
beta-BHC	ND		1x	0.42	ND		1x	0.3	ND		1 x	0.29	ND	lx	0.36
Chlordane, technical	ND		1 X	15	ND		1x	11	ND		1 x	11	ND	1x	13
Chlorobenside	ND		1 x	2.8	ND		1 x	2	ND		1 x	2	ND	1x	2.4
Dacthal	ND		l x	2.8	ND		l x	2	ND		lx	2	ND	lx	2.4
delta-BHC	ND		1x	0.71	ND		1 x	0.52	ND		l x	0.5	ND	lx	0.61
Demeton	ND		1 x	28	ND		lx	20	ND		1x	20	ND	lx	24
Dieldrin	ND		1 x	5.4	ND		lx	3.9	ND		1x	3.8	ND	lx	4.6
Endosulfan I	ND		1 x	0.42	ND		1x	0.3	ND		1 x	0.29	ND	1x	0.36
Endosulfan II	ND		l x	0.96	ND		1 x	0.7	ND		1 x	0.68	ND	1x	0.82
Endosulfan sulfate	ND		1 x	2.1	ND		l x	1.5	ND		1 x	1.5	ND	lx	1.8
Endrin	ND		l x	5.8	ND		lx	4.2	ND		lx	4.1	ND	lx	5
Endrin aldehyde	ND		l x	0.42	ND		l x	0.3	ND		lx	0.29	ND	lx	0.36
Ethyl parathion	ND		1x	2.8	ND		l x	2	ND		1 x	2	ND	lx	2.4
gamma-BHC	ND		l x	3	ND		1 x	2.2	ND		l x	2.1	ND	1x	2.6
l leptachlor	ND		lx	3.5	ND		l x	2.5	ND		l x	2.4	ND	lx	3
Heptachlor epoxide	ND		lx	0.42	ND		1x	0.3	ND		l x	0.29	ND	lx	0.36
Malathion	ND		l x	2.8	ND		lx	2	ND		l x	2	ND	lx	2.4
Methoxychlor	ND		1 x	50	ND		1x	36	ND		1 x	35	ND	1x	43
Methyl parathion	ND		1x	2.8	ND		1 x	2	ND		1x	2	ND	1x	2.4
Mirex	ND		l x	2.8	ND		l x	2	ND		1x	2	ND	1x	2.4
Toxaphene	ND		lx	220	ND		1x	160	ND		1 x	160	ND	1x	190
Aroclor-1016	ND		lx	17	ND		1x	12	ND		1 x	12	ND	1x	14
Aroclor-1221	ND		1x	42	ND		1x	30	ND		1x	29	ND	· 1x	36
Aroclor-1232	ND		1 x	13	ND		1x	9.1	ND		1 x	8.8	ND	lx	11
Aroclor-1242	ND		1 x	17	ND		1 x	12	ND		1 x	12	ND	1x	14
Aroclor-1248	ND		lx	4.2	ND		lx	3	ND		1x	2.9	ND	lx	3.6
Aroclor-1254	ND		1 x	8.3	ND		lx	6.1	ND		1 x	5.9	ND	lx	7.1
Aroclor-1260	<u>ND</u>		<u>lx</u>	4.2	<u></u>		<u> </u>	3	_ND		<u>lx</u>	2.9	ND	<u>1x</u>	3.6

BREWERTON EASTERN EXTENSION-VAN VEEN

.

.

Analyte		BEVI SE	D		BEV2 SED			BEV	3 SED		•	BEV4	SED			BEV5	SED			BEV6 SED		~`}]
ug/kg	Result	Qual. D	hl. Limit	Result	Qual. Dil	<u>Limit</u>	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	_Limit	Result	Qual.	1)il.	Limit	Result	Qual. Dil.	Limit	-
4,4'-DDD	ND	1	x 3.	ND	lx	3.2	ND		1x	3.3	ND		1x	3.1	ND		1x	3.6	ND	lx	3.	31
4,4'+DDE	ND	1	x 0.69	ND ND	lx	0.66	ND		1x	0.69	ND		1 x	0.64	ND		1x	0.74	ND	1x	0.7	2
4,4'-DDT	ND	1	x 3.1	ND	1x	3.6	ND		1x	3.8	ND		1x	3.6	ND		1x	4.1	ND	lx	·	4
Aldrin	ND	1	x 0.3	I ND	1x	0.36	0.38		lx	0.38	ND		1x	0.36	ND		1x	0.41	ND	lx	0.	4
alpha-BHC	ND	1	x 2.0	ND	lx	2.5	ND		lx	2.6	ND		1x	2.4	ND		1x	2.8	ND	1x	2.	8
Azinphos methyl	ND	1	x 10	ND	1x	15	ND		1 x	16	ND		1x	15	ND		1x	17	ND	lx	1	7
beta-BHC	ND	1	x 0.24	ND	1 x	0.23	ND		İx	0.24	ND		1x	0.22	ND		1 x	0.26	ND	lx	0.2	25
Chlordanc, tcchnical	ND	1	x 8.8	ND	1 x	. 8.4	ND		1 x	8.8	ND		lx	8.2	ND		1x	9.5	ND	1x	9.	2
Chlorobenside	ND	1	x 1.6	ND	lx	1.5	ND		lx	1.6	ND		1x	1.5	ND		1x	1.7	ND	lx	1.	7
Dacthal	ND	1	x 1.0	ND	lx	1.5	ND		1x	1.6	ND		1x	1.5	ND		1x	1.7	ND	1x	1.	7
delta-BHC	ND	1	x 0.4	ND	1x	0.39	ND	2	1x	0.4	ND		1x	0.38	ND		1x	0.44	ND	lx	0.4	2
Demeton	ND	1	x 16	ND	lx	15	ND	U	lx	16	ND		1x	15	ND		lx	17	ND	lx	1	7
Dieldrin	ND	1	x 3.1	ND	1x	3	ND		1x	3.1	ND		1x	2.9	ND		1x	3.3	ND	lx	3.	2
Endosulfan l	ND	1	x 0.24	ND	1x	0.23	ND		lx	0.24	ND		lx	0.22	ND		1x	0.26	ND	lx	0.2	5
Endosulfan II	ND	1	x 0.55	ND	lx	0.52	ND		1 x	0.55	ND		1 x	0.51	ND		1 x	0.59	ND	lx	0.5	7
Endosulfan sulfate	ND	1	x 1.2	ND	Ix	1.2	ND		1x	1.2	ND		1x	1.1	ND		1x	1.3	ND	1x	1.	3
Endrin	ND	1	x 3.3	ND	1x	3.2	ND		lx	3.3	ND		1x	3.1	ND		1x	3.6	ND	Ix	3.	5
Endrin aldehyde	ND	1	x 0.24	ND	Ix	0.23	ND		lx	0.24	ND		1 x	0.22	ND		1x	0.26	ND	lx	0.2	5
Ethyl parathion	ND	1	x 1.6	ND	Ix	1.5	ND -		lx	1.6	ND		1x	1.5	ND		1x	1.7	ND	lx	1.	7
gamma-BHC	ND	1	x 1.7	ND	Ix	1.7	ND		1x	1.7	ND		1x	1.6	ND		1x	1.9	ND	1x	L	8
I leptachlor	ND	1	x 2	ŅD	Ix	1.9	ND		1x	2	ND		1 x	1.8	ND		1 x	2.1	ND	Ix	2.	1
l leptachlor epoxide	ND	1	x 0.24	ND	Ix	0.23	1.8	Р	lx	0.24	ND		1x	0.22	ND		1x	0.26	ND	1x	0.2	s
Malathion	ND	1	x 1.6	ND	lx	1.5	ND		lx	1.6	ND		1x	1.5	ND		1x	1.7	ND	lx	1.	7
Mcthoxychlor	ND	1	x 29	ND	Ix	27	ND		1x	29	ND		1x	27	ND		1x	31	ND	lx	3	o
Methyl parathion	ND	1	x 1.6	ND	Ix	1.5	ND		lx	1.6	ND		1x	1.5	ND		1x	1.7	ND	lx	Ĩ.	7
Mircx	ND	1	x 1.6	ND	lx	1.5	ND		lx	1.6	ND		1x	1.5	ND		1x	1.7	ND	lx	1.	7
Toxaphene	ND	1	x 130	ND	lx	120	ND		lx	130	ND		1x	120	ND		1x	140	ND	lx	13	o∥
Aroclor-1016	ND	1	x 9.5	ND	1 x	9.1	ND		lx	9.5	ND		1x	8.9	ND		lx	10	ND	lx	1	ol
Aroclor-1221	ND	1	x 24	ND	lx	23	ND		1x	24	ND		lx	22	ND		1x	26	ND	Ix	2	s
Aroclor-1232	ND	1	x 7.1	ND	lx	6.8	ND		1 x	7.1	ND		1x	6.7	ND		1 x	7.7	ND	lx	7.	s
Aroclor-1242	ND	1	x 9.5	ND	1x	9.1	ND		1x	9.5	ND		1x	8.9	ND		1x	10	ND	lx	19	ol
Aroclor-1248	ND	1	x 2.4	ND	1x	2.3	ND	•	1x	2.4	ND		1x	2.2	ND		1x	2.6	ND	lx	2	5
Aroclor-1254	ND	1	x 4.8	ND	1x	4.5	ND		1 x	4.8	ND		1x	4.4	ND		1x	5.1	ND	1x	2.	s
Aroclor-1260	ND_	l	x2.4	<u>_ ND</u> _	<u> </u>	2.3	ND		<u>lx</u> .	2.4	ND	tti oganog	<u>lx</u>	2.2	ND		lx	2.6	ND		2.	5

BREWERTON EASTERN EXTENSION-GRAVITY CORE

.

ND=Not detected P=Inductively coupled plasma

.

Analyte		BR1	SED			BR2	SED			BR3 S	SED			BR4 S	ED	
ug/kg	Result	Qual.	Dil.	<u>Limit</u>	Result	Qual,	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		Ix	4.7	ND		1x	4.4	ND		1x	4.2	ND		1x	4.8
4,4'-DDE	ND		1 x	0.97	ND		lx	0.91	ND		1 x	0.88	ND		1 x	1
4,4'-DDT	ND		Ιx	5.3	ND		Ιx	5	ND		1 X	4.8	ND		1 x	5.5
Aldrin	ND		1 x	0.53	ND		Ix	0.5	ND		1 x	0.48	ND		1 x	0.55
alpha-BHC	ND		1x	3.7	ND		Ix	3.4	ND		1x-	3.3	ND		1 x	3.8
Azinphos methyl	ND		1x	7.8	ND		1 x	21	ND		1 x	20	ND		1 x	23
beta-BHC	ND		Ιx	0.33	ND		Ix	0.31	ND		1 x	0.3	ND		1 x	0.34
Chlordane, technical	ND		Ix	. 12	ND		1x	12	ND		1 x	11	ND		1x	13
Chlorobenside	ND		Iх	2.2	ND		Iх	2.1	ND		1 x	2	· ND		1x	2.3
Dacthal	ND		1 x	2.2	ND		Ix	2.1	ND		1 x	2	ND		1x	2.3
delta-BHC	ND		1x	0.57	ND		1 x	0.53	ND		1 x	0.52	ND		1 x	0.59
Demeton	ND		1x	7.8	ND		Ιx	21	ND		1 x	20	ND		1 x	23
Dieldrin	ND		1x	4.3	ND		1x	4.I	ND		1 x	3.9	ND		1 x	4.5
Endosulfan 1	ND		1x	0.33	ND		1x	0.31	ND		1 x	0.3	ND		1 x	0.34
Endosulfan II	ND		1x	0.77	ND		Ix	0.72	ND		1 x	0.7	ND		Ix	0.79
Endosulfan sulfate	ND		1x	1.7	ND		Ix	1.6	ND		lx	I.5	ND		1x	1.8
Endrin	ND		1 x	4.7	ND		Ix	4.4	ND		Ix	4.2	ND		1x	4.8
Endrin aldehyde	ND		1x	0.33	ND		1x	0.31	ND		1x	0.3	ND		1 x	0.34
Ethyl parathion	ND		1x	2.2	ND		Ix	2.1	ND		1x	2	ND		1x	2.3
gamma-BHC	ND		Ix	2.4	ND		Ix	2.3	ND		1x	2.2	ND		1x	2.5
Heptachlor	ND		Ix	2.8	ND		1x	2.6	ND		lx	2.5	ND		Iх	2.9
Heptachlor epoxide	ND		1 x	0.33	ND		Ιx	0.31	ND		1x	0.3	ND		1x	0.34
Malathion	ND		1x	2.2	ND		Iх	2.1	ND		1x	2	ND		1 x	2.3
Methoxychlor	ND		Ix	40	ND		1 x	38	ND		1 x	36	ND		Ix	41
Methyl parathion	ND		Ix	2.2	ND		1x	2.1	ND		1 x	2	ND		Ix	2.3
Mirex	ND		1 x	2.2	ND		Iх	2.1	ND		1x	2	ND		lx	2.3
Toxaphene	ND		Ix	180	ND		Iх	170	ND		1x	160	ND		lx	180
Aroclor-1016	ND		1 x	13	ND		1x	59	ND		lx	12	ND		Ix	66
Aroclor-1221	ND		1 x	33	ND		1x	160	ND		Ix	30	ND		Ix	170
Aroclor-1232	ND		1 x	10	ND		1x	47	ND		1 x	9.1	ND		Ix	52
Aroclor-1242	ND		1 x	13	ND		1x	66	ND		Ix	12	ND		lx	72
Aroclor-1248	ND		1 x	3.3	ND		Ιx	13	ND		1 x	3	ND		Ix	15
Aroclor-1254	ND		1 x	6.7	ND		1 x	41	ND		1 x	6.1	ND		1x	45
Aroclor-1260	ND		<u>lx</u>	3.3	ND		<u>1x</u>	15	_ND		<u>1x</u>	3	ND		<u>lx</u>	17

.

BREWERTON REACH

.

.

.

BLIND SPLITS

Analyte	BL	INDSPL	ΓΓΙΑ(Β	R1)	BL	INDSPL	T2A(B	R3)
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	4.2	ND		1x	3.8
4,4'-DDE	ND		1x	0.88	ND		1x	0.78
4,4'-DDT	ND		1x	4.8	ND		1 x	4.3
Aldrin	ND		lx	0.48	ND		1x	0.43
alpha-B11C	ND		1x	3.3	ND		1x	3
Azinphos methyl	ND		1 x	20	ND		lx	18
beta-BHC	ND		1 x	0.3	ND		1x	0.27
Chlordane, technical	ND		1x	11	ND		1x	10
Chlorobenside	ND		1 x	2	ND		1x	1.8
Dacthal	ND		1x	2	ND		1x	1.8
delta-131 1C	ND		1 x	0.52	ND		1 x	0.46
Demeton	ND		1 x	20	ND		1 x	18
Dieldrin	ND		1x	3.9	ND		1 x	3.5
Endosulfan l	ND		1x	0.3	ND		1 x	0.27
Endosulfan 🛛	ND		1 x	0.7	ND		1x →	0.62
Endosulfan sulfate	ND		1 x	1.5	ND		1 x	1.4
Endrin	ND		1x	4.2	ND		1 x	3.8
Endrin aldehyde	ND		1x	0.3	ND		1 x	0.27
Ethyl parathion	ND		1x	2	ND		lx	1.8
gamma-BHC	ND		1x	2.2	ND		1 x	2
Heptachlor	ND		1 x	2.5	ND		1 x	2.2
Heptachlor epoxide	ND		1x	0.3	ND		1x	0.27
Malathion	ND		1 x	2	ND		1 x	1.8
Methoxychlor	ND		1 x	36	ND		1 x	32
Methyl parathion	ND		lx	2	ND		l x	1.8
Mirex	ND		lx	2	ND		1x	1.8
Toxaphene	ND		1x	160	ND		1x	140
Aroclor-1016	ND		lx	12	ND		1x	11
Aroclor-1221	ND		1x	30	ND		1x	27
Aroclor-1232	ND		1x	9.1	ND		1x	8.1
Aroclor-1242	ND		1x	12	ND		1x	11
Aroclor-1248	ND		1x	3	ND		1x	2.7
Aroclor-1254	ND		1x	6.1	ND		1x	5.4
Aroclor-1260	ND		1x	3	ND		lx	2.7

_

ι

Analyte		BRAI	SED			BRAZ	SED	<u> </u>
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dປີ.	Limit
4,4'-DDD	ND		lx	5.2	ND		lx	5
4,4'-DDE	ND		1x	1.1	ND		1 x	1
4,4'-DDT	ND		1x	5.9	ND		1x	5.7
Aldrin	ND		1x	0.59	ND		1x	0.57
alpha-BHC	ND		1x	4.1	ND		1x	3.9
Azinphos methyl	ND		1x	25	ND		1 x	24
beta-BHC	ND		1x	0.37	ND		1x	0.36
Chlordane, technical	ND		1x	14	ND		1x	13
Chlorobenside	ND		1x	2.5	ND		1 x	2.4
Dacthal	ND		1 x	2.5	ND		1 x	2.4
delta-131 IC	ND		l x	0.63	ND		1x	0.61
Demeton	ND		l x	25	ND		1 x	24
Dieldrin	ND		l x	4.8	ND		1 x	4.6
Endosulfan 1	ND	•	1x	0.37	ND		1 x	0.36
Endosulfan II	ND		1 x	0.85	ND		1x	0.82
Endosulfan sulfate	ND		1 x	1.9	ND		lx	1.8
Endrin	ND		1x	5.2	ND		1 x	5
Endrin aldehyde	ND		l x	0.37	ND		1x	0.36
Ethyl parathion	ND		1x	2.5	ND		1 x	2.4
gamma-BHC	ND		1 x	2.7	ND		lx	2.6
Heptachlor	ND		1 x	3.1	ND		1x	3
Heptachlor epoxide	ND		1 x	0.37	ND		1 x	0.36
Malathion	ND		1 x	2.5	ND		1 x	2.4
Methoxychlor	ND		1 x	44	ND		1 x	43
Methyl parathion	ND		1 x	2.5	ND		1x	2.4
Mirex	ND		1 x	2.5	ND		1 x	2.4
Toxaphene	ND		1 x	200	ND		1 x	190
Aroclor-1016	ND		1 x	70	ND		l x	68
Aroclor-1221	ND		1x	190	ND		1x	180
Aroclor-1232	ND		l x	56	ND		1 x	54
Aroclor-1242	ND		1x	78	ND		1x	75
Aroclor-1248	ND		1x	16	ND		1 x	15
Aroclor-1254	ND		1 x	48	ND		1x	46
Aroclor-1260	ND		1x	18	ND		1x	18

BREWERTON ANGLE REACH

Analyte		FMH1	SED			FMH2	SED			FMI13	SED			1-M114	SED	· · · · · · · · · · · · · · · · · · ·
ug/kg	Result	Qual.	<u>Dil</u>	Limit	Result	Qual.	<u>Dil</u>	<u>l.imit</u>	Result	Qual.	<u>_1)il.</u>	_Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		lx	4.7	ND		1x	5.4	ND		1x	4.1	ND		1x	3.5
4,4'-DDE	ND		lx	0.97	ND		1 x	1.1	ND		1 x	0.85	ND		1x	0.72
4,4'-DDT	ND		lx	5.3	ND		1 x	6.2	ND		1 x	4.7	ND		lx	4
Aldrin	ND		lx	0.53	ND		1x	0.62	ND		1 x	0.47	ND		1 x	0.4
alpha-BHC	ND		lx	3.7	ND		1x	4.2	ND		1 x	3.2	ND		1 x	2.8
Azinphos methyl	ND		1x	22	ND		1 x	26	ND		1x ·	20	ND		1 x	17
beta-BHC	ND		1x	0.33	ND		1 x	0.38	ND		lx	0.29	ND		1 x	0.25
Chlordane, technical	ND		lx	12	ND		1 x	14	ND		1 x	11	ND		1 x	9.2
Chlorobenside	ND		1 x	2.2	ND		1 x	2.6	ND		1 x	2	ND		1x	1.7
Dacthal	ND		lx	2.2	ND		1x	2.6	ND		1 x	2	ND		1x	1.7
delta-BHC	ND		lx	0.57	ND		lx	0.65	ND		1 x	0.5	ND		1x	0.42
Demeton	ND		1 x	22	ND		lx	26	ND		1 x	20	ND		1x	17
Dieldrin	ND		1x	4.3	ND		1x	- 5	ND		lx	3.8	ND		lx	3.2
Endosulfan 1	ND		1 x	0.33	ND		1 x	0.38	ND		lx	0.29	ND		1x	0.25
Endosulfan II	ND		1 x	0.77	ND		1 x	0.88	ND		lx	0. 68	ND		1x	0.57
Endosulfan sulfate	ND		1 x	1.7	ND		1 x	2	ND		lx	1.5	ND		lx	1.3
Endrin	ND		1 x	4.7	ND		1 x	5.4	ND		1x	4.1	ND		lx	3.5
Endrin aldehyde	ND		1 x	0.33	ND		1x	0.38	ND		1x	0.29	ND		lx	0.25
Ethyl parathion	ND		1 x	2.2	ND		1x	2.6	ND		1x	2	ND		lx	1.7
gamma-BHC	ND		lx	2.4	ND		lx	2.8	ND		1 x	2.1	ND		1x	1.8
Heptachlor	ND		1x	2.8	ND		lx	3.2	ND		lx	2.4	ND		lx	2.1
I leptachlor epoxide	ND		lx	0.33	ND		lx	0.38	ND		lx	0.29	ND		lx	0.25
Malathion	ND		1x	2.2	ND		1x	2.6	ND		1x	2	ND		lx	1.7
Methoxychlor	ND		lx	40	ND		1x	46	ND		lx	35	ND		1x	30
Methyl parathion	ND		1 x	2.2	ND		lx	2.6	ND		lx	2	ND		lx	1.7
Mirex	ND		1x	2.2	ND		1x	2.6	ND		1x	2	ND		1 x	1.7
Toxaphene	ND		1x	180	ND		lx	200	ND		İx	160	ND		1 x	130
Aroclor-1016	ND		1 X	63	ND		1x	73	ND		İx	56	ND		1 x	48
Aroclor-1221	ND		1 x	170	ND		1x	190	ND		1 x	150	ND		1 x	120
Aroclor-1232	ND		1x	50	ND		1 x	58	ND		1 x	44	ND		1x	38
Aroclor-1242	ND		1 x	70	ND		1x	81	ND		1x	62	ND		1 x	52
Aroclor-1248	ND		1 x	14	ND		lx	17	ND		1x	13	ND		1x	11
Aroclor-1254	ND		1x	43	ND		1x	50	ND		1 x	38	ND		1x	32
Aroclor-1260	_ND	<u> </u>	1x	<u> </u>	_ND		<u>lx</u>	19	ND		<u>lx</u>	14	_ND_		1x	12

FT. MeHENRY REACH

CURTIS BAY REACH

Analyte		CB1	SED			CB2	SED			CB3	SED			CB4	SED	<u> </u>
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	6.1	ND		1x	2.9	ND		1 x	5.6	ND		1 x	6.1
4,4'-DDE	ND		1 x	1.3	ND		1 x	0.59	ND		1 x	1.2	ND		1x	1.3
4,4'-DDT	ND		1x	7	ND		1 x	3.3	ND		1 x	6.4	ND		1x	7
Aldrin	ND		1 x	0.7	ND		1 x	0.33	ND		1 x	0.64	ND		1 x	0.7
alpha-BHC	ND		1 x	4.8	ND		1 x	2.2	ND		1 x	4.4	ND		1 x	4.8
Azinphos methyl	ND		1 x	29	ND		1 x	14	ND		1 x	27	NI)		1 x	29
beta-BHC	ND		1x	0.43	ND		1 x	0.2	ND		1 x	0.4	ND		1 x	0.44
Chlordane, technical	ND		1 x	16	ND		1 x	·7.6	ND		1x	15	ND		1 x	16
Chlorobenside	ND		1x	2.9	ND		1 x	1.4	ND		1x	2.7	ND		1 x	2.9
Dacthal	ND		1x	2.9	ND		1 x	1.4	ND		1x	2.7	ND		1 x	2.9
delta-BHC	ND		1 x	0.74	ND		1 x	0.35	ND		1 x	0.68	ND		1 x	0.74
Demeton	ND		l x	29	ND		1 x	14	ND		1 x	27	ND		lx	29
Dieldrin	ND		1 x	5.7	ND		1 x	2.7	ND		1 x	5.2	ND		1 x	5.7
Endosulfan l	ND		1 x	0.43	ND		1 x	0.2	ND		l x	0.4	ND		1 x	0.43
Endosulfan II	ND		1x	1	ND		1 x	0.47	ND		1 x	0.92	4	P	1 x	1
Endosulfan sulfate	ND		l x	2.2	ND		1 x	1	ND		1 x	2	ND		1 x	2.2
Endrin	ND		1 x	6.1	ND		1 x	2.9	ND		1 x	5.6	ND		1 x	6.1
Endrin aldehyde	ND	•	1 x	0.43	ND		1 x	0.2	ND		1 x	0.4	ND		1x	0.43
Ethyl parathion	ND		1 x	2.9	ND		1 x	1.4	ND		1 x	2.7	ND		1x	2.9
gamma-BHC	ND		1 x	3.2	ND		1 x	1.5	ND		1 x	2.9	ND		1 x	3.2
Heptachlor	ND		1 x	3.6	ND		1 x	1.7	ND		1 x	3.3	ND		1x	3.6
I leptachlor epoxide	ND		1 x	0.43	ND		1 x	0.2	ND		1 x	0.4	ND		1x	0.43
Malathion	ND		1 x	2.9	ND		1x	1.4	ND		1x	2.7	ND		1 x	2.9
Methoxychlor	ND		1 x	52	ND		1 x	24	ND		1 x	48	ND		1 x	52
Methyl parathion	ND		1 x	2.9	ND	•	1 x	1.4	ND		1 x	2.7	ND		1 x	2.9
Mirex	ND		1x	2.9	ND		1x	1.4	ND		1 x	2.7	ND		1 x	2.9
Toxaphene	ND		1x	230	ND		1x	110	ND		1 x	210	ND		1 x	230
Aroclor-1016	ND		1 x	83	ND		1x	39	ND		1 x	76	ND		1x	83
Aroclor-1221	ND		1 x	220	ND		l x	100	ND		1 x	200	ND		1 x	220
Aroclor-1232	ND		1x	65	ND		1 x	31	ND		1 x	60	ND		1 x	65
Aroclor-1242	ND		1 x	91	ND		l x	43	ND		1 x	84	ND		1 x	91
Aroclor-1248	ND		1 x	19	ND		l x	8.8	ND		1x	17	ND		1 x	19
Aroclor-1254	ND		1x	57	ND		1x	27	ND		1x	52	ND		1 x	57
Aroclor-1260	ND		<u> </u>	21	ND		<u> </u>	10	ND		<u>1x</u>	20	ND		<u>1x</u>	21

.

ND=Not detected P=Inductively coupled plasma

FERRY BAR REACH

Analytc		FB1	SED			FB2	SED_			FB3	SED	••• ••·····
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	1)il.	Limit
4,4'-DDD	ND		lx	6.4	ND		Ix	7	ND		1x	5.6
4,4'-DDE	ND		1 x	1.3	ND		lx	1.4	ND		1x	1.2
4,4'-DDT	ND		1x	7.3	ND		Ix	8	ND		1 x	6.4
Aldrin	ND		1x	0.73	ND		1x	0.8	ND		1 x	0.64
alpha-131 IC	ND		1x	5	ND		1x	5.5	ND		1x	4.4
Azinphos methyl	ND		1x	30	ND		lx	33	ND		1x	27
beta-BHIC	ND		1x	0.45	ND		lx	0.5	ND		1x	0.4
Chlordane, technical	ND		lx	17	ND		1x	18	ND		1x	15
Chlorobenside	ND		lx	3	ND		1x	3.3	ND		1 x	2.7
Dacthal	ND		1x	3	ND		Ix	3.3	ND		1 x	2.7
delta-BHC	ND		lx	.0.77	ND		Ix	0.85	ND		1 x	0.68
Demeton	ND		1x	30	ND		lx	33	ND		1 x	27
Dieldrin	ND		1x	5.9	ND		1x	6.5	ND		1x	5.2
Endosulfan I	ND		1x	0.45	ND		1x	0.5	ND		1x	0.4
Endosulfan II	ND		1x	1	ND		1x	1.2	ND		1x	0.92
Endosulfan sulfate	ND		1x	2.3	ND		1x	2.6	ND		1 x	2
Endrin	ND		lx	6.4	ND		1x	7	ND		1x	5.6
Endrin aldehyde	ND		1x	0.45	ND		1x	0.5	ND		1 x	0.4
Ethyl parathion	ND		lx	3	ND		lx	3.3	ND		1x	2.7
gamma-BHC	ND		1x	3.3	ND		1x	3.6	ND		1 x	2.9
l leptachlor	ND		lx	3.8	ND		1x	4.2	ND		1x	3.3
l leptachlor epoxide	ND		1 x	0.45	ND		Ix	0.5	ND		1x	0.4
Malathion	ND		1x	3	ND		Ix	3.3	ND		1 x	2.7
Methoxychlor	ND		1x	55	ND		1x	60	ND		1x	48
Methyl parathion	ND		1x	3	ND		1x	3.3	ND		1x	2.7
Mircx	ND		1x	3	ND		1x	3.3	ND		1x	2.7
Toxaphene	ND		1x	240	ND		Ix	260	ND	•	1x	210
Aroclor-1016	ND		1x	86	ND		lx	95	ND		1x	76
Aroclor-1221	ND		1x	230	ND		1x	250	ND		1x	200
Aroclor-1232	ND		1x	. 68	ND		1x	75	ND		1 x	60
Aroclor-1242	ND		1x	95	ND		1x	100	ND		1 x	84
Aroclor-1248	ND		1x	20	ND		1x	22	ND		1x	17
Aroclor-1254	ND		1x	59	ND		lx	65	ND		1x	52
Aroclor-1260	ND		lx	22	ND		lx	24	ND		1x	20

Analyte	[NBE1	SED			NBE2 S	ED	···· · ·
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1x	6.4	ND		1x	7.4
4,4'-DDE	ND		1x	1.3	ND		1x	1.5
4,4'-DDT	ND		1x	7.3	ND		1x	8.4
Aldrin	ND		1 x	0.73	ND		1x	0.84
alpha-BHC	ND		1x	5	ND		1x	5.8
Azinphos methyl	ND		1x	30	ND		1x	35
beta-BHC	ND		lx	0.45	ND		lx	0.53
Chlordane, technical	ND		1 x	17	ND		lx	19
Chlorobenside	ND		1x	3	ND		1x	3.5
Dacthal	ND		1x	3	ND		1x	3.5
delta-BHC	ND		lx	0.77	ND		1x	0.89
Demeton	ND		lx	30	ND		lx	35
Dieldrin	ND		1x	5.9	ND		1x	6.8
Endosulfan 1	ND		1x	0.45	ND		1x	0.53
Endosulfan II	ND		1x	1	ND		1x	1.2
Endosulfan sulfate	ND		1x	2.3	ND		lx	2.7
Endrin	ND		lx	6.4	ND		1x	7.4
Endrin aldehyde	ND		1x	0.45	ND		lx	0.53
Ethyl parathion	ND		1x	3	ND		1x	3.5
gamma-BHC	ND		1x	3.3	ND		1x	3.8
Heptachlor	ND		1x	3.8	ND		1x	4.4
l leptachlor epoxide	ND		1x	0.45	ND		1x	0.53
Malathion	ND		1 x	3	ND		1x	3.5
Methoxychlor	ND		1x	55	ND		1x	63
Methyl parathion	ND		lx	3	ND		1x	3.5
Mirex	ND		1x	3	ND		1x	3.5
Toxaphene	ND		1x	240	ND		1x	280
Aroclor-1016	ND		1x	18	ND		1x	21
Aroclor-1221	ND		1 x	45	ND		1x	53
Aroclor-1232	ND		1 x	14	ND		1x	16
Aroclor-1242	ND		1x	18	ND		1 x	21
Aroclor-1248	ND		1 x	4.5	ND		1x	5.3
Aroclor-1254	ND	•	1 x	9.1	ND		1x	11
Aroclor-1260	ND		<u>1x</u>	4.5	ND		<u>lx</u>	5.3

NORTHWEST BRANCH EAST

ND=Not detected

.

Analyte	1222.22	NBWI	SED			NBW	2 SED		<u> </u>	NBW3	SED		
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Oual.	Dil.	Limit	
4.4'-101010	ND		lx	4.1	ND		lx	3.2	ND		1x	6.1	
4,4'-DDE	ND		lx	0.85	ND		1 x	0.66	ND		1x	1.3	
4,4'-DDT	ND		lx	4.7	ND		lx	3.6	ND		1x	. 7	
Aldrin	ND		lx	0.47	ND		lx	0.36	ND		1x	0.7	
alpha-BHC	ND		1x	3.2	ND		1 x	2.5	NI)		1 x	4.8	
Azinphos methyl	ND		1 x	20	ND		1 x	15	ND		1x	29	
beta-BHC	ND		1x	0.29	ND		lx	0.23	ND		l x	0.43	
Chlordane, technical	ND		lx		ND		1x	8.4	ND		1x	16	
Chlorobenside	ND		lx	2	ND		lx	1.5	ND		1x	2.9	
Dacthal	ND		lx	2	ND		1 x	1.5	ND		1x	2.9	
delta-BHC	ND		١x	0.5	ND		l x	0.39	ND		١x	0.74	
Demeton	ND		lx	20	ND		1 x	15	ND		١x	29	
Dieldrin	ND		١x	3.8	ND		1x	3	ND		١x	5.7	
Endosulfan I	·ND		١x	0.29	ND		1 x	0.23	ND		١x	0.43	
Endosulfan 🛛	ND		lx	0.68	ND		1x	0.52	ND		1 x	1	
Endosulfan sulfate	ND		lx	1.5	ND		lx	1.2	ND		1 x	2.2	
Endrin	ND		1 x	4.1	ND		l x	3.2	ND		1x	6.1	
Endrin aldehyde	ND		lx	0.29	ND		lx	0.23	ND		1x	0.43	
Ethyl parathion	ND		1 x	2	ND		l x	1.5	ND		1x	2.9	
gamma-I3HC	ND		lx	2.1	ND		lx	1.7	ND		1 x	3.2	
leptachlor	ND		1 x	2.4	ND		l x	1.9	ND		1x	3.6	
leptachlor epoxide	ND		١x	0.29	ND		l x	0.23	ND		1x	0.43	
Malathion	ND		l x	2	NÐ		lx	1.5	ND		1x	2.9	
Methoxychlor	ND		lx	35	ND		lx	27	ND		1 x	.52	
Methyl parathion	ND		l x	2	ND		lx	1.5	ND		1 x	2.9	
Mirex	ND		lx	2	ND		1x	1.5	ND		1 x	2.9	
Toxaphene	ND		l x	160	ND		lx	120	ND		1 x	230	
Aroclor-1016	ND		١x	12	ND		l x	9.1	ND		lx	17	
Aroclor-1221	ND		lx	29	ND		1x	23	ND		1 x	43	
Aroclor-1232	ND		1x	8.8	ND		1x	6.8	ND		1 x	13	
Aroclor-1242	ND		1 x	12	ND		1 x	9.1	ND		1x	17	
Aroclor-1248	ND		l x	2.9	ND		lx	2.3	ND		1 x	4.3	
Aroclor-1254	ND		1 x	5.9	ND		l x	4.5	NÐ		1 x	8.7	
Aroclor-1260	ND		<u>lx</u>	2.9	ND		<u>lx</u>	2.3	ND		<u>IX</u>	4.3	

NORTHWEST BRANCH WEST

Table 4-8. Metals results for Chesapeake Bay and Baltimore Harbor sediments presented by sampling reach.

ED			PI3S	SED			
Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qu
lx	13.2	1100		1x	3.7	1290	

POPLAR ISLAND

Analyte		PIIS	ED			PI2S	ED			PI3SI	ED			PI4S	ED	-		P15S	ED	
mg/kg	Result _	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	2080		lx	4	4820		lx	13.2	1100		1x	3.7	1290		1x	3.8	4110		lx	4.4
Antimony	0.32	BN	lx	0.14	ND	N	lx	0.46	0.19	BN	lx	0.13	ND	N	lx	0.13	ND	N	lx	0.15
Arsenic	1.3	В	lx	0.14	3	В	lx	0.46	1.5		lx	0.13	0.94	В	lx	0.13	2		lx	0.15
Beryllium	ND		1x	0.14	ND		lx	0.46	ND		lx	0.13	ND		lx	0.13	0.2	В	lx	0.15
Cadmium	0.17	В	lx	0.14	ND		lx	0.46	ND		lx	0.13	ND		lx	0.13	0.37	В	lx	0.15
Chromium	3.3		lx	0.68	8.3		lx	2.3	3.2		lx	0.63	2.4		lx	0.66	6.8	•	lx	0.75
Copper	2.1	В	lx	0.55	3.2	В	lx	1.8	ND		lx	0.51	0.86	В	lx	0.53	3	В	lx	0. 6
Iron	3620		1x	8.6	7180		lx	28.7	3240		l x	8	2300		lx	8.3	7170		lx	9.5
Lead	2.8		1x	0.14	7.2		lx	0.46	1.5		lx	0.13	2.1		lx	0.13	5		lx	0.15
Manganese	65.8		l x	0.68	126		1x	2.3	33.8		1x	0.63	43.4		1x	0.66	132		lx	0.75
Mercury	0.06	В	1 x	0.05	ND		1x	0.22	0.06	В	l x	0.06	0.06	В	lx	0.06	0.1	В	lx	0.06
Nickel	4.2	В	1 x	1.2	10.9	В	lx	4.1	2.6	В	1 x	1.1	3	В	lx	1.2	8.3		lx	1.4
Selenium	0.48	В	lx	0.27	ND		lx	0.91	ND		lx	0.25	ND		lx	0.26	0.68	В	lx	0.3
Silver	ND	N	lx	0.41	ND	N	lx	1.4	ND	N	1 x	0.38	ND	N	lx	0.4	ND	N	lx	0.45
Thallium	ND	N	lx	0.27	ND	N	1x	0.88	ND	N	lx	0.23	ND	N	lx	0.28	ND	N	lx	0.32
Zinc	22.1	E	lx	0.82	57	<u> </u>	<u> x</u>	2.7	10.4	<u> </u>	<u>lx</u>	0.76	15.9	<u> </u>	lx	0.79	42.2	E	lx	0.91

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits

DEEP TROUGH

Analyte		DTIS	SED			DT2S	SED			DT35	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	_Dil.	Limit
Aluminum	21400		lx	13.1	21100		1x	4.9	19900		lx	12.4
Antimony	0.5	BN	1 x	0.45	ND	N	1 x	0.17	0.62	BN	1x	0.43
Arsenic	8		lx	0.45	13.3		1x	0.17	10.9		1x	0.43
Beryllium	1.1	В	1x	0.45	1.1		1 x	0.17	1.2	В	1 x	0.43
Cadmium	1.5	В	1 x	0.45	1.3		1 x	0.17	1.5	В	1 x	0.43
Chromium	42.2		lx	2.	35.2		1x	0.85	39.7		1 x	2.1
Copper	25		lx	1.8	10.3		1x	0.68	25.4		1x	1.7
Iron	31300		1 x	28.5	39900		1 x	10.7	32500		1x	26.8
Lead	31.1		1x	0.45	[•] 5.7		1 x	0.17	30.5		1 x	0.43
Manganese	622		1 x	2.3	1550		1 x	0.85	789		1x	2.1
Mercury	0.3	В	lx	0.2	0.16	В	1 x	0.11	0.35	В	1 x	0.23
Nickel	34.7		1 x	4.1	28.5		lx	1.5	34.4		1x	3.8
Selenium	0.95	В	1 x	0.9	1.5		1 x	0.34	1.7	В	lx	0.85
Silver	ND	N	1x	1.4	ND	N	l x	0.51	ND	N	lx	1.3
Thallium	ND	NW	lx	0.99	ND	N	1 x	0.41	ND	Ν	1x	0.92
Zinc	166	E	<u>1x</u>	2.7	87.6	E	<u>lx</u>		183	E	_lx	2.6

ND=Not detected N=MS out of control limits B=Between IDL and CRDL W=Spike outside of control limits E=Serial dilution outside of control limits

٠

,

Analyte		KIIS	ED			KI2S	ED			KI3S	ED	
_mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	1150		1x	3.6	16400		1x	8.4	3100		1x	3.8
Antimony	0.16	BN	1x	0.13	0.39	BN	1x	0.29	ND	N	1x	0.13
Arsenic	2.1		1x	0.13	9.7		lx	0.29	2.6		1x	0.13
Beryllium	0.13	В	1x	0.13	1.3	В	1x	0.29	0.29	В	1x	0.13
Cadmium	ND		1x	0.13	1.4	В	lx	0.29	0.32	В	1 x	0.13
Chromium	4.3		1x	0.63	39		lx	1.5	10.3		1x	0.66
Copper	2.1	В	lx	0.5	29.8		lx	1.2	3.9		1x	0.53
Iron	3700		lx	7.9	33300		lx	18.3	7530		1x	8.3
Lead	3		lx	0.13	39.4		1 x	•0.29	6.9		1x	0.13
Manganese	221	N	lx	0.63	1060		lx	1.5	446		1x	0.66
Mercury	0.09	В	1x	0.06	0.24	В	lx	0.13	0.07	В	lx	0.06
Nickel	5.8		lx	1.1	37.3		1x	2.6	9.5		1x	1.2
Selenium	ND	N	lx	0.25	1.8		1x	0.58	0.51	В	lx	0.26
Silver	ND		1x	0.5	ND	N	1x	0.87	ND	N	1x	.0.4
Thallium	ND		1x	0.23	ND	N	1x	0.48	ND	N	1x	0.27
Zinc	49.8		1x	0.75	219	E	1x	1.7	87.6	E	1x	0.79

KENT ISLAND DEEP

1

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits

.

-

POOLES ISLAND

Analyte		POL1	SED	
mg/kg	Result	Qual.	Dil.	Limit
Aluminum	17800		lx	6.2
Antimony	ND	N	lx	0.21
Arsenic	9.3		lx	0.21
Beryllium	1	В	lx	0.21
Cadmium	1.1		lx	0.21
Chromium	26.5		lx	1.1
Copper	14.6		lx	0.85
Iron	35100		lx	13.4
Lead	16.3		1x	0.21
Manganese	1290		lx	1.1
Mercury	0.12	В	lx	0.12
Nickel	30.6		lx	1.9
Selenium	1	В	lx	0.43
Silver	ND		lx	0.64
Thallium	ND		lx	0.4
Zinc	94.1		1x	1.3

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL

.

.

SWPISED SWP2SED Analyte SWP3SED Qual. Dil Limit Result Qual. mg/kg Result _Dil. Limit Result Dil. Qual. Limit 20400 lx 11.2 27800 Aluminum 1x 9.3 21600 lx 6.6 Ν Antimony ND lx 0.38 ND Ν 1x 0.32 0.36 BN 1x 0.23 13.9 Arsenic 14.8 lx 0.38 lx 0.32 13.6 lx 0.23 Beryllium 1.8 В 1x 0.38 1.7 0.32 1x 1.8 1x 0.23 Cadmium 1.3 В 1x 0.38 1.9 1x 0.32 1.9 lx 0.23 Chromium 47.2 1 x 1.9 51.6 1x 1.6 46.9 lx 1.1 40.1 39.7 Copper 1x 1.5 1x 1.3 47.2 1x 0.9 44300 1x 24.2 44600 1x 20.1 42200 Iron 1x 14.3 Lead 45.6 1x 0.38 50.5 lx 0.32 56.3 0.23 1x Manganese 3730 2840 Ν 1x 1.9 1x 1.6 2460 1x 1.1 0.28 В В Mercury 1x 0.16 0.36 1x 0.21 0.5 1x 0.17 Nickel 51.5 3.5 50.2 2.9 47.5 1x 1x 1x 2 BN Selenium 1.8 1x 0.77 2.5 ٠ 1x 0.64 1.8 ٠ 1x 0.45 ND Silver ND 0.96 ND 1x 7.7 1x 1x 0.68 ND ND Thallium lx 0.81 Ν 1x 0.88 0.74 BN lx 0.67 272 281 1 x 2.3 N 1.9 283 Zinc 1x Ν lx 1.4

SWAN POINT CHANNEL

.

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL

*=Duplicate analysis outside of control limits

Analyte		CREI	SED			CRE2	SED			CRE3	SED	line in the second second second second second second second second second second second second second second s
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	5190		1x	6.5	22100		1x	6.4	25200.		1x	6
Antimony	ND	N	lx	0.22	ND	N	1x	0.22	ND	N	lx	0.21
Arsenic	4.9	EN	1 x	0.22	9.8	EN	lx	0.22	9.9	EN	lx	0.21
Beryllium	1	BN	1x	0.24	1.5	N	lx	0.24	1.2	Ν	1x	0.21
Cadmium	0.66	В	lx	0.22	1.5		lx	0.22	1.7		1x	0.21
Chromium	16.6		1x	1.1	41.9		1x	1.1	44.2		1x	1
Copper	10.6		1x	0.9	8.4		1x	0.88	8.7		1x	0.83
Iron	25600		1x	15	45900		lx	15.1	39800		1x	13.1
Lead	15.3	Ε	1x	0.22	17.1	Ε	1x	0.22	17.9	Ε	1x	0.21
Manganese	1340		1x	1.1	803		1x	1.1	1190		1x	1
Mercury	0.25		1x	0.12	0.14	В	1x	0.11	0.12	В	1x	0.09
Nickel	17.1		1x	2	29.6		1x	2	43.2		1x	1.9
Selenium	ND	N	1x	0.45	1.1	N	lx	0.44	1.7	N	1x	0.41
Silver	ND	N	1x	0.72	ND	N	1x	1.4	ND	N	1x	1.3
Thallium	ND		1x	0.47	ND		1x	0.4	ND		1x	0.46
Zinc	87,3	•	1x_	1.3	96.7	•	<u>lx</u>	1.3	104	•	1x	1.2

CRAIGHILL ENTRANCE

.

.

.

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits •=Duplicate analysis outside of control limits

 \sim

Analyte		CRIS	SED			CR2S	SED			CR2SI	EDFD			CR35	ED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil,	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	5880		1x	3.3	8390		lx	5.8	20000		lx	8	16500		lx	4.9
Antimony	ND	N	1x	0.11	ND	N	lx	0.2	ND	N	lx	0.28	ND	N	lx	0.17
Arsenic	4.8	EN	lx	0.11	7.4	EN	lx	0.2	15.4	EN	lx	0.28	12	EN	lx	0.17
Beryllium	0.47	BN	lx	0.14	0.71	BN	lx	0.18	1.5	N	lx	0.29	1.4	N	lx	0.19
Cadmium	0.58		lx	0.11	0.89	В	lx	0.2	1.8		lx	0.28	1.5		lx	0.17
Chromium	13.1		lx	0.57	23.4		lx	1	53		lx	1.4	29.5		lx	0.85
Copper	2.8		lx	0.45	12.9		lx	0.8	30.7		lx	1.1	10.1		lx	0.68
Iron	18000		lx	9	19700		lx	11.5	39400		lx	18	40300		1x	12.2
Lead	5.8	E	lx	0.11	17.5	Ε	lx	0.2	42.8	E	lx	0.28	17.6	Е	lx	0.17
Manganese	412		lx	0.57	2120		lx	1	5700		lx	1.4	809		lx	0.85
Mercury	0.06	В	lx	0.06	0.17	В	lx	0.11	0.35		lx	0.17	0.16	В	lx	0.10
Nickel	8.8		lx	1	17.3		lx	1.8	41.5		1x	2.5	39.4		lx	1.5
Selenium	0.87	N	lx	0.23	1.1	N	lx	0.4	1.4	N	1x	0.55	1.8	N	lx	0.34
Silver	ND	N	lx	0.86	ND	N	1x	0.55	ND	N	1x	0.86	ND	N	lx	1.2
Thallium	ND		lx	0.25	ND		1x	0.37	ND		lx	0.58	ND		lx	0.43
Zinc	37.9	٠	lx	0.68	103	•	1x	1.2	246		lx	1.7	94.1	•	lx	1

CRAIGHILL CHANNEL

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits *=Duplicate analysis outside of control limits

.

CRAIGHILL ANGLE

Analyte		CRAI	SED			CRA2	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	16100		lx	7,4	18900		lx	8.9
Antimony	ND	N	lx	0.26	0.39	BN	lx	0.31
Arsenic	12.8	EN	lx	0.26	15.1	EN	lx	0.31
Beryllium	1.5	N	lx	0.26	1.7	N	lx	0.26
Cadmium	1.7		lx	0.26	1.9		lx	0.31
Chromium	48.5		Ŀ,	1.3	58.6		lx	1.5
Copper	30.6		1x	1	36.6		lx	1.2
Iron	37400		1x	16.5	41600		1x	16.2
Lead	44.3	Ε	1x	0.26	52.4	Ε	1x	0.31
Manganese	3450		1x	1.3	3620		1x	1.5
Mercury	0.32		1x	0.12	0.41		lx	0.18
Nickel	38.8		1x	2.3	49.2		1x	2.8
Selenium	1.8	N	1x	0.51	1.2	BN	lx	0.61
Silver	ND	N	1x	0.79	ND	N	1x	0.77
Thallium	ND		1x	0.51	ND		1x	0.68
Zinc	242	•	<u>lx</u>	1.5	286	•	_1x	1.8

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits *=Duplicate analysis outside of control limits

.

.

۰.

Analyte		CRUI	SED			CRU2	SED			CRU3	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	12800		lx	7.5	6170		lx	4	17200		1x	5.3
Antimony	ND	N	lx	0.26	0.23	BN	lx	0.14	ND	N	1x	0.18
Arsenic	11.4	EN	1x	0.26	6.3	EN	1x	0.14	9	EN	1x	0.18
Beryllium	1.7	N	lx	0.25	ND	N	lx	0.14	1.3	N	1x	0.22
Cadmium	1.5		1x	0.26	0.64	В	1x	0.14	1.4		1x	0.18
Chromium	49.3		1x	1.3	29.9		1x	0.69	31.6		1x	0.92
Copper	34.3		1 x	1	16.8		1x	0.55	7.6		1x	0.74
Iron	41100		lx	15.9	1840		lx	9.1	42600		1x	13.8
Lead	53.5	Ε	1x	0.26	24.5	Ε	lx	0.14	16	Ε	1x	0.18
Manganese	3140		lx	1.3	1430		1x	0.69	1190		1x	0.92
Mercury	0.37		1x	0.14	0.18		1x	0.07	0.12	В	1x	0.11
Nickel	42.3		1x	2.3	18.5		lx	1.2	26.5		1x	1.7
Selenium	1.6	N	1x	0.52	1.2	N	1x	0.28	0.83	BN	lx	0.37
Silver	ND	Ν	1x	1.5	ND	N	lx	0.43	ND	Ν	1x	1.3
Thallium	ND		1x	0.58	ND		1x	0.28	ND		lx	0.43
Zinc	273	•	<u>lx</u>	1,5	120	•	<u>lx</u>	0.83	88	•	1x	1.1

CRAIGHILL UPPER RANGE

.

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits •=Duplicate analysis outside of control limits

.

.

Analyte		CUTI	SED			CUT2	SED			CUT3	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	18100		1x	8.8	14900		lx	8.6	12000	-	lx	7.9
Antimony	ND	. N	1x	0.3	ND	N	1x	0.3	0.84	BN	lx	0.27
Arsenic	17.9	EN	1x	0.3	15.3	EN	lx	0.3	15.1	EN	lx	0.27
Beryllium	1.8	N	lx	0.24	1.9	BN	lx	0.39	2.1	N	lx	0.29
Cadmium	1.7		1x	0.3	1.7		1x	0.3	1.4		lx	0.27
Chromium	66.8		1x	1.5	66.9		lx	1.5	81.9		lx	1.4
Copper	36		lx	1.2	40.4		lx	1.2	42.6		lx	1.1
Iron	42100		1x	15.3	45200		lx	· 24.6	52000		lx	18.2
Lead	64.4	Е	1x	0.3	60.6	E	lx	0.3	67	Ε	lx	0.27
Manganese	6780		lx	1.5	2500		lx	1.5	5150		lx	1.4
Mercury	0.44		lx	0.16	0.43		lx	0.16	0.4		lx	0.13
Nickel	46.2		1x	2.7	43.8		1x	2.7	43.1		lx	2.4
Selenium	1.7	N	1x	0.61	ND	Ν	lx	0.59	1.9	N	lx	0.54
Silver	ND	N	lx	1.5	ND	N	lx	1.2	ND	N	lx	0.87
Thallium	ND		1x	0.6	ND		lx	0.65	ND		lx	0.43
Zinc	317	•	<u>1x</u>	1.8	308	•	lx	1.8	319	•	lx	1.6

	CU	TOI	FF A	١NG	LE
--	----	-----	------	-----	----

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits *=Duplicate analysis outside of control limits

.
.

.

Analyte		TLCI	SED			TLC2	SED			TLC2S	EDFD			TLC3	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	23200	_	10x	4.3	18900		10x	4.1	18800		1x	5.5	21300		1x	7.9
Antimony	ND	N	1x	0.15	ND	N	1x	0.14	ND	N	1 x	0.19	ND	Ν	lx	0.27
Arsenic	11.5		1x	0.15	8.1		1 x	0.14	9.9		1x	0.19	13.7		1x	0.27
Beryllium	2.1		1x	0.15	1.4		1x	0.14	1.3		1x	0.19	1.8		1x	0.27
Cadmium	1.1		1x	0.15	1		1x	0.14	0.89	В	lx	0.19	1.5		1x	0.27
Chromium	27.2		1 x	0.74	22.5		lx	0.71	24.2		1x	0.94	40.8		1x	1.4
Copper	42.4		1 x	0.59	26.1		lx	0.57	22.8		1x	0.75	38.3		1x	1.1
Iron	34500		10x	9.3	32300		10x	9	32000		10x	11.9	38500		10x	17.2
Lead	32		1x	0.15	21.5		lx	0.14	19.8		lx	0.19	43.1		1x	0.27
Manganese	950		10x	0.74	850		10x	0.71	713		lx	0.94	4710		10x	1.4
Mercury	0.24		1 x	0.09	0.12	В	1x	0.09	ND		lx	0.1	0.25	В	1x	0.14
Nickel	51.6		1x	1.3	35.7		1x	1.3	32.1		lx	1.7	57.6		lx	2.5
Selenium	1.2		1x	0.3	0.41	В	lx	0.29	ND		1x	0.38	1.9		1x	0.55
Silver	ND		1x	0.44	ND		1x	0.43	ND		1x	0.57	ND		1x	0.82
Thallium	0.39	В	1x	0.23	ND		1 x	0.35	ND		1x	0.35	ND		1x	0.58
Zinc	192		<u>lx</u>	0.89	118		lx	0.86	111		lx		249		lx	1.6

TOLCHESTER CHANNEL-VAN VEEN

.

•

.

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL

.

Analyte		TLVI	SED			TLV2	SED			TLV3	SED			TLV4	SED			TLV5	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	18500		1x	5.5	18700		1x	5.5	17700		10x	4.8	21300	•	lx	5.9	20000		1x	6.1
Antimony	ND	N	lx	0.19	ND	N	1 x	0.19	0.19	BN	lx	0.17	0.26	BN	lx	0.21	0.23	BN	1x	0.21
Arsenic	14.3		lx	0.19	15.1		1 x	0.19	12.7		1x	0.17	16.5		lx	0.21	13. 1		lx	0.21
Beryllium	2.4		lx	0.19	2.2		1 x	0.19	2		1x	0.17	2.4		1x	0.21	2		1 x	0.21
Cadmium	1.6		lx	0.19	1.5		1 x	0.19	1.7		1x	0.17	2		lx	0.21	2		1x	0.21
Chromium	39.1		lx	0.95	35.2		1x	0.94	36.6		1x	0.83	42.1		1 x	1	38.4		1x	1
Copper	59		lx	0.76	56.2		1 x	0.75	49.6		1x	0.67	60.3		1 x	0.82	47.8		1x	0.84
lron	37500		10x	12	37200		10x	11.9	35400		10x	10.5	41900		1 x	12.9	42200		1x	13.2
Lead	58.3		1 x	0.19	55.8		1 x	0.19	51.5		1x	0.17	66.3		1 x	0.21	55.9		1 x	0.21
Manganese	2430		10x	0.95	2060		10x	0.94	2130		10x	0.83	2320		1 x	1	2660		lx	1
Mercury	0.58		lx	0.10	0.53		1x	0.09	0.42		1x	0.08	0.56		1 x	0.1	0.44		1 x	0.1
Nickel	72.2		lx	1.7	70.9		1 x	1.7	66.5		1x	1.5	75.6		1 x	1.8	64.1		1x	1.9
Selenium	2.4		lx	0.38	1.6		1x	0.38	1.2		1x	0.33	3	•	1x	0.41	2.2	•	1x	0.42
Silver	ND		lx	0.57	ND		1x	0.57	ND		1x	0.5	ND		1x	0.62	ND		lx	0.63
Thallium	ND		lx	0.4	ND		1x	0.38	ND		1x	0.33	ND	NW	1 x	0.43	ND	N	1 x	0.38
Zinc	316		1x	1.1	318		<u>1x</u>	1.1	307		1x	1	365	N	<u>1x</u>	1.2	294	N	1x	1.3

TOLCHESTER CHANNEL-GRAVITY CORE

ND=Not detected N=MS out of control limits B=Between IDL and CRDL W=Spike outside of control limits •=Duplicate analysis outside of control limits

. ·

Analyte		BEIS	ED			BE2S	SED			BE35	SED			BE4S	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	20700		10x	11.8	24500		10x	7.9	22900		10x	6.5	21800		10x	8.9
Antimony	ND	N	1 x	0.41	ND	N	lx	0.27	ND	N	lx	0.22	ND	Ν	lx	0.31
Arsenic	14.2		lx	0.41	19.6		lx	0.27	15.1		lx	0.22	20.3		lx	0.31
Beryllium	2.1		lx	0.41	2.3		lx	0.27	2.3		lx	0.22	2.4		lx	0.31
Cadmium	2		lx	0.41	2.3		1x	0.27	2.3		lx	0.22	2.5		lx	0.31
Chromium	50.2		1x	2	57.8		lx	1.4	51		lx	1.1	75.7		lx	1.5
Copper	38.2		lx	1.6	45.7		lx	1.1	43.2		lx	0.9	53.4		lx	1.2
Iron	41300		10x	25.5	48000		10x	17.2	46000		10x	14.1	52300		10x	19.2
Lead	54.2		lx	0.41	63.2		lx	0.27	60.5		lx	0.22	78.7		lx	0.31
Manganese	6000		lx	2	3910		1x	1.4	7000		1x	1.1	6610		1x	1.5
Mercury	0.5		lx	0.15	0.47		lx	0.14	0.49		1x	0.15	0.63		1x	0.16
Nickel	62.7		lx	3.6	65.6		lx	2.5	76.4		1x	2	72.1		lx	2.7
Selenium	1.9	В	lx	0.81	0.95	В	lx	0.55	2.4		lx	0.45	1.9		lx	0.61
Silver	ND		lx	1.2	1	В	lx	0.82	1.3	В	lx	0.67	1.3	В	lx	0.92
Thallium	ND		lx	0.61	ND	w	lx	0.57	ND	w	1x	0.43	ND	w	lx	0.59
Zinc	305	E	lx	2.4	354	E	lx	1.6	332	E	1x	1.3	412	E	lx	1.8

BREWERTON EASTERN EXTENSION-VAN VEEN

ND=Not detected N=MS out of control limits B=Between IDL and CRDL W=Spike outside of control limits E=Serial dilution outside of control limits

BREWERTON EASTERN EXTENSION-GRAVITY CORE

.

.

.

Analyte	1	BEVI	SED		[BEV2	SED	· · · · · · · · · · · · · · · · · · ·		BEV3	SED			BEV4	SED			BEVS	SED			BEV6	SED	<u> </u>
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	23100		10x	4.9	26700		10x	6.2	20000		10x	6.3	22800		10x	5.5	29400		10x	5.2	22400		10x	6
Antimony	ND	N	1x	0.17	ND	N	İx	0.21	ND	N	1x	0.22	ND	N	lx	0.19	ND	N	1 x	0.18	ND	N	lx	0.21
Arsenic	17.4		1x	0.17	14		lx	0.22	12.8		lx	0.22	10.4		lx	0.19	13.9		lx	0.18	12.9		lx	0.21
Beryllium	2.4		1 x	0.17	2.2		İx	0.22	1.3		·1x	0.22	1.6		lx	0.19	2.1		lx	0.18	1.5		lx	·0.21
Cadmium	2.7		1x	0.17	2.3		İx	0.22	1.7		lx	0.22	1.9		lx	0.19	2.1		1x	0.18	1.7		1x	0.21
Chromium	52.5		lx	0.84	45.1		lx	1.1	35.6	Ĵ	- lx	1.1	34.7		lx	0.95	42.2		lx	0.9	37.9		1x	1
Copper	50.7		lx	0.67	39.1		1x	0.86	16.7		lx	0.87	23.5		lx	0.76	29.8		lx	0.72	11.4		1x	0.83
Iron	45500		10x	10.6	49000		10x	13.5	39900		10x	13.7	25900		10x	11.9	48900		10x	11.3	43300		10x	13
Lead	72.1		1x	0.17	46.3		İx	0.22	42.7		,	0.22	29		lx	0.19	31.7		1x	0.18	18.4		1x [†]	0.21
Manganese	4780		1 x	0.84	1890		lx	1.1	1440		lx	1.1	2030		lx	0.95	2400		lx	0.9	1360		lx	1
Mercury	0.52	(a)	1x	0.11	0.42	(a)	1 x	0.11	0.26	(a)	lx	0.1	0.93	(a)	lx	0.11	0.16	B(a)	lx	0.12	ND	(a)	lx	0.11
Nickel	75.5		1x	1.5	60		1 x	1.9	29.4		1 X	2	38.8		lx	1.7	48.9		lx	1.6	33.3		1x	1.9
Selenium	1.9		1x	0.34	1	В	lx	0.43	1.5		1x	0.43	1		lx	0.38	1.4		1x	0.36	1.7		lx	0.41
Silver	1.4	В	1x	0.5	ND		lx	0.64	ND		1 x	0.65	ND		1x	0.57	ND		lx	0.54	ND		1x	0.62
Thallium	ND	W	lx	0.39	ND	w	lx	0.36	ND		1 x	0.36	ND		1x	0.31	ND		lx	0.49	ND		lx	0.42
Zinc	362	E	1x	1	242	<u> </u>	<u> x</u>	1.3		<u> </u>	<u>lx</u>	1.3	123	<u> </u>	<u>lx</u>	1.1	154	E	<u>1x</u>	1.1	101	Ε	18	1.2

ND=Not detected N=MS out of control limits B=Between IDL and CRDL W=Spike outside of control limits E=Serial dilution outside of control limits

(a)=Sample digested six days beyond holding time

BREWERTON REACH

Analyte		BR1	SED			BR2	SED			BR3	SED			BR4	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	19900		10x	8.6	21800		10x	6.6	27300		10x	7.3	21100		10x	8.8
Antimony	0.34	BN	1x	0.3	0.65	BN	1x	0.23	0.34	BN	lx	0.25	0.33	BN	1x	0.3
Arsenic	19.8		1x	0.3	18.4		1x	0.23	18.4		1x	0.25	18.8		1x	0.3
Beryllium	2		1x	0.3	1.8		1x	0.23	2		1x	0.25	2		1x	0.3
Cadmium	2.4		1x	0.3	2.4		1x	0.23	2.7		1x	0.25	2.5		lx	0.3
Chromium	82.6		1x	1.5	94.7		lx	1.1	97.5		1x	1.3	120		1x	1.5
Copper	50.5		1x	1.2	53.2		1x	0.91	71.3		1x	1	60.8		lx	1.2
Iron	49100		10x	18.7	48400		10x	14.3	28400		10x	15.8	27400		10x	19.1
Lead	77.8		1x	0.3	98.2		1x	0.23	78.6		1x	0.25	88.6		1x	0.3
Manganese	5390		1x	1.5	2430		10x	1.1	2260		1x	1.3	2850		1x	1.5
Mercury	0.4	(a)	1 x	0.15	0.48		lx	0.12	0.46		1x	0.13	0.49		1x	0.14
Nickel	56.2		1x	2.7	47.1		1x	2	48.8		1x	2.3	58.4		1x	2.7
Selenium	1.7		1x	0.59	2.7		1x	0.45	1.8		1x	0.5	1.8		l x	0.61
Silver	ND		1x	0.89	ND		lx	0.68	ND		1x	0.75	ND		1x	0.91
Thallium	ND		1 x	0.36	ND		1x	0.56	ND		lx	0.54	ND		1x	0.43
Zinc	375	E	1x	1.8	375	<u> </u>	lx	1.4	366	E	lx	1.5	399	E	1x	1.8

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL

E=Serial dilution outside of control limits

.

2

BLIND SPLITS

.

.

Analyte	BL	INDSPL	T1A(B	R1)	BL	INDSPL1	T2A(B	R3)
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	23100		10x	6.2	22000		10x	6.4
Antimony	0.46	BN	1x	0.21	ND	N	1x	0.22
Arsenic	20.7		1x	0.21	16		1 x	0.22
Beryllium	1.9		1x	0.21	1.6		1x	0.22
Cadmium	2.6		1x	0.21	2.3		1x	0.22
Chromium	101		1x	1.1	76.4		1x	1.1
Copper	58.8		1x	0.86	43.9		1 x	0.88
Iron	48200		10x	13.5	49200		10x	13.9
Lead	88.1		İx	0.21	63.1		1 x	0.22
Manganese	3380		1x	1.1	1970		1x	1.1
Mercury	0.55		1x	0.15	0.33		1 x	0.1
Nickel	51.7		1x	1.9	38.6		1x	2
Selenium	2.1		1x	0.43	2.2		1x	0.44
Silver	0.83	В	İx	0.64	ND		1x	0.66
Thallium	ND	w	1x	0.4	ND	w	1x	0.4
Zinc	404	E	1x	1.3	290	E	1x	1.3

ND=Not detected N=MS out of control limits B=Between IDL and CR W=Spike outside of control limits E=Serial dilution outside of control limits

BREWERTON ANGLE REACH

.

Analyte		BRAI	SED			BRA2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	17100		10x	7.8	21600		10x	8.3
Antimony	0.5	BN	lx	0.27	0.71	BN	lx	0.29
Arsenic	17.3		lx	0.27	19		lx	0.29
Beryllium	1.7		lx	0.27	2.1		lx	0.29
Cadmium	2.1		lx	0.27	2.5		lx	0.29
Chromium	112		lx	1.3	97.9		lx 、	1.4
Copper	53.8		lx	1.1	57.3		lx	1.1
Iron	44800		10x	17	50400		10x	18.1
Lead	74.4		lx	0.27	77.3		lx	0.29
Manganese	2830		lx	1.3	4870		lx	1.4
Mercury	0.71		lx	0.17	0.63		lx	0.17
Nickel	44.9		lx	2.4	62.8		lx	2.6
Selenium	1.7		lx	0.54	1.9		lx	0.57
Silver	ND		lx	0.81	ND		lx	0.86
Thallium	2.5	В	lx	0.66	ND		lx	0.55
Zinc	337	E	lx	1.6	369	E	lx	1.7

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits

FT. McHENRY REACH

Analyte		FMHI	SED			FMH2	SED			FMH3	SED			FMH4	SED	1
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	18200		lx	8.7	18600		lx	10.8	18800		lx	8	13800		lx	5.2
Antimony	1.6	BN	lx	0.3	1.2	BN	lx	0.37	0.93	BN	lx	0.28	2	BN	lx	0.18
Arsenic	17		lx	0.3	17.9		lx	0.37	29.3		lx	0.28	23.7		lx	0.18
Beryllium	1.4	В	lx	0.3	1.3	В	lx	0.37	1.4		lx	0.28	1.1		lx	0.18
Cadmium	2.1		lx	0.3	2.3		lx	0.37	2.3		lx	0.28	2.5		lx	0.18
Chromium	152	Ε	lx	1.5	134	Ε	lx	1.9	126	Ε	lx	1.4	183	Ε	lx	0.89
Copper	70.5		1x	1.2	72.7		lx	1.5	87.9		lx	1.1	126		lx	0.71
Iron	48600	Ε	1x	18.8	50000	Е	lx	23.6	50800	Ε	lx	17.4	40400	Ε	lx	11.2
Lead	85.4		lx	0.3	77.1		lx	0.37	95.4		lx	0.28	87.2		lx	0.18
Manganese	1610		lx	1.5	1820		lx	1.9	1350		lx	1.4	1310		lx	0.89
Mercury	0.46	(a)	1x	0.15	0.51	(a)	lx	0.17	ND	(a)	lx	0.14	0.59	(a)	lx	0.11
Nickel	47.2		lx	2.7	39.4		lx	3.4	33.9		lx	2.5	28.8		lx	1.6
Selenium	4	N	lх	0.6	3.3	N	lx	0.75	5.4	N	lx	0.55	4.1	N	lx	0.36
Silver	1	В	lx	0.9	ND		lx	1.1	ND		lx	0.83	ND		lx	0.53
Thallium	ND		lx	0.67	ND		lx	0.65	ND		lx	0.51	ND		1x	0.39
Zinc	377		lx	1.8	350		lx	2.2	285		lx	1.7	346		lx	1.1

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL

E=Serial dilution outside of control limits

(a)=Sample analyzed six days beyond holding time

Ŷ

CURTIS BAY REACH

Analyte		CB1	SED			CB2	SED			CB3	SED			CB4	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	18700		1x	11.7	5390		1x	5.6	14200		lx	10.5	16600		1x	11.6
Antimony	2.3	BN	1x	0.4	1.2	BN	1x	0.19	2.8	BN	1x	0.36	2.6	BN	lx	0.4
Arsenic	26.1		1x	0.4	10.9		1x	0.19	32.2		lx	0.36	42.2		lx	0.4
Beryllium	1.4	В	1x	0.4	0.55	В	1x	0.19	1.3	В	lx	0.36	1.3	В	lx	0.4
Cadmium	2.8		1x	0.4	1.2		1x	0.19	2.5		1 x	0.36	2.9		1x	0.4
Chromium	206	Ε	1x	2	118	Ε	1x	0.97	210	Έ	1 x	1.8	175	E	1x	2
Copper	102		1x	1.6	49.5		1x	0.78	133		1x	1.4	172		1x	1.6
Iron	58800	Ε	lx	25.4	26100	Έ	1x	12.2	53400	Ε	lx	22.8	61500	E	1x	25.1
Lead	106		1 x	0.4	37.4		1x	0.19	116		1x	0.36	130		1x	0.4
Manganese	3310		1 x	2	483		1x	0.97	1120		lx	1.8	858		lx	2
Mercury	0.89	(a)	1x	0.2	0.26	(a)	1x	0.086	0.76	(a)	lx	0.19	1	(a)	lx	0.21
Nickel	48.5		lx	3.6	13		1x	1.7	44.8		lx	3.3	38.8		1x	3.6
Selenium	5.2	N	1x	0.8	2.2	N	1 x	0.39	5.2	N	lx	0.72	6.4	N	1x	0.8
Silver	ND		1x	1.2	ND		lx	0.58	ND		1x	1.1	ND		1x	1.2
Thallium	ND		1 x	0.74	ND		1x	0.33	ND		lx	0.7	ND		1x	0.74
Zinc	455		1x	2.4	154		1x	1.2	393		lx	2.2	390		lx	2.4

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL

E=Serial dilution outside of control limits

FERRY BAR REACH

Analyte		FB1 S	SED			FB2	SED			FB3 :	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	17300		lx	11.6	18700		lx	14.3	21300		lx	10.3
Antimony	1.8	BN	lx	0.4	2.1	BN	lx	0.49	1.6	BN	lx	0.36
Arsenic	21.8		lx	0.4	21.9		lx	0.49	21.1		lx	0.36
Beryllium	1.3	В	lx	0.4	1.4	В	lx	0.49	1.5	В	lx	0.36
Cadmium	2.6		lx	0.4	2.7	£	lx	0.49	2.8		lx	0.36
Chromium	176	Ε	lx	2	189	Ē	lx	2.5	193	Е	lx	1.8
Copper	158		1x	1.6	164		lx	2	166		lx	1.4
Iron	42300	Ε	lx	25.3	45600	E	lx	31.2	42400	Ε	1x	22.5
Lead	123		lx	0.4	120		lx	0.49	122		lx	0.36
Manganese	1990		lx	2	4680		lx	2.5	796		1x	1.8
Mercury	0.85	(a)	1x	0.19	0.77	(a)	lx	0.21	0.68	(a)	lx	0.16
Nickel	45.5		1x	3.6	59.8		lx	4.5	48		lx	3.2
Selenium	4.9	N	lx	0.8	5.2	N	lx	0.99	4.9	N	lx	0.71
Silver	ND		lx	1.2	ND		lx	1.5	ND		1x	1.1
Thallium	ND		lx	0.84	ND		lx	0.98	ND		lx	0.77
Zinc	388		1x	2.4	389		lx	3	384		lx	2.1

ND= Not detected N=MS outside of control limits B=Between IDL and CRDL E=Serial dilution outside of control limits

.

NORTHWEST BRANCH EAST

Analyte		NBE1	SED			NBE2	SED	
ug/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	21900		lx	12.4	18000		lx	13.8
Antimony	3	BN	lx	0.43	2.9	BN	lx	0.47
Arsenic	32.7		lx	0.43	23.5		lx	0.47
Beryllium	1.5	В	lx	0.43	1.4	В	lx	0.47
Cadmium	3.9		lx	0.43	3.3		lx	0.47
Chromium	370	Е	lx	2.1	263	Ε	lx	2.4
Copper	322		1x	1.7	289		lx	1.9
Iron	50700	Ε	lx	26.8	45300	Е	lx	29.9
Lead	204		lx	0.43	177		lx	0.47
Manganese	2360		lx	2.1	969		lx	2.4
Mercury	0.77	(a)	lx	0.23	0.74	(a)	lx	0.23
Nickel	53.5		lx	3.8	40.9		lx	4.3
Selenium	12.2	N	lx	0.85	12.7	N	1x	0.95
Silver	1.9	В	lx	1.3	1.9	В	1x	1.4
Thallium	ND		1x	0.79	ND		lx	0.97
Zinc	513		lx	2.6	456		lx	2.8

ND=Not detected N=MS out of control limits B=Between IDL and CRDL W=Spike out of control limit E=Serial dilution outside of control limits

NORTHWEST BRANCH WEST

Analyte		NBWI	SED			NBW2	SED			NBW3	SED	
ug/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	16600		lx	8.5	11200		lx	5	18900		lx	11.8
Antimony	0.54	BN	lx	0.29	1.2	BN	lx	0.17	15.3	BN	lx	0.41
Arsenic	8.9		1 x	0.29	12.3		lx	0.17	39.9		lx	0.41
Beryllium	1.3	В	lx	0.29	0.91		lx	0.17	1.4	В	lx	0.41
Cadmium	1.4	В	lx	0.29	1.6		lx	0.17	6.2		1x	0.41
Chromium	62.5	Ε	1 x	1.5	176	Е	lx	0.85	2240	Ε	1x	2
Copper	36		1x	1.2	98		lx	0.68	553		1x	1.6
Iron	37000	Ε	lx	18.4	25300	Е	lx	10.8	47800	Ε	1x	25.7
Lead	20.5		1x	0.29	52		lx	0.17	486		1x	0.41
Manganese	895		1x	1.5	437		lx	0.85	847		1x	2
Mercury	0.14	B(a)	1 x	0.14	0.43	(a)	lx	0.11	6.3	(a)	lx	0.19
Nickel	29.8		1x	2.6	35.7		lx	1.5	56.5		1x	3.7
Selenium	3.3	N	1 x	0.58	3.7	N	lx	0.34	14	N	1 x	0.81
Silver	ND		1x	0.87	ND		lx	0.51	2.9	В	1x	1.2
Thallium	ND	w	lx	0.55	ND		lx	0.43	ND		1x	0.82
Zinc	98.6		lx	1.7	140		lx	1	874	-	lx	2.4

ND=Not detected N=MS out of control limits B=Between IDL and CRDL W=Spike out of control limits E=Serial dilution outside of control limits

|--|

	POPLAR ISLAND							ENT ISLAN	ND	DEEP TROUGH			
ug/kg		PHISED			PI5SED			KI2SED			DT2SED		
	Result	Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit	
Tributyltin (TBT)	ND	1x	0.3	23.65	1 x	0.3	4.32	1x	0.3	ND	1x	0.3	
Dibutyltin (DBT)	ND	1 x	0.3	ND	1 x	0.3	ND	1 x	0.3	ND	1x	0.3	
Monobutyltin (MBT)	ND	lx	0.3	ND	lx	0.3	ND	1x	0.3	ND	lx	0.3	

	<u> </u>	WAN POIN	TTT	_			т					
ug/kg		SWP2SED]	TI VISED			JLCHEST	ER	<u></u>		
	Result	Dilution	Limit	Recult	Dilution			TLC2SED		11	LC2SEDFI)
T-ihut ti (TDT)			Linn		Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit
rnoutynin (IBI)	4.97	1x	0.3	ND	lx	0.3		1.	0.2		Bilation	
Dibutyltin (DBT)	ND	1x	03		٩.			17	0.3	ND	1x	0.3
Manahutitin 0 (DT)		-	0.5		1X	0.3	ND	1 x	0.3	ND	lx	0.3
[Wonooutytun (MB1)]	ND	<u> </u>	0.3	ND	1x	0.3	ND	1.	0.2		•••	0.5
								1	0.3		<u> </u>	0.3

.

ND=Not detected

.

	·		BREW	ERTON			BLIND SPLITS								
ug/kg		BRISED			BR3SED		BLIN	DSPLITIA	(BR1)	BLIN	DSPLIT2A	(BR3)			
	Result	Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit			
Tributyltin (TBT)	ND	lx	0.3	2.86	1 x	0.3	ND	lx	0.3	41.77	lx	0.3			
Dibutyltin (DBT)	ND	1 x	0.3	ND	1 x	0.3	ND	1 x	0.3	8.58	lx	0.3			
Monobutyltin (MBT)	ND	1x	0.3	ND	lx	0.3	ND	lx	0.3	2.89	1x	0.3			

		CRAIGHILL UPPER RANGE/ENTRANCE										
ug/kg	BE2SED				BEV3SED			CRU2SED			CRE2SED	
	Result	Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit	Result	Dilution	Limit
Tributyltin (TBT)	6.27	1x	0.3	ND	1x	0.3	7.02	1x	0.3	ND	1x	0.3
Dibutyltin (DBT)	ND	1x	0.3	ND	1x	0.3	1.96	1x	0.3	ND	1 x	0.3
Monobutyltin (MBT)	ND	<u>lx</u>	0.3	ND	<u>1x</u>	0.3	ND	<u>lx</u>	0.3	ND	<u>lx</u>	0.3

Tab	le 4-9.	Continu	ed.

	· .	CUTOFF ANGLE									
ug/kg		CR2SED			CR2FDSED)	CUT2SED				
	Result	Dilution	Limit	Result	Result Dilution Limit		Result	Dilution	Limit		
Tributyltin (TBT)	1.22	1x	0.3	3.42	lx	0.3	10.77	lx	0.3		
Dibutyltin (DBT)	ND	lx .	0.3	ND	1x	0.3	7.90	1 x	0.3		
Monobutyltin (MBT)	ND	<u>1x</u>	0.3	ND	<u>lx</u>	0.3	ND	lx	0.3		

Table 4-10. General Chemistry results for Chesapeake Bay and Baltimore Harbor sediments presented by sample reach.

POPLAR ISLAND

2

.

Analyte		P11 S	SED		P12 SED					P13 5	ED		PI4 SED				P15 SED			
mg/kg	Result	Qual	Dil	_Limit_	Result	Qual	Dil	Limit	Result	Qual	Dil	Limit	Result	Qual	Dil	Limit	Result	Qual	Dil	Limit
Carbon, total organic	3280		lx	585	14400		1x	2380	2500		1x	569	3280		lx	585	14400		lx	2380
Cyanide, total	ND		1x	0.28	ND		1x	0.95	ND		1x	0.25	ND		1x	0.28	ND		lx	0.95
Nitrogen, ammonia	7.6		lx	3.6	19.2		1x	11.6	3.4		1x	3.1	7.6		lx	3.6	19.2		lx	116
Nitrogen, nitrate and nitrite	146		1x	14	7.6		lx	4.6	2.1		1x	1.2	146		lx	14	7.6		lx	4.6
Nitrogen, total Kjeldahl	106		lx	33.9	515		lx	85	132		1x	32	106		1x	33.9	515		lx	85
Oxygen demand, biochemical	397		1x	176	ND		1x	571	216		1x	154	397		1x	176	ND		1x	571
Oxygen demand, chemical	2680		1x	146	6010		1x	476	1340		1x	128	2680		1x	146	6010		1x	476
Phosphorus, total	61.4		1x	8	147		1x	22.9	61.8		1x	6.2	614		1x	8	147		lx	22.9
Sulfide, total	41.4		<u>lx</u>	32.4	ND		lx	102	ND		<u>1x</u>	24.8	41.4		lx	32.4	ND		Ix	102

.

DEEP TROUGH

۰.

Analyte		DTI	SED			DT2	SED		DT3 SED			
mg/kg	Result	Qual	Dil	Limit_	Result	Qual	Dil.	Limit	Result	Qual D	il. Limit	
Carbon, total organic	47500		lx	3650	14000		lx	1080	50700	1	x 2690	
Cyanidc, total	ND	•	1x	1	ND		1x	0.44	ND	1:	x 0.89	
Nitrogen, ammonia	131		lx	11.7	8.1		lx	5.1	262	1;	K 12	
Nitrogen, nitrate and nitritc	8.2		1x	4.9	77		lx	2	4.8	1	x 46	
Nitrogen, total Kjeldahl	1830		1 x	्र 121	1370		lx	67 2	2180	1	x 105	
Oxygen demand, biochemical	4530		1x	603	376		lx	258	1760	1	x 566	
Oxygen demand, chemical	36700		lx	1000	18600		lx	430	29000	1	x 942	
Phosphorus, total	843		lx	81.15	614		lx	53.8	632	I.	x 73.6	
Sulfide total	2600		<u>lx</u>	118	ND		<u>. Ix</u>	46.2	ND		<u>⊾104</u>	

•

.

KENT ISLAND DEEP

.

Analyte		K11 S	ED			K12	SED		KI3SED			
mg/kg	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	13600		lx	758	7250		l x	1480	10100		İx	640
Cyanide, total	ND		lx	0.27	0.92		1x	0.57	ND		1x	0.3
Nitrogen, ammonia	86		1x	3.2	30.6		1x	7.2	69.1		1x	3.4
Nitrogen, nitrate and nitrite	4		1x	1.3	36		1x	28	4.6		1x	1.2
Nitrogen, total Kjeldahl	236		1x	34 6	131		1x	64	335		lx	29
Oxygen demand, biochemical	346		1x	159	857		lх	356	468		lx.	173
Oxygen demand, chemical	22100		lx	682	23900		1x	148	6170		lx.	144
Phosphorus, total	68.6		1x	69	661		1 x	46 4	92 6		1x	7.2
Sulfide, total	ND		l x	<u>28.6</u>	ND		<u>lx</u>	55.4	ND_		1 <u>x</u>	29.3

.

POOLES ISLAND

.

.

.

.

Analyte		POL	ISED	
mg/kg	Result	Qual	Dil	Limit
Carbon, total organic	36100		lx	1100
Cyanide, total	ND		İx	0.53
Nitrogen, ammonia	39.7		1x	6.6
Nitrogen, nitrate and nitrite	7.5		lx	2.4
Nitrogen, total Kjeldahl	982		İx	322
Oxygen demand, biochemical	1080		lx	296
Oxygen demand, chemical	88200		lx	988
Phosphorus, total	467		İx	30.9
Sulfide, total	ND		<u> x</u>	47.5

.

.

SWAN POINT CHANNEL

Analyte		SWPI	SED			SWP	2 SED	<u></u>	SWP3 SED			
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	90500		1x	2300	44800		1x	3290	37000		lx	1890
Cyanide, total	ND		lx	0.91	ND		1x	0.94	ND		lx	0.8
Nitrogen, ammonia	279		lx	10.6	24.2		1x	11.4	. 17.2		lx	9.9
Nitrogen, nitrate and nitrite	6.5		lx	4.1	5.8		1x	4.3	6		lx	3.6
Nitrogen, total Kjeldahl	2260		1x	108	2230		lx	105	2550		lx	92.8
Oxygen demand, biochemical	2830		1x	517	3940		Ix	1360	4150		1x	1200
Oxygen demand, chemical	1 3800		lх	431	91300		lx	1810	58500		١x	1600
Phosphorus, total	1570		lx	108	1930	(a)	lx	188	1290	(a)	1x	716
Sulfide, total	1080		_ 1x_	94.5	ND			91_1	<u>ND</u>		!x	96 8

ND=Not detected

(a) "Total phosphorus digestates became cloudy upon addition of reagents, interfering with colorimetric analysis Potential high bias

.

•

-

CRAIGHILL ENTRANCE

•

Analyte		CREI	SED			CRE	SED			CRE3	SED	
mg/kg	Result	Qual.	Dil.	<u>l.imit</u>	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
Carbon, total organic	29600		1x	1010	21300		lx	1080	17700		lx	937
Cyanide, total	ND		1x	0 53	ND		1x	0.5	ND		1x	0 43
Nitrogen, ammonia	35.5		1x	6	10		1x	5.9	39.9		1x	12.2
Nitrogen, nitrate and nitrite	5.2		lx	2.5	46		1x	24	13		1x	2.3
Nitrogen, total Kjeldahl	855		lx	283	1190		lx	116	1140		1x	105
Oxygen demand, biochemical	1130		1x	304	554		lx	291	325		1x	281
Oxygen demand, chemical	73400		1x	2020	50900		lх	1940	50500		1x	1880
Phosphorus, total	586		1x	45.2	397		Ix	43 2	344		1x	36 6
Sulfide, total	318		<u>lx</u>	48.5	61.4		<u>lx</u>	54 8	95,1		lx	50

ND=Not detected

CRAIGHTLL CHANNEL

Analyte		CRIS	SED			CR2	SED			CR2FD	SED			CR3	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	10600		IX	725	13500		1x	1010	46200		lx	2670	29000		lx	1220
Cyanide, total	ND		1x	0.29	ND		1x	0.4	ND		1x	0.69	ND		1x	0.51
Nitrogen, ammonia	6		1x	3.6	16.9		lx	5.3	410		Ix	40.7	8.9		lx	6
Nitrogen, nitrate and nitrite	7		1x	1.4	6.5		lx	2.1	10.8		lx	3.3	12.6		Iх	• 2.3
Nitrogen, total Kjeldahl	635		1x	36.2	666		1x	53.8	922		1x	77.2	1150		Iх	54.2
Oxygen demand, biochemical	410		1x	174	1010		Iх	258	1510		1x	400	585		lx	291
Oxygen demand, chemical	25600		lx	580	76300		1x	1720	104000		Iх	2670	81200		1x	1940
Phosphorus, total	130		1x	25.9	359		1x	33.6	1100		lx	52.1	344		lx	43.3
Sulfide, total	ND		<u>lx</u>	29.9	ND		<u>lx</u>	49.3	268		_ <u>lx</u>	63.1	54		Ix	48.2

ND=Not detected

.

-

CRAIGHILL ANGLE

Analyte		CRA	I SED			CRA2	SED]
mg/kg	Result	Qual	Dil.	Limit	Result	Qual.	Dil	Limit
Carbon, total organic	42700		İx	2000	47400		1x	2000
Cyanide, total	ND		lx	0.62	ND		1 x	0.72
Nitrogen, ammonia	374		lx	75	309		lx	91.1
Nitrogen, nitrate and nitrite	16.2		lx	2.9	9.7		1x	3.7
Nitrogen, total Kjeldahl	2000	j	1x	376	1260		1x	435
Oxygen demand, biochemical	976		1x	361	1530		1x	451
Oxygen demand, chemical	52800		1x	1200	133000		1×	3000
Phosphorus, total	1060	•	lx	938	1220		1x	67.1
Sulfide, total	230		İx	54 5	1310		lx	73 6

CRAIGHILL UPPER RANGE

.

Analyte		CRUIS	ED			CRU	2 SED			CRU3 SED	·····
mg/kg	Result	Qual.	Dil	Limit	Result	Qual.	Dil	Limit	Result	Qual Dil	Limit
Carbon, total organic	46500		1x	1780	8180		lx	745	19900	lx	1170
Cyanide, total	ND		1x	0.75	ND		lx	0.31	ND	1x	0.45
Nitrogen, ammonia	59.7		1x	8.5	17.9		1x	4	312	lx	6.1
Nitrogen, nitrate and nitrite	17.5		1 x	3.5	8,7		1x	1.5	9.4	1x	2.3
Nitrogen, total Kjeldahl	1490		1x	444	824		1x	41.2	1190	1x	112
Oxygen demand, biochemical	1940		1x	426	703		1x	190	1380	1x	281
Oxygen demand, chemical	69100		1x	1420	40100		lx	1270	32600	İx	935
Phosphorus, total	1120		1x	55.5	451		1x	24.7	437	lx	36.5
Sulfide, total	1670		1x	74 3	211_		lx	32.2	104	<u>lx</u>	54.9

.

ND=Not detected

CUTOFF ANGLE

. .

Analyte	[CUTI S	ED		· · · · · · · ·	CUT	2 SED		 	CUT3 SED	÷
mg/kg	Result	Qual.	<u>Dil</u>	<u>Limit</u>	Result	Qual	Dil	Limit	Result	Qual Dil	Limit
Carbon, total organic	41500		lx	2250	38800		lx	1590	33700	lx	1570
Cyanide, total	ND		lx	0.67	ND		1x	078	ND	lx	0 63
Nitrogen, ammonia	395		Ix.	8.4	374		1x	98	50.6	1x	79
Nitrogen nitrate and nitrite	12.2		1x	3.3	6.6		lx	3.9	73	1x	3.1
Nitrogen, total Kjeldahl	1950		1x	162	2220		lx	192	1950	lx	157
Oxygen demand, biochemical	1710		1x	405	2260		1x	478	1260	lx	378
Oxygen demand, chemical	81300		1x	2700	81200		lx	1590	53700	lx	1260
Phosphorus, total	686		lx –	52.7	1460		lx	71.1	1080	lx	49.2
Sulfide, total	358		Ix_	61.8	1300		<u>lx</u>	86.3	1000	<u>lx</u>	55

٠

,

.

TOLCHESTER CHANNEL-VAN VEEN

•

.

Analyte		TLCI	SED			TLC2 SED		,	TLC2FD	SED			TLC3 SED	• • •
mg/kg	Result	Qual.	Dil.	Limit	Result	<u>Qual. Dil.</u>	Limit	Result	Qual	Dil	Limit	Result	Qual Dil	Limit
Carbon, total organic	56700		1x	968	23600	lx	841	19000		lx	1 100	35300	1x	1180
Cyanide, total	ND		1x	0.36	ND	lx	0.41	ND		lx	0.47	ND	1 x	0.5
Nitrogen, ammonia	15.8		1x	5	19	lx	5	183		IX.	56	70	lx	7.1
Nitrogen, nitrate and nitrite	12		1x	1.8	4.2	l×	21	6.2		lx 👘	2 2	4.9	Ix	29
Nitrogen, total Kjeldahl	675		lx	224	1080	lx	50.5	1020		lx	59 7	1470	lx	66.1
Oxygen demand, biochemical	2460		lx	581	729	lx	252	710		lx	264	1550	lx	355
Oxygen demand, chemical	91200		lx	3100	28300	lx	841	38100		lx	880	87700	lx	2370
Phosphorus, total	430		1x	40.3	328	lx	43.8	1210		lx	91.6	1310	lx	74
Sulfide, total	460		<u>lx</u>	32.8	268	<u> </u>	42.9	751		<u>lx</u>	48.2	237	lx_	60.7

.

ND=Not detected

.

TOLCHESTER CHANNEL-GRAVITY CORE

Analyte		TLVI	SED			TLV2	SED			TLV3	SED			TLV4	SED		11 <u></u>	TLV55	ED	
mg/kg	Result	Qual	Dil	Limit	Result	Qual	_Dil	Limit_	Result	Qual	<u> </u>	<u>Limit</u>	Result	Qual.	Dil	Limit	Result	Qual.	Dil	Limit
Carbon, total organic	54800		lx	951	75300		lx	848	64500		lx	1220	55200		lx	1770	47400		lx	916
Cyanide, total	0.47		lx	0.43	ND		1x	0.41	ND		lx	04	ND		1x	041	ND		lx -	04
Nitrogen ammonia	134		1x	22.3	114		1x	24 2	75 9		lx	24.7	716		1x	44 2	205		lx	44 9
Nitrogen, nitrate and nitrite	2.5		lx	18	2		1x	1.8	38		lx	1.7	31		1x	2	33		1x	2.2
Nitrogen, total Kjeldahl	444		1x	48 6	1030		1x	259	721		l x	238	854		1x	247	1030		1x	252
Oxygen demand, biochemical	671		lx	242	977		1x	229	1210		İx	238	976		1x	267	914		1x	261
Oxygen demand, chemical	63000		lx	1620	78900		lx	3050	56400		l x	1.590	66900		lх	1770	67500		1x	2180
l'hosphorus, total	985		١x	84 2	1050		lx	79.5	983		l x	49 6	1370		İx	110	1210		1x	90 6
Sulfide, total	2270		<u> x</u>	44.1	581		<u>lx</u>	39.3	ND		<u>Ix</u>	41	183		<u>Ix</u>	43.8			lx.	48 8

BREWERTON EASTERN EXTENSION-VAN VEEN

. **x**

Analyte	[BETS	БD			BE2 SED		· · · · · · · · · · · · · · · · · · ·	BE3 S	SIED			BI-4 S	ED	·····)
mg/kg	Result	Qual.	DiL	Limit.	Result	Qual Dil	Limit	Result	Qual	Dil	Limit	Result	Qual	Dil.	1.imit
Carbon, total organic	66900		Î.X	2570	61500	lx	2180	53500		lx	1580	49000		İx	1500
Cyanide, total	36		lx	08	19	lx	0.56	0.59		1x	0 56 i	ND		1x	0 67
Nitrogen, ammonia	47		lx	10 1	162	lx	38.6	204		1x	7 2	102		1x	43 8
Nitrogen, nitrate and nitrite	ND		lx	3.6	4.2	lx	2.7	31		1x	2 8	65		1x	3.4
Nitrogen, total Kjeldahl	1860		1x	100	815	Ix	390	1320		1x	386	1570		1x	463
Oxygen demand, biochemical	2800		İx	501	2080	lx	359	1840		1x	356	2020		1x	427
Oxygen demand, chemical	163000		lx	8350	90200	lx	2400	39000		lx	119	58000		Ix	1420
Phosphorus, total	1430		١x	74.6	1010	lx	46.8	948		Ìx	53	1110		Ix	55.6
Sulfide, total	321		<u> x</u>	92.4	59.4	<u> </u>	59.4	2220		<u> x</u>	69.7	734		lx_	75.1

BREWERTON EASTERN EXTENSION-GRAVITY CORE

.

:

. •

Analyte]	BEVI	SED			BEV2	SED			BEN	/3 SED		1	BEV4 SE)		BEV5 SI	5D	1	BEV6 SED	
mg/kg	Result	Qual.	Dil.	<u>l.imit</u>	Result	Qual.	<u>Dil.</u>	Limit	Result	Qual.	Dil.	Limit	Result	Qual. D	<u>1. </u>	Result	Qual.	Dil. Limit	Result	Qual Dil	Limit
Carbon, total organic	64200		İx	1890	43900		١x	1520	26200		1x	1360	1 5400	1	× 1120	27500		1× 1580	28400	1x	1430
Cyanide, total	1.7		1x	0.44	0.86		Ix	· 0.48	1.7		1×	0.47	ND	1	x 04	1.8		Ix 0.53	ND	1 x	0.48
Nitrogen, ammonía	350		1x	57.3	84.8		1x	28.8	153		1 x	30.5	124	1	x 270	97.8		1x 32.8	104	Ix	31.6
Nitrogen, nitrate and nitrite	5.2		1x	, 2.3	3.2		1×	2	4.9		1 x	21	3.8	1	к 2.1	3.9		lx 24	42	İx	2 2
Nitrogen, total Kjeldahl	930		١x	295 [.]	1330		1×	110	92:	r	1x	287	1020		x 61	1120		1x 364	1460	1x	340
Oxygen demand, hiochemical	1330		1×	283	2080		1 x	685	911		1 x	287	1490	1	x 269	1450		1x 307	932	1x	301
Oxygen demand, chemical	43800		1×	944	47600		1x	1830	33300		İx	955	46700	1	K 1800	32600		Ix 1020	36600	1 x	1000
Phosphorus, total	1050		1x	84.3	672		1x	35.7	385	Ň	1x	42.6	644	1	x 351	842		Ix 45.7	436	18	34 8
Sulfide, total	143_		<u> x</u>	53.2	769		<u> </u>	38.5	ND		<u> </u>	<u>52.1</u>		l	<u> 49.7</u>	50.6		Lx. 128			47.8

ND=Not detected

,

.

BREWERTON REACH

.

.

Analyte		BR1 S	ED			BR2 S	ED			BR3 S	ED			BR4	SED	ĵ
mg/kg	Result	Qual	Dil	Limit_	Result	Qual	Dil.	Limit	Result	Qual	Dil.	Limit	Result	Qual	Dil	Limit
Carbon, total organic	43100		1x	1890	50100		1x	1560	36500		lx	1590	66800		lx	2150
Cyanide, total	ND		1x	061	ND		lx	0.58	4.2		lx	0.57	0.89		lx	0.74
Nitrogen, ammonia	50.4		1x	8.2	71.4		lx	8.1	268		lx	38.7	113		lx	17.9
Nitrogen, nitrate and nitrite	5		1x	3.1	4		lx	2.8	10.4		1x	2.7	ND		lx	3.3
Nitrogen, total Kjeldahl	1030		`1x	414	940		lx	391	995		1x	359	1160		lx	497
Oxygen demand, biochemical	2290		1x	397	2210		lx	375	1710		lx	358	4550		lx	1050
Oxygen demand, chemical	135000		lx	6620	151000		lx	6250	96800		1x	5970	97100		lx	7000
Phosphorus, total	866		1x	46	888		lx	55.8	913		1x	46 7	1110		1x	62.5
Sulfide total	ND_		<u> 1×</u>	67.9	689		<u>1x</u>	60.8	259		<u>Ix</u>	51.3	1240		. <u>1×</u>	70.6

.

ND=Not detected

BLIND SPLITS

Analyte	BL	INDSPI	LITIA(BI	RI)	BL	INDSPL	IT2A(BI	R3)
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	55900		lx	2430	9710		lx	1260
Cyanide, total	2.6		lx	0.63	0.65		1x	0.54
Nitrogen, ammonia	45		1x	7.4	78.8		1x	13.4
Nitrogen, nitrate and nitrite	4.1		1x	3	4.4		1x	2.7
Nitrogen, total Kjeldahl	1380		1x	146	657		1x	310
Oxygen demand, biochemical	3300		lx	910	1580		l x	321
Oxygen demand, chemical	86100		lx	6070	92000		lx	5360
Phosphorus, total	1090		1x	54.2	807		lx	37.2
Sulfide, total	308		lx	52.8	197		<u>lx</u>	46.3

ND=Not detected

•

BREWERTON ANGLE REACH

Analyte		BRAI	SED			BRA2	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
Carbon, total organic	49700		1x	1950	32200		1x	1770
Cyanide, total	2.8		1x	0.77	ND		1x	0.75
Nitrogen, ammonia	401		1x	46.9	113		1x	17.8
Nitrogen, nitrate and nitrite	48.3		1x	3.7	5.1		Iх	3.4
Nitrogen, total Kjeldahl	1750		1x	199	1080		1x	442
Oxygen demand, biochemical	4060		lх	1100	1980		lх	424
Oxygen demand, chemical	91300		1x	7320	112000		1x	7070
Phosphorus, total	989		1x	45.7	1160		١x	55.2
Sulfide, total	456		<u>lx</u>	78 2			lx.	69.8

FT. MeHENRY REACH

.

Analyte	FMIII SED				FMH2 SED				FMI 13 SF.D				FMI14 SED			
mg/kg	Result	Qual	Dil	_Limit_	Result	Qual	Dil	Limit	Result	Qual.	Dil	_Limit_	Result	Qual.	Dil.	Limit
Carbon, total organic	48000		lx	91.3	54900		lx	115	9830		lx	76.6	30900		İx	148
Cyanide, total	ND	(b)	lx	0 66	ND		lx	0.75	ND		İx	0.59	ND		1x	0.48
Nitrogen, ammonia	157		lx.	41.6	336		lx	46.5	55.6		lx	7.2	34.9		1x	6.3
Nitrogen, nitrate and nitrite	8.4		l x	3	4.8		lx	3.8	4.2		İx	2.9	ND		1x	2.3
Nitrogen, total Kjeldahl	1910		lх	91.3	2690		lx	115	1390		lx	383	1010		1x	148
Oxygen demand, biochemical	1850		lx	403	1580		lx	465	893		lx	353	1290		lx	298
Oxygen demand, chemical	101000		lx	3740	158000		lx	3870	50200		lx	1220	57900		lx	1080
Phosphorus, total	936		lx	46.7	1220	(a)	lx	60.5	600		1x	46	959		lx	44.3
Sulfide, total	2520		<u>lx</u>	60	1380		<u>lx</u>	78.1	ND		lx	51.8	2410		1x	45.1

.

ND=Not detected

(a)=MS recivery low-cloudiness in sample may have compromised results.

(b)=Not recovered in MS or MS at 5X dilution-possibility of false negative.

CURTIS BAY REACH

Analyte	CBI SED				CB2 SED				CB3 SED				CB4 SED			
mg/kg	Result	Qual	Dit	Limit	Result	Qual.	_Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	54500		İx	1930	23100		lx	1090	56600		İx	2160	74800		İx	1930
Cyanide, total	ND		1x	0.83	ND		lx	0.38	1.5		ix	0.78	ND		1x	0.91
Nitrogen, ammonia	312		1x	52.4	56		lx	9.8	92		1x	10	181		lx	55.2
Nitrogen, nitrate and nitrite	ND		1x	4.3	2.1		lx	1.8	ND		1x	3.6	ND		lx	4.2
Nitrogen, total Kjeldahl	2350		1x	194	978		lx	94.4	1750		lx	101	2460		lx	109
Oxygen demand, biochemical	5070		1x	1300	724		1x	245	3590		1x	1220	6190		İx	1300
Oxygen demand, chemical	78100		İx	1890	26700		İx	849	76700		İx	1840	124000		İx	4350
Phosphorus, total	1970		İx	136	765		İx	36.4	1450		lx	127	1390		lx	77.6
Sulfide, total	462		I×	<u>79.2</u>	826		<u>l×</u>	43	3340		<u>1x</u>	86	5120_		<u>lx</u>	80.5
FERRY BAR REACH

.

Analyte		FB1 S	SED			FB2	SED			FB3 S	SED	
mg/kg	Result	Qual	Dil	Limit	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	59600		İx	1950	61500		lx	2080	58800		lx	2250
Cyanide, total	ND -		İx	0.9	ND		lx	1	ND		1x	0.81
Nitrogen, ammonia	272		lx	57.9	360		١x	62.4	127		1x	19
Nitrogen, nitrate and nitrite	ND		1x	4.5	ND		İx	4.5	ND		İx	3.9
Nitrogen, total Kjeldahl	2480		lx	2 132	2110		lx	110	1540		1x	98.4
Oxygen demand, biochemical	7640		lx	1390	7700		lx	1480	7120		1x	1160
Oxygen demand, ehemical	90200		İx	2720	91900		lx	2750	77900		lx	2460
Phosphorus, total	1410		łх	77.3	2680		lx	154	1340		İx	123
Sulfide, total	1580		<u>lx</u>	109	6060		Ix	112	3130		Ix	71.2

ND=Not detected

.

NORTHWEST BRANCH EAST

.

.

Analyte		NBE	SED			NBE2	SED	
mg/kg	Result	Qual.	Dil.	Limit	Result	Qual	_ Dil_	Limit
Carbon, total organic	60100		lx	1940	77500		lx	2330
Cyanide, total	ND		lx	0.88	ND		lx	1.1
Nitrogen, ammonia	155		lx	23.2	85.4		lx	13
Nitrogen, nitrate and nitrite	ND		lx	4.4	9.2		lx	5.1
Nitrogen, total Kjeldahl	2110		lx	106	1040		lx	149
Oxygen demand, biochemical	8550		lx	1380	9900		lx	1570
Oxygen demand, chemical	75900		lx	1770	93300		1x	2090
Phosphorus, total	1570		lx	144	1090		lx	72.7
Sulfide, total	5220		lx	82.1	4190		lx	108

.

ND=Not detected

(a)=MS recovery low-cloudiness in sample may have compromised result

NORTHWEST BRANCH WEST

Analyte		NBWI	SED			NBW2	SED			NBW3	SEID	
mg/kg	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit
Carhon, total organic	44400		lx	1480	47700		lx	1400	154000		lx	3470
Cyanide, total	ND		lx	0.61	ND		lx	0.43	ND		1x	0.91
Nitrogen, ammonia	28.3		lx	7.2	20		1x	5.8	201		lx	55.6
Nitrogen, nitrate and nitrite	2.8		lx	2.7	ND		lx	2.3	ND		lx	4.1
Nitrogen, total Kjeldahl	2000		1x	331	1330		lx	52.7	2170		lx	123
Oxygen demand, biochemical	1090		l x	356	2300		lx	683	7390		1 x	1300
Oxygen demand, chemieal	43000		1x	1190	73000		lx	2530	151000		1x	4340
Phosphorus, total	493		1x	46.4	448		lx	35.6	1270		lx	67.8
Sulfide, total	ND		lx	62.8	737_		<u> x</u>	48.2	437		lx.	86.7

ND=Not detected

.

		<u>P</u>	<u> DPLAR ISLAN</u>	<u>ID</u>	
Physical Analyses	PIISED	PI2SED	PI3SED	PI4SED	PI5SED
Grain Size					
% gravel	0	0	0	0	0.1
% sand	95.7	97.8	96.3	95.9	60.8
% silt/clay	4.3	2.2	3.7	4.1	39.1
Atterberg Limits					
Liquid Limit (LL)	NP	NP	NP	NP	NP
Plasticity Index (PI)	NP	NP	NP	NP	NP
Percent Moisture (%)	22.6	22.6	21.6	21.2	33.9
(

 Table 4-11. Grain size, Atterberg Limits, and percent

 moisture for Chesapeake Bay and Baltimore Harbor sediments.

NP=Non-plastic

	D 1	EEP TROUG	н	KEN	T ISLAND D	DEEP	POOLES ISLAND
Physical Analyses	DTISED	DT2SED	DT3SED	KIISED	KI2SED	KI3SED	POLISED
Grain Size							
% gravel	0	0	0	1.4	0	0.4	0
% sand	0.9	22.4	0.6	93.1	7.9	90.8	5.1
% silt	14.9	53.9	19.1	3.5	17.9	0.7	23.8
% clay	84.2	23.7	80.3	2	74.2	8.1	71.1
Atterberg Limits							
Liquid Limit (LL)	148	88	112	NP	102	NP	128
Plasticity Index (PI)	94	53	53	NP	57	NP	82
Percent Moisture (%)	78.9	58.1	81.8	24.7	67.8	25.9	61.0

.

.

.

_

Table 4-11. Continued.

NP=Non-plastic

	Table 4-11.	Continued.

Physical Analyses	SWPISED	SWP2SED	SWP3SED	CREISED	CRE2SED	CRE3SED
Grain Size						
% gravel	0	0	0	9.5	0	0
% sand	0	0.7	0.7	69.4	0.9	2.8
% silt	22.2	21.1	23.2	13	39.7	34.3
% clay	77.8	78.2	76.1	8.1	59.4	62.9
Atterberg Limits						
Liquid Limit (LL)	188	149	151	[~] 31	144	115
Plasticity Index (Pl)	143	9	98	12	96	76
Percent Moisture (%)	75.8	76.9	72.5	43.2	59.4	59.8

·

.

		CRAI		CRAIGHI	LL ANGLE	
Physical Analyses	CRISED	CR2SED	CR2SEDFD	CR3SED	CRAISED	CRA2SED
Grain Size						
% gravel	0.6	0.1	0	1.6	0	0
% sand	68.4	83.6	5.8	5.8	4.8	1.2
% silt	17.2	9. 3	22.5	20.4	17.7	18.9
· % clay	13.8	7	71.7	72.2	77.5	79.9
Atterberg Limits						
Liquid Limit (LL)	31	28	150	96	97	102
Plasticity Index (PI)	8	6	106	53	50	67
Percent Moisture (%)	38.1	37.3	72.3	59.9	69.2	75.1

-

Table 4-11. Continued.

	Tabl	e 4	-11.	Co	ntinı	ied.
--	------	-----	------	----	-------	------

.

	CRAIGH	IILL UPPER	RANGE	<u> </u>	TOFF ANG	LE	_
Physical Analyses	CRUISED	CRU2SED	CRU3SED	CUTISED	CUT2SED	CUT3SED	ļ
Grain Size							ĺ
% gravel	0	0	0.4	0	0	0	
% sand	6.1	25.6	21.5	1.9	10.2	1	I
% silt	44.6	37.8	37.4	18.5	19.8	24.4	
% clay	49.3	36.6	40.7	79.6	70	74.6	
Atterberg Limits							
Liquid Limit (LL)	96	58	64	155	100	93	ŀ
Plasticity Index (PI)	58	31	37	106	56	50	
Percent Moisture (%)	71.6	55.8	52.5	74.1	77.5	68.0	

.

.

		TOLCI (VAN	IESTER VEEN)		TOLCHESTER (GRAVITY CORE)						
Physical Analyses	TLCISED	TLC2SED	TLC2SEDFD	TLC3SED	TLVISED	TLV2SED	TLV3SED	TLV4SED	TLV5SED		
Grain Size											
% gravel	0	0	0	0	0	0	0	0	0		
% sand	2.1	0.7	2.2	0.7	1.2	1.3	1.2	1.1	10.5		
% silt	60.1	58.3	52.2	21.2	45.8	43.4	39.6	40.5	40.1		
% clay	37.8	41	45.6	• 78.1	53	55.3	59.2	58.4	49.4		
Atterberg Limits											
Liquid Limit (LL)	101	98	98	141	81	74	76	94 ·	100		
Plasticity Index (Pl)	66	59	59	97	42	35	37	48	.60		
Percent Moisture (%)	53.7	56.0	63.3	68.9	55.3	52.7	53.3	55.8	56.2		

	BREW	ERTON EAS	TERN EXTE	INSION		BREW	ERTON EAS	TERN EXTE	ENSION	
		<u>(VAN</u>	VEEN)				<u>(GRAVIT</u>	Y CORE)		
Physical Analyses	BEISED	BE2SED	BE3SED	BE4SED	BEVISED	BEV2SED	BEV3SED	BEV4SED	BEV5SED	BEV6SED
Grain Size										
% gravel	0	0.5	0	0	0.3	0.2	0	0.5	0.2	0
% sand	0.6	2.6	1.4	0.6	0.5	3.4	11.5	8.1	2.2	1.2
% silt	31.6	23.2	27.9	27.8	30.4	35.3	33.6	49.4	38.1	65.6
% clay	67.8	73.7	70.7	71.6	68.8	61.1	54.9	42	59.5	33.2
Atterberg Limits										
Liquid Limit (LL)	114	104	111	133	100	88	81	74	108	115
Plasticity Index (PI)	73	63	70	89	59	53	46	43	72	80
Percent Moisture (%)	71.0	69.8	72.8	57.6	63.1	56.6	54.6	54.4	61.1	60.8

,

			BREW	ERTON			BREWERT	ON ANGLE
Physical Analyses	BRISED	BR2SED	BR3SED	BR4SED	BSPLITIA	BSPLIT2A	BRAISED	BRA2SED
Grain Size								
% gravel	0	0	0.2	0	0	0	0	0
% sand	0.9	3.3	1	1.2	1.2	0.9	0.5	0.3
% silt	28.3	27.3	26.6	17.3	23.6	27.6	17	29.3
% clay	70.8	69.4	72.2	81.5	75.2	71.5	82.5	70.4
Atterberg Limits								
Liquid Limit (LL)	128	115	102	128	104	109	126	119
Plasticity Index (PI)	86	76	62	84	60	72	77	73
Percent Moisture (%)	69.3	71.6	65.9	73.5	66.7	64.4	76.7	72.8

4.2 REFERENCE WATER/ELUTRIATE WATER

TABLE 4-12 REFERENCE WATER AND ELUTRIATE WATER SAMPLE IDS, COLLECTION DATES, LABOARTORY ACCESSION NUMBERS, AND LABORATORY REPORT NUMBERS

REACH	STATION/ SAMPLE TYPE	SAMPLE ID	COLLECTION DATE	LABORATORY ACCESSION NUMBER	LABORATORY REPORT NUMBER
Poplar Island	PII	PIIWAT	10-26-95	9515618	951702
	P11 Field Duplicate	PIIWATFD	10-26-95	9515617	951702
	P15	PISWAT	10-27-95	9515669	951702
Deep Trough	DTI	DTIWAT	10-30-95	9515774	951722
Kent Island Deep	КІЗ	KI3WAT	10-30-95	951777	951722
	K13 Field Duplicate	KI3WATFD	10-30-95	9515775	951722
Pooles Island	POL1	POLIWAT	11-13-95	9516357	951790
Swan Point	Elutriate	SWPEL		9516028	951754
Craighill Entrance / Craighill	Elutriate	CRE/Ci_EL		9516710	951821
Craighill Angle	Elutriate	CRAEL		9516714	951823
Craighill Upper Range/ Cutoff Angle	Elutriate	CRU/CUTEL		9516740	951828
Tolchester (Van Veen)	Elutriate	TLCEL		9516354	951788
Tolchester (Gravity Core)	Elutriate	TLVEL		9516217	951784
Brewerton, Eastern Ext. (Van Veen)	Elutriate	BEEL		9517154	951887
Brewerton Eastern Ext. (Gravity Core)	Elutriate	BEVEL		9517141	951884
Brewerton / Brewerton Angle	Elutriate	BR/BRAEL		9517155	951888
Ft. McHenry	Elutriate	FMHEL		9517174	951892
Curtis Bay	Elutriate	CBEL		9517186	951895
Ferry Bar	Elutriate	FBEL		9517191	951897
Northwest Branch East / Northwest Branch West	Elutriate	NBE/NBWEL		9517198	951899

	n	<u>FT. Mc</u>	HENRY			CURT	IS BAY	
Physical Analyses	FMHISED	FMH2SED	FMH3SED	FMH4SED	CBISED	CB2SED	CB3SED	CB4SED
Grain Size								
% gravel	0	0	0.5	0.6	0	0	0	0
% sand	0.7	1.1	3.2	25.6	0.8	17.9	5.8	8.5
% silt	19.9	25.3	30.6	23.5	16.4	45.5	17.1	23.4
% clay	79.4	73.6	65.7	50.3	82.8	36.6	77.1	68.1
Atterberg Limits								
Liquid Limit (LL)	138	103	97	100	110	48	101	103 ·
Plasticity Index (PI)	94	56	49	67	61	22	48	55
Percent Moisture (%)	71.0	76.2	66.4	62.2	75.4	52.1	78.9	71.5

•

	Table 4-11.	Continued

.

		FERRY BAR	2	1	NORTHWES	ST BRANCH	EAST/WEST	r
Physical Analyses	FBISED	FB2SED	FB3SED	NBEISED	NBE2SED	NBWISED	NBW2SED	NBW3SED
Grain Size								
% gravel	0	0	0	0	0	0	0	0
% sand	1.8	1.8	1.6	2.5	1.4	2.1	17.8	3.1
% silt	26.5	20.6	20.9	17.2	16.8	22	10.7	11.6
% clay	·71.7	77.6	77.5	80.3	81.8	75.9	71.5	. 85.3
Atterberg Limits								
Liquid Limit (LL)	110	106	142	97	128	110	79	87
Plasticity Index (PI)	60	51	80	47	80	65	39	34
Percent Moisture (%)	81.4	81.4	71.9	76.8	79.8	66.4	64.1	80.6

.

-

Table 4-13. Volatiles results for reference water and Chesapeake Bay and Baltimore Harbor clutriates.

Analyte		PIIV	VAT			PIIW	ATFD			PISWAT			
ug/L	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	_Limit_	
1,1-Dichloroethane	ND		1 x	1	ND		1x	1	ND		1x	1	
1,1-Dichloroethenc	ND		1 x	1	ND		lx	1	ND		1x	1	
1,1,1-Trichloroethane	ND		1 x	1	ND		lx	1	ND		1 x	1	
1,1,2-Trichloroethane	ND		1 x	1	ND		1 x	1	ND		1 x	1	
1,1,2,2-Tetrachloroethanc	ND		1x	1	ND		l x	1	ND		1x	1	
1,2-Dichloroethane	ND		1x	1	ND		1 x	. 1	ND		1 x	1	
1,2-Dichloropropane	ND		1 x	1	ND		1 x	1	ND		1 x	1	
2-Butanonc	ND		1x	1	ND		l x	1	ND		1x	1	
2-Chloroethyl vinyl ether	ND	(a)	1 x	1	ND	(a)	1 x	1	ND	(a)	lx	1	
Acrolein	ND		1 x	8	ND		1 x	8	ND		1x	8	
Acrylonitrilc	ND		1 x	5	ND		lx	5	ND		1 x	5	
Benzene	ND		1x	1	ND		1 x	1	ND		1 x	1)	
Bromodichloromethane	ND		1x	1	ND		1 x	1	ND		lx	1	
Bromoform	ND		1 x	1	ND		lx	1	ND		1 x	1	
Bromomethane	ND		1x	1	ND		1x	1	ND		1 x	1	
Carbon tetrachloride	ND		1x	1	ND		lx	1	ND		1 x	1	
Chlorobenzene	ND		1x	1	ND		1 x	1	ND		1x	1	
Chloroethane	ND		1 x	1	ND		l x	1	ND		1 x	1	
Chlororform	ND		1 x	1	ND		1 x	1	ND		1 x	1	
Chloromethane	ND		1 x	2	ND		lx	2	ND		1x	2	
cis-1,3-Dichloropropene	ND		1x	1	ND		1x	1	ND		1 x	1	
Dibromochloromethane	ND		lx	1	ND		lx	1	ND		1 x	1	
Dichlorodifluoromethane	ND		1 x	1	ND		1x	1	ND		lx	1	
Ethylbenzene	ND		lx	1	ND	-	1x	1	ND		1x	1	
Methylene chloride	ND		1x	1	ND		1x	1	ND		1 x	1	
Tetrachlorethene	ND		1 x	1	ND		1x	1	ND		1 x	1	
Toluenc	ND		lx	1	ND		1x	1	ND		1x	1	
trans-1,2-Dichloroethene	ND		l x	1	ND		lx	1	ND		1x	1	
trans-1,3-Dichloropropene	ND		1x	1	ND		1 x	1	ND		1 x	1	
Trichloroethene	ND		1x	1	ND		1x	1	ND		1 x	1	
Trichlorofluoromethane	ND		1x	1	ND		1x	1	ND		1 x	1	
Vinyl chloride	ND		<u>1x</u>	1	ND		<u>lx</u>	1	_ND_		<u>lx</u>	1	

POPLAR ISLAND

ND=Not detected (a)=Not recovered in MS/MSD

.

	DEEP TROUGII					K	ENT ISL	AND DE	EP	·		POOLES ISLAND				
Analytc	·····	DTI	WAT			K131	WAT			KI3W	ATFD			POLIW	AT	
ug/L	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Rcsult	Qual.	Dil	Limit
1,1-Dichloroethanc	ND		1x	1	ND		1x	1	ND		lx	ii	ND		lx	1
1,1-Dichloroethenc	ND		lx	1	ND		1x	1	ND		lx	1	ND		1 x	1
1, 1, 1-Trichloroethane	ND		1x	1	ND		1x	1	ND		lx	1	ND		lx -	1
1,1,2-Trichlorocthane	ND		lx	1	ND		1 x	1	ND		1 x	1	ND		1x	1
1,1,2,2-Tetrachlorocthane	ND		l x	1	ND		1 x	1	ND		l x	1	ND		1x	1
1,2-Dichloroethane	ND		l x	1	ND		lx	1	ND		lx	1	ND		1x	1
1,2-Dichloropropane	ND		lx	. 1	ND		1x	1	ND		lx	1	ND		lx	1
2-Butanone	ND		1 x	1	ND		lx	1	ND		lx	1	ND		1x	1
2-Chloroethyl vinyl cther	ND	(a)	1 x	1	ND	(a)	1x	.1	ND	(a)	l x	1	ND		1x	1
Acrolein	ND		lx	8	ND	ی نف	lx	8	ND		1 x	8	ND		1x	8
Acrylonitrile	ND		1 x	5	ND		lx	5	ND		1x	5	ND		1x	5
Benzene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		1x	1
Bromodichloromethanc	ND		1 x	1	ND		ÌX	1	ND		1 x	1	ND		1 x	1
Bromoform	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
Bromomethane	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
Carbon tetrachloridc	ND		1 x	1	ND		lx	1	ND		1x	1	ND		1x	1
Chlorobenzene	ND		1 x	1	ND		1x	1	ND		l x	1	ND		l x-	1
Chloroethane	ND		lx	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Chlororform	ND		lx	1	ND		1x	1	ND		1 x	1	ND	•	1 x	1
Chloromethane	ND		lx	2	ND		1x	2	ND		l x	2	ND		1x	2
cis-1,3-Dichloropropene	ND		l x	1	ND		1x	1	ND		l x	1	ND		1 x	1
Dibromochloromethane	ND		lx	1	ND		1x	1	ND		l x	1	ND		1 x	1
Dichlorodifluoromethane	ND		1 x	1	ND		1x	1	ND		l x	1	ND		1 x	1
Ethylbenzene	ND		lx	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Methylene chloride	ND		lx	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Tetrachlorethene	ND		lx	1	ND		1x	1	ND		lx	1	ND		1 x	1
Tolucne	ND		lx	1	ND		1x	1	ND		1 x	1	ND		1 x	1
trans-1,2-Dichloroethene	ND		lx	1	ND		1 x	1	ND		lx	1	ND		1 x	1
trans-1,3-Dichloropropene	ND		1x	1	ND		lx	1	ND		1x	1	ND		1x	1
Trichloroethene	ND		1x	1	ND		lx	1	ND		lх	1	ND		1x	1
Trichlorofluoromethane	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
Vinyl chloride	ND		<u>lx</u>	1	ND		<u>lx</u>	1	ND		<u>lx</u>]	<u>ND</u>		<u>lx</u>	1

ND=Not detected (a)=Not recovered in MS/MSD

	SWAN POINT CHANNEL				ENT	CRAIO RANCE/	GHILL CRAIG	HILL	CF	RAIGHHL	LANG	E	CRAIGHILL UPPER RANGE/CUTOFF ANGLE			
Analyte		SW	PEL		Ι	CRE/C	CREL			CRA	EL			CRU/C	UTEL	
ug/L	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil	Limit
1,1-Dichloroethane	ND		1x	Î	ND		lx	1	ND		lx	1	ND		lx	1
1,1-Diehloroethene	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		lx	1
1,1,1-Trichloroethane	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
1,1,2-Trichloroethane	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		lx	1
1,1,2,2-Tetraehloroethane	ND		1 x	1	ND		lх	1	ND		1 x	1	ND		1 x	1
1,2-Diehloroethane	ND		1 x	1	ND		lx	1)	ND		1x	1	ND		lx	1
1,2-Dichloropropane	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		lх	1
2-Butanone	ND		1 x	1	ND		1 x	1	ND		1 x	1	ND		1 x	1
2-Chloroethyl vinyl ether	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		lx	1
Acrolein	ND		1 x	8	ND		1 x	8	ND		1 x	8	ND		lх	8
Acrylonitrile	ND		1 x	5	ND		1x	5	ND		lx	5	ND		1 x	5
Benzene	ND		1 x	1	ND		1 x	1	ND		1 x	1	ND		1x	1
Bromodichloromethane	ND		1x	1	ND		1 x	1	ND		1 x	1	ND		1 x	1
Bromoform	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		1x	1
Bromomethane	ND		lх	1	ND		1x	1	ND		lx	1	ND		1 x	1
Carbon tetrachloride	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		lх	1
Chlorobenzene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Chloroethane	ND		1x	1	ND		1 x	1	ND		1 x	1	ND		1 x	1
Chlororform	ND		1 x	1	ND		1 x	1	ND		lx	1	ND		1 x	1
Chloromethane	ND		l x	2	ND		1 x	2	ND		1x	2	ND		lх	2
eis-1,3-Dichloropropene	ND		l x	1	ND		1 x	1	ND		1 x	1	ND		l x	1
Dibromochloromethane	ND		1 x	1	ND		1 x	1	ND		l x	1	ND		1 x	1
Dichlorodifluoromethane	ND		l x	1	ND		1x	1	ND		1 x	1	ND		l x	1
Ethylbenzene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Methylene chloride	120	(b)	l x	1	21	(b)	1x	1	22	(b)	1 x	1	15	(b)	İx	1
Tetrachlorethene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Toluene	ND		l x	1	ND		1x	1	ND		1x	1	ND		l x	1
trans-1,2-Dichloroethene	ND		1x	1	ND		1x	1	ND		1 x	1	ND		lx	1
trans-1,3-Dichloropropene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		l x	1
Trichloroethene	ND		lx	1	ND		1x	1	ND		1 x	1	NÐ		1x	1
Trichlorofluoromethane	ND		1x	1	ND		lx	1	ND		lx	1	ND		1x	1
Vinyl chloride	ND_		1x	1	ND		<u> </u>	1	<u>ND</u>		<u>lx</u>	1	<u>ND</u>		<u> x</u>	1

ND=Not detected (b)=Attributable to laboratory contamination.

		T	OLCII	ESTER				BREW	ERTON EA	STERN F	XTENSIC	DN -	
(,		Van-Veen		-1.2002 -1.400.00	Gravity Core			Van-Vee	n		Gravity	Core	
Analyte		TLCEL			TLVEL	.		BEEL			BEV	EL.	
ug/1_	Result	Qual. Dil.	Limit	Result	Qual. Dil.	Limit	Result	Qual I	Dil Limi	Result	Qual.	Dil	Limit
1,1-Dichloroethane	ND	1x	1	ND	1 x	1	ND		l x	I ND		1 x	1
1,1-Dichloroethene	ND	1 x	1	ND	1 x	1	ND		lx	1 ND		1 x	1
1,1,1-Trichloroethane	ND	lx	1	ND	lx	1	ND		IX -	I ND		1x	1
1,1,2-Trichloroethane	ND	lx	1	ND	1 x	1	ND		lx -	1 ND		l x	1
1,1,2,2-Tetrachloroethane	ND	1 x	1	ND	1 x	1	ND		x	1 ND		1 x	1
1,2-Dichloroethane	ND	lx	1	ND	1 x	1	ND		l x	I ND		1 x	1
1,2-Dichloropropane	ND	1 x	1	ND	lx	1	ND		l x	I ND		1 x	1
2-Butanone	ND	1 x	1	ND	lx	1	ND		l x	1 ND		l x	1
2-Chloroethyl vinyl ether	ND	1 x	1	ND	1 x	1	ND		x	I ND		1 x	1
Acrolein	ND	1x	8	ND	1 x	8	ND		x	8 ND		1 x	8
Acrylonitrile	ND	1 x	5	ND	1x	5	ND		x	5 ND		l x	5
Benzene	ND	lx	1	ND	1 x	1	ND		x	I ND		l x	1
Bromodichloromethane	ND	1 x	1	ND	1 x	1	ND		x	I ND		l x	1
Bromoform	ND	1x	1	ND	1 x	1	ND		x	I ND		l x	1
Bromomethane	ND	1 x	1	ND	lx	1	ND		x	I ND		1x	1
Carbon tetraehloride	ND	lx	1	ND	lx	1	ND		x	I ND		1 x	1
Chlorobenzene	ND	1 x	1	ND	lx	1	ND		x	1 ND		1x	1
Chloroethane	ND	1 x	1	ND	lx	1	ND		x	I ND		1 x	1
Chlororform	ND	1 x	1	ND	1 x	1	ND		x	I ND		1 x	1
Chloromethane	ND	1 x	2	ND	1x	2	ND		x	2 ND		1x	2
eis-1,3-Diehloropropene	ND	1 x	1	ND	1x	1	ND		x	I ND		1 x	1
Dibromochloromethane	ND	1 x	1	ND	lx	1	ND	i	x	I ND		1 x	1
Dichlorodifluoromethane	ND	1 x	1	ND	1 x	1	ND		x	I ND		1x	1
Ethylbenzene	ND	lx	1	ND	1x	1	ND	i	x	I ND		lx	1
Methylene chloride	2	1 x	1	3	1 x	1	73	(b)	x	1 13	(b)	1 x	1
Tetrachlorethene	ND	1 x	1	ND	1 x	1	ND	1	х	I ND		1x	1
Toluene	ND	1 x	1	ND	1x	1	ND		x	1 ND		1 x	1
trans-1,2-Diehloroethene	ND	lx	1	ND	1 x	1	ND	1	x	1 ND		1 x	1
trans-1,3-Dichloropropene	ND	lx	1]	ND	lx	1	ND	1	x	I ND		1 x	1
Trichloroethene	ND	l x	1	ND	lx	1	ND	1	x	I ND		1 x	1
Trichlorofluoromethane	ND	lx	1	ND	lx	1	ND	1	x	I ND		1x	1
Vinyl ehloride	ND	<u>lx</u>	1	ND	<u> </u>	l	ND		<u>x</u>	<u>1 ND</u>		<u>1x</u>	

.

ND=Not detected (b)=Attributable to laboratory contamination.

BREWERTON/BREWERTON ANGLE

CURTIS BAY

FT MellENRY

FERRY BAR

Analyte	<u> </u>	BR/B	RAEL			CI	BEL	· ** ****		ΓM	HEL	a	,	FB	ĖI.	1
ug/1.	Result	Qual.	Dil.	Limit	Result	Qual.	<u>Dil</u>	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dit	Limit
1,1-Dichloroethanc	ND		lx	1	ND		1x	1	ND		1x	1	ND		1x	1
1,1-Dichlorocthene	ND		l x	1	ND		1 x	1	ND		1 x	1	ND		1 x	1
1,1,1-Trichlorocthane	ND		lx	1	ND		1 x	1	ND		1 x	1	ND		1 x	1
1,1,2-Trichloroethane	ND		l x	1	ND		1 x	1	ND		lx	1	ND		lx	1
1,1,2,2-Tetrachloroethane	ND		lx	1	ND		1 x	1	ND		lx	1	ND		1 x	1
1,2-Dichloroethane	ND		1x	1	ND		1 x	. 1	ND		lx	1	ND		1 x	1
1,2-Dichloropropane	ND		lx	1	ND		1 x	1	ND		1 x	1	ND		1 x	1
2-Butanone	ND		lx	1	ND		1 x	1	ND		1 x	1	ND		1x	1
2-Chloroethyl vinyl ether	ND		1 x	1	ND		1 x	1	ND		1 x	1	ND		1x	1
Acrolein	ND		1 x	8	ND		lx	8	ND		1 x	8	ND		1 x	8
Acrylonitrile	ND		1 x	5	ND		lx	5	ND		lx	5	ND		1 x	5
Benzene	ND		1 x	1	ND		lx	1	ND		lx	1	ND		1 x	1
Bromodichloromethanc	ND		1x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
Bromoform	ND		lx	1	ND		lx	1	ND		lx	1	ND		1 x	1
Bromomethane	ND		1 x	· 1	ND		1 x	1	ND		1 x	1	ND		1 x	1
Carbon tetrachloride	ND		1x	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Chlorobenzene	ND		1 x	1	ND		1x	1	ND		l x	1	ND		1 x	t
Chloroethane	ND		lx	1	ND		1x	1	ND		lх	1	ND		lх	1
Chlororform	ND		1 x	1	ND		1 x	1	ND		1x	1	ND		1x	1
Chloromethane	ND		1 x	2	ND		1x	2	ND		1 x	2	ND		1 x	2
eis-1,3-Dichloropropene	ND		1 x	1	ND		1 x	1	ND		lх	1	ND		1 x	1
Dibromochloromethane	ND		1 x	1	ND		1 x	1	ND		lx	1	ND		1x	1
Dichlorodifluoromethane	ND		1x	1	ND		1 x	1	ND		lx	1	ND		1x	1
Ethylbenzene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		1 x	1
Methylene chloride	24	(h)	lx	1	190	(b)	1x	1	7	(h)	1 x	1	260	E(b)	1 x	1
Tetrachlorethene	ND		l x	1	ND		lx	1	ND		1 x	1	ND		1x	1
Toluene	ND		l x	1	ND		l x	1	ND		1 x	1	ND		1x	1
trans-1,2-1Dichloroethene	ND		lx	1	ND		lx	1	ND		1 x	1	ND		1x	1
trans-1,3-Diehloropropene	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
Trichloroethene	ND		1 x	1	ND		1x	1	ND		1 x	1	ND		lx	1
Trichlorofluoromethanc	ND		1x	1	ND		lx	1	ND		1 x	1	ND		1 x	1
Vinyl chloride	ND		<u>lx</u>	1	ND		<u>lx</u>	1	ND		<u>lx</u>	<u> </u>	ND		<u>lx</u>	

ND=Not detected E=Estimated (b)=Attributable to laboratory contamination.

NORTHWEST BRANCH EAST/WEST

Analyte		NBE/N	BWEL.	
ug/L	Result	Qual.	Dil.	Limit
1,1-1)ichloroethane	ND		1 x	ī
1,1-Dichloroethcne	ND		1 x	1
1,1,1-Trichloroethane	ND		1 x	1
1,1,2-Trichloroethane	ND		1 x	1
1,1,2,2-Tetrachloroethane	ND		1 x	1
1,2-Dichloroethane	ND		1 x	1
1,2-Dichloropropane	ND		1 x	1
2-Butanone	ND		1 x	1
2-Chloroethyl vinyl ether	ND		lx	1
Acrolein	ND		1 x	8
Acrylonitrile	ND		l x	5
Benzene	ND		1x	1
Bromodichloromethane	ND		lx	1
Bromoform	ND		1 x	1
Bromomethane	ND		l x	1
Carbon tetrachloridc	ND		l x	1
Chlorobenzene	ND		l x	1
Chloroethanc	ND		1 x	1
Chlororform	ND		1 x	1
Chloromethane	ND		1 x	2
cis-1,3-Dichloropropene	ND		1 x	1
Dibromochloromethane	ND		1 x	1
Dichlorodifluoromethane	ND		1 x	1
Ethylbenzene	ND		1 x	1
Mcthylene chloride	13	(b)	1 x	1
Tetrachlorethene	ND		1 x	1
Toluene	ND		1 x	1
trans-1,2-Dichloroethene	ND		1 x	1
trans-1,3-Dichloropropene	ND		1 x	1
Trichloroethene	ND		1 x	1
Trichlorofluoromethane	ND		1 x	1
Vinyl chloride	ND		1 x	1

ND=Not detected (b)=Attributable to laboratory contamination.

Table 4-14.Semivolatiles results for reference water and ChesapeakeBay and Baltimore Harbor elutriates.

Analyte		P11 V	VAT			PIIWA	TFD			PI5WAT	
ug/L	Rcsult	Qual	<u>Dil.</u>	_Limit_	Result	Qual.	Dil.	Limit	Result	Qual. Dil.	Limit
1,2-Dichlorobenzene	ND		lx	4	ND		lx	4	ND	lx	4
1,2-Diphenylhydrazine	ND		l x	2	ND		1 x	2	ND	lx	2
1,2,4-Trichlorobenzene	ND		lx	5	ND		1 x	5	ND	lx	5
1,3-Dichlorobenzene	ND		lx	4	ND		l x	4	ND	l x	4
1,4-Dichlorobenzene	ND		1 x	4	ND		1 x	4	ND	lx	4
2-Chloronaphthalene	ND		1 x	3	ND		1 x	3	ND	lx	3
2-Chlorophenol	ND		lx	4	ND		1 x	4	ND	1x	4
2-Methyl-4,6-dinitrophenol	ND		1 x	2	ND		1 x	2	ND	lx	2
2-Mcthylphenol	ND		1x	3	ND		1 x	3	ND	1 x	3
2-Nitroaniline	ND		1 x	1	ND		1 x	1	ND	1 x	1
2-Nitrophenol	ND		lx	4	ND		1 x	4	ND	1 x	4
2,2'-oxybis(1-Chloropropane)	ND		1 x	4	ND		lx	4	ND	lx	4
2,4-Dichlorophenol	ND		1 x	3	ND		1 x	3	ND	1 x	3
2,4-Dimethylphenol	ND		1x	4	ND		1 x	4	ND	1 x	4
2,4-Dinitrophenol	ND	•	l x	2	ND		1 x	2	ND	1 x	2
2,4-Dinitrotoluene	ND		1 x	1	ND		lx	1	ND	lx	1
2,4,5-Triehlorophenol	ND		l x	2	ND		l x	2	ND	1 x	2
2,4,6-Trichlorophenol	ND		1 x	2	ND .		l x	2	ND	1 x	2
2,6-Dinitrotoluene	ND		1 x	1	ND		l x	1	ND	1 x	1
3-Nitroaniline	ND		1 x	4	ND		1 x	4	ND	1 x	4
3+4-Methylphenol	ND		1 x	3	ND		1 x	3	ND	1 x	3
3,3'-Dichlorobenzidine	ND		1 x	10	ND		lx	10	ND	1 x	10
4-Bromophenyl phenyl ether	ND		1 x	3	ND		1 x	3	ND	1 x	3
4-Chloro-3-methylphenol	ND		1 x	1	ND		1 x	1	ND	1 x	1
4-Chloroaniline	ND		lx	6	ND		1 x	6	ND	1 x	6
4-Chlorophenyl phenyl ether	ND		lx	3	ND		1 x	3	ND	1 x	3
4-Nitroaniline	ND		l x	3	ND		1 x	3	ND	1 x	3
4-Nitrophenol	ND		l x	1	ND		1 x	1	NÐ	1 x	1
Benzidine	ND		1 x	2	ND		1x	2	ND	l x	2
Benzoie aeid	ND		1 x	2	ND		1 x	2	ND	lx	2
Benzyl alcohol	ND		1 x	2	ND		l x	2	ND	lx	2
Benzyl butyl phthalate	ND		l x	2	ND		l x	2	ND	1 x	2
bis(2-Chloroethoxy)methane	ND		l x	4	ND		l x	4	ND	' 1x	4
bis(2-Chloroethyl) ether	ND		1 x	4	ND		l x	4	ND	1x	4
bis(2-Ethylhexyl) phthalate	ND		l x	7	ND		1x	7	ND	1x	7

POPLAR ISLAND

analyte list continued on following page

ND≃Not detected

Table 4-14. Semivolatiles results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.

Analyte		PH W	/AT			PHWATFD	742		PISWAT	
ug/L_	Result	Qual.	<u>_Dil.</u>	Limit	Result	Qual Dil	Limit	Result	Qual. Dil.	Limit
Carbazole	ND		lx	2	ND	lx	2	ND	lx	2
Cyclohexanone	ND		lx	4	ND	lx	4	ND	İx	4
Dibenzofuran	ND		lx	3	ND	lx	3	ND	İx	3
Diethyl phthalate	ND		lx	3	ND	lx	3	ND	lx	3
Dimethyl phthalate	ND		lx	4	ND	lx	4	ND	lx	4
Di-n-butyl phthalate	ND		lx	2	ND	lx	2	ND	lx	2
Di-n-octyl phthalate	ND		lx	2	ND	lx	2	ND	lx	2
Hexachlorobenzene	ND		lx	3	ND	lx	3	ND	lx	3
Hexachlorobutadiene	ND		lx	5	ND	lx	5	ND	lx	5
Hexachlorocyclopentadiene	ND		lx	3	ND	lx	3	ND	lx	3
Hexachloroethane	ND		lx	4	ND	lx	4	ND	lx	4
lsophorone	ND		lx	2	ND	lx	2	ND	lx	2
Nitrobenzene	ND		lx	4	ND	lx	4	ND	lx	4
N-Nitrosodimethylamine	ND		lx	4	ND	lx	4	ND	lx	4
N-Nitrosodi-n-propylamine	ND		lx	3	ND	lx	3	ND	1x	3
N-Nitrosodiphenylamine	ND		lx	2	ND	lx	2	ND	1 x	2
Pentachlorophenol	ND		lx	2	ND	lx	2	ND	lx	2
Phenol	ND		l x	4	ND	lx	4	ND	lx	4
Pyridine	<u>ND</u>		<u>lx</u>	6	ND	<u> </u>	6	ND	<u>lx</u>	6

.

POPLAR ISLAND

ND⁻⁻Not detected

•

DEEP TROUGH

KENT ISLAND DEEP

POOLES ISLAND

Analyte		DTIWAT		[KI3WAT		[<u></u>	KI3WATTD		}	POLIWAT	
ug/l,	Result	Qual. Dil.	Limit	Result	Qual Dil.	<u>l.imit</u>	Result	Qual Dil	Limit	Result	Qual Dil	Limit
1,2-1)ichlorobenzene	ND	lx	4	ND	lx	4	ND	1 x	4	ND	lx	
1,2-Diphenylhydrazine	ND	1x	2	ND	lx	2	ND	1 x	2	ND	1x	2
1,2,4-Trichlorobenzene	ND	lx	5	ND	1 x	5	ND	1x	5	ND	1 x	5
1,3-Diehlorobenzene	ND	lx	4	ND	lx	4	ND	1x	4	ND	lx	4
1,4-Dichlorobenzene	ND	lx	4	ND	lx	4	NĐ	1 x	4	ND	lx	4
2-Chloronaphthalene	ND	lx	3	ND	lx	3	ND	lx	3	ND	lx	3
2-Chlorophenol	ND	1 x	4	ND	lx	4	ND	lx	4	ND	lx	4
2-Methyl-4,6-dinitrophenol	ND	1 x	2	ND	1 x	2	ND	lx	2	ND	lx	2
2-Methylphenol	ND	1 x	3	ND	lx	3	ND	lx	3	ND	lx	3
2-Nitroaniline	ND	1x	1	ND	lx	1	NI)	lx	1	ND	lx	1
2-Nitrophenol	ND	1 x	4	ND	lx	4	ND	1 x	4	ND	lx	4
2,2'-oxybis(1-Chloropropane)	ND	1 x	4	ND	1 x	4	ND	1 x	4	ND	lx	4
2,4-Dichlorophenol	ND	1 x	3	ND	lx	3	ND	1x	3	ND	lx	3
2,4-Dimethylphenol	ND	1 x	4	ND	1 x	4	ND	1 x	4	ND	lx	4
2,4-Dinitrophenol	ND	1 x	2	ND	lx	2	ND	lx	2	ND	lx	2
2,4-Dinitrotoluene	ND	1 x	1	ND	1x	1	ND	lx	1	ND	1 x	1
2,4,5-Trichlorophenol	ND	lx	2	ND	1x	2	ND	lx	2	ND	1x	2
2,4,6-Trichlorophenol	ND	lx	2	ND	lx	2	ND	lx	2	ND	lx	2
2.6-Dinitrotoluene	ND	1 x	1	ND	1 x	1	ND	l x	1	ND	1 x	1
3-Nitroaniline	ND	lx	4	ND	lx	4	ND	lx	4	ND	1 x	4
3+4-Methylphenol	ND	1 x	3	ND	lx	· 3	ND	lх	3	ND	lx	3
3,3'-Dichlorobenzidine	ND	1 x	10	ND	lx	10	ND	lx	10	ND	1 x	10
4-Bromophenyl phenyl ether	ND	1 x	3	ND	lx	3	ND	lx	3	ND	lx	3
4-Chloro-3-methylphenol	ND	ĺ 1 x	1	ND	lx	1	ND	lx	1	ND	lx	1
4-Chloroaniline	ND	1 x	6	ND	lx	6	ND	lx	6	ND	lx	6
4-Chlorophenyl phenyl ether	ND	lx	3	ND	lx	3	ND	lx	3	ND	lx	3
4-Nitroaniline	ND	1x	3	ND	1 x	3	ND	lx	3	ND	1 x	3
4-Nitrophenol	ND	1x	1	ND	lx	1	ND	lx	1	ND	1 x	1
Benzidine	ND	lx	2	ND	lx	2	ND	lx	2	ND	1 x	2
Benzoie acid	ND	lx	2	ND	1 x	2	ND	lx	2	ND	lx	2
Benzyl alcohol	ND	1 x	2	ND	lx	2	ND	1 x	2	ND	1 x	2
Benzyl butyl phthalate	ND	lx	2	ND	1 x	2	ND	1x	2	ND	1 x	2
bis(2-Chloroethoxy)methane	ND	lx	4	ND	1 x	4	ND	1 x	4	ND	lx	4
bis(2-Chloroethyl) ether	ND	1 x	4	ND	1 x	4	ND	lx	4	ND	lx	4
bis(2-Ethylhexyl) phthalate	ND	lx	7	ND	<u> </u>	7	ND	<u>lx</u>	7	ND	<u>lx</u>	7

analyte list continued on following page

ND=Not detected

DEEP TROUGH

KENT ISLAND DEEP

POOLES ISLAND

Analyte	L	DTIV	VAT			KI3V	VAT			K13W/	TFD			POLIW	ĀT	·:"
ug/L	Result	<u>Qual.</u>	<u>_Dil.</u>	<u>Limit</u>	Result	Qual.	<u></u>	<u>Limit</u>	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		l x	2	ND		1x	2	ND		lx	2	ND		lx	2
Cyclohcxanone	ND		1 x	4	ND		lx	4	ND		1 x	4	ND		l x	4
Dibenzofuran	ND		1 x	3	ND		lx	3	ND		1 x	3	ND		1x	3
Diethyl phthalate	ND		1x	3	ND		1 x	3	ND		1 x	3	ND		1x	3
Dimethyl phthalate	ND		l x	4	ND		1 x	4	ND		1 x	4	ND		1x	4
Di-n-butyl phthalate	ND		l x	2	ND		1 x	2	ND		1 x	2	ND		1x	2
Di-n-octyl phthalatc	ND		lx	. 2	ND		l x	2	ND		1x	2	ND		1x	2
llexachlorobcnzcne	ND		l x	3	ND		l x	3	ND		1 x	3	ND		lx	3
l lexachlorobutadicnc	ND		1 x	5	ND		<u> </u>	5	ND		lx	5	ND		lx	5
l lexachlorocyclopentadiene	ND		l x	3	ND	Ĩ	l x	3	ND		lx	3	ND		lx	3
llcxachloroethane	ND		1 x	4	ND		1 x	4	ND		lx	4	ND		1x	4
Isophorone	ND		l x	2	ND		1x	2	ND		lx	2	ND		lx	2
Nitrobenzene	ND		l x	5	ND		1 x	.5	ND		lx	5	ND		1x	5
N-Nitrosodimethylamine	ND		1 x	. 4	ND		1 x	4	ND		1 x	4	ND		lx	4
N-Nitrosodi-n-propylaminc	ND		lx	3	ND		1 x	3	ND		1 x	3	ND		lx	3
N-Nitrosodiphenylamine	ND		l x	2	ND		İx	2	ND		1 x	2	ND		lx	2
Pentachlorophenol	ND		l x	2	ND		l x	2	ND		1x	2	ND	•	1x	2
Phenol	ND		l x	4	ND		1x	4	ND		1 x	4	ND		lx	4
Pyridine	ND	<u> </u>	<u>lx</u>	6	ND		<u>lx</u>	6	ND		<u>lx</u>	6	<u>ND</u>		<u>lx</u>	6

ND=Not detected

		SWAN PO	OINT		ENT	CRAI RANCE	GHILL (CRAIGI	IILL	C	RAIGIIII	L ANG	LE	CI RAN	RAIGIIIL GE/CUTC	L UPP DFF AI	ER NGLE
Analyte		SWPE	EI.			CRE/	CREL			CRA	EL.			CRU/CI	JTEL	
ug/L	Result	Qual.	<u>Dil.</u>	<u>Limit</u>	Result	Qual.	<u>Dil.</u>	Limit	Result	Qual.	<u>Dil</u>	Limit	Result	Qual	Dil.	Limit
1,2-Dichlorobenzene	ND		l x	4	ND		lx	4	ND	•	1 x	4	ND		lx	4
1,2-Diphenylhydrazine	ND		lx	2	ND		lx	2	ND		1x	2	ND		l x	2
1,2,4-Trichlorobenzene	ND		lx	5	ND		l x	5	ND		lx	5	ND		1 x	5
1,3-Dichlorobenzene	ND		lx	4	ND		lx	4	ND		1 x	4	ND		1 x	4
1,4-Dichlorobenzene	ND		lx	4	ND		lx	4	ND		1 x	4	ND		1 x	4
2-Chloronaphthalene	ND		lx	3	ND		1 x	3	ND		1 x	3	ND		l x	3
2-Chlorophenol	ND		1 x	4	ND		lx	4	ND		1 x	4	ND		1 x	4
2-Methyl-4,6-dinitrophenol	ND		l x	2	ND		lx	2	ND		1 x	2	ND		l x	2
2-Methylphenol	ND		1 x	3	ND		lx	3	ND		lx	3	ND		1 x	3
2-Nitroaniline	ND		1 x	1	ND		1 x	1	ND		1 x	1	ND		lx	1
2-Nitrophenol	ND		1 x	4	ND		l x	4	ND		1 x	4	ND		1 x	4
2,2'-oxybis(1-Chloropropane)	ND		1 x	4	ND		l x	4	ND		lx	4	ND		1 x	4
2,4-Dichlorophenol	ND		1 x	3	ND		l x	3	ND		1 x	3	ND		lx	3
2,4-Dimethylphenol	ND		l x	. 4	ND		1 x	4	ND		lx	4	ND		1 x	4
2,4-Dinitrophenol	ND		l x	2	ND		1 x	2	ND		lx	2	ND		1 x	2
2,4-Dinitrotoluene	ND		l x	1	ND		1 x	1	ND		lx	1	ND		1 x	1
2,4,5-Trichlorophenol	ND		l x	2	ND		l x	2	ND		lx	2	ND		1 x	2
2,4,6-Trichlorophenol	ND		1 x	2	ND		l x	2	ND		1 x	2	ND		1 x	2
2,6-Dinitrotoluene	ND		1 x	1	ND		l x	1	ND		1 x	1	ND		1 x	1
3-Nitroaniline	ND		1x	4	ND		l x	4	ND		1 x	4	ND		lx	4
3+4-Methylphenol	ND		1 x	3	ND		l x	3	ND		1 x	3	·ND		lx	3
3,3'-Dichlorobenzidine	ND		1x	10	ND		lx	10	ND		1 x	10	ND		1 x	10
4-Bromophenyl phenyl ether	ND		1 x	3	ND		lx	3	ND		1 x	3	ND		1 x	3
4-Chloro-3-methylphenol	ND		1 x	1	ND		l x	1	ND		1 x	1	ND		1 x	1
4-Chloroaniline	ND		l x	6	ND		lx	6	ND		1 x	6	ND		lx	6
4-Chlorophenyl phenyl ether	ND		1 x	3	ND		lx	3	ND		1 x	3	ND		1x	3
4-Nitroaniline	ND		l x	3	ND		lx	3	ND		lx	3	ND		1 x	3
4-Nitrophenol	ND		1 x	1	ND		lx	1	ND		1 x	1	ND		1x	1
Benzidine	ND		1 x	2	ND		lx	2	ND		lx	2	ND		1x	2
Benzoic acid	ND		lx	2	ND		lx	2	ND		1x	2	ND		1x	2
Benzyl alcohol	ND		1x	2	ND		l x	2	ND		lx	2	ND		l x	2
Benzyl butyl phthalate	ND		lx	2	ND		l x	2	ND		lx	2	ND		1x	2
bis(2-Chloroethoxy)methane	ND		lx	4	ND		1 x	4	ND		1 x	4	ND		1x	4
bis(2-Chloroethyl) ether	ND		lx	4	ND		' Ix	4	ND		1 x	4	ND		1x	4
bis(2-Ethylhexyl) phthalate	3	J	<u>lx</u>	7		J	<u> </u>	7	4	<u> </u>	<u> x</u>		ND	·	Jx j	7

.

.

٠

analyte list continued on following page

ND-Not detected J=Estimated

		SWAN POINT		ENT	CRAIGH RANCE/CR	ILL AIGH	HLL	CI	RAIGHILI	. ANG	LE	CH RAN	RAIGHH GE/CUT	LL UPPI OFF AN	∃R ¦GLE
Analyte		SWPEL			CRE/CRI	EL			CRAL	EL			CRU/C	UTEL	
ug/l_	Result	Qual. Dil.	<u>Limit</u>	Result	Qual. 1	<u>Dil.</u>	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND	lx	2	ND		lx 🗌	2	ND		lx	2	ND	-	lx	2
Cyclohexanone	ND	lx	4	ND		lx	4	ND		l x	4	ND		١x	4
Dibenzofuran	ND	lx	3	ND		l x	3	ND		l x	3	ND		1 x	3
Dicthyl phthalate	11	١x	3	4		l x	3	15		1 x	3	6		l x	3
Dimethyl phthalate	ND	lx	4	ND		l x	4	ND		l x	4	ND		1 x	4
Di-n-butyl phthalate	ND	lx	2	ND		lx	2	ND		1x	2	ND		l x	2
Di-n-octyl phthalatc	ND	lx	2	ND		lx	2	ND		1x	2	ND		1 x	2
llexachlorobenzene	ND	lx	3	ND		lx	3	ND		l x	3	ND		1 x	3
Hexachlorobutadiene	ND	1 x	5	ND		lx	5	ND		l x	5	ND		1 x	5
Hexachlorocyclopentadiene	ND	1 x	3	ND		l x	3	ND		1 x	3	ND		lx	3
Hexachloroethane	ND	lx	4	ND		lx	4	NÐ		lx	4	ND		lx	4
Isophorone	ND	lx	2	ND		l x	2	ND		l x	2	ND		l x	2
Nitrobenzene	ND	1x	5	ND		lx	5	ND		lx	5	ND		l x	5
N-Nitrosodimethylamine	ND	lx	4	ND		lx	4	ND		l x	4	ND		l x	4
N-Nitrosodi-n-propylamine	ND	1x	3	ND		l x	3	ND		l x	3	ND		1 x	3
N-Nitrosodiphenylamine	ND	1 x	2	ND		l x	2	ND		l x	2	ND		lx	2
Pentachlorophenol	ND	1x	2	ND		l x	2	ND		lx	2	ND		lx	2
Phenol	ND	1x	4	ND		lx	4	ND		1x	4	NÐ		lx	4
Pyridine	ND	<u>lx</u>	6	ND		l x	6	ND_		<u>lx</u>	6	_ND		<u>lx</u>	6

ND=Not detected

				TOLCI	IESTER					BR	EWERT	'ON EAS	TERN E	XTENSIO	ON	
		Van-V	/ecn			Gravity	Core			Van-'	Vccn			<u>Gravity</u>	Core	
Analyte		TLC	EL			TLV	EL			BE	ËL			BEV	EL.	
ug/L	Result	Qual.	Dil.	Limit	Result	Qual.	_Dil	Limit	Result	Qual	<u>_Dil.</u>	<u>Limit</u>	Result	Qual.	Dil.	Limit
1,2-Dichlorobenzene	ND		lx	4	ND		1 x	4	ND		1 x	. 4	ND		lx	4
1,2-Diphenylhydrazine	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND		l x	2
1,2,4-Trichlorobenzenc	ND		1 x	5	ND		1 x	5	ND		1 x	5	ND		l x	5
1,3-Dichlorobenzene	ND		1 x	4	ND		1 x	4	ND		1 x	4	ND		1 x	4
1,4-Dichlorobenzene	ND		1 x	4	ND		l x	4	ND		1 x	4	ND		1 x	4
2-Chloronaphthalenc	ND		1 x	3	ND		1 x	3	ND		1 x	3	ND		1 x	3
2-Chlorophenol	ND		l x	4	ND		l x	4	ND		1 x	4	ND		1 x	4
2-Methyl-4,6-dinitrophenol	ND		lx	2	ND		1 x	2	ND		1 x	2	ND		1 x	2
2-Methylphenol	ND		1 x	3	ND		1 x	3	ND		l x	3	ND		1 x	3
2-Nitroaniline	ND		1 x	1	ND		1 x	1	ND		lx	1	ND		l x	1
2-Nitrophenol	ND		1 x	4	ND		1 x	4	ND		l x	4	ND		1 x	4
2,2'-oxybis(1-Chloropropane)	ND		l x	4	ND		l x	4	ND		lx	4	ND		l x	4
2,4-Dichlorophenol	ND		1 x	3	ND		lx	3	ND		lx	3	ND		l x	3
2,4-Dimethylphenol	ND		l x	4	ND		1 x	4	ND		1 x	4	ND		lx	4
2,4-Dinitrophenol	ND		l x	2	ND		1 x	2	ND		İx	2	ND		lx	2
2,4-Dinitrotoluene	ND		l x	1	ND		1 x	1	ND		1 x	1	ND		lx	1
2,4,5-Trichlorophenol	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND		lx	2
2,4,6-Trichlorophenol	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND		lx	2
2,6-Dinitrotoluene	ND		1 x	1	ND		1 x	1	ND		1 x	1	ND		lx	1
3-Nitroaniline	ND		1 x	4	ND		1 x	4	ND		1 x	4	ND		lx	4
3+4-Methylphenol	ND		1 x	3	ND		lx	3	ND		1 x	3	ND		1 x	3
3,3'-Dichlorobenzidine	ND		lx	10	ND		1 x	10	ND		l x	10	ND		lx	10
4-Bromophenyl phenyl ether	ND		1 x	3	ND		1 x	3	ND		1 x	3	ND		1x	3
4-Chloro-3-methylphenol	ND		lx	1	ND		1 x	1	ND		1 x	1	ND		lx	1
4-Chloroaniline	ND		1x	6	ND		1 x	6	ND		lx	6	ND		1x	6
4-Chlorophenyl phenyl ether	ND		1 x	3	ND		1 x	3	ND		1 x	3	ND		1x	3
4-Nitroaniline	ND		1 x	3	ND		1 x	3	ND		lx	3	ND		1x	3
4-Nitrophenol	ND		1 x	1	ND		1 x	1	ND		1 x	1	ND		lx	1
Benzidine	ND		1 x	2	ND		1 x	2	ND		lx	2	ND		1x	2
Benzoic acid	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND		1x	2
Benzyl alcohol	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND		1x	2
Benzyl butyl phthalate	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND		lx	2
bis(2-Chloroethoxy)methane	ND		1 x	4	ND		1 x	4	ND		lx	4	ND		lx	4
bis(2-Chloroethyl) ether	ND		1 x	4	ND		1 x	4	ND		1x	4	ND		1x	4
bis(2-Ethylhexyl) phthalate	ND		1 x	7	ND		<u>1x</u>	7	ND		lx	7	ND		lx	7
	analyte li	st continu	ed on fo	llowing p	age											and a start of the

ND-Not detected '

				TOLCH	IESTER					BRF	EWERT	ON EAS	TERN E	XTENSIC	DN	
		Van-V	Veen			Gravit	y Core			Van-V	/ecn			Gravity	Core	
Analyte		TLC	EL			TL	VEL			BEI	EL		[BEV	EL	
ug/L	Result	Qual.	<u></u>	<u>Limit</u>	Result	Qual.	Dil.	Limit	Result	Qual.	_Dil	Limit	Result	Qual.	Dil.	Limit
Carbazolc	ND		lx	2	ND		lx	2	ND		1 x	2	ND		lx	2
Cyclohexanone	ND		lx	4	ND		1x	4	ND		1 x	4	ND		1 x	4
Dibenzofuran	ND		lx	3	ND		lx	3	ND		1 x	3	ND		1x	3
Dicthyl phthalate	ND		1 x	3	ND		1 x	3	ND		1 x	3	4		lx	3
Dimethyl phthalate	ND		lx	4	ND		1 x	4	ND		1 x	4	ND		1 x	4
Di-n-butyl phthalate	6		lx	2	9		l x	2	ND		1 x	2	ND		lx	2
Di-n-octyl phthalate	ND		l x	2	ND		l x	2	ND		lx	2	ND		1 x	2
l·lexachlorobenzenc	ND		1 x	3	ND		lx	3	ND		1 x	3	ND		1 x	3
l·lexachlorobutadiene	ND		lx	5	ND		l x	5	ND		1 x	5	ND		1 x	5
11exachlorocyclopentadiene	ND		1 x	3	ND		lx	3	ND		1 x	3	ND		1 x	3
llexachloroethane	ND		1 x	4	ND		lx	4	ND		1 x	4	ND		1 x	4
lsophorone	ND		lx	2	ND		lx	2	ND		1 x	2	ND		l x	2
Nitrobenzene	ND		lx	5	ND		1x	5	ND		l x	5	ND		1 x	5
N-Nitrosodimethylamine	ND		lx	4	ND		1 x	4	ND		l x	4	ND		1 x	4
N-Nitrosodi-n-propylamine	ND		١x	3	ND		1 x	3	ND		lx	3	' ND		1x	3
N-Nitrosodiphenylamine	ND		lx	2	ND		lх	2	ND		1 x	2	ND		lx	2
Pentachlorophenol	ND		lx	2	ND		1 x	2	ND		l x	2	ND		lx	2
Phenol	ND		lx	4	ND		lx	4	ND		1 x	4	ND		lx	4
Pyridine	ND		<u>1x</u>	6	ND		<u>lx</u>	6	ND		_1x	6	ND		lx	6

.

ND=Not detected

.

1

BREWERTON/BREWERTON ANGLE

CURTIS BAY

FT McHENRY

FERRY BAR

Analyte		BR/BRAE	L		CBEL			FMIIEL		[FBEL	
ug/L	Result_	Qual. D	il <u>. Limit</u>	Result	Qual. Dil.	Limit	Result	Qual. D	il. Limit	Result	Qual. Dil.	Limit
1,2-Dichlorobenzenc	ND	1	x 4	ND	lx	4	ND	1	x 4	ND	lx	4
1,2-Diphenylhydrazine	ND	1	x 2	ND	lx	۰ 2	ND	1	x 2	ND	lx	2
1,2,4-Trichlorobenzenc	ND	1	x 5	ND	1x	5	ND	1	x 5	ND	lx	5
1,3-Dichlorobenzene	ND	1	x 4	ND	lx	4	ND	1	x 4	ND	1 x	4
1,4-Dichlorobenzenc	ND	1	x 4	ND	lx	4	ND	1	x 4	ND	1x	4
2-Chloronaphthalene	ND	1	x 3	ND	1x	3	ND	1	x 3	ND	1x	3
2-Chlorophenol	ND	1	x 4	ND	lx	4	ND	1:	x 4	ND	1x	4
2-Methyl-4,6-dinitrophenol	ND	· 1	x 2	ND	lx	2	ND	1:	x 2	ND	1 x	2
2-Methylphenol	ND	1	x 3	ND	lx	3	ND	1:	x 3	ND	1x	3
2-Nitroaniline	ND	1	x 1	ND	lx	1.	ND	1:	× 1	ND	1x	1
2-Nitrophenol	ND	1	x 4	(ND	lx	4	ND	1:	x 4	ND	1 x	4
2,2'-oxybis(1-Chloropropane)	ND	1	x 4	ND	lx	4	ND	1:	к 4	ND	lx	4
2,4-Dichlorophenol	ND	1	x 3	ND	1 x	3	ND	1:	к 3	ND	1 x	3
2,4-Dimethylphenol	ND	1	x 4	ND	1 x	4	ND	1:	к 4	ND	lx	4
2,4-Dinitrophenol	ND	1	x 2	ND	lx	2	ND	1:	ĸ 2	ND	lx	2
2,4-Dinitrotoluene	ND	1	x I	ND	lx	1	ND	1:	< 1	ND	İx	1
2,4,5-Trichlorophenol	ND	1	x 2	ND	1x	2	ND	1:	ĸ 2	ND	İx	2
2,4,6-Trichlorophenol	ND	1	x 2	ND	lx	2	ND	1:	× 2	ND	1 x	2
2,6-Dinitrotoluene	ND	1	x l	ND	lx	1	ND	1:	< 1	ND	1 x	1 🛛
3-Nitroaniline	ND	1	x 4	ND	lx	4	ND	1:	с 4	OIN	1x	4
3+4-Methylphenol	ND	1	x 3	ND	1x	3	ND	1:	к 3	ND	1x	3
3,3'-Dichlorobenzidine	ND	1	x 10	ND	lx	10	ND	1:	« 10	ND	1 x	10
4-Bromophenyl phenyl ether	ND	1	x 3	ND	lx	3	ND	1:	к <u>З</u>	ND	1 x	3
4-Chloro-3-methylphenol	ND	· 1	x 1	ND	lx	1	ND	1:	< 1	ND	1 x	1
4-Chloroaniline	ND	1	x 6	ND	1 x	6	ND	1:	к б	ND	lx	6
4-Chlorophenyl phenyl ether	ND	1	x 3	ND	1 x	3	ND	1:	к <u>З</u>	ND	lx	3
4-Nitroaniline	ND	1	x 3	ND	1 x	3	ND	1:	к <u>З</u>	ND	lx	3
4-Nitrophenol	ND	1	x I	ND	lx	1	ND	1:	۲ I	ND	lx	1
Benzidine	ND	1	x 2	ND	1 x	2	ND	12	к 2	ND	lx	2
Benzoic acid	ND	1	x 2	ND	1 x	2	ND	1;	د 2	ND	lx	2
Benzyl alcohol	ND	1	x 2	ND	lx	2	ND	1,	د 2	ND	lx	2
Benzyl butyl phthalate	ND	1	x 2	ND	lx	2	ND	12	κ 2	ND	1 x	2
bis(2-Chloroethoxy)methane	ND	1	x 4	ND	lx	4	ND	1,	κ 4	ND	lx	4
bis(2-Chloroethyl) ether	ND	1	x 4	ND	1 x	4	ND	12	κ 4	ND	lx	4
bis(2-Ethylhexyl) phthalate	<u>ND</u>	<u> </u>	<u>x 7</u>	ND	<u>lx</u>	7	<u>ND</u>		<u>. 7</u>	ND	_l <u>x</u> _	7

analyte list continued on following page

ND=Not dctected

BREWERTON/BREWERTON ANGLE

CURTIS BAY

FT McHENRY

.

FERRY BAR

,

Analyte		BR/BF	ever			CE	BEL			FMI	TEL			FB	EL	
ug/L	Rcsult	Qual.	<u></u> Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbazole	ND		1 x	2	ND		1 x	2	ND		lx	2	ND		1 x	2
Cyclohcxanone	ND		1 x	4	ND		1 x	4	ND		lx	4	ND		1 x	4
Dibenzofuran	ND		1 x	3	ND		1 x	3	ND		lx	3	ND		1 x	3
Diethyl phthalate	ND		1 x	3	6		1 x	3	9		1 x	3	6		1 x	3
Dimethyl phthalate	ND		1 x	4	ND		1 x	4	ND		lx	4	ND		1 x	4
Di-n-butyl phthalate	ND		1 x	2	ND		lx	2	ND		lx	2	ND		lx	2
Di-n-octyl phthalate	ND		l x	2	ND		1 x	2	ND		1 x	2	ND		1 x	2
llexachlorobenzene	ND		lx	3	ND		lx	3	ND		lx	3	ND		1 x	3
l lexachlorobutadicnc	ND		1 x	5	ND		lx	5	ND		1 x	5	ND		1x	5
l lexachlorocyclopentadiene	ND		1 x	3	ND	3	1 x	3	ND		1x	3	ND		1 x	3
llcxachloroethane	ND		1 x	4	ND		1 x	4	ND		łx	4	ND		1 x	4
lsophorone	ND.		1 x	2	ND		lx	2	ND		1 x	2	ND		1x	2
Nitrobenzene	ND		1 x	5	ND		l x	5	ND		1 x	5	ND		1 x	5
N-Nitrosodimethylamine	ND		l x	4	ND		l x	4	ND		1 x	4	ND		1 x	4
N-Nitrosodi-n-propylamine	ND		l x	3	ND		1 x	3	ND		l x	3	ND		1 x	3
N-Nitrosodiphenylamine	ND		1 x	2	ND	•	1 x	2	ND		1x	2	ND		1 x	2
Pentachlorophenol	ND		1 x	2	ND		1 x	2	ND		1 x	2	ND	• •	1 x	2
Phenol	ND		1 x	4	ND		1 x	4	ND		l x	4	ND		1x	4
Pyridine	<u>ND</u>		<u> x</u>	6	ND		<u> </u>	6	<u>ND</u>		<u>lx</u>	6	ND		<u>lx</u>	6

.

ND=Not detected

.

NORTHWEST BRANCH EAST/WEST

	<u></u>			
Analyte		NBE/N	BWEL	
ug/L	Result	Qual.	Dil.	<u>Limit</u>
1,2-Dichlorobenzene	ND		lx	4
1,2-Diphenylhydrazine	ND		l x	2
1,2,4-Trichlorobenzene	ND		łx	5
1,3-Dichlorobenzene	ND		1 x	4
1,4-Dichlorobenzene	ND		1 x	4
2-Chloronaphthalene	ND		1 x	3
2-Chlorophenol	ND		l x	4
2-Methyl-4,6-dinitrophenol	ND		l x	2
2-Methylphenol	ND		lx	3
2-Nitroaniline	ND		l x	1
2-Nitrophenol	ND		l x	4
2,2'-oxybis(1-Chloropropane)	ND		1 x	4
2,4-1Dichlorophenol	ND		lx	3
2,4-Dimethylphenol	ND		lx	4
2,4-Dinitrophenol	ND		1 x	2
2,4-Dinitrotoluene	ND		1 x	1
2,4,5-Trichlorophenol	ND		1 x	2
2,4,6-Trichlorophenol	ND		1 x	2
2,6-Dinitrotoluene	ND		1 x	1
3-Nitroaniline	ND		1 x	4
3+4-Methylphenol	ND		1 x	3
3,3'-Dichlorobenzidine	ND		1 x	10
4-Bromophenyl phenyl ether	ND		1 x	3
4-Chloro-3-methylphenol	ND		1 x	1
4-Chloroaniline	ND		1 x	6
4-Chlorophenyl phenyl ether	ND		1 x	3
4-Nitroaniline	ND		1 x	3
4-Nitrophenol	ND		l x	1
Benzidine	ND		1 x	2.
Benzoic acid	ND		1 x	2
Benzyl alcohol	ND		1 x	2
Benzyl butyl phthalate	ND		1 x	2
bis(2-Chloroethoxy)methane	ND		1 x	4
bis(2-Chloroethyl) ether	· ND		l x	4
bis(2-Ethylhexyl) phthalate	ND		1 x	7

analyte list continued on following

ND=Not detected

NORTHWEST BRANCH EAST/WEST

Analyte		NBE/N	BWEL	
ug/L	Result	Qual.	Dil.	Limit
Carbazole	ND		lx	2
Cyclohexanone	ND		l x	4
Dibenzofuran	ND		l x	3
Dicthyl phthalate	ND		Ix	3
Dimethyl phthalate	ND		Iх	4
Di-n-butyl phthalate	ND		Iх	2
Di-n-octyl phthalate	ND		Ix	2
Hexachlorobenzene	ND		1 x	3
llexachlorobutadiene	ND		l x	5
Hexachloroeyelopentadiene	ND		1 x	3
llexachloroethane	ND		1 x	4
Isophorone	ND		I x	2
Nitrobenzene	ND		1 x	5
N-Nitrosodimethylamine	ND		İx	4
N-Nitrosodi-n-propylamine	ND		1 x	3
N-Nitrosodiphenylamine	ND		İx	2
Pentachiorophenol	ND		1x	2
Phenol	ND		1 x	4
Pyridine	ND		<u>lx</u>	6

ND=Not detected

Table 4-15. Pesticide and PCB results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.

POPLAR ISLAND

٥

Analyte			P11 V	VAT		[PHW	ATID		, <u></u>	PISV	VAT	A.A.C.
<u>u</u> ;	g/1.	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	1.imit	Result	Qual.	Dil.	Limit
4,4'-DDD		ND		1x	0.03	ND		1x	0.03	ND		1x	0.03
4,4'-DDE		ND		1x	0.014	ND		1x	0.014	ND		1 x	0.014
4,4'-DI)T		ND		1 x	0.022	ND		1 x	0.022	ND		1x	0.022
Aldrin		ND		lx	0.007	ND		lx	0.007	ND		1 x	0.007
alpha-BHC		ND		1x	0.006	ND		1x	0.006	ND		1 x	0.006
Azinphos methyl		ND		1 x	1	ND		1 x	1	ND		1 x	1
beta-BHC		ND		1 x	0.003	ND		1x	0.003	ND		1x	0.003
Chlordane, technical		ND		1 x	0.11	ND		1x	0.11	ND		1 x	0.11
Chlorobenside		ND		lx	0.1	ND		1x	0.1	ND		1 x	0.1
Dacthal		ND		1x	0.1	ND		lx	0.1	ND		1x	0.1
delta-BI IC		ND		1 x	0.003	ND		lx	0.003	ND		1 x	0.003
Demeton		ND		1 x	1	ND		lx	1	ND		lx	1
Dieldrin	Ĥ	ND		1x	0.034	ND		lx	0.034	ND		1x	0.034
Endosulfan I		ND		1 x	0.009	ND		lx	0.009	ND		1x	0.009
Endosulfan II		ND		1 x	0.007	ND		lx	0.007	ND		1x	0.007
Endosulfan sulfate		ND		1 x	0.018	ND		lx	0.018	ND		1x	0.018
Endrin		ND		1x	0.031	ND		1 x	0.031	ND		1x	0.031
Endrin aldehyde		ND		lx	0.011	ND		lx	0.011	ND		1x	0.011
Ethyl parathion		ND		1 x	0.1	ND		1x	0.1	ND	•	1x	0.1
gamma-BIIC		ND		1x	0.01	ND		1 x	0.01	ND		1x	0.01
Heptachlor		ND		1x	0.017	ND		1 x	0.017	ND		lx	0.017
l leptachlor epoxide		ND		lx	0.004	ND		1 x	0.004	ND		1 x	0.004
Malathion		ND		lx	0.1	ND		1 x	0.1	ND		1 x	0.1
Methoxychlor		ND		1x	0.24	ND		1 x	0.24	ND		1 x	0.24
Mcthyl parathion		ND		1x	0.1	ND		1 x	0.1	ND		1 x	0.1
Mirex		ND		1 x	0.1	ND		1x	0.1	ND		1x	0.1
Toxaphene		NÐ		1x	0.62	ND		1 x	0.62	ND		1 x	0.62
Aroclor-1016		ND		1x	0.073	ND		1 x	0.073	ND		1x	0.073
Aroclor-1221		ND		1 x	1.1	ND		1x	1.1	ND		1 x	1.1
Aroclor-1232		ND		1 x	0.3	ND		1 x	0.3	NÐ		1x	0.3
Aroclor-1242		ND		1x	0.4	ND		1x	0.4	ND		1x	0.4
Aroclor-1248		ND		1x	0.24	ND		1x	0.24	ND		1 x	0.24
Aroclor-1254		ND		1x	0.46	ND		1x	0.46	ND		1x	0.46
Aroclor-1260		ND		lx	0.06	ND		1 x	0.06	ND		lx	0.06

ND=Not detected

DEEP TROUGH

KENT ISLAND DEEP

POOLES ISLAND

.

Analyte	L	DTIWAT		L	KI3W	VAT		[KI3WATIFD			POLIWAT	
ug/1.	Result	Qual. Di	I. Limit	Result	Qual.	<u> </u>	Limit	Result	Qual. Dil.	1.imit	Result	Qual Dil	. Limit
4,4'-DDD	ND	1;	¢ 0.03	ND		1x	0.03	ND	Ix	0.03	ND	lx	0.03
4,4'-DDE	ND	1;	¢ 0.014	ND		1 x	0.014	ND	Ix	0.014	ND	Ix	0.014
4,4'-DDT	ND	1:	¢ 0.022	ND		lx	0.022	ND	lx	0.022	ND	1 x	0.022
Aldrin	ND	1:	c 0.007	ND		1 x	0.007	ND	1x	0.007	ND	lx	0.007
alpha-BHC	ND	1:	c 0.006	ND		١x	0.006	ND	lx	0.006	ND	lx	0.006
Azinphos methyl	ND	12	c 0.1	ND		1x	0.1	ND	Ix	0.1	ND	1 x	2
beta-BHC	ND	Ŀ	¢ 0.003	ND		lx	0.003	ND	1 x	0.003	ND	1 x	0.003
Chlordane, technical	ND	I,	c 0.11	ND		1 x	0.11	DN	İx	0.11	ND	1x	0.11
Chlorobenside	ND	D	¢ 0.1	ND		1x	0.1	ND	Ix	0.1	ND	lx	0.2
Dacthal	ND	D	¢ 0.1	ND		1x	0.1	ND	1x	0.1	ND	1 x	0.2
delta-BHC	ND	I)	c 0.003	ND		1x	0.003	ND	1x	0.003	ND	1x	0.003
Demeton	ND	1,	¢ 0.1	ND		1x	0.1	ND	lx	0.1	ND	lx	2
Dieldrin	ND	1,	¢ 0.034	ND		1x	0.034	ND	lx	0.034	ND	lx	0.034
Endosulfan I	ND	1,	د 0.009	ND		1x	0.009	ND	1x	0.009	ND	lx	0.009
Endosulfan II	ND	17	¢ 0.007	ND		1x	0,007	ND	lx	0.007	ND	lx	0.007
Endosulfan sulfate	ND	b	۵.018 c	ND		1x	0.018	ND	1x	0.018	ND	1x	0.018
Endrin	ND	b	د 0.031	ND		1x	0.031	ND	1x	0.031	ND	lx	0.031
Endrin aldehyde	ND	1)	، 0.011	ND		1x	0.011	ND	lx	0.011	ND	lx	0.011
Ethyl parathion	ND	12	، 0 .1	ND		1x	0.1	ND	lx	0.1	ND	1 x	0.2
gamma-BHC	ND	1)	۵. 01 د	ND		1x	0.01	ND	lx	0.01	ND	1 x	0.01
I leptachlor	ND	D	c 0.017	ND		1x	0.017	ND	lx	0.017	ND	1x	0.017
l leptachlor epoxide	ND	1,	۵.004 (ND		1x	0.004	ND	Ix	0.004	ND	. 1x	0.004
Malathion	ND	b	ι Ο.1	ND		1x	0.1	ND	1 x	0.1	ND	1x	0.2
Methoxychlor	ND	l)	۵.24 c	ND		1x	0.24	ND	1 x	0.24	ND	1x	0.24
Methyl parathion	ND	12	۵.1 C	ND		l x	0.1	ND	1x	0.1	ND	1 x	0.2
Mirex	ND	b	¢ 0.1	ND		1 x	0.1	ND	1x	0.1	ND	1x	0.2
Toxaphene	ND	1)	۵.62 c	ND		1 x	0.62	ND	1x	0.62	ND	1x	0.62
Aroclor-1016	ND	12	¢ 0.073	ND		1 x	0.073	ND	1x	0.073	ND	Ix	0.073
Aroclor-1221	ND	12	د I.I	ND		1x	1.1	ND	Ix	1.1	ND	1x	1.1
Aroclor-1232	ND	D	ι 0.3	ND		1x	0.3	ND	lx	0.3	ND	Ix	0.3
Aroclor-1242	ND	D	ι 0.4	ND		1 x	0.4	ND	1x	0.4	ND	1 x	0.4
Aroclor-1248	ND	b	¢ 0.24	ND		1x	0.24	ND	lx	0.24	ND	lx	0.24
Aroclor-1254	ND	Þ	۵.46 c	ND		1x	0.46	ND	lx	0.46	ND	lx	0.46
Aroclor-1260	ND		<u>ر 0.06</u>	ND		<u>lx</u>	0.06	ND	<u> </u>	0.06	ND	Ix.	0.06

.

ND=Not detected

	SWAN POINT CHANNEL			CRAIGHILL ENTRANCE/CRAIGHILL				CRAIGHILL ANGLE				CRAIGHILL UPPER RANGE/CUTOFF ANGLE			
Analyte ug/I.				CRE/CREL			CRU/CUTEI								
	Result	Qual Dil	Limit	Result	Qual.	Dil.	l.imit	Result	Qual	Dil	Limit .	Result	Qual.	Dil.	1.imit
4,4'-DDD	ND	1x	0.03	ND		lx	0.03	ND		1x	0.03	ND		lx	0.03
4,4'-DDE	ND	1 x	0.014	ND		lx	0.014	ND		1 x	0.014	ND		1 x	0.014
4,4'-DDT	ND	1 x	0.022	ND		lx	0.022	ND		lx	0.022	ND		1x	0.022
Aldrin	ND	lx	0.007	ND		l x	0.007	ND		1x	0.007	ND		1 x	0.007
alpha-B11C	ND	lx	0.006	ND		1 x	0.006	ND		lx	0.006	ND		1x	0.006
Azinphos methyl	ND	lx	0.2	ND	(a)	1 x	0.5	ND	(a)	1x	1	ND	(a)	1x	1
beta-BHC	ND	lx	0.003	ND		lx	0.003	ND		lx	0.003	ND		1 x	0.003
Chlordane, technical	ND	1 x	0.11	ND		lx	0.11	ND		lx	0.11	ND		l x	0.11
Chlorobenside	ND	lx	0.02	ND	(a)	1x	0.1	ND	(a)	lx	0.1	ND	(a)	1 x	0.1
Dacthal	ND	lx	0.02	ND	(a)	l x	0.1	ND	(a)	1x	0.1	ND	(a)	1 x	0.1
delta-B11C	ND	1x	0.003	ND		1 x	0.003	ND		1x	0.003	ND		1 x	0.003
Demeton	ND	lx	0.2	ND	(a)	1x	0.5	ND	(a)	1x	1	ND	(a)	1 x	1
Dieldrin	ND	1x	0.034	ND		1x	0.034	ND		1 x	0.034	ND		1 x	0.034
Endosulfan I	ND	1x	0.009	ND		1 x	0.009	ND •		1 x	0.009	ND		1x	0.009
Endosulfan II	ND	lx	0.007	ND		l x	0.007	ND		1x	0.007	ND		1x	0.007
Endosuifan sulfate	ND	lx	0.018	ND		1x	0.018	ND		1 x	0.018	ND		1 X	0.018
Endrin	ND	1x	0.031	ND		1x	0.031	ND		1x	0.031	ND		1x	0.031
Endrin aldehyde	ND	1x	0.011	ND		1x	0.011	ND		1 x	0.011	ND		1x	0.011
Ethyl parathion	ND	1x	0.02	ND	(a)	1x	0.1	ND	(a)	1x	0.1	ND	(a)	1 x	0.1
gamma-BHC	ND	1 x	0.01	ND		lx	0.01	ND		1x	0.01	ND		1 x	0.01
Heptachlor	ND	1x	0.017	ND		1x	0.017	ND		1 x	0.017	ND		1 x	0.017
leptachlor epoxide	ND	lx	0.004	ND		l x	0.004	ND		1 x	0.004	ND		lx	0.004
Malathion	ND	1 x	0.02	ND	(a)	1 x	0.1	ND	(a)	1 x	0.1	ND	(a)	1x	0.1
Methoxychior	ND	1x	0.24	ND		1x	0.24	ND		l x	0.24	ND		1 x	0.24
Methyl parathion	ND	1x	0.02	ND	(a)	1x	0.1	ND	(a)	1x	0.1	ND	(a)	1x	0.1
Mirex	ND	1x	0.02	ND	(a)	1x	0.1	ND	(a)	1x	0.1	ND	(a)	1x	0.1
Toxaphene	ND	1x	0.62	ND		1x	0.62	ND		lx	0.62	ND		1 x	0.62
Aroclor-1016	ND	1x	0.073	ND		1 x	0.073	ND		lx	0.073	ND		lx	0.073
Aroclor-1221	ND	lx	1.1	ND		1 x	1.1	ND		1 x	1.1	ND		1 x	1.1
Aroclor-1232	ND	1x	0.3	ND		1 x	0.3	ND		1x	0.3	ND		1 x	0.3
Aroclor-1242	ND	1x	0.4	ND		1 x	0.4	ND		lx	0.4	ND		lx	0.4
Aroclor-1248	ND	1x	0.24	ND		1 x	0.24	ND		1x	0.24	ND		1 x	0.24
Aroclor-1254	ND	1x	0.46	ND		1 x	0.46	ND		1x	0.46	ND		1 x	0.46
Aroclor-1260	ND	<u>lx</u>	0.06	ND		<u>lx</u>	0.06	ND		<u>1x</u>	0.06	ND		<u>lx</u>	0.06

ND=Not detected

(a)=Extracted within extraction holding time, but analyzed beyond analysis holding time of 40 days after extraction.

.

1
•

				TOLCH	ESTER					BR	EWERT	ON EAS	TERN E	X TENSIO	N	
	+:	Van-Vc	cn			Gravit	<u>Corc</u>			Van-	Veen			Gravity C	ore	
Analyte		TLCEI	·			TLV	/EL			BE	EI.			BEVE	Ι.	
ug/L	Result	Qual.	Dil.	<u>l.imit</u>	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	<u>l.imit</u>	Result	Qual.	Dil.	l.imit
4,4'-DDD	ND		1x	0.03	ND		1x	0.03	ND		lx	0.03	ND	·· ··· ·····	1x	0.03
4,4'-DDE	ND		1x	0.014	ND		1 x	0.014	ND		1x	0.014	ND		1 x	0.014
4,4'-DDT	ND		1 x	0.022	ND		1 x	0.022	ND		lx	0.022	ND		1x	0.022
Aldrin	ND		1x	0.007	ND		1 x	0.007	ND		lx.	0.007	ND		1x	0.007
alpha-BHC	ND		1x	0.006	ND		1x	0.006	ND		1x	0.006	ND		1x	0.006
Azinphos methyl	ND		1x	2	ND		1 x	2	ND		1x	0.2	ND		1x	0.2
beta-BHC	ND		1x	0.003	ND		1x	0.003	ND		1 x	0.003	ND		1x	0.003
Chlordane, technical	ND		1x	0.11	ND		1x	0.11	ND		1x	0.11	ND		1 x	0.11
Chlorobenside	ND		1x	0.2	ND		1 x	0.2	ND		1x	0.02	ND		1 x	0.02
Dacthal	ND		1x	0.2	ND		1x	0.2	ND		1 x	0.02	ND		1x	0.02
delta-BHC	ND		1x	0.003	ND		1x	0.003	ND		lx	0.003	ND		1x	0.003
Demeton	ND		l x	. 2	ND		~ 1x	2	ND		lx	0.2	ND		1 X	0.2
Dieldrin	ND		1x	0.034	ND		1 x	0.034	ND		1x	0.034	ND		1x	0.034
Endosulfan I	ND		1 x	0.009	ND	•	1 x	0.009	ND		1x	0.009	ND		1x	0.009
Endosulfan II	ND		1x	0.007	ND		1 x	0.007	ND		lx	0.007	ND		1 x	0.007
Endosulfan sulfate	ND		l x	0.018	ND		lx ·	0.018	ND		1 x	0.018	ND		1x	0.018
Endrin	ND		1x	0.031	ND		1x	0.031	ND		1 x	0.031	ND		1x	0.031
Endrin aldehyde	ND		1x	0.011	ND		1x	0.011	ND		1 x	0.011	ND		1x	0.011
Ethyl parathion	ND		1x	0.2	ND		1x	0.2	ND		1 x	0.2	ND		1x	0.02
gamma-BI1C	ND		1x	0.01	ND		1x	0.01	ND		l x	0.01	ND		1x	0.01
Heptachlor	ND		1x	0.017	ND		1 x	0.017	ND		1x	0.017	ND		1x	0.017
l leptachlor epoxide	ND		1x	0.004	ND		1 x	0.004	ND		1x	0.004	ND		1x	0.004
Malathion	ND		1x	0.2	ND		1x	0.2	ND		1x	0.2	ND		1x	0.02
Methoxychlor	ND		1x	0.24	ND		1x	0.24	ND		1x	0.24	ND		l x	0.24
Methyl parathion	ND		1x	0.2	ND		1x	0.2	ND		1x	0.2	ND		1x	0.02
Mirex	ND		1x	0.2	ND		1x	0.2	ND		1x	0.2	ND		1x	0.02
Toxaphene	ND		1x	0.62	ND		1x	0.62	ND		1x	0.62	ND		1x	0.62
Aroclor-1016	ND		1x	0.073	ND		1x	0.073	ND		1x	0.073	ND		1x	0.073
Aroclor-1221	ND		lx –	1.1	ND		lx	1.1	ND		1 x	1.1	ND		1x	1.1
Aroclor-1232	ND		l x	0.3	ND		1 X	0.3	ND		1x	0.3	ND		1x	0.3
Aroclor-1242	ND		1 x	0.4	ND		1x	0.4	ND		1x	0.4	ND		1x	0.4
Aroclor-1248	ND		1 x	0.24	ND		1x	0.24	ND		1x	0.24	ND		1x	0.24
Aroclor-1254	ND		1 x	0.46	ND		1x	0.46	ND		1 x	0.46	ND		1 x	0.46
Aroclor-1260	ND		<u>1x</u>	0.06	ND		<u>lx</u>	0.06	<u>ND</u>		<u>lx</u>	0.06	ND		<u>1x</u>	0.06

BREWERTON/BREWERTON ANGLE

CURTIS BAY FT McHENRY FERRY BAR BR/BRAEL -----FMHE1. CBEI. FBEL Analyte Result Qual. Dil. Limit Qual. Result Dil. Limit Result Qual. Dil. <u>ug/l</u> Result Dil. Limit Limit Qual 4,4'-DDD ND 1x 0.03 ND 1 x 0.03 ND ND 1x 0.03 0.03 1x 4,4'-DDE ND 1 x 0.014 ND 1 x 0.014 ND 1 x | 0.014 ND 1 x 0.014 4.4'-DDT ND 0.022 ND 1x 1 x 0.022 ND 1 x 0.022 ND 1 x 0.022 Aldrin ND ND 1x 0.007 1 x 0.007 ND 1 x 0.007 ND 1 x 0.007 alpha-BHC ND 1x 0.006 ND 1x 0.006 ND 1x 0.006 ND 1x 0.006 Azinphos methyl ND 1x 0.2 ND l x 0.2 ND ND 1x 0.2 1x 0.2 beta-BHC ND 0.003 ND 1 x 1 x 0.003 ND 1x 0.003 ND 0.003 1 x Chlordane, technical ND 1x 0.11 ND 1 x 0.11 ND 1 x 0.11 ND 1x 0.11 Chlorobenside ND ND 1 x 0.02 1 x 0.02 ND 1x 0.02 ND 1 x 0.02 ND Dacthal ND 1 x 0.02 1x 0.02 ND 1 x 0.02 ND 1x 0.02 0.003 ND delta-BHC ND 1 x 1x 0.003 ND 1x 0.003 ND 1x 0.003 Demeton ND 0.2 ND 1 x 0.2 ND 1 x 1 x 0.2 ND 1x 0.2 Dieldrin ND 1x 0.034 ND 1x 0.034 ND 1x 0.034 ND 1x 0.034 Endosulfan 1 ND 1x 0.009 ND 1x 0.009 ND 1 x 0.009 ND 1x 0.009 0.007 ND Endosulfan II ND 1x 1x 0.007 ND Iх 0.007 ND 1x0.007 Endosulfan sulfate ND 1x 0.018 ND 1x 0.018 ND 1x 0.018 ND 1x 0.018 Endrin ND 1x 0.031 ND 1x 0.031 ND 1 x 0.031 ND 1 x 0.031 Endrin aldehyde ND 1 x 0.011 ND 1 x 0.011 ND 1 x 0.011 ND 1x 0.011 ND Ethyl parathion ND 1x 0.2 1 x 0.02 ND 1x 0.02 ND 1x 0.02 gamma-BHIC ND 0.01 ND 1 x 0.01 ND 1x 1x 0.01 ND 1x 0.01 Heptachlor ND 1x 0.017 ND 1x 0.017 ND 1 x 0.017 ND 1x 0.017 ND 0.004 ND 0.004 ND I leptachlor epoxide 1x lx 1x 0.004 ND 1x 0.004 Malathion ND 1x 0.2 ND 0.02 ND 1x 1x 0.02 ND 1x 0.02 Methoxychlor ND 1x 0.24 ND 1x 0.24 NÐ 1 x 0.24 ND 1 x 0.24 Methyl parathion ND 1x 0.2 ND. 1x 0.02 ND 1 x 0.02 ND 1x 0.02 ND 0.2 ND 0.02 ND Mirex 1 x 1x 1x 0.02 ND 1x 0.02 ND Toxaphene ND 1 x 0.62 1x 0.62 ND) 1x 0.62 ND 1 x 0.62 0.073 ND Aroclor-1016 ND 1x 1x 0.073 ND 0.073 1 x ND 1 x 0.073 Aroclor-1221 ND 1x 1.1 ND 1 x 1.1 ND ND 1x 1.1 1 x 1.1 ND ND 0.3 0.3 ND Aroclor-1232 1 x 1x l x 0.3 ND 1x 0.3 Aroclor-1242 ND 1 X 0.4 ND 1x 0.4 ND 1 x 0.4 ND 1x 0.4 Aroclor-1248 ND 1x 0.24 ND 1 x 0.24 ND 1x 0.24 ND 1x 0.24 ND Aroclor-1254 ND 1x 0.46 1x 0.46 ND 1x 0.46 ND 1x 0.46

1x

0.06

ND

JX.

0.06

ND

1 x

0.06

ND=Not detected

<u>1x</u>

0.06

ND

ND

Aroclor-1260

.

NORTHWEST BRANCH EAST/WEST

Analyte		NBE/N	BWEL	
ug/l.	Result	Qual.	Dil.	Limit
4,4'-DDD	ND		1 x	0.03
4,4'-DDE	ND		1 x	0.014
4,4'-DDT	ND		1x	0.022
Aldrin	ND		1 x	0.007
alpha-Bl IC	ND		1x	0.006
Azinphos methyl	ND		1 x	0.2
beta-BHC	ND		1 x	0.003
Chlordane, technical	ND		1 x	0.11
Chlorobenside	ND		1x	0.02
Dacthal 🗸	ND		1x	0.02
delta-BHC	ND		1 x	0.003
Demeton	ND		1 x	0.2
Dieldrin	I ND		1 x	0.034
Endosulfan 1	ND		1 x	0.009
Endosulfan 11	ND		1 x	0.007
Endosulfan sulfate	ND		1 x	0.018
Endrin	ND		1 x	0.031
Endrin aldehyde	ND		1 x	0.011
Ethyl parathion	ND		1 x	0.2
gamma-BHC	ND		1 x	0.01
Heptachlor	ND		1 x	0.017
Heptachlor epoxide	ND		1 x	0.004
Malathion	ND		1 x	0.2
Methoxychlor	ND		1x	0.24
Methyl parathion	ND		1x	0.2
Mirex	ND		1 x	0.2
Toxaphene	ND		1 x	0.62
Aroclor-1016	ND		1x	0.073
Aroclor-1221	ND		1x	1.1
Aroclor-1232	ND		1 x	0.3
Aroclor-1242	ND		lx	0.4
Aroclor-1248	ND		lx	0.24
Aroclor-1254	ND		1x	0.46
Aroclor-1260	ND		1x	0.06

.

ND=Not detected

.

Table 4-16. Metals results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.

POPLAR ISLAND

Analyte			PH	WAT			PIIV	VATFD			P15	WAT	
u	g/L	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum		221		lx	29	214		lx	29	293		lx	29
Antimony		4.4	В	lx	1	4.3	В	lx	1	4.6	B	lx	1
Arsenie		2.4	В	lx	1	1.8	В	lx	1	ND		lx	1
Beryllium		ND		lx	1	ND		lx	1	ND		lx	1
Cadmium		ND	N	lx	1	ND	Ν	lx	1	ND	Ν	lx	1
Chromium		2.2	BW	lx	1	2.7	BW	lx	1	3.2	В	lx	1
Copper		ND		lx	1	ND		lx	1	ND		lx	1
Iron		ND		lx	20	ND		lx	20	ND		lx	20
Lead		ND		lx	24	ND		lx	24	ND		lx	24
Manganese		6.8	В	lx	6	8	В	lx	6	7.4	В	lx	6
Mercury		0.11	В	lx	0.1	0.15	В	lx	0.1	ND		lx	0.1
Niekel		ND	w	lx	3	3.6	BW	lx	3	ND	W	lx	3
Selenium		ND		lx	2	ND		lx	2	ND		lx	2
Silver	ĺ	4.9	В	lx	4	4.6	В	lx	4	ND		lx	4
Thallium		ND	W	lx	2	ND	W	lx	2	ND	W	lx	2
Zinc		ND_		lx	6	ND		<u>lx</u>	6	ND	<u> </u>	<u>lx</u>	6

ND=Not detected N=MS outside of control limits B=Between IDL and CRDL W=Spike outside of control limits

~

DEEP TROUGH

.

KENT ISLAND DEEP

POOLES ISLAND

Analyte		DTI	WAT			K13	WAT			KI3W	'ATFD			POLI	WAT	1991 - Angel State (1997).
ug/L	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit	Rcsult	Qual.	Dil.	Limit
Aluminum	222		lx	29	179	В	lx	29	149	В	lx	29	272		lx	29
Antimony	4.8	В	lx	1	4.3	В	lx	1	4.9	В	lx	1	2	В	lx	. 1
Arsenie	3.1	В	lx	1	1.2	5	lx	1	2	В	lx	1	1.7	В	lx	1
Beryllium	ND		lx	1	ND		lx	1	ND		lx	1	ND	Ν	l x	1
Cadmium	ND	Ν	lx	1	ND	N.	lx	1	ND	N	lx	1	ND	Ν	lx	1
Chromium	1.8	BW	lx	1	ND	W	lx	1	ND	W	lx	1	1.1	BW	lx	1
Copper	ND		1 x	1	ND		1x	1	ND		lx	1	ND	W	lx	1
Iron	ND		lx	20	ND		lx	20	ND		l x	20	349	Ν	lx	20
Lcad	ND		1 x	1	ND		lx	1	ND		1 x	1	· ND	Ν	lx	. 1
Manganesc	10.3	В	lx	6	34.4		1x	6	30.6		lx	6	43.4	Ν	1 x	5
Mcrcury	0.1	В	l x	0.1	0.13	В	lx	0.1	ND		lx	0.1	ND		lx	0.1
Nickel	4.1	BW	1 x	3	ND		1x	3	ND	W	1 x	3	15.9	BN	1 x	3
Selenium	ND		1 x	2	ND		l x	2	3.1	В	1x	· 2	2.3	В	1x	2
Silver	4.5	В	lx	4	ND		lx	4	ND		1x	4	ND		1 x	4
Thallium	ND	W	lx	2	ND	W	lx	2	ND	W	lx	2	ND	NW	1x	2
Zinc	6	<u>B</u>	<u>lx</u>	6	6.8	<u> </u>	<u>lx</u>	6	9.4	_ <u>B</u>	<u>lx</u>	6	ND	N	<u>lx</u>	6

ND=Not detected N=MS outside of control limits B=Between IDL and CRDL W=Spike outside of control limits

SWAN POINT CHANNEL

CRAIGHILL ENTRANCE/CRAIGHILL

CRAIGHILL ANGLE

CRAIGHILL UPPER RANGE/CUTOFF ANGLE

Analyte		SW	PEL			CRE/	CREL			CR	AEL			CRU/C	UTEL	
ug/L	Result	Qual,	Dil.	Limit	Result	Qual	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Aluminum	135	В	lx	29	143	В	lx	29	175	В	lx	29	149	B	lx	29
Antimony	3.6	В	lx	1	5.5	В	lx	1	3.2	В	lx	1	5	В	lx	1
Arsenie	4.9	В	lx	1	2	В	lx	1	13.5		lx	1	4.5	В	lx	1
Beryllium	ND		lx	1	ND		lx	1	ND		lx	1	ND		lx	1
Cadmium	ND		lx	1	ND	Ν	lx	1	ND	Ν	lx	1	ND	Ν	lx	1
Chromium	9.2	В	lx	1	ND	W	lx	1	3.7	BW	lx	1	1.7	В	lx	1
Copper	2.9	В	lx	1	3.5	В	lx	1	1.9	В	lx	1	3.5	В	lx	1
lron	287	Ν	lx	20	ND		lx	20	1830		lx	20	108		lx	20
Lead	ND		lx	1	ND		lx	1	ND		lx	1	ND		lx	1
Manganese	6770	E	lx	5	589		lx	5	5930		lx	5	4400		lx	5
Mercury	1.8	Ν	lx	0.1	0.16	В	lx	0.1	0.18	В	1x	0.1	0.12	В	lx	0.1
Nickel	3.3	BW	1x	3	17.1	BNS	lx	3	14.3	BNS	lx	3	5.7	BNW	lx	3
Selenium	ND		lx	2	ND		lx	2	ND		lx	2	ND		lx	2
Silver	ND		1x	4	ND	N	lx	. 4	ND	Ν	lx	4	_4	BN	lx	4
Thallium	ND	NW(a)	lx	2	ND	NW	lx	2	ND	NW	1x	2	ND	NW	lx	2
Zinc	<u>ND</u>		<u>lx</u>	6	13.2	<u> </u>	<u> lx </u>	6	9.3	B	<u> </u>	6		<u>B</u>	<u>lx</u>	6

ND=Not detected N=MS outside of control limits B=Between IDL and CRDL W=Spike outside of control limits S=Determined by MSA E=Serial dilution outside of control limits (a)=Not recovered in MS, even after dilution. Potential for false negative.

.

IULCHESIEK	TOL	CHESTER	
------------	-----	---------	--

BREWERTON EASTERN EXTENSION

.

		Van-	Vecn			Gravi	ty Core			Van	Veen			Gravit	y Core	
Analyte		TL	CEL			TL	VEL			Bl	EL			BE	VEL	
ug/L	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	<u>Limit</u>	Result	Qual.	Dil	Limit	Result	Qual.	Dil.	Limit
Aluminum	290		1x	29	165	В	1x	29	190	В	lx	29	80.9	B	1x	29
Antimony	6.2	В	1x	1	5.4	В	1 x	1	5.5	В	1 x	I	2.6	Β.	Ιx	1
Arsenie	8.7	В	lx	1	5.7	В	1x	1	10.8		1 x	1	3.6	В	1 x	1
Beryllium	ND	Ν	lx	I	ND	Ν	lx	1	ND		l x	1	ND		1 x	1
Cadmium	ND	Ν	lx	1	ND	Ν	lx	1	ND		1 x	1	ND		1x	1
Chromium	5.4	В	lx	1	1.3	BW	1x	1	6.5	BN	1x	1	1.9	BNW	1 x	1
Copper	3.4	BW	lx	1	2.9	BW	1x	1	2.6	В	1x	1	1.7	В	1 x	1
lron	397	Ν	lx	20	390	Ν	1 x	20	335		1x	20	22.8	В	1x	20
Lead	ND	Ν	lx	1	ND	N	1x	1	ND		lx	1	ND		lx	1
Manganese	3820	Ν	Ix	5	1270	Ν	Ιx	5	9960	E	lx	5	644	Е	lx	5
Mercury	0.1	В	lx	0.1	ND		1 x	0.1	ND		lx	0.1	ND		1x	0.1
Nickel	41.3	NS	lx	3	18.6	BNS	lx	3	10.1	BS	1x	3	5.6	В	j l x	3
Selenium	2.1	В	lx	2	ND		lx	2	ND		1 x	2	ND		1x	2
Silver	ND		lx	4	ND		l x	4	5	В	1x	4	ND		1x	4
Thallium	ND	NW	1 x	2	ND	NW	1x	2	ND	NW	$\mathbf{l}\mathbf{x}$	2	ND	NW	1 x	2
Zine	54	<u>N</u>	<u>lx</u>	6	64	<u>N</u>	<u> </u>	6	<u>12.9</u>	B	<u>lx</u>	6	18.1	B	<u>lx</u>	6

ND=Not detected N=MS outside of control limits B=Between IDL and CRDL W=Spike outside of control limits S=Determined by MSA E=Serial dilution outside of control limits

BREWERTON/BREWERTON ANGLE

Analyte

BR/BRAELCBELFMug/LResultQualDilLimitResultQualDilLimit2331x29184B1x2947751D1x152D1x1

Aluminum	233		İx	29	184	В	lx	29	477		lx	29	228		İx	29
Antimony	5.1	В	lx	1	5.3	В	lx	1	5.4	B	1x	1	5	В	1 x	1
Arsenie	8	В	lx	1	14		lx	1	11.6		1 x	1	17.2		Îx	1
Beryllium	ND		lx	1	ND		lx	1	ND		lx	1	ND		lx	1
Cadmium	ND		lx	1	ND		lx	1	ND		l x	1	ND		lx	1
Chromium	2.2	BN	lx	1	1.4	BN	1 x	1	2.7	BN	1 x	1	6.1	BN	1x	1
Copper	1.2	В	lx	. 1	1.2	В	1 x	1	4.1	В	lx	1	6.9	В	1x	1
Iron	208		lx	20	972		1 x	20	338		1x	20	353		1x	20
Lead	ND		lx	1	ND		1 x	1	ND		lx	1	ND		lx	1
Manganese	1910	E	lx	5	1880	E	1x	5	1720	E	lx	5	3570	E	1x	5
Mercury	ND ND		lx	0.1	ND		lx	0.1	0.36		1x	0.1	ND		l x	0.1
Nickel	3.2	BW	lx	3	ND	W	lx	3	4.2	BW	lx	3	6.2	BW	lx	3
Selenium	2	В	lx	2	ND		1x	2	ND		1x	2	ND		1x	2
Silver	5.3	В	lx	4	6.4	В	lx	4	4.7	В	1x	4	4.8	В	İx	4
l'hallium	ND	NW	lx	2	ND	NW	lx	2	ND	NW	lx	2	ND	NW	lx	2
Zinc	21.2		<u>lx</u>	6	7.3	<u> </u>	<u>lx</u>	6	19.5	В	<u>lx</u>	6	11.6	B	lx	6
														,		

CURTIS BAY

FT McHENRY

FMILEL

Dil.

Limit

FERRY BAR

and the the second second second

Result Qual

FBEL

Dil.

Limit

ND=Not detected N=MS outside of control limits B=Between IDL and CRDL W=Spike outside of control limits E=Serial dilution outside of control limits

NORTHWEST BRANCH EAST/WEST

Analyte			NBE/	NBWEL	
	_ug/l.	Result	Qual.	Dil.	Limit
Aluminum		202		lx	29
Antimony		6.7	В	lx	1
Arsenic		22.9		lx	1
Beryllium		ND		lx	1
Cadmium		ND		lx	1
Chromium		1.9	BN	1x	1
Copper		1.6	В	lx	1
Iron		71.6	В	lx	20
Lead		ND		lx	1
Manganese		1460	E	lx	5
Mercury		0.51		lx	0.1
Nickel		ND	W	lx	3
Selenium		ND		lx	2
Silver		5	В	lx	4
Thallium	,	ND	NW	lx	2
Zinc		13.5	B	<u>lx</u>	6

ND=Not detected N=MS outside of control limits B=Between IDL and C E=Serial dilution outside of control limits W=Spike ouside of control limits

Table 4-17. General chemistry results for reference water and Chesapeake Bay and Baltimore Harbor elutriates.

Analytc		P11 V	VAT			PHW	ATFD			PI5WA	T	
mg/l_	Result	Qual	<u>Dil.</u>	Limit	Result	Qual	Dil	Limit	Result	Qual.	Dil.	Limit
Carbon, total organic	ND		1x	5	4.2		lx	2	3.5		1x	2
Cyanide, total	ND		lx	0.01	ND		1x	0.01	ND		1x	0.01
Nitrogen, ammonia	ND		lx.	0.1	ND		lx	0.1	ND		lx –	0.1
Nitrogen, nitrate and nitrite	ND		lx	0.05	ND		lx	0.05	ND		lx –	0.05
Nitrogen, total Kjeldahl	ND		lx	0.25	0.3		lx –	0.25	ND		lx 🛛	0.25
Oxygen demand, biochemical	ND		lx	1	ND		lx	1	ND		lx	1
Oxygen demand, chemical	770		lx	10	ND		lx	200	ND		1x	200
Phosphorus, total	ND		lx	0.05	ND		lx	0.05	ND		lx	0.05
Sulfide, total	ND		<u>lx</u>	1	ND		lx	1	ND_		1x	

.

POPLAR ISLAND

ND=Not dctected

.

DEEP TROUGH

KENT ISLAND DEEP

POOLES ISLAND

.

Analyte		DTIV	νλτ			K13W	///1			KI3WA	TFD			POLIV	VAT	
mg/L	Result	Qual.	<u>_Dil.</u>	<u>Limit</u>	Result	<u>Qual</u>	Dil	Limit	Result	Qual	<u>Dil</u>	Limit	Result	Qual	Dil	Limit
Carbon, total organic	ND		lx	5	2.7		lx	2	2.9		lx	2	4		lx	1
Cyanide, total	ND		lx	0.01	ND		1x	0.01	ND		1 x	0.01	ND		1x	0.01
Nitrogen, ammonia	0.15		lx	0.1	0.17		1 x	0.1	0.17		lx	0.1	0.33		1x	0.1
Nitrogen, nitrate and nitrite	ND		1 x	0.05	0.11		lx	0.05	0.087		1 x	0.05	0.79		lx	0.05
Nitrogen, total Kjeldahl	ND		lx	0.25	ND		lx	0.25	0.33		1 x	0.25	ND		lx	0.25
Oxygen demand, biochemical	ND		1 x	1	1.9		lx	1	ND		1 x	1	ND		1x	1
Oxygen demand, chemical	841		lx	40	788		lx	20	731		l x	20	32		lx	10
Phosphorus, total	ND		lx	0.05	ND		lx	0.05	ND		lx	0.05	ND		lx	0.05
Sulfide, total	ND		<u>lx</u>	1	ND		lx	<u> </u>	ND		<u>lx</u>	1	ND		<u>1x</u>	

.

SWAN POINT CHANNEL

CRAIGHILL ENTRANCE/CRAIGHILL

CRAIGHILL ANGLE

.

CRAIGHILL UPPER RANGE/CUTOFF ANGLE

Analyte		SWI	PEL			CRE/C	CREL			CRA	JEL			CRU/C	UTEL	
mg/L	Result	Qual.	Dil.	Limit	Result	Qual	Dil.	Limit	Result	Qual.	Dil.	Limit	Result	Qual.	Dil.	Limit
Carbon, total organie	76.7		lx	1	19.2		lx	1	44.8		lx	1	37.2		lx	1
Cyanide, total	ND		lx	0.01	ND		lx	0.01	ND		l x	0.01	ND		1x	0.01
Nitrogen, ammonia	10.8		lx	1	2.2		lx	0.1	10.3		l x	5	6.4		lx	2.5
Nitrogen, nitrate and nitrite	0.06		lx	0.05	0.1		lx	0.05	ND		lx	0.05	0.1		lx	0.05
Nitrogen, total Kjeldahl	8.4		lx	0.25	2.8		lx	0.25	10.2		lx	2.5	6.3		lx	1.2
Oxygen demand, biochemieal	ND		lx	1	4.6		lx	1	6.4		lx	1	1.2		lx	1
Oxygen demand, ehemieal	114		lx	10	30.3		lx	10	24		1x	10	27.7		1x	10
Phosphorus, total	0.26		lx	0.05	ND		lx	0.05	0.063		lx	0.05	ND		1x	0.05
Sulfide, total	ND		lx	1	ND		<u>lx</u>	1	ND		<u>lx</u>	1	ND		lx	1

TOLCHESTER

BREWERTON EASTERN EXTENSION

.

÷

(Van-	Veen			<u>Gravit</u>	<u>y Core</u>			Van-V	een			Gravit	y Core	
Analyte		TL	CEL		TLVEL			BEEL				BEVEL				
mg/L_	Result	Qual.	<u>Dil</u>	Limit	Result	Qual.	<u>Dil</u>	Limit	Result	Qual	<u>Dil</u>	Limit	Result	Qual	Dil.	Limit
Carbon, total organic	26.8		lx	1	22.5		lx	1	42.2		lx	1	17.7		lx	1
Cyanide, total	ND		lx	0.01	ND		lx	0.01	ND		lx	0.01	ND		İx	0.01
Nitrogen, ammonia	2.4		lx	0.5	3.7		$\mathbf{I}\mathbf{x}$	0.5	5.3		1x	0.5	1.4		1 x	0.5
Nitrogen, nitrate and nitrite	0.31		lx	0.05	0.35		lx	0.05	0.24		lx	0.05	1.1		1x	0.1
Nitrogen, total Kjeldahl	2.9		lx	0.25	3.9		lx	0.25	6		1x	0.5	2.1		1x	0.25
Oxygen demand, biochemical	ND		lx	1	2.6		lx	1	1.2		lx	1	1		1x	1
Oxygen demand, chemical	128		lx	10	238		1x	10	74.1		1x	10	ND		1x	10
Phosphorus, total	0.12		lx	0.05	ND		lx	0.05	0.06		l x	0.05	ND		lx	0.05
Sulfide, total	ND		<u>lx</u>	1	ND		<u>lx</u>	l	ND		<u>lx</u>	1	<u>ND</u>		<u>lx</u>	<u>I</u>

BREWERTON/BREWERTON ANGLE

CURTIS BAY

FT McHENRY

FERRY BAR

Analyte	BR/BRAEL				CBEL			FMI IEL				FIBEL				
mg/L	Result	Qual	Dil	Limit	Result	Qual.	Dil.	Limit	Result	Qual	<u>Dil</u>	Limit	Result	Qual.	Dil	Limit
Carbon, total organic	46.3		Ιx	I	40.8		lx	1	39		Ix	1	50.7		lx	I
Cyanide, total	ND		lx	0.01	ND		Iх	10.0	ND		l x	0.01	ND		1 x	0.01
Nitrogen, ammonia	7.1		lx	1	5		l x	1	5.I		Ιx	1	7.8		Ιx	1
Nitrogen, nitrate and nitrite	0.17		Ιx	0.05	0.13		Ιx	0.05	0.15		lx	0.1	0.12		Ix	0.05
Nitrogen, total Kjeldahl	4.4		lx	0.25	5.3		lx	0.5	5.4		1 x	0.25	6		lx	1.2
Oxygen demand, biochemical	ND		Ιx	1	ND		1x	I	2.3		l x	1	ND		Ix	1
Oxygen demand, chemical	103		1 x	10	57		lx	10	77.7		Ix	10	80.3		lx	10
Phosphorus, total	0.1		1 x	0.05	0.078		1x	0.05	0.36		l x	0.05	0.74		lx	0.05
Sulfide, total	ND		<u>lx</u>	1	ND		<u>lx</u>	<u> </u>	ND	<u></u>	<u>Ix</u>		ND		Ix.	1

.

NORTHWEST BRANCH EAST/WEST

Analyte		NBE/N	IBWEL	
	Result	Qual.	Dil.	Limit
Carbon, total organie	30.2		lx	ī
Cyanide, total	ND		1x	0.01
Nitrogen, ammonia	3.2		lx –	0.1
Nitrogen, nitrate and nitrite	0.2		1x	0.05
Nitrogen, total Kjeldahl	3.3		1x	0.25
Oxygen demand, bioehemical	1.7		lx	1
Oxygen demand, ehemical	60.1		lx	10
Phosphorus, total	0.24		lx	0.05
Sulfide, total	ND		<u>lx</u>	

.

5. QA/QC RESULTS

This chapter will be submitted as an addendum.

5.1 MATRIX SPIKE / MATRIX SPIKE DUPLICATES (MS/MSD)

5.2 TRIP BLANKS (VOLATILES)

Trip blank results for volatiles are presented in Appendix C.

5.3 STANDARD ANALYTICAL REFERENCE MATERIAL (SARM)

6. REFERENCES

- EA Engineering, Science, and Technology (EA). 1995a. Final Sampling Plan. FY 1995 Sediment Sampling and Chemical Analysis for Baltimore Harbor and Chesapeake Bay, Maryland. Prepared for U.S. Army Corps of Engineers, Baltimore District. November.
- EA Engineering, Science, and Technology (EA). 1995b. Final Quality Assurance Management Plan for Testing of Dredged Material Proposed for Bay Disposal. Prepared for U.S. Army Corps of Engineers, Baltimore District. November.
- U.S. EPA. 1994. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual. EPA 823-B-94-002. U.S. EPA and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA. 1995. QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations. EPA 823-B-95-001. U.S. EPA and U.S. Army Corps of Engineers, Washington, D.C.

Appendix A Final Sampling Plan . .

Appendix B Final Quality Assurance Project Plan (QAPP)

 \mathbf{b}

. .

FINAL SAMPLING PLAN

.

FY 1995 SEDIMENT SAMPLING AND CHEMICAL ANALYSIS FOR BALTIMORE HARBOR AND CHESAPEAKE BAY, MARYLAND

Prepared for

Department of the Army Baltimore District U.S. Army Corps of Engineers 10 South Howard Street 10th Floor HTRW Branch Baltimore, Maryland 21201

Prepared by

EA Engineering, Science, and Technology 11019 McCormick Road Hunt Valley, Maryland 21031

November 1995

CONTENTS

LIST OF FIGURES	LIST O
LIST OF TABLES	LIST O
1. INTRODUCTION	1. INT
1.1 Background 1-1 1.2 Scope of this Project 1-1	
2. SAMPLE COLLECTION	2. SAN
2.1Sampling Approach2-12.2Sampling Locations2-12.3Sampling Equipment and Procedures2-12.3.1Sediment/Elutriate Sediment2-1	
2.3.2Water/Elutriate Water2-22.4Equipment Decontamination2-32.5Field QC Samples2-3	
2.5.1Field Blanks2-32.5.2Field Duplicates2-32.5.3Field Blind Split Samples2-42.5.4Matrix Spike/Matrix Spike Duplicate2-42.5.5Standard Reference Material2-4	
 2.6 Sample Containers, Preservation, and Handling	
2.7.1 Sample Labeling 2-5 2.7.2 Custody Seals 2-5 2.7.3 Field Logbook 2-5 2.7.4 Chain-of-Custody Record 2-5	
3.SAMPLE ANALYSIS3-14.DATA PRESENTATION4-15.STATISTICAL ANALYSIS5-16.REPORT PRODUCTION6-17.PROJECT SCHEDULE7-18.REFERENCES8-1	3. 4. 5. 6. 7. 8.

Dage

LIST OF FIGURES

Number	Title
2-1	Sampling stations in the Poplar Island reach.
2-2	Sampling stations in the Deep Trough reach.
2-3	Sampling stations in the Kent Island reach.
2-4	Sampling station near Pooles Island.
2-5	Sampling stations in the Swan Point reach.
2-6	Sampling stations in the Craighill Entrance and Craighill reaches.
2-7	Sampling stations in the Craighill Angle and Craighill Upper Range reaches.
2-8	Van Veen sampling sations in the Cutoff Angle and Brewerton Eastern Extension reaches.
2-9	Gravity core sampling stations in the Brewerton Eastern Extension.
2-10	Van Veen sampling stations in the Tolchester reach.
2-11	Gravity core sampling stations in the Tolchester reach.
2-12	Sampling stations in the Brewerton and Brewerton Angle reaches.
2-13	Sampling stations in the Curtis Bay, Ft. McHenry, Ferry Bar, Northwest Branch East, and Northwest Branch West reaches.
2-14	Sample chain-of-custody record for Bay sediments.
2-15	Sample chain-of-custody record for reference water and elutriates.

~

LIST OF TABLES

Number	Title
2-1	Sediment sampling locations.
2-2	Water sampling locations.
2-3	Required containers, preservation technique, and holding times for sediment samples.
2-4	Chemical analyses for Chesapeake Bay and Baltimore Harbor sediment samples.
2-5	Samples to be used for preparation of elutriates for Chesapeake Bay/Baltimore Harbor sediment quality analyses.
2-6	Required containers, preservation technique, and holding times for site water and elutriate water samples.
2-7	Chemical analyses for Chesapeake Bay and Baltimore Harbor reference water and elutriate water samples.
3-1	Analytical parameters and analytical methods for sediments and water.

1. INTRODUCTION

1.1 BACKGROUND

Section 404 of the Federal Water Pollution Control Act of 1972, Public Law 92-500, as amended by the Clean Water Act of 1977, Public Law 95-217, requires the Environmental Protection Agency (EPA), in conjunction with the U.S. Army Corps of Engineers (USACE), to promulgate guidelines for the discharge of dredged or fill material to ensure that the proposed discharge will not result in unacceptable adverse impacts to U.S. waters. The Draft Evaluation of Dredged Material Proposed for Discharge in Inland and Near Coastal Waters - Test Manual (EPA 1994), commonly referred to as the Inland Testing Manual (ITM), establishes procedures applicable to the potential contaminant-related environmental impacts associated with the discharge of dredged material in inland waters, near coastal waters, and surrounding environs. The technical guidance in the ITM is consistent with the Guidelines. Results obtained are used within the context of regulatory requirements to facilitate decision-making with regard to management of the dredged material.

1.2 SCOPE OF THIS PROJECT

The Baltimore District of the USACE intends to define chemical concentrations in sediment proposed for dredging in FY96 and FY97 consistent with the Guidelines and technical guidance of the ITM. Approach channels considered for maintenance and/or widening or realignment include the Craighill Entrance Channel, the Craighill Channel, the Craighill Angle, the Craighill Upper Range, the Cutoff Angle, the Brewerton Channel Eastern Extension, the Swan Point Channel, and the Tolchester Channel. Within Baltimore Harbor, the channels proposed for maintenance dredging include the Brewerton Channel, the Brewerton Angle, the Ft. McHenry Channel, the Curtis Bay Channel, the Northwest Branch East Channel, the Northwest Branch West Channel, and the Ferry Bar Channel. Reference sediments and waters will be collected from near Poplar Island, the Kent Island Deep Site, the proposed Deep Trough Placement Site, and the Pooles Island area.

This Sampling Plan (SP) addresses sampling tasks necessary to obtain chemical constituent data for sediment in these channels. The purpose of this SP is to provide a blueprint for all field work by defining the sampling approach. Sampling locations, sampling procedures and associated QA/QC, analytical parameters for each sample type, and data presentation are addressed in this document. QA/QC guidelines and procedures are addressed more specifically in the Quality Assurance Project Plan (QAPP) for this project (EA 1995).

2. SAMPLE COLLECTION

2.1 SAMPLING APPROACH

The overall sampling strategy is intended to minimize potential cross-contamination and maximize data comparability. Data quality will be controlled and maintained by:

- appropriate sampling program design
- collection of representative samples
- use of appropriate sampling techniques
- adherence to chain-of-custody, preservation, and holding time requirements
- sample analysis and analytical quality control based on approved, standard methods and procedures

2.2 SAMPLING LOCATIONS

Chemical concentration gradients are expected in the Chesapeake Bay sediments targeted for sample collection. In accordance with the Inland Testing Manual (ITM), sampling will begin with the stations anticipated to contain the lowest concentrations.

Sixty-nine stations will be sampled: 47 stations outside of Baltimore Harbor and 22 stations inside Baltimore Harbor. Samples will be collected first from the most southerly stations (Mid-Chesapeake Bay) and easterly stations. Sampling will proceed sequentially to the north and west from reference stations: Poplar Island, Kent Island Deep Site, the proposed Deep Trough Placement Site, and the Pooles Island area with the final samples recovered in the Inner Harbor area of Baltimore City. Station locations for each sampling reach are illustrated in Figures 2-1 through 2-13. Latitude/longitude of each station, and collection technique are presented in Tables 2-1 and 2-2. Sampling locations will be determined in the field using a Magellan[®] GPS with differential.

2.3 SAMPLING EQUIPMENT AND PROCEDURES

2.3.1 Sediment/Elutriate Sediment

Surface sediments will be collected at reference sites and channel reaches (58 stations) using a Kahlsico[®] stainless steel Van Veen sampler (40 liter capacity). One grab sample will be collected from each station. In order to avoid disturbance and associated loss of volatile chemicals, volatiles samples will be transferred directly from the grab sampler to sample containers. In addition, headspace will be eliminated from volatiles sample containers by filling the container to

the top. After volatiles samples have been removed, an approximate one gallon volume of sediment will be homogenized with a stainless steel spoon in a stainless steel mixing bowl. The homogenized sample will be transferred to appropriate sample containers using a stainless steel spoon.

Gravity coring will take place at 11 stations within the two reaches where undisturbed sediments are to be dredged (Brewerton Eastern Extension and Tolchester). A Benthos[®] Model 2171, 8ft. Gravity Corer with polycarbonate core liners (2 ⁷/₈ inch diameter) will be deployed to collect cores of consolidated material. Two core samples will be collected at each station in order to obtain the volume of sediment required for chemical and elutriate analyses. For both cores, the unconsolidated surface layer will be measured and discarded (approximately the top 3-7 inches of sediment), and the remaining consolidated material from each core will be measured, combined, and homogenized in a stainless steel bowl. All samples will be transferred to holding containers using a stainless steel spoon.

To avoid disturbance and associated loss of volatile chemicals, volatiles samples will be collected from the middle of the first gravity core and transferred directly to the volatiles sample containers before homogenizing. Headspace will be eliminated from volatiles sample containers by filling the container to the top. Sample container types, preservation techniques and holding times are presented in Table 2-3. A synopsis of analyses required at each station with the associated sample code is presented in Table 2-4.

Sediment samples to be used by the analytical laboratory in the preparation of elutriate samples will consist of composites of multiple samples collected from one or two reaches, as indicated in Table 2-1. Instructions for elutriate composites and sample IDs are presented in Table 2-5. These samples will be composited in the labora. Try in stainless steel bowls and approximately 3 L of the homogenized sediment will be removed and placed in the appropriate sample container using a stainless steel spoon.

All sediment collection equipment will be decontaminated between samples, according to the procedures described in Section 2.4 of this plan. Sampling inside of Rock Point/North Point will be conducted under level D conditions. Gloves, coveralls and goggles will be required of anyone handling samples.

2.3.2 Water/Elutriate Water

Reference water samples will be collected from the placement sites: Poplar Island, Deep Trough, Kent Island, and Pooles Island (Table 2-2). These samples will be analyzed for chemical constituents and will be collected using dedicated (1.5 inch diameter) Teflon bailers. Because water depth exceeds 100ft at the the Deep Trough site, a 1 liter, teflon-coated General Oceanics[®] niskin bottle will be deployed to collect water using a hydraulic winch. The niskin bottle will be deployed approximately 6-8 times to obtain the required sample volume. All samples will be poured directly into holding containers with appropriate preservatives supplied by EA Laboratories. To avoid loss of volatile chemicals, volatiles sample containers will be the first containers filled.

Elutriate water samples will be collected from each reach using a peristaltic pump with polyethylene tubing. At each reach, four gallons of site water will be collected from approximately 5 ft. above the bottom. If water depth is less than 5 ft, a mid-depth sample will be collected. At each station the tubing will be flushed with the equivalent of 10 times the collection tubing volume prior to sample collection. Water samples will then be dispensed directly into appropriate sample containers. Sample container types, preservation techniques and holding times for water samples are presented in Table 2-6. A synopsis of analyses required at each station with the assocaited sample code number is presented in Table 2-7.

2.4 EQUIPMENT DECONTAMINATION

To minimize potential cross-contamination, all non-dedicated sediment sampling equipment (stainless steel Van Veen, mixing bowls, and spoons) will be rinsed with site water, scrubbed with a bristle brush, rinsed a second time with site water and then rinsed with deionized water between samples. For gravity coring, a dedicated polycarbonate liner will be used at each station, and the exterior of the corer will be scrubbed with a bristle brush and rinsed with site water to remove excess sediment. All dedicated sampling equipment will be protected from contamination with covering (e.g. plastic wrapped, boxed) until employed for sampling.

2.5 FIELD QC SAMPLES

2.5.1 Trip Blanks

Trip blanks (also called transport blanks) will be analyzed to evaluate the effect of ambient site conditions and sample shipment on sample integrity and to ensure proper sample container preparation and handling techniques. For this program, trip blanks will be analyzed for volatile organi compounds only. Trip blanks are samples that originate as analyte-free water placed in volatile organic vials (preserved with HCl) in the laboratory and analyzed for volatile organic compounds. One trip blank will be analyzed per group of samples per day. All volatile samples collected on each sampling day will be stored in the same cooler as the trip blank.

2.5.2 Field Duplicates

Field duplicates are samples collected simultaneously from the same sampling location, which are used as measures of matrix homogeneity and sampling precision. Duplicate samples will be collected as individual, co-located samples. They will be homogenized separately, or placed directly into sample containers in the case of volatiles samples. Two field duplicate samples will be collected for each matrix (sediment and water). Stations where field duplicates will be collected are listed in Table 2-4 (sediment) and Table 2-7 (water).

2.5.3 Field Blind Split Samples

A split sample is a single, field-collected, homogenized sample that is divided into two portions in the field, with each portion being carried through the analytical process as a separate sample. Two split samples will be provided for analysis, each from a different sampling location.

At each of five locations, EA will collect a second set of samples. The second sample will be divided into two ½ gallon portions and placed into separate containers. Two of the five sets of samples will be blind selected, and relabeled to obscure their identity. One sample from each blind selected set will be shipped to EA Laboratories, the second to an outside laboratory. These results will be tracked as separate samples and provided to the Corps. Stations where sediment split samples will be collected are listed in Table 2-4.

2.5.4 Matrix Spike/Matrix Spike Duplicate

A matrix spike (MS) is a field sample to which a known amount of analyte is added before sample preparation and analysis to evaluate the potential effects of matrix interference. Analyte concentrations in the spiked and unspiked sample are used to calculate percent recovery as a measure of the extent of matrix interference. Five percent of the samples collected within each matrix (sediment and water) will be designated for MS analysis (U.S. EPA 1995).

For organic methods, the MS is duplicated, providing a matrix spike duplicate (MSD). For inorganic analytes, a method duplicate is analyzed in addition to the MS. Five percent of the samples collected for each matrix (sediment and water) will be designated for MSD or duplicate analysis (U.S. EPA 1995). For this sampling program, EA Laboratories will analyze four MS/MSD sediment samples and one MS/MSD water sample. Samples designated for MS/MSD analysis (organic analyses) or MS and duplicate analysis (inorganic analyses) will be collected in duplicate. Sampling locations where MS/MSD samples will be collected are indicated toTable 2-4 (sediment) and Table 2-7 (water).

2.5.5 Standard Reference Material (SRM)

One sample obtained by EA Laboratories from the National Bureau of Standards (NBS) will be analyzed for the full suite of sediment analyses.

2.6 SAMPLE CONTAINERS, PRESERVATION AND HANDLING

Containers, quantities required for analysis, preservation techniques, and holding times for sediment and water samples are presented in Tables 2-3 and 2-6, respectively. Sediment and water samples will be stored in coolers at 4°C while awaiting delivery to the appropriate analytical laboratory. Samples will be delivered by sample collection personnel directly to EA Laboratories' facility in Hunt Valley, MD. Samples will be delivered to EA Laboratories on the

day of collection. Samples requiring shipment to subcontractor laboratories will be shipped by EA Laboratories via overnight express.

2.7 CHAIN-OF-CUSTODY

2.7.1 Sample Labeling

The following information, at a minimum, is required on each sample label:

Collection date
Collection time
Sampler's initials
Preservative(s)

After the label has been completed in the field using indelible ink and has been affixed to the sample container, the label is covered with clear tape to provide protection from moisture. Pre-printed pressure-sensitive labels will be supplied by EA Laboratories.

2.7.2 Custody Seals

To ensure that samples have not been disturbed during shipment, any shipping containers that leave the immediate possession of the sample collection personnel (i.e., samples to be shipped by courier to subcontractors) will be taped with a custody seal. The seal will include the signature of the person shipping the container and will be placed on the lid of the shipping container after the container has been secured closed with strapping tape. Clear adhesive tape will be placed over the cooler custody seals to ensure that seals are not accidently broken during shipment.

2.7.3 Field Logbook

All information pertinent to the field activities will be recorded in a bound logbook. Entries in the field logbook will include date and time of sample collection, tidal cycle, weather conditions, field observations, sampling station, sample identification number, sampling location (including latitude and longitude), sampling depth, and sample collection method.

2.7.4 Chain-of-Custody Record

A chain-of-custody record will accompany each shipment of samples to the laboratory for analysis. Chain-of-custody documentation will include the following: sample ID number, data and time of collection, number of containers, analyses requested, and sampler's name and signature. Chain-of-custody forms submitted with sediment and water samples are depicted in Figures 2-14 and 2-15, respectively.

Figure 2-4. Sampling stations near Pooles Island.

Figure 2-7. Sampling stations in the Craighill Angle and Craighill Upper Range reaches.

Figure 2-8. Van Veen sampling stations in the Cutoff Angle and Brewerton Eastern Extension reaches.

Figure 2-9. Gravity core sampling stations in the Brewerton Eastern Extension.

and the second s

Figure 2-13. Sampling stations in the Curtis Bay, Ft. McHenry, Ferry Bar, Northwest Branch East and Northwest Branch West reaches.

Сотра	ny Name:	~			Projec	t Mana	per or	Contact:		P	u am	store	/Mett	nod M	lumb		for A	naly	ala			Cha	in of C	Custody P	Jeco	ord
	£/	н			Phone	X 2	20	<u> </u>	1	8		*		Q	2	۶Ľ		Į	ŀ	8	P			B EA Laborato 19 Loveton C	riee Circle	
Project	No. (cC	>79	87.	26	Projec	t Name	20:	ALE		0/8	1×	*	βI	2	ğğ	٤	XX.	ā		Ĕ	ž			Sparks, MD : Telephone: (*	21162	71-4920
Dept.:	3153	Tas	ik Č	∞ 3	Š	<u>n</u> m	pei	~	1	5	80	8	E.	휡	۲°	a []	<u></u>	5	Q	5	Ŧ	Denert Delta		PIDC (410) 77	/1-440	<u> </u>
Sample	Storage	Loca	tton:		ATO N	iumber.		_		Ş	100	8	<u>Š</u>	৩	<u>"</u>	ភ្ញ	1	₹	81	ğ	9		9 angeren (* 1995) 19		E	
					İ	2	90	<u> </u>	5	ß	2		3	<u>ع</u>]	ζĮ.	۲ ۲	<u>₹</u> ŀ	٣	<u>द</u> ।		2	EDD V3A			, с. 	
Page	of 2	F	labout	.] §	3	ð	र्त	귀	<u>ı</u>	Å.	ů,	₹ 2	4	ŝ	à	£		- 200	mary	τ4	DIES
			Ι] §	8	-¥	s S	ş	ŝ	3	Z		21.	3) / E	EAL aba	I.			
Data	Tee	Vater	Ī		Sampl	e Ident	lficatio	n	٥ و	20	Ē	Ŋ	الم	3	i al	Ξl	5		ŏ	<u>ک</u>	102	Accession		D		
Date	TWING	1-	ا گ						╞╴	<u>₽</u>	1	<u> </u>	-	터	<u> </u>	4	4		4	-	-			riema.	1165	Alenet
		┢──	주							-			-+	\rightarrow	+	-	-+-	+	-+	\dashv			LPM:	Mary Asp	<u>m/</u> :	SVIII
		–	+	┟┸┸┸		ЦЦ			╂──					-+		+	+	_	-+		<u> </u>		1			
		<u> </u>	-	┠╍┖┸┖					┢		\square	$\left - \right $	-+	-+	-+-	+	-	_	4				11-15	PCB (or	NCC IT	tration
		╂	+	┠┶┷┷			ш		┢	<u> </u>						-+	-+-	+	+	_			CAL	eds 11.5	5 Jug	/hgl-vet
		–	+							┣			-+	-+-	-+-	-+	-+	+	-+				rce	Congene	<u></u>	one
			╂	┠╍┷╼┷╸			1.1.		 				-+	-+	+	-+	+		+	_			date	rmined	ڪر	ing
		–	–	┝╌┦╌┛╼┛									-+	-+	-+	-	-+		-+-				pes	ticide e	**	aut
		_	╉──				44		╂—	┨──				-+	+	-+-	+	+	+	-			SW-	846 35	40	trom
		┣──	╉──	┝╌┷┶┶										-+-	-+-	-+-		-	-+	-+			Pest	iciae m	iy o	nalysy
		–	+								-			-+		-		-	-+				C 1 C			
		┝	-											-				-+-	-	-	_		Som	ogale to	<u>ا م</u>	
			 				111	<u></u>					_	_	_	_	_		_	_			Per	<u>icide</u> on	<u>1y</u>	-TCX
			_	11.1			1.1.1		ļ			_		_		_	_			$- \downarrow$						
				11.1		111																	**	PCB on	14:	2mL
					1111		111																fin	al extr	nd	
				111	1111	111	111	11111					T		Τ		Т	Т					مناه	d clean	υp	
									1				-1		\uparrow	-	\uparrow		1	-f						
		+				<u></u>		<u></u>					-	-†	+	-t	+	+	+							
		┣—	+-										+	+	+	+	-+-	+	+							
		L			шц	111	ш						_		+	-	_	-	_	-						
						111												_								
Sample	by: (Sig	natu	ra)			Dete/	'Time i	Relinquish	id by:	(Sig	natu	re)				Da	ite/T	me	Re		/ed b	oy: (Signature)				Date/Time
Reincul	shed by:	(Sig	nature)		Date	Time	Received b	ý Let	orati	xry: (Signi	iture)			De	te/T	me	AIT		Num	iber:		Sample Shi	incer!	by: (Circle)
				•		i	I		-			-					1							Fed Ex.	Puro.	UPS
Cooler]	iemo.	C	pH	Yes		lo Ca		in:					Cue	lody	See	e ini	not i	M			No			Hand Carrie	ed .	
		_		And the second second	<u> </u>		-	Dis will halo o	arthy a		antio	na wit	h lebo	mitor	v hard	ninu				السيو	-			Other		

ς.

Figure 2-14. Sample chain-of-custody record for Bay Sediments.

Compan	y Name: 1≓∆			Pro	Frank Pi	Contact:		P	aram	eter	ra/Me	thod	Num	bers f	or A	naly	sis T		Cha	in of C	Custody Reco	rd
Project M Dept.: 2	153	78 Tas	7.2 k: 00	Photo C Projection CO3	lect Name: US Bey Section Secondin			n N	-846	and the second	TSK/	10.23.0	suc Ban								B EA Caboratorias 19 Lovaton Circle Boarto, MD 21152 Telephone: (410) 77 Fax: (410) 771-440	71-4920
Sample S	Storage I	Loca	tion:	ATO	Number:	7	1	F	3	2		3	73				1		Report Deliv	erables:		
				1.	2908		l c	3	17	Ŝ,	153	s,	5					1	CTO CTO	3		
Page 2	2 01 2	P	aport	<i>#</i> :			툍	Ē	Ľ,	1		Ę	et.						DUE TO CL	ENT:	mary ta	ماوح
Date	Time	Water	Soil	Sam 1	nple identification 19 Characters		No of No	Cychin	Tribut	Alteres	Atteres	Aq simed	4 4						EA Labe Accession Number		Remarks	
			X																	LPM:	Mary Aspen/	VATES TA
				1.1.1.1.1.1											Ι							
							_						. [Γ					≠ Bi	A'S 8270 PI	<u>س</u>
						ш										T				Bay	Sediment L	.is4
														-		_	_					
											Ļ		_	_						**1	AHIS BY HPL	C pius
				11111										_	4				<u> </u>	Bay	Sediment 1	-ist
						┶┶┶┶┶							-+		÷	_		┢	<u> </u>			
						┶┸┷┵┷┥					┢──		-+	_	╋	+		+	 	1771	PPL Volati	اف
			-		╾┹╍┺╼┠╸┞╺╃╴┺╼╀╴	┶┶┷┷┷	—				╂		\rightarrow		╋	┿		+		Plus	Bay Sectime	nt List
						111.1.1.									+	-+-	+-	╋	 	<u> </u>		
				11.11					\square					_	_	-		┢				
		_											\rightarrow	-	-	+		 				
													_		+	_	-	 				
				11.1.1.1																		
				11111																		
															Γ	Ι						
												Τ			Т	Т		Γ				
			┝╼╌┨	<u>+_</u>					├ ╂				+		┢	+	+-	1-		h		
amples	ples by: (Signature)						d by:	(Sig	natur	B)				Dat		me	Rece	lved	by: (Signature)	L		Date/Time
lelinquis	Inquished by: (Signature) Date/Time Receive								yry: ((Sign	atun)		Dat	a/11	me	Airbi	1 Nun	nber:		Sample Shipped I	y: (Circle)
Venier T-		<u> </u>	nH-		No Comment	r					ò		See	in inte	d I	- -		No			Hand Carried	UPd
	μ. 	ula udit bala ala				-			_	-	_		- L	<u>_</u>								

•

•---

Figure 2-14. (Cont.)

Compa	ny Name	: - •			Project I	Manager o Frank F	Contact:	L	P	uame	itera	/Metho	xd Nu	umber	s for	Analy	yala	_	1	Cha	in of C	Custody Rec	ord
Project	10.60 3153	78 78	7. 20 uk 00	203_	Phone: Project I /Crry	X 89 Name: U Saclime Sam	07 SACE nt pling		822 / ACB	7000	0509 L	45.3 med	L med	353.3 Mad 50.1 Mad		S. I med	+ mad	Pole	W 8340	Ferrert Debu		B EA Laboratories 19 Lovelon Circle Sparka, MD 2115 Telephone: (410) Fax: (410) 771-44	2 771-4920 07
затри	Sionge	LOCI				то н : <i>д</i> 9	08.	l s	39.65	1010	<u> </u> Su	83	<u>9</u>		0%0	<u></u>	5	Sw 5	Su- B		3		
Page	1 01 2	۲ [F	leport	ð:] 🛔	7	-	3	36	£ -		3	đ	दी	5	£		- Jun	mary rave	3
Date	Time	Water	Ret	*	Sample 19 C	identificati haracters	Din	No. of Cor	Pr. Japan	Pr. Itelel	TOPOL SLI	Tot. 20		N. traft 1 N. tregen	Toc / S	Bub/ 6	3/90	Cyandy	RUDE	EA Labe Accession Number		Remarks	
		X																			LPM:	Mary Asper /	untashq Sullukan
					uц																		
					цц								Γ								# 1/5	ç	
		↓					11111	 					1			L	$-\top$						
	<u> </u>	┨	$\left - \right $		LLL		┞┶╾╇╺┻╼┻╼		\square		4	-+-	+	+			-+	-+	_				
		╂	╂					┢			-+		+-	—			-+		_		ter 1	elutriate Sa	diment
	<u> </u>	⊢	\vdash							-+	-+		+-				-+		_		Com	<u>Dosite Unc</u>	1
		1—					<u></u>			-	-+		+	+		-+	╉		-			(h	<u>pater /</u>
							<u></u>				-		+	+			-+	-					
																		1			* *	BNAS BAT	2 alus
											1								-1		Ĩ	Luc Salime	al Let
							<u></u>						\top				+				°	24 201161	
						1111							T								***	PPL Volat	ila
																	+					5 Bur Sol	mont List
		†			<u>⊢ I I I I</u>		<u></u>			-	-+		+-	+			-		-1			2	ment -151
		†					<u></u>				╉		╈	1			-†	+					
		†			<u>↓↓↓↓</u>					-+	-+		+-	1	\vdash	+	-†	-+					
·		┣━	\square					\square		-+	+		+	-			+	-+					
			$\left - \right $							-+	+		+			-+							
Comela	e buc (Ql-	L	<u> </u>			Lill.			(81-		<u>, </u>			4		ner -	╦			a (Claratura)			0.00
Saubie	ə uy. (əlğ	n serañ	•)			рация (111 на 		y:	100		.,			_ '	-a.027	* # 170	1.00		90.0	y: (Signitture)			Date/Time
Relingu	ished by:	(Sip	heture)		Dete/Time	Received by	y Lab	orato	ry: (8	igne	ture)		╈	hete/	Time	Alt	italii N	lum	ber:	_	Remain Rhimed	
- 1-				-		Ŧ					-	•			1							Fed Ex. Pure	UP8
Cooler	Temp	C	pHt	Yes		Committee	nin:					Cust	dy i	teels h	-		-		to			Hand Carried	
-			_			the state of the second second second second second second second second second second second second second se			_		_					-		_	_		_		

Figure 2-15. Sample chain-of-custody record for reference water and elutriates.

.

2-21

١

Compan	y Name: Ei	7			Projec	t Manager o Frank P K AP	r Contact:	-	T	aran	neten	s/Met	hod I	Numb	ers (or An	alys	148 	Т	+	Cha	in of (Dusto	ody Re	econ	d	
Project Dept.: 2	No. 60 3153	78 Tas	7. <i>30</i> k <i>00</i>	4 203	Projec	t Name: US Y Section	ACE ent	1	Sanet.												E			ovelon Cin foa, MD 21 phone: (41 (410) 771-	152 0) 771- -4407	-4920	
Sample	Storage	Locat	don:		ATO N	lumber: HO	8],													Report Delly 1 2 FDD: Really	erables: 2 3 5 Suur			E hlas		
Page 2	2012	_ R	aport	# :] [4												DUE TO CU	ENT:		भ म्प्प 			
Dete	Time	Water	Soli		Sampi 19	le identificati Characters	on	No of Co	Auminun Custon												EA Labe Accession Number			Remark			
		Х														Т	Τ	Ι				LPM:	Mari	kper/	135	lashq Iliyan	
		L			ш	ш	11.1.1.1						_														
							11111													_							
								1						ļ		_	1										
		Ļ			ЦЦ			1-	+	 	L_			\rightarrow	_	+-	_	4	\bot	-		_					
				111					_	L_				_	_		⊥	_	-	┛							
					ىبى					_					_	_	4		4-	_							
		<u> </u>			ЦЦ			╋		_		\square			-+-		+		+	┿		 					
								╉─		┢─					-+-		╉		╋			┥──			_		
					ЦЦ					-		\vdash		-+	÷	+	+		╋	-+	···· , ··	╉					
				╾┖┵┺┈	ليليليا			┢	+			\square		-+	-		+		+	∔		┫───					
		L						┢	+	_			\rightarrow			_	╇	_	+-	-		 					
					ப்ப			+		_	 	┝──┤	_	\rightarrow	+		╇			-		<u> </u>	<u></u>				
						பாப	11111			_				_	_		∔			_		L					
					ш																						
				111																							
															T		Γ			T							
·								T			Γ		-				T		T	T							
		<u> </u>	††					1-		1					-	1	T	\top		T		1					
			┟┈┥					╉─		 			-	+	-+-		╉	-+-	╉	╉							
Samplea	ples by: (Signature) Deta/Time Relinqu							ed by	y: (8k	jnetu	H®)	L., 1			De	te/Tin	ne	Reci	elve	dby	r: (Signature)	ļ			D	ete/Time	
Relinquia	juished by: (Signature) Date/Time Receiv							y Li	bonat	ory: ((Sign	eture)		De	te/Tin	ne	Althi	II Nu	umb	Xer:		San Fed	iple Shipp Ex. P	ped by turo.	r. (Circle) UPS	
Cooler T	amp	_c	pHt	Yee		to Commi	rik:					Ou	itody	100	ia ini	at [1			0			Hen	d Carried			
IOTE: PI	ese indic	ate m	ethod	number fo	r anelye	ee requested.	This will help a	ie/fy	eny q	uestic	xne w	ith lab	oratio	ry teal	niqu	M.				_			Oth	M:			

Figur2-15. (Cont.).

Sampling Reach	Station	Latitude	Longitude	Sampling Method	No. Sediment Samples	No. Elutriate Sediments
Poplar Island	PI I	38° 44' 03" N	76° 22' 16" W	Van Veen	I TBT	2 (composite)
	PI 2	38° 44' 59" N	76° 23' 29" W	Van Veen	1	5:1 x 2 400 ml each
	PI 3	38° 46' 14" N	76° 23' 07" W	Van Veen	1	
	PI 4	38° 46' 39" N	76° 21' 54" W	Van Veen	1	
	PI 5	38° 45' 43" N	76° 21' 40" W	Van Veen	1 TBT	
Deep Trough	DT 1	38° 54' 48" N	76° 23' 14" W	Van Veen	1	1 (composite)
	DT 2	38° 55' 00" N	76° 23' 18" W	Van Veen	1 TBT	3:1 666 ml each
· · · · · · · · · · · · · · · · · · ·	DT 3	38° 55' 12" N	76° 23' 18" W	Van Veen	1	
Kent Island Deep	KI 1	38 ^{.°} 59' 42" N	76° 20' 48" W	Van Veen	1	1 (composite)
	KI 2	39° 00' 51" N	76° 20' 25" W	Van Veen	1 TBT	3:1 666 ml each
	KI 3	39° 01' 31" N	76° 19' 54" W	Van Veen	1	
Swan Point	SWP 1	39° 05' 10" N	76° 18' 28" W	Van Veen	1	1 (composite)
	SWP 2	39° 05' 48" N	76° 18' 05" W	Van Veen	1 TBT	3:1 333 ml each
	SWP 3	39° 06' 32" N	76° 18' 11" W	Van Veen	1	
Craighill Entrance	CRE 1	39° 02' 34" N	76° 23' 03" W	Van Veen	1	1 (composite)
	CRE 2	39° 03' 18" N	76° 23' 20" W	Van Veen	1 TBT	6:1 333 ml each
	CRE 3	39° 03' 60" N	76° 23' 36" W	Van Veen	1	
Craighill	CR 1	39° 04' 48" N	76° 23' 41" W	Van Veen	1	
	CR 2	39° 05' 44" N	76° 23' 41" W	Van Veen	1 TBT	
	CR 3	39° 06' 34" N	76° 23' 41" W	Van Veen	1	
Craighill Angle	CRA 1	39° 07' 23" N	76° 23' 47" W	Van Veen	1	1 (composite)
	CRA 2	39° 08' 04" N	76° 24' 08" W	Van Veen	1	2:1 1000 ml each

TABLE 2-1 SEDIMENT SAMPLING LOCATIONS

Note: TBT (Tributyl Tin) analysis performed only on samples outside of Baltiomore Harbor.

Table 2-1 (continued)

.

Sampling Reach	Station	Latitude	Longitude	Sampling Method	No. Sediment Samples	No. Elutriate Sediments
Craighill Upper Range	CRU I	39° 08' 42" N	76° 24' 36" W	Van Veen	1	l (composite)
	CRU 2	39° 09' 23" N	76° 25' 03" W	Van Veen	1 TBT	6:1 333 ml each
	CRU 3	39° 10' 06" N	76° 25' 36" W	Van Veen	1	
Cutoff Angle	CUT 1	39° 10' 25" N	76° 25' 52" W	Van Veen	1	
	CUT 2	39° 10' 36" N	76° 26' 07" W	Van Veen	1 TBT	
	CUT 3	39° 10' 45" N	76° 26' 28" W	Van Veen	1	
Tolchester	TLC 1	39° 09' 39" N	76° 18' 24" W	Van Veen	1	l (composite)
(Van Veen)	TLC 2	39° 10' 44" N	76° 17' 12" W	Van Veen	I TBT	3:1 666 ml each
	TLC 3	39° 11' 51" N	76° 15' 28" W	Van Veen	1	
Tolchester	TLV I	39° 11' 32" N	76° 16' 24" W	Gravity Core	1	l (composite)
(Gravity Core)	TLV 3	39° 11' 45" N	76° 16' 07" W	Gravity Core	1	5:1 400 ml each
	TLV 5	39° 11' 57" N	76° 15' 50" W	Gravity Core	1 TBT	
	TLV 7	39° 12' 12" N	76° 15' 34" W	Gravity Core	1	
	TLV 9	39° 12' 26" N	76° 15' 16" W	Gravity Core	1	
Brewerton, Eastern Ext.	BE 1	39° 08' 51" N	76° 20' 03" W	Van Veen	1	1 (composite)
(Van Veen)	BE 2	39° 09' 23" N	76° 21' 48" W	Van Veen	1 TBT	4:1 500 ml each
٥	BE 3	39° 09' 54" N	76° 23' 29" W	Van Veen	1	
	BE 4	39° 10' 25" N	76° 25' 12" W	Van Veen	1	
Brewerton, Eastern Ext.	BEV 1	39° 08' 56" N	76° 19' 46" W	Gravity Core	1	1 (composite)
(Gravity Core)	BEV 2	39° 09' 21" N	76° 21' 10" W	Gravity Core	1	6:1 333 ml each
	BEV 3	39° 09' 44" N	76° 22' 24" W	Gravity Core	1 TBT	
	BEV 4	39° 10' 03" N	76° 23' 23" W	Gravity Core	1	
	BEV 5	39° 10' 18" N	76° 24' 15" W	Gravity Core	1	
	BEV 6	39° 10' 41" N	76° 25' 38" W	Gravity Core	1	

Table 2-1 (continued)

:

.

Sampling Reach	Station	Latitude	Longitude	Sampling Method	No. Sediment Samples	No. Elutriate Sediments
Brewerton	BR 1	39° 11' 02" N	76° 27' 23" W	Van Veen	1	l (composite)
	BR 2	39° 11' 18" N	76° 28' 12" W	Van Veen	1	6:1 333 ml each
	BR 3	39° 11' 34" N	76° 29' 07" W	Van Veen	1 TBT	
	BR 4	39° 11' 51" N	76° 30'01" W	Van Veen	1	
Brewerton Angle	BRA 1	39° 12' 03" N	76° 30' 31" W	Van Veen	1	
	BRA 2	3 _. 9° 12' 15" N	76° 30' 53" W	Van Veen	1	
Curtis Bay	CB 1	39° 13' 18" N	76° 32' 18" W	Van Veen	1	l (composite)
	CB 2	39° 13' 19" N	76° 32' 55" W	Van Veen	1	4:1 500 ml each
	CB 3	39° 13' 17" N	76° 33' 38" W	Van Veen	1	
	CB 4	39° 13' 18" N	76° 34' 18" W	Van Veen	1	
Ft. McHenry	FMH 1	39° 12' 46" N	76° 31' 28" W	Van Veen	1	l (composite)
	FMH 2	39° 13' 33" N	76° 32' 19" W	Van Veen	1	4:1 500 ml each
	FMH 3	39° 14' 17" N	76° 33' 01" W	Van Veen	1	-
	FMH 4	39° 15' 01" N	76° 33' 52" W	Van Veen	1	
Ferry Bar	FB 1	39° 15' 17" N	76° 34' 49" W	Van Veen	1	l (composite)
	FB 2	39° 15' 20" N	76° 35' 06" W	Van Veen	1	3:1 666 ml each
	FB 3	39° 15' 20" N	76° 35' 28" W	Van Veen	1	
Northwest Branch East	NBE 1	39° 15' 57" N	76° 34' 30" W	Van Veen	1	l (composite)
	NBE 2	39° 16' 21" N	76° 34' 31" W	Van Veen	1	400 ml each
Northwest Branch West	NBW 1	39° 16' 19" N	76° 34' 51" W	Van Veen	1	
	NBW 2	39° 16' 38" N	76° 35' 17" W	Van Veen	1	
	NBW 3	39° 16' 38" N	76° 35' 55" W	Van Veen	1	
Total No. Samples					69	13
Field Duplicates Blind Splits SRM					2 TBT 2 TBT 1 TBT	
Total No. Samples to be analyzed					74	13

,

Sampling Reach	Station	Latitude	Longitude	Sampling Method	No. Water Samples
Poplar Island	Pl 1	38° 44' 03" N	76° 22' 16" W	Teflon bailer	1
	PI 5	38° 45' 43" N	76° 31' 40" W	Teflon bailer	1
Deep Trough	DT 1	38° 54' 48" N	76° 23' 14" W	Niskin	1
Kent Island Deep	KI 3	39° 01' 31" N	76° 23' 18" W	Teflon bailer	1
Pooles Island	POL 1	39° 16' 09" N	76° 13' 34" W	Teflon bailer	1
Total No. Samples					5
Field Duplicates					2
Total No. Samples to be analyzed					7

TABLE 2-2 WATER SAMPLING LOCATIONS

(a) 12 liters of water will be required for laboratory preparation of each elutriate sample; actual numbers of
 samples to be collected from each placement site will be determined by the number of dredge sites from which sediment is proposed for disposal at each placement site.

TABLE 2-3 REQUIRED CONTAINERS, PRESERVATION TECHNIQUE, AND HOLDING TIMES^(a) FOR SEDIMENT SAMPLES

Parameter	Mass Required (g) ^(b)	Container ^(c)	Preservative	Holding Time
Inorganics				
Mercury	5	Р	≤20C	30 days
Other Metals	5	Р	≤20C	6 months
Cyanide	50	P,G	4C	14 days
Sulfide	10	P,G	4C	7 days
Biochemical Oxygen Demand	10	G	4C	48 hours
Chemical Oxygen Demand	50	P,G	≤20C	28 days
Nitrogen (Ammonia, Total Kjeldahl, Nitrate + Nitrite)	150	P,G	4C	28 days
Phosphorus				
Physical Parameters		T		
Total Moisture, Atterburg Limits, Grain Size	1000	P,G	≤20C	6 months
Organics		,		
Tributyltin	50	Solvent rinsed glass jar with Tetlon-lined lid	≤20C	6 months
Total Organic Carbon	5	Heat treated glass vial with Teflon- lined lid	4C	14 days
Pesticides PCB Congeners Semivolatile Organics	400	Solvent rinsed glass jar with Tetlon-lined lid	≤20C	10 days until extraction 40 days after extraction
Volatile Organics	50	Heat treated glass vial with Teflon- lined lid	≤20C	10 days

(a) From time of sample collection per USACE/EPA. 1991. Evaluation of Dredged Material Proposed for Ocean

 ⁽a) From the of sample concerton per concerto

TABLE 2-4. CHEMICAL ANALYSES FOR CHESAPEAKE BAY AND BALTIMORE HARBOR SEDIMENT SAMPLES

SAMPLING LOCATION	SAMPLE ID	PPL.		PCB		PPL Metals	Total	Total		NO2 &							El.us.us
		Org(a)	PAlis(b)	Congeners(b)	TBT(h)	& Al, Fe, Ma(h)	Sulfide(b)	Phus. (b)	TKN(b)	NO3(h)	Ammunia(b)	TOC(h)	BOD(b)	сорны	Cynnide(b)	Afterberg, Moist	Breath
Poplar Island														(02(0)	C y made(b)	Chain M/E(b)	итер(и)
PII	PHISED	x	x	X (e)	x	x	x	x	x	x	x	x	x	×	v		
PI2	PI2SED	x	x	X (c)		x	x	x	x	x	x	x	x	×	Ŷ	~	
PI,I	PI3SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	Ŷ	, ,	
Pla	PI4SED	x	x	X (c)		x	x	x	x	x	x	x	Y Y	×	ç	~	•
P15	PISSED	x	x	X (c)	x	x	x	x	x	x	x	x	Ŷ	Ŷ	ĉ	×	
Deep Trough												~	~	^	^	*	
DTI	OTISED	x	x	X (c)		x	x	x	x	x	x	x	¥	×	v		
072	DT2SED	x	x	X (c)	x	x	x	x	x	x	x	×	v	Ŷ	Ŷ	×	•
DT3	DT.ISED	x	x	X (c)		x	x	x	x	x	x	Ŷ	Ŷ	Ĵ	Ŷ	*	
Kent Island Deep											~	~	Ŷ	^	^	x	
ки	KIISED	x	x	X (e)		x	x	x	x	x	x	¥	×	v	v		
К12	K12SED	x	x	X (c)	x	x	x	x	x	x	x	x	Ŷ	Ŷ	Ĵ.	×	
КВ	KI3SED	x	x	X (c)		x	x	x	x	x	x	x	Ŷ	Ŷ	Ŷ	x	
Puoles Island												~	~	^	^	*	
POLI	POLISED	x	x	X (c)		x	x	x	x	x	x	x	v	v	~		
POLI Matrix spike/Matrix spike dup.	POLISEDMS/MSD	x	x			x	x	x	x	x	x	x	x	Ŷ	Ŷ	x	
Swan Pulnt	•												~	~	^	~	
SWPI	SWPISED	x	x	X (c)		x	x	x	x	x	x	x	x	¥	v	v	Children
SWP2	SWP2SED	x	x	X (c)	x	x	x	x	x	x	x	x	×	Ŷ	Ŷ	×.	SWPEL
SWP.1	SWP3SED	x	x	X (c)		x	x	x	x	x	x	×	x	Ŷ	Ŷ	x	SWPEL
Craigbill Entrance													~	^	^	*	SWPEI.
CREI	CREISED	x	x	X (c)		x	x	x	x	x	x	¥	v	~	~		
CRE2	CRE2SED	x	x	X (c)	x	x	x	x	x	x	x	¥	Ŷ	Ŷ	Ŷ.	x	CRE/CREI.
CRED	CRE3SED	x	x	X (c)		x	x	x	x	x	x	x	Ŷ	Ŷ	ĉ	x	CREACREL
Craighill												~	^	^	~	x	CRE/CREI.
('RI	CRISED	x	x	X (e)		x	x	x	x	x	x	x	·•	v	~		
CR2	CR2SED	x	x	X (e)	x	x	x	x	x	x	x	r r	v	Ĵ.	~	x	CRE/CREI,
CR2 Field Duplicate	CR2SEDED	x	x	X (c)	x	x	x	x	x	x	x	x	Ŷ	Ŷ	~	x	CREACHEL
CR3	CRASED	x	x	X (c)		x	x	x	x	x	x	x	Ŷ	Ŷ	[^]	x	
Craighill Angle												~	^	^	^	x	CREACREL
CRAI	CRAISED	x	x	X (c)		x	x	x	x	x	x	x	x	v	~	2	aa . a .
CRA2	('RA2SED	x	x	X (c)		x	x	x	x	x	x	x	x	Ŷ	~	x	CRAEL
Craighill Upper Range												~	~	Ŷ	^	x	CRAEL
CRDI	CRUISED	x	x	X (c)		x	x	x	x	x	x	x	*	v	~		
CR1/2	CRD25EO	x	x	X (c)	x	x	x	x	x	x	x	x	Ŷ	Ŷ	~	x	CRD/CUTEL
CRU2 Matrix spike/Matrix spike dup	CRU2SEDMS/MSO	x	x		x	x	x	x .	x	x	x	x	Ŷ	Ŷ	x v	x	CRU/CUTEL
CRU3	CRU3SED	x	x	X (c)		x	x	x	x	x	x	r r	Ŷ	× v	x 	x	CRU/CUTEL
												~	^	^		x	CRU/CUTEL

.

SAMPLING LOCATION	SAMPLE ID	PPL.		РСВ		PPL Metals	Total	Total		NO2 &						Alterberg Moist	Flutrate
		Org(a)	PALEs(b)	Congeners(b)	TBT(b)	& Al, Fc, Mn(b)	Sullide(b)	Phus. (b)	TKN(b)	NO3(b)	Ammonia(b)	TOC(b)	BOD(b)	('OD(b)	Cyanidc(b)	Grain storib)	Prop(d)
Cutoff Angle														.,		(), (), (), (), (), (), (), (), (), (),	1.614.01
ситі	CUTISED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	CRUCHTEL
CUT2	CUT2SED	x	x	X (c)	x	x	x	x	x	x	x	x	x	x	x	x	свистт
сота	CUTASED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	CRUCUTE
Tolchester																	
TI.CI	TI,CISED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	TLEFL
TLC2	TI.C2SED	x	x	X (c)	x	x	x	x	x	x	x	x	x	x	x	x	TICEL
TLC2 Field Duplicate	TLC2SEDFD	x	x	X (c)	x	x	x	x	x	x	x	x	x	x	x	x	TLCEI.
π.c)	TLC3SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	TLCEL
m.vi	TLVISED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	TLVEL
11.V2	TI. V2SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	TLVEI.
TLV3	TI.VISED	x	x	X (c)	x	x	x	x	x	x	x	x	x	x	x	x	TLVEI.
11.V3 Matrix spike/Matrix spike dup	TLV3SEDMS/MSD	x	x		x	x	x	x	x	x	x	x	x	x	x	x	71.VE .
N.V4	TLV4SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	TLVEI.
11.95	TLV5SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	TI.VEL
Brewerton, Eastern Ext.																	
BIEI	BEISED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEEL.
BI{2	BE2SED	x	x	X (c)	x	x	x	x	x	x	x	x	x	x	x	x	BEEL
863	BESSED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEEL
81(4	BEASED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEEL
BEVI	BEVISED	x	x	X (c)		x	x	x	· x	x	x	x	x	x	x	x	BEVEL
BEV2	BEV2SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEVEL
BEVA	BEV3SED	x	x	X (c)	x	x	x	x	x	x	x	x	x	x	x	x	BEVEL
BEV4	BEV4SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEVEL
BEV5	BEV5SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEVIJ.
BEV6	BEV6SED	x	x	X (c)		x	x	x	x	x	x	x	x	x	x	x	BEVEL
Brewerton																	
BRI	BR I SED	x	x			x	x	x	·x	x	x	x	x	x	x	x	BR/BRAEL
BR I Blind split	BRISEDRS	(c)	(c)	X (c)		(v)	(c)	(c)	le)	(v)	(c)	(v)	(c)	(c)	lc)	Ic)	
BR2	BR2SED	x	x			x	x	x	x	x	x	x	x	x	x	x	BR/BRAEL
BR2 Blind split	BR2SEDBS	(c)	(c)	X (c)		(c)	(c)	(c)	le)	(c)	(v)	k)	(c)	(c)	(c)	k)	
BR3	BR3SED	x	x		x	x	x	x	x	x	x	x	x	x	x	x	BR/BRAEL
BB3 Blind split	BRINEDBS	(c)	(c)	X (c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	le)	
BR4	BR4SED	x	x			x	x	x	x	x	x	x	x	x	x	x	BR/BBALJ
BR4 Blind split	BR4SEDBS	kc)	(c)	X (e)		(c)	ic)	(c)	(c)	(c)	(c)	(c)	le)	(c)	le)	(c)	
Brewerion Angle																	
BRAI	BRAISED	x	x			x	x	x	x	x	x	x	x	x	x	x	BR/BBAIS
BRAT Blind split	BRAISEDBS	x	x	X (c)		. x	x	x	x	x	x	x	x	x	x	x	

TABLE 2-4. CHEMICAL ANALYSES FOR CHESAPEAKE BAY AND BALTIMORE HARBOR SEDIMENT SAMPLES

,

.

SAMPLING LIX ATION	SAMPLE ID	PPL.		PCB		PPL Metals	Total	Total		NO2 &						Atterberg, Most,	Elutriate
		Org(a)	PAHs(b)	Congeners(b)	TBT(h)	& Al, Fe, Mn(h)	Sulfide(h)	Phus. (h)	TKN(b)	NO3(h)	Ammonia(h)	TOC(h)	BOD(h)	COD(h)	Cyanide(b)	Grain size(h)	Prep(d)
BRA2	BRA2SED	x	x			x	x	x	x	x	x	x	x	x	x	x	BR/BRAEL
Curtis Bay																	
('B1	CBISED	x	x			x	x	x	x	x	x	x .	x	x	x	x	CBEI.
1'B2	CB2SED	x	x		•	x	x	x	x	x	x	x	x	x	x	x	C'BEI.
CB3	CBASED	x	x			x	x	x	x	x	x	x	x	x	x	x	C'BEL
CB4	CB45ED	x	x			x	x	x	x	x	x	x	x	x	x	x	C'BEL
Ft. McHenry																	
FMIT	FMILISED	x	x			x	x	x	x	x	x	x	x	x	x	x	FMHEL
FMI12	FMH25ED	x	x			x	x	x	x	x	x	x	x	x	x	x	FMIID.
FMID	EMILISED	x	x			x	· x	x	x	x	x	x	x	x	x	x	FMIIEL
FMH4	EMH4SED	x	x			x	x	x	x	×.	x	x	x	x	x	x	FMHEL
Ferry Bar																	
F81	FBISED	x	x			x	x	x	x	x	x	x	x	x	x	x	FBEI.
I-B1 Matrix spike/Matrix spike dup	FRISEDMS/MSD	x	x			x	x	x	x	x	x	x	×	x	x	x	FBEL
FB2	FB2SED	x	x			x	x	x	x	x	x	x	x	x	x	x	FBEI.
FB3	FBISED	x	x			x	x	x	x	×	x	x	×	x	x	x	FBEL
Northwest Branch East																	
NBEI	NBEISED	x	x			x	x	x	x	x	x	x	x	x	x	×	NBF/NBWEL
NBE2	NBE25ED	x	x			x	x	x	x	x	x	x	x	x	x	x	NBE/NBWEL
Northwest Branch West															,		
NBWI	NBW1SEO	x	x			x	x	x	x	x	x	x	x	x	x	x	NBE/NBWEI.
NBW2	NBW2SED	x	x			x	x	x	x	x	x	x	x	x	x	x	NBE/NBWEI.

TABLE 2-4. CHEMICAL ANALYSES FOR CHESAPEAKE BAY AND BALTIMORE HARBOR SEDIMENT SAMPLES

(a) Sample aliquits will be placed in 2 (60 ml) glass VOC containers (for volatiles) and 1 (1 gal) clear wide-mouth glass containers (pest/pchs, semivolatiles)

х

(b) Sample aliquots will be placed in 2 (1/2 gal) clear widemouth glass containers.

x

х

NBW3SED

(c) Two blind splits (of 5) will be selected randomly in the field and submitted to an outside lab; the other half of each split will go to EA for blind split analysis.

(d) Samples will be placed in 1 gal clear wide-mouth glass containers. Samples with the same elutriate designation (e.g., CRE/CR) will be composited by the lab to provide one sediment sample to be used in elutriate prep

х

х

x

х

x

x

x

х

х

х

NBF/NBWEL

(c) Samples will be analyzed if the total PCB concentration is > 11.6 micrograms /kilogram,

NBW3

TABLE 2-5SAMPLES TO BE USED FOR PREPARATION OF ELUTRIATE SAMPLES FOR
CHESAPEAKE BAY/BALTIMORE HARBOR SEDIMENT QUALITY ANALYSES

Sampling Reach	Station	Sediment Samples	Sediment Aliquot to be Used for Elutriate	Elutriate Water Samples	Water Vol. to be Used for Elutriate	Sample ID for Resulting Composited Elutriate Sample
Swan Point	SWP 1	SWPISED	666 ml	SWPEW	8 liters	SWPEL
	SWP 2	SWP2SED	666 ml	(1 composite)		
	SWP 3	SWP3SED	666 ml			
Craighill Entrance	CRE 1	CREISED	333 ml	CRE/CREW	8 liters	CRE/CREL
	CRE 2	CRE2SED	333 ml	(1 composite)		
	CRE 3	CRE3SED	333 ml			
Craighill	CR 1	CRISED	333 ml			
	CR 2	CR2SED	333 ml			
	CR 3	CR3SED	333 ml			
Craighill Angle	CRA 1	CRAISED	1000 ml	CRAEW	8 liters	CRAEL
	CRA 2	CRA2SED	1000 ml	(1 composite)		
Craighill Upper Range	CRU 1	CRUISED	333 ml	CRU/CUTEW	8 liters	CRU/CUTEL
	CRU 2	CRU2SED	333 ml	(1 composite)		
	CRU 3	CRU3SED	333 ml			
Cutoff Angle	CUT 1	CUTISED	333 ml			
	CUT 2	CUT2SED	333 ml			
	CUT 3	CUT3SED	333 ml			
Tolchester	TLC 1	TLCISED	666 ml	TLCEW	8 liters	TLCEL
	TLC 2	TLC2SED	666 ml	(1 composite)		
	TLC 3	TLC3SED	666 ml			
	TLV 1	TLVISED	400 ml	TLVEW	8 liters	TLVEL
TLV 2		TLV2SED	400 ml	(1 composite)		
	TLV 3	TLV3SED	400 ml			
	TLV 4	TLV4SED	400 ml			
	TLV 5	TLV5SED	400 ml			

TABLE 2-5 (Continued)

Sampling Reach	Station	Sediment Samples	Sediment Aliquot to be Used for Elutriate	Elutriate Water Samples	Water Vol. to be Used for Elutriate	Sample ID for Resulting Composited Elutriate Sample	
Brewerton, Eastern Ext.	BE I	BEISED	500 ml	BEEW	8 liters	BEEL	
	BE 2	BE2SED	500 ml	(i composite)			
	BE 3	BE3SED	500 ml				
	BE 4	BE4SED	500 ml	l			
	BEV 1	BEVISED	333 ml	BEVEW	8 liters	BEVEL	
	BEV 2	BEV2SED	333 ml	(1 composite)			
	BEV 3	BEV3SED	333 ml				
	BEV 4	BEV4SED	333 ml	1			
	BEV 5	BEV5SED	333 ml				
	BEV 6	BEV6SED	333 ml				
Brewerton	BR 1	BRISED	333 ml	BR/BRAEW	8 liters	BR/BRAEL	
	BR 2	BR2SED	333 ml	(1 composite)			
	BR 3	BR3SED	333 ml				
	BR 4	BR4SED	333 ml				
Brewerton Angle	BRA 1	BRAISED	333 ml	4			
,	BRA 2	BRA2SED	333 ml				
Curtis Bay	CB 1	CBISED	500 ml	CBEW	8 liters	CBEL	
	CB 2	CB2SED	500 ml	(1 composite)			
	CB 3	CB3SED	500 ml				
	CB 4	CB4SED	500 ml				
Ft. McHenry	FMH 1	FMHISED	500 ml	FMHEW	8 liters	FMHEL	
	FMH 2	FMH2SED	500 ml	(1 composite)			
	FMH 3	FMH3SED	500 ml				
	FMH 4	FMH4SED	500 ml				

Sampling Reach	Station	Sediment Samples	Sediment Aliquot to be Used for Elutriate	Elutriate Water Samples	Water Vol. to be Used for Elutriate	Sample ID for Resulting Composited Elutriate Sample
Ferry Bar	FB 1	FB1SED	666 ml	FBEW	8 liters	FBEL
	FB 2	FB2SED	666 ml			
	FB 3	FB3SED	666 ml			
Northwest Branch East	NBE 1	NBE1SED	400 ml	NBE/NBWEW	8 liters	NBE/NBWEL
	NBE 2	NBE2SED	400 ml	(1 composite)		
Northwest Branch West	NBW 1	NBW1SED	400 ml			
	NBW 2	NBW2SED	400 ml			
	NBW 3	NBW3SED	400 ml			
Total No. Samples		57		13		13

TABLE 2-5 (Continued)

REQUIRED CONTAINERS, PRESERVATION TECHNIQUE, AND HOLDING TIMES " FOR SITE WATER AND ELUTRIATE WATER SAMPLES **TABLE 2-6**

Parameter	Volume Required (mL) ^(b)	Container ^(c)	Preservative	Holding Time
Inorganics	-		▲	I
Mercury	100	Р	pH <2 with HNO ₃ Cool, 4 C	14 days
Other Metals	100	Р	pH <2 with HNO ₃ Cool, 4 C	6 months
Cyanide	500	P,G	NaOH to pH >12 Ascorbic Acid Cool, 4 C	14 days 24 hours in presence of S ²⁻
Sulfide	500	P,G	NaOH to pH >9 Zinc Acetate Cool, 4 C	7 days
Biochemical Oxygen Demand	1000	P.G	Cool, 4 C	48 hours
Chemical Oxygen Demand	50	P,G	$H_{2}SO_{4}$ to pH <2	28 days
Nitrogen (Ammonia, Total Kjeldahl, Nitrate + Nitrite) Total Phosphorus	1050	P,G	H₂SO₄ to pH <2 Cool, 4 C	28 days
Organics	L	I	,,,,,,,	
Tributyltin	2000	G	Cool, 4 C	6 months
Total Organic Carbon	50	P,G	H ₂ SO ₄ or HCl to pH <2 Cool, 4 C	28 days
Pesticides PCB Congeners Semivolatile Organics	2000	G, teflon- lined cap	Cool, 4 C	7 days until extraction 40 days after extraction
Volatile Organics	80	G, teflon- lined septum	Cool, 4 C	14 days

(a) From time of sample collection per USACE/EPA. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal.

(b) 12 liters (3 gal) of water will be collected for preparation of each elutriate sample.
(c) P = plastic; G = glass. National Oceanographic and Atmospheric Administration. July, 1993. Sampling and Analytical Methods of the National Status and Trends Program. National Benthic Surveillance and Mussel Watch Projects. 1984-1992. NOS ORCA 71. NOAA, Silver Spring, Maryland.

2-34

SAMPLINO LOCATION	SAMPLE ID			PPL Metals	Total	Total							
		PPL Org(a)	PPL VOAs (b)	& AL Fe, Mn(c)	Sulfide(d)	Photoboonu(a)	THE	NOZA					
WATER CHEMISTRY				,	- <u></u> (a)	1 1103 prior (6)	I KN(C)	NU3(e)	Ammonia(e)	TOC(e)	BOD(f)	COD(e)	Cyanide(g)
Poplar Island													
P11	PIIWAT	x		×	x	Y.	v						
PI1 Field Duplicate	PILWATED	х		x	x	v	~	x 	х.	x	x	x	х
PII Matrix spike	PIIWATMS	x		x	x	v	v	×	x	x	x	x	х
PII Matrix spike duplicate	PIIWATMSD	x		x	x	Y	v	x	x	x	x	x	x
P15	PISWAT	x		x	x	v	v	*	x	x	x	x	x
Deep Trough						~	^	x	x	x	x	x	х
DTI	DTIWAT	x		x	x	v	v						
Kent Island Deep						~	^	x	x	x	x	x	x
кв	KI3WAT	x		x	x	v	v						
KI3 Field Duplicate	KI3WATFD	x		x	x	v	v	x	x	x	x	x	x
Pooles Island						^	~	x	x	x	x	x	x
POLI	POLIWAT	x		x	x	v	v						
TRIP BLANKS						^	^	x	x	x	x	x	x
Dayl	TBMMDDYY		x										
Day 2	TBMMDDYY		x										
Day 3	TBMMDDYY		x										
Day 4	TEMMDDYY		x										
Day 5	TEMMDDYY		x										
Day 6	TBMMDDYY		x										
Day 7	TEMMDDYY		x										
Day 8	TEMMDDYY		x										
Day 9	TBMMDDYY		x										
Day 10	TEMMDDYY		x										
ELUTRIATES													
Swan Point .	SWPEL	x		x	x	x	v	v					
Craighill Entrance/Craighill	CRE/CREL	x		x	x	Y Y	v	v	x 	x	x	х	x
Cnighill Angle	CRAEL	x		x	x	x	v	x v	×	x	x	x	x
Cruighill Upper Range/Cutoff Angle	CRU/CUTEL	x		x	x	x	v	v	x 	x	x	x	х
Toichester (Van Veen)	TLCEL	x		` x	x	x	Ŷ	х 	x	x	x	x	x
Tolchester (Core)	TLVEL	x		x	x	x	v	v	*	x	x	x	х
Brewerton, Eastern Ext. (Van Veen)	BEEL	x		x	x	x	· v	A V	x 	x	x	x	x
Brewerton Eastern Ext. (Core)	BEVEL	x		x	x	v	v	л v	x	x	x	x	х
Brewerton/Brewerton Angle	BR/BRAEL	х·		x	x	x	x	v	x	x	x	x	x
Curtis Bay	CBEL	x		x	x	x	v	v	х 	x	x	x	x
Pt. McHenry	FMHEL	x		x	x	x	x x	v	x	x	x	x	x
Ferry Bar	FBEL	x		x	x	x	v	л v	х 	x	x	x	x
Northwest Branch East/NW Branch West	NBE/NBWEL	x		x	x	Ŷ	v	N V	x 	x	x	x	x
(a) Samples will be placed in 2 (40 ml) place V	OC anothing of the sub-			· · · · · ·					<u>x</u>	<u>x</u>	<u>x</u>	х	х

(a) Samples will be placed in 2 (40 ml) glass VOC containers (for volatiles) and 4 (1 liter) clear glass containers (pest/pcbs, semivolatiles).

.

(b) Samples will be placed in 2 (40 ml) glass containers.

(c) Samples will be placed in a "C" bottle preserved with HNO3.

(d) Samples will be placed in an "I" bottle preserved with zinc acetate

(e) Samples will be placed in a 500 ml "B" bottle preserved with H2SO4

(f) Samples will be placed in a 500 ml "A" bottle (no preservative)

(g) Samples will be placed in a "G" bottle preserved with NAOH

(h) Sample IDs and volumes used in elutriate preparation are listed in Table 2-5

Table 3-1 includes the analytical parameters and methods for both sediment and water samples to be collected for this project.

TABLE 3-1 ANALYTICAL PARAMETERS AND ANALYTICAL METHODS FOR SEDIMENTS AND WATER

Analytes	Analytical Method	Matrix	Quantity
PPL organics (volatiles, semivolatiles,	SW 8240/SW 8270/SW 8080/SW8310 (1)	Sediment	74
pesticides/PCBs) by GC and GCMS	SW 8240/SW 8270/SW 8080 (1)	Water/Elutriate	20
Organotins	SW 846 (1)	Sediment	19
PPL metals and aluminum, iron, and manganese	SW 6010/SW 7000 (1)	Sediment Water/Elutriate	74 20
Cyanide	SW 9012 (1)	Sediment Water/Elutriate	74 20
Total sulfide	SW 9030 (1)	Sediment Water/Elutriate	74 20
Total phosphorus	EPA 365.3 (modified) (2)	Sediment Water/Elutriate	74 20
Total Kjeldahl nitrogen (TKN)	EPA 351.2 (modified) (2)	Sediment Water/Elutriate	74 20
Nitrate plus nitrite	EPA 353.2 (modified) (2)	Sediment Water/Elutriate	74 20
Ammonia nitrogen	EPA 350.1 (modified) (2)	Sediment Water/Elutriate	74 20
Total organic carbon (TOC)	SW 9060 (1)	Sediment Water/Elutriate	74 20
Biochemical oxygen demand (BOD)	EPA 405.1 (modified) (2)	Sediment Water/Elutriate	74 20
Chemical oxygen demand (COD)	EPA 410.4 (modified) (2)	Sediment Water/Elutriate	74 20
Atterberg limits, grain size distribution, percent moisture	ASTM D4318, D422, D4959 (3)	Sediment	74

- U.S. EPA. August 1993. Test Methods for Evaluating Solid Waste. Physical/Chemical Methods. EPA SW-846, 3rd edition. U.S. EPA, Washington, D.C.
- (2) U.S. EPA. 1979. Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. U.S. EPA, Cincinnati, OH.
- (3) American Society for Testing and Materials. 1994. Annual Book of ASTM Standards. Volume 4.08. ASTM, Philadelphia, PA.

4. DATA PRESENTATION

Analytical results will be incorporated into a data report. Chemical data will be presented on analytical report forms. Associated QA/QC results will be reported along with the analytical data.

5. STATISTICAL ANALYSIS

.

All statistical analyses for the chemical data provided by EA will be performed by USACE. Analytical data will be provided by EA in an electronic copy to facilitate statistical analysis.

 $\mathbf{\hat{s}}$

6. REPORT PRODUCTION

Analytical results will be incorporated into a data report. This report will include a description of sample collection, analytical methods used, and locations of sampling stations, as well as tabulated results for all sediment analyses and associated QA/QC results. An electronic copy of all reports will be provided in Word Perfect 6.0 format. In addition, analytical data will be provided electronically in a Lotus .WK4 compatible format.

7. PROJECT SCHEDULE

It is anticipated that the pre-sampling meeting will be held during the week of 22 September, during which the SP and QAPP will be presented and discussed. Sampling will be initiated following USACE approval of the SP and the QAPP. It is anticipated that sampling will begin 16 October. It is anticipated that sampling will occur over a two to four week period. EA will provide an overview of activities to date during the post-sampling meeting, which will be held within two weeks after the completion of sample collection.

Analytical results will be incorporated into a data report. The draft data report will be completed six weeks after the last field sample is submitted for analysis. The final report will be submitted four weeks after submittal of the draft report.

8. REFERENCES

- EA Engineering, Science, and Technology (EA). 1995. Draft Quality Assurance Management Plan for FY 1995 Sediment Sampling and Chemical Analysis for Baltimore Harbor and Chesapeake Bay, Maryland. Prepared by EA for U.S. Army Corps of Engineers. EA, Hunt Valley, MD.
- U.S. EPA. 1994. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual. EPA 823-B-94-002. U.S. EPA and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA. 1995. QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations. EPA 823-B-95-001. U.S. EPA and U.S. Army Corps of Engineers, Washington, D.C.

Appendix B Final Quality Assurance Project Plan (QAPP)

FINAL

QUALITY ASSURANCE PROJECT PLAN FOR TESTING OF DREDGED MATERIAL PROPOSED FOR BAY DISPOSAL

Prepared for:

Corps of U.S. Army Engineers Baltimore Disirict Baltimore

Prepared by:

EA Laboratories 19 Loveton Circle Sparks, Maryland 21152

November 1995

USACE QAPjP Table of Contents Revision No.: 0 Date: 13 November 1995 Page 1 of 6

<u>SEC</u>	TION			PAGE					
1.	INTR	INTRODUCTION							
	1.1	Program	m Description	1-1					
	1.2	1.2 Quality Assurance Plan							
2.	ORG	ANIZATIO	ON AND CONTACTS	2-1					
	2.1	Program	n Organization and Responsibilities	2-1					
	2.2	Program Contacts							
3.	QUAI	QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA							
	3.1	3.1 Data Uses							
	3.2	3.2 Data Quality Objectives							
		3.2.1	Characteristics of Data Quality	3-1					
		3.2.2	Quantitative Objectives for Precision and Accuracy	3-2					
4.	SAM	PLING PR	OCEDURES	4-1					
5.	SAM	SAMPLE CUSTODY							
	5.1	5.1 Chain-of-custody Operations							
		5.1.1	Sample Bottle Preparation	5-1					
		5.1.2	Sampling	5-2					
		5.1.3	Sample Labeling	5-2					
	5.2	EA Lat	EA Laboratories Sample Management Operations						
		5.2.1	Sample Receipt and Logging	5-3					
		5.2.2	Sample Storage and Security	5-3					
		5.2.3	Sample Archives	5-4					

USACE QAPjP Table of Contents Revision No.: 0 Date: 13 November 1995 Page 2 of 6

SEC	TION			PAGE				
6.	CALI	CALIBRATION PROCEDURES						
	6.1	Calibration System						
		6.1.1	Calibration Procedures	6-1				
		6.1.2	Equipment Identification	6-2				
		6.1.3	Calibration Frequency	6-2				
		6.1.4	Calibration Reference Standards	6-2				
		6.1.5	Calibration Failure	6-3				
		6.1.6	Calibration Records	6-3				
	6. 2	Operati	onal Calibration	6-4				
	·	6. 2 .1	Preparation of Calibration Curve	6-4				
		6.2.2	Blanks	6-4				
		6.2.3	Instrument Calibration Procedures	6-5				
	6.3	Periodi	c Calibration	6-5				
7.	ANA	7-1						
	7.1	Analyti	7-1					
		7.1.1	PCB Congeners	7-1				
		7.1.2	Water Quality Parameters	7-1				
		7.1.3	Elutriate Test	7-1				
	7.2	Detecti	on Limits	7-1				
	7.3	Standar	7-2					
	7.4	Record	keeping	7-3				
		7.4.1	General Requirements	7-3				
		7.4.2	Laboratory Records	7-4				
8.	DAT	DATA REDUCTION, VALIDATION, AND REPORTING						

USACE QAPjP Table of Contents Revision No.: 0 Date: 13 November 1995 Page 3 of 6

<u>SEC</u>	CTION			PAGE			
	8.1	Data R	eduction	8-1			
		8.1.1	Field Data Reduction	8-1			
		8.1.2	Laboratory Data Collection and Reduction	8-1			
	8.2	Data V	alidation	8-2			
		8.2.1	Field Data Validation	8-2			
		8.2.2	Laboratory Data Validation	8-3			
	8.3	Labora	tory Reports	8-3			
9.	INTE	INTERNAL QUALITY CONTROLS CHECKS					
	9.1	Laborat	tory Quality Control Samples	9-1			
		9.1.1	Method (Reagent) Blank	9-2			
		9.1.2	Fortified Method Blank Spike	9-3			
		9.1.3	Fortified Sample	9-3			
		9.1.4	Surrogates	9-3			
		9.1.5	Laboratory Triplicate Analyses	9-4			
•		9.1.6	Standard Reference Sample	9-4			
		9.1.7	Surrogates	9-4			
	9.2	Field B	lank Quality Control Samples	9-5			
		9.2.1	Rinsate Blank	9-5			
		9.2.2	Calculation of Chart Limits	9-5			
		9.2.3	How the Charts are Used	9-6			
		9.2.4	Out of Control Situations	9-6			
		9.2.5	References	9-7			
	9.3	Applica	ation of Controls	9-7			
10.	PERF	PERFORMANCE AND SYSTEMS AUDITS					
	10.1	Labora	tory Performance and Systems Audits	10-1			

USACE QAPjP Table of Contents Revision No.: 0 Date: 13 November 1995 Page 4 of 6

<u>SECT</u>	ION			PAGE			
		10.1.1 10.1.2	Performance Audits Systems Audits	10-1 10-2			
	10.2 10.3	Audit Pro Document	cedures tation	10-2 10-3			
11.	PREVE	NTIVE M	AINTENANCE	11-1			
12.	DATA (QUALITY	ASSESSMENT	12-1			
13.	CORRE	CTIVE A	CTIONS	13-1			
	13.1 13.2 13.3	Objectives Rationale Corrective	e Action Methods	13-1 13-1 13-1			
•	13.4	13.3.1 13.3.2 13.3.3 13.3.4	Immediate Corrective Actions Long-Term Corrective Actions Corrective Action Steps Audit Based Non-Conformance	13-1 13-1 13-2 13-2			
	13.5	Corrective	Actions Reports to Management	13-2			
14.	QUALI	FY ASSUF	ANCE REPORTS	14-1			
15.	REFERENCES 15-1						
APPE APPE APPE APPE APPE	NDIX A NDIX B NDIX C NDIX D NDIX E	Laborato Laborato Standard Analytica Analytica	ry Quality Control Criteria for Precision & Accuracy ry Quality Control Procedures and Corrective Actions Operating Procedures I Methods I Report Table of Contents				
USACE QAPjP Table of Contents Revision No.: 0 Date: November 13, 1995 Page 5 of 6

QUALITY ASSURANCE PLAN

LIST OF FIGURES

Number	Title
2-1	EA Laboratories Program Organization
2-2	Program Contacts
5-1	Analytical Task Order
5-2	Chain-of-Custody Form
10-1	Audit Checklist
10-2	Audit Report Form
13-1	Nonconformance Record

USACE QAPjP Table of Contents Revision No.: 0 Date: November 13, 1995 Page 6 of 6

QUALITY ASSURANCE PLAN

LIST OF TABLES

- Number <u>Title</u> 3-1 Data Quality Characteristics Formulas 5-1 Cleaning Procedures for Sample Containers Required Containers, Preservation Technique, and Holding Times for Sediment 5-2 Required Containers, Preservation Technique, and Holding Times for Water 5-3 6-1 Summary of Operational Calibration Formulas 6-2 Summary of Periodic Calibration Requirements 7-1 Analytical Methods 7-2 Method Detection Limits (MDLs) for Reference Sediment Samples 7-3 Method Detection Limits (MDLs) for Aqueous Samples 8-1 Sample Concentration Calculation Formulas 9-1 Analytical Quality Control Formulas
- 11-1 Preventive Maintenance Requirements

Quality Assurance Plan For Testing of Dredged Material Proposed for Bay Disposal

REVIEW AND APPROVAL

Prepared by:

13 Kovender 1995 Meni M. Ukifelder Date

M. M. Uhlfelder Quality Services Manager, EA Laboratories

Reviewed b

D. S. Santoro Director, Corporate Quality Assurance EA Engineering, Science, and Technology, Inc.

Approved by:

Project Manager EA Engineering, Science, and Technology, Inc.

<u>15 November 1995</u> Date

22 November 1995 Date

USACE QAPjP Section No.: 1 Revision No.: 0 Date: 13 November 1995 Page: 1 of 2

1. INTRODUCTION

1.1 PROGRAM DESCRIPTION

Under Section 404 of the Federal Water Pollution Control Act of 1972 (FWPCA), Public Law 92-500, as amended by the Clean Water Act of 1977 (CWA), Public Law 95-217, all proposed operations involving the transportation and discharge of dredged material into inland and near coastal waters are to be evaluated to determine the potential impacts of such activities. In accordance with this regulation, the Environmental Protection Agency (EPA), in conjunction with the U.S. Army Corps of Engineers (USACE), has developed a testing manual to define procedures for the evaluation of the suitability of sites to receive dredged material. This manual, *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S.* - *Testing Manual (Draft)* (EPA-823-B-94-002, June 1994), is commonly referred to as the Inland Testing Manual (ITM).

The technical guidance in the ITM is consistent with Federal Guidelines (CWA Section 404(b)(1) Guidelines) and is intended for use by USACE and EPA personnel in order to obtain results which will be utilized within the context of regulatory requirements to facilitate decision-making with regard to management of the dredged material.

Both EA Engineering, Science and Technology, Inc. (EA) and EA Laboratories (a division of EA) are under contract to the USACE to collect samples and to perform specified constituent analyses of sediments proposed for dredging in FY96 and FY97 in order to assist in determining the suitability of selected sites for disposal of these materials consistent with the Guidelines and the ITM.

1.2 QUALITY ASSURANCE PLAN

EA Laboratories has prepared this Quality Assurance Project Plan (QAPjP), with guidance from the USACE, Baltimore District, to identify the policies, organization, objectives, functional activities, and specific activities designed to achieve the desired quality goals for analytical chemistry support operations set forth in the ITM.

This QAP includes the following:

• Descriptions of all technical procedures for sample custody control and traceability from sample delivery to results reported to clients, laboratory analyses, data reduction, data validation and data reporting.

USACE QAPjP Section No.: 1 Revision No.: 0 Date: 13 November 1995 Page: 2 of 2

- Standard Operating Procedures (SOPs) and EA Laboratories Analytical Methods used in support of this program.
- QA objectives which are consistent with the ITM.
- Policy and procedures for the conduct of performance and systems audits.
- Corrective Action procedures.

USACE QAPjP Section No.: 2 Revision No.: 0 Date: 13 November 1995 Page: 1 of 5

2. PROGRAM ORGANIZATION AND CONTACTS

2.1 PROGRAM ORGANIZATION AND RESPONSIBILITIES

EA Laboratories organizational positions of management and technical staff are shown in Figure 2-1. EA Laboratories also maintains a list of sub-contractor laboratories which can serve the needs of the client. Some analytical procedures identified in the scope of work have been subcontracted to validated USACE-certified laboratories identified in Figure 2-2. All subcontracted data will conform to the criteria outlined within this QAPjP; contact and monitoring will be effected through the Laboratory Project Manager as indicated below.

The following lists the specific responsibilities of each position.

Director, EA Laboratories

- Ensures laboratory data quality.
- Maintains laboratory staffing.
- Develops laboratory budget.
- Ensures laboratory safety.
- Approves laboratory equipment acquisition.
- Promotes laboratory marketing and client interface.
- Sets analytical priorities.

Quality Services Manager (QSM)

- Develops EA Laboratories QA program.
- Manages state and federal laboratory certifications.
- Maintains EA Laboratories QA, SOP and methods manuals.
- Maintains an independent Quality Assurance staff.
- Responsible for review and approval of nonconformance reports (NCRs).
- Exercises authority to shut down any instrument, method or operational group if an out-of-control situation exists.
- Conducts performance, systems and data audits.
- Provides escort for all inspections, provides written response to findings, and maintains audit records.
- Oversees personnel training on QC requirements and procedures, distributes quality related information, procedural changes, and guidance to departmental personnel.

USACE QAPjP Section No.: 2 Revision No.: 0 Date: 13 November 1995 Page: 2 of 5

Laboratory Project Manager (LPM)

- Serves as client-laboratory contact through project duration.
- Responsible for identifying project specific QA/QC requirements.
- Coordinates projects for the duration of their life cycle within the laboratory.
- Ensures coordination of production efforts, on-time delivery of data packages which meet all client specifications for parameters, methods, quality control, and report format.
- Serves as sub-contractor laboratory liaison throughout the project duration.

Information Systems Manager (ISM)

- Responsible for the site preparation, and onsite configuration of hardware and software for EA Laboratories' Laboratory Management Information System (LIMS).
- Identifies custom programming needs, and prepares protocols for system operation.
- Responsible for user training, and routine system maintenance.
- Assists the Director, EA Laboratories by providing specialized technical knowledge in overall computerization of laboratory functions, including data management, scheduling, management reports, and financial reports.

Division Manager (DM)

- Responsible for the implementation of their respective analytical programs operating in the inorganics and organics laboratories.
- Provides technical knowledge of methodologies and instrumentation for group, company, and clients.
- Responsible for data review against project requirements and internal quality control criteria.
- Plans for expansions or purchases in order to increase the efficiency of the operation.
- Provides information on capacity, pricing, and scheduling of work.
- Performs personnel functions such as hiring, performance reviews, time sheet approval, time-off approval, and salary adjustment recommendations.
- Troubleshoots instruments and keeps up-to-date with instrument and software developments.

Laboratory Supervisor (LS)

- Participates in planning laboratory programs on the basis of specialized knowledge of problems and methods and probable value of results.
- Assist the Division Managers in one or more areas of overall management of the analytical laboratory, including personnel, physical plant, and financial budgeting and planning.
- Troubleshoots problems regarding analytical procedures and equipment performance.

USACE QAPjP Section No.: 2 Revision No.: 0 Date: 13 November 1995 Page: 3 of 5

- Performs quantitative and qualitative analyses using manual or specialized and complex instrumental methods.
- Fully competent and proficient in the operation of sophisticated scientific equipment.
- Interprets results, prepares reports, and provides technical advice in specialized area.
- Supervises and trains staff in methods of analyses, standard operating procedures, and QA/QC requirements.
- Provides advice to Division Managers in budgetary and personnel matters.

Sample Management Officer (SMO)

- Receives, logs, and assigns control numbers to incoming samples.
- Inspects sample shipping containers for presence/absence and condition of:
 - Custody seals, locks, "evidence tape," etc.
 - Container breakage and/or container integrity
- Records condition of both shipping containers and sample containers (bottles, jars, cans, etc.).
- Signs documents shipped with samples (i.e., air bills, chain-of-custody records, etc.).
- Verifies and records agreement or nonagreement of information on sample documents (i.e., sample tags, chain-of-custody records, traffic reports, air bills, etc.) in appropriate logbooks or on appropriate forms. If there is nonagreement, recording the problems, and notifying appropriate laboratory personnel for contacting the Laboratory Project Manager for direction.
- Labels samples with laboratory accession numbers, cross-referencing laboratory numbers to client numbers and/or sample tag numbers.
- Controls access to samples in storage and assuring that laboratory standard operating procedures are followed when samples are removed from and returned to storage.
- Monitors storage conditions for proper sample preservation such as refrigeration temperature and prevention of cross-contamination.
- Returns shipping containers to the proper sampling teams.
- Follows standard operating procedures applicable to sample management.
- Responsible for sample storage facilities. Maintains a log record on these facilities, including temperature of storage rooms, and procedures for sample storage area.
- Follows all laboratory safety rules.

USACE QAPjP Section No.: 2 Revision No.: 0 Date: 13 November 1995 Page: 4 of 5

2.2 PROGRAM CONTACTS

The following persons are identified as contacts for this program:

Contact	Function	Company	Phone Number	Ext	Fax Number
Frank Pine	Project Manager	EA Engineering, Science & Technology, Inc.	410-584-7000	2207	410-527-1840
A. Reza Karimi	Vice President & Laboratory Director	EA Laboratories	410-771-4920	310	410-771-4407
Mimi M. Uhlfelder	Quality Services Manager	EA Laboratories	410-771-4920	308	410-771-4407
Mary E. Asper	Sample Management Officer	EA Laboratories	410-771-4920	315	410-771-4407
Natasha K. Sullivan	Laboratory Project Manager	EA Laboratories	410-771-4920	335	410-771-4407
Paul D'Amato	Project Contact	E ₂ SI	410-466-1400		410-466-7371
Allen Uhler	Project Contact	Battelle	617-934-0571		617-934-2124

Figure 2-2. Program Contacts

2.3 SUBCONTRACTED ANALYSIS

There are two subcontracted laboratories that will be responsible for specific analyses. All physical analyses will be conducted by E_2SI , located in Baltimore, MD. They will provide analyses for: grain size, Atterberg limits, and moisture content. Battelle Laboratories, located in Boston, MA, will provide analysis for organotin compounds.

USACE QAPjP Section No.: 2 Revision No.: 0 Date: 13 November 1995 Page: 5 of 5

Figure 2-1. EA Laboratories Program Organization

Figure 6-1

USACE QAPjP Section No.: 3 Revision No.: 0 Date: 13 November 1995 Page 1 of 3

3. QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA

3.1 DATA USES

The purpose of this QAPjP is to provide a standard for control and review of measurement data to ensure they are scientifically sound, defensible, and of known acceptable quality. The data will be used to determine the appropriate methods and locations for placement of mid-Chesapeake Bay bottom sediments proposed to be dredged. Program objectives for analytical testing are:

- Test and characterize site water and elutriate.
- Test and characterize sediments representative of proposed dredge sites with regard to physical characteristics and chemical contamination.

3.2 DATA QUALITY OBJECTIVES

3.2.1 Characteristics of Data Quality

The PARCC (precision, accuracy, representativeness, completeness and comparability) parameters are the characteristics of data quality. Table 3-1 lists the formulas used to calculate precision, accuracy, and completeness.

- *Precision* is the mutual agreement among individual measurements of the same property and is a measure of the random error component of the data collection process. The overall precision of the data is the sum of that due to sampling and analysis. To determine the analytical precision of the method and/or laboratory analyst, a routine program of replicate analyses is performed. The results of the replicate analyses are used to calculate the relative percent difference (RPD), which is the governing quality control parameter for precision. For triplicate analyses, the relative standard deviation is reported.
- Accuracy is the agreement between a measurement and the true value. It is a measure of the bias or systematic error of the entire data collection process. Sampling accuracy is assessed by evaluating the results of field and trip blanks. To determine the accuracy of an analytical method a periodic program of laboratory control sample spiking is conducted. The results of sample spiking are used to calculate the quality control parameter for accuracy evaluation, the percent recovery (%R).

USACE QAPjP Section No.: 3 Revision No.: 0 Date: 13 November 1995 Page 2 of 3

- *Representativeness* is the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a quantitative parameter that is most concerned with the proper design and implementation of the sampling program. The sampling program has been designed so that the samples collected are as representative as possible of the medium being sampled and that a sufficient number of samples will be collected. Representativeness is addressed by the description of the sampling techniques and the rationale used to select the sampling locations.
- Completeness is the adequacy in quantity of valid measurements to prevent misinterpretation and to answer important questions. For this program, the data completeness objective is 90 percent.
- Interbatch Comparability is the extent to which comparisons among different measurements of the same quantity or quality will yield valid conclusion. For this program, comparability among measurements will be achieved through the use of control charts for Laboratory Control Samples (LCS). Establishment of control limits, and generation and evaluation of control charts are discussed in Section 9 of this QAPjP.

In addition to the PARCC parameters, program objectives have been established for method detection limits (MDLs) which are discussed in Section 7.2 of this QAPjP.

3.2.2 Quantitative Objectives for Precision and Accuracy

The objectives for precision and accuracy for each chemical are based on the capabilities of the approved EPA analytical method with respect to laboratory performance. Appendix A presents the quantitative objectives for accuracy and precision for the various parameter groups for laboratory performance and evaluation of sample measurement bias.

USACE QAPjP Section No.: 3 Revision No.: 0 Date: 13 November 1995 Page 3 of 3

TABLE 3-1 DATA QUALITY CHARACTERISTICS FORMULAS

CHARACTERISTIC	FORMULA	SYMBOLS
Precision (as relative percent difference, %RPD)	RPD = $\frac{ x_1 - x_2 }{(x_1 + x_2)^2}$ 100 $-\frac{ x_1 - x_2 }{(x_1 - x_2)}$ x 200	$x_1, x_2 = duplicate values.$
Precision (as relative standard deviation, %RSD)	$RSD(\%) = \frac{s}{\overline{X}} \times 100$	s = standard deviation \overline{X} = mean of the measurements.
Accuracy (as percent recovery (%R) for samples without a background level of the analyte, such as reference materials. laboratory control samples, and performance evaluation samples)	$\Re R = \frac{X}{T} \propto 100$	X = found concentration T = true or assumed concentration
Accuracy (as percent recovery (%R) for measurements in which a known amount of analyte (a spike) is added to an environmental sample)	$\%R = \frac{X - B}{T} \propto 100$	 X = found concentration B = background concentration T = true or assumed concentration
Completeness	$C = \frac{N}{S} \propto 100$	C = completeness (%) N = number of valid data S = number of samples collected

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 4 Revision No.: 0 Date: 13 November 1995 Page: 1 of 1

4. SAMPLING

Sampling procedures are addressed separately in the Sampling Plan.

5

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 1 of 9

5. SAMPLE CUSTODY

5.1 CHAIN-OF-CUSTODY OPERATIONS

Samples are physical evidence and should be handled according to certain procedural safeguards. For the purposes of legal proceedings, a showing to the court that the laboratory is a secure area may be all that is required for the analyzed evidence to be admitted. However, it is anticipated that in some cases, the court may require a showing of the hand-to-hand custody of the samples from sampling through disposal.

Although EA Laboratories is not involved in sampling activities, in the event that the court requires such a comprehensive chain-of-custody demonstration, the laboratory is prepared to produce documentation that traces the in-house custody of the samples from the time of receipt to the completion of the analysis.

The National Enforcement Investigations Center (NEIC) of U.S. EPA defines custody of evidence in the following ways:

- It is in your actual possession; or
- It is in your view, after being in your physical possession; or
- It was in your possession and then you locked or sealed it up to prevent tampering; or
- It is in a secure area.

5.1.1 Sample Bottle Preparation

The chain-of-custody procedure actually begins with the preparation of the sample containers and preservatives to be used in sample collection. For this program, EA Laboratories purchases and distributes pre-cleaned sample containers. Vendors are required to provide documentation of analysis for each lot of containers, and the documentation is kept on file in the Sample Management Office. Contaminant levels are also evaluated annually by the laboratory through analysis of randomly selected containers in each vendor lot (EAL-SOP-202).

In the event that certified pre-cleaned containers are not available, sample containers are cleaned in the laboratory according to the procedures given in Table 5-1, which are specific for the parameters to be determined. These procedures are documented in laboratory standard operating procedures (EAL-SOP-033, EAL-SOP-043, and EAL-SOP-062).

Tables 5-2 and 5-3 define the type of container required for specific analyses and matrix,

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 2 of 9

preservation techniques and holding times for sediment and water samples. Preservatives are added to the sample containers at the time sample kits are prepared.

Sample kits, which are coolers containing chain-of-custody forms, custody seals, sample containers, preservatives, ice and packing material, are prepared by the Sample Management Office in response to receipt of the Analytical Task Order (Fig. 5-1).

5.1.2 Sampling

For this program, samples are collected by EA following procedures specified in the program Sampling Plan. After the samples are collected, each is distributed as necessary among preserved containers appropriate to the parameters to be determined. Each container is provided with a sample label that is filled out at the time of collection. At this time, a chain-of-custody form (Figure 5-2) is initiated. The collected samples are cooled, if necessary, and returned to the laboratory by the most expedient means to ensure that holding times will be met. The chain-of-custody form is signed and dated as necessary as the samples pass from the collectors to those persons responsible for their transportation.

5.1.3 Sample Labeling

The importance of sample labeling is critical to the success of this program. Improperly labeled samples lead to questions with regard to location, project, sampling station, date sampled, and sampler. All of this information is essential for proper sample handling. The following information, at a minimum, is required on each sample label:

Client	Date collected
Project number	Time collected
Location	Collected by
Station	Preservative(s)

After the label has been completed in the field and has been affixed to the sample container, the label is covered with clear tape. Pre-printed pressure-sensitive labels are supplied by EA Laboratories with the sample kits.

5.2 EA LABORATORIES SAMPLE MANAGEMENT OPERATIONS

The laboratory has a designated Sample Management Officer. This individual is responsible for receiving samples in the laboratory, opening the coolers and checking the sample integrity and the

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 3 of 9

custody seal, logging samples into the laboratory system, and controlling the handling and storage of samples while in the laboratory.

5.2.1 Sample Receipt and Logging

After samples have been collected, labeled and the chain-of-custody forms initiated, the project manager completes the right side of the chain-of-custody form. This form provides sample-specific information and a listing of the parameters required on each sample, along with the required analytical sensitivity. The chain-of-custody and appropriate field data sheets are sealed in a water-tight plastic envelope and shipped with the samples to the laboratory.

Upon receipt at the laboratory, the Sample Management Officer or designate custodian inspects the samples for integrity and checks the shipment against the chain-of-custody/analytical task order form. Cooler temperatures are checked and documented on the chain-of-custody. The pH of preserved samples (except volatile organics) is measured and documented in the Sample pH Logbook which is maintained in the Sample Management Office (EAL-SOP-257). The pH of sample vials submitted for volatile organics determinations are checked by the analyst during analysis, and the pH is recorded in the instrument run logbook.

Discrepancies are addressed at this point, and documented on the chain-of-custody form and must be resolved before samples are released to the laboratory for analysis. When the shipment and the chain-of-custody are in agreement, the custodian enters the samples into the Analytical Custody and Preservation Log and assigns each sample a unique laboratory number.

This number is affixed to each sample bottle. The custodian then enters the sample and analysis information into the laboratory computer system (LIMS). The original of the chain-of-custody form is given to the data management group, with a copy to the laboratory operations manager. These log-in procedures are documented in EAL-SOP-035 and EAL-SOP-036.

5.2.2 Sample Storage and Security

While in the laboratory, the samples and aliquots that require storage at approximately 4 C are maintained in a locked refrigerator unless they are being used for analysis. Samples for purgeable organics determinations are stored in a separate locked refrigerator from other samples, sample extracts, and standards. All the refrigerators in the laboratory used for storage of samples are locked, numbered, and dedicated to specific types of samples, e.g. organic extractables, volatiles, inorganics. Similarly, there are refrigerators designated for extracts and standards. Samples (e.g. tissue) that are required to be frozen are stored in a freezer. The sample storage areas are within

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 4 of 9

the laboratory to which access is limited to laboratory chemists and controlled by assigned passkeys. Specific requirements for sample storage are the following:

- Samples and extracts are stored in a secure area designed to comply with the storage method(s) defined in the contract.
- Samples are removed from the shipping container and stored in their original containers unless damaged.
- Damaged samples are disposed in an appropriate manner and this disposal is documented.
- The storage area is kept secure at all times. The sample custodian controls access to the storage area.
- Whenever samples are removed from storage, these removals are documented. All transfers of samples are documented on internal chain-of-custody records.
- Samples and extracts are stored after completion of analysis in accordance with the contract or until instructed otherwise by the Project Manager.
- The location of stored extracts is recorded.
- Samples for Volatile Organic Analysis are stored separately from other samples.
- Standards are not stored with samples or sample extracts.

So that the laboratory may satisfy sample chain-of-custody requirements, the following standard operating procedures for laboratory/sample security are implemented:

- Samples are stored in a secure area.
- Access to the laboratory is through a monitored area. Other outside-access doors to the laboratory are kept locked.
- Visitors sign a visitor's log and are escorted while in the laboratory.
- Refrigerators, freezers, and other sample storage areas are securely maintained or locked.
- Only the designated sample custodian and supervisory personnel have keys to locked sample storage area(s).
- Samples remain in secure sample storage until removed for sample preparation or analysis.
- All transfers of samples into and out of storage are documented on an internal chain-of-custody record by designated sample custodian within operational groups and Sample Management, and these internal custody records are maintained in the project files.

5.2.3 Sample Archives

Following completion of analysis, sediment samples are archived at $\leq 20C$ for one year from sample collection.

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 5 of 9

TABLE 5-1 CLEANING PROCEDURES FOR SAMPLE CONTAINERS

Parameter Group	Material	Cleaning
Total Organic Carbon Sulfide	Plastic	Detergent & hot water wash Deionized water rinse
Volatile Organics	Glass	Detergent & hot water wash Deionized water rinse Methanol rinse
Pesticides, PCBs	Glass	Detergent & hot water wash Acetone and deionized water rinse Dry at 400 C
Semivolatile Organics	Amber Glass	Detergent & hot water wash Acetone and deionized water rinse Dry at 400 C Methanol Rinse
Cyanide Chemical Oxygen Demand Phosphorus Nitrogen, Ammonia Nitrogen, Total Kjeldahl Nitrate & Nitrite	Plastic	Detergent & hot water wash HCl soak Deionized water rinse
Metals	Plastic	Detergent & hot water wash HNO ₃ soak Deionized water rinse

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 6 of 9

TABLE 5-2 **REQUIRED CONTAINERS, PRESERVATION TECHNIQUE, AND HOLDING TIMES FOR** SEDIMENT SAMPLES (*)

Parameter	Mass Required (g)	Container ^(b)	Preservative	Holding Time
Inorganics		1	•	······································
Mercury	5	Р	≤20C	30 davs
Other Metals	5	Р	≤20C	6 months
Cyanide	50	P.G	4C	14 days
Sulfide	10	P.G	4C	7 days
Biochemical Oxygen Demand	10	G	4C	48 hours
Chemical Oxygen Demand	50	P,G	≤20C	28 days
Nitrogen (Ammonia, Total Kjeldahl, Nitrate + Nitrite)	150	P,G	4C	28 days
Phosphorus				
Physical Parameters				
Total Moisture, Atterburg Limits, Grain Size	1000	P.G	≤20C	6 months
Organics				
Tributyltin	50	Solvent rinsed glass jar with Teflon-lined lid [®]	≤20C	6 months
Total Organic Carbon	5	Heat treated glass vial with Teflon-lined lid ^(b)	4C	14 days
Pesticides PCB Congeners Semivolatile Organics	400		s20C	10 days until extraction 40 days after extraction
Volatile Organics ·	50	Heat treated glass vial with Teflon-lined lid ^(b)	≤20C	10 days

From time of sample collection per USACE/EPA. February, 1991. Evaluation of Dredged Material Proposed for Ocean (a)

Disposal. EPA-503/8-91/001. P = plastic, G = glass. National Oceanographic and Atmospheric Administration. July, 1993. Sampling and Analytical Methods of the National Status and Trends Program. National Benthic Surveillance and Mussel Watch Projects. 1984-1992. NOS ORCA 71. NOAA, Silver Spring, Maryland. (b)

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 7 of 9

TABLE 5-3	REQUIRED CONTAINERS, PRESERVATION TECHNIQUE, AND HOLDING TIMES FOR
	SITE WATER AND ELUTRIATE SAMPLES (*)

Parameter	Volume Required (mL)	Container ^(b)	Preservative	Holding Time	
Inorganics		··· · · · ·			
Mercury	100	Р	pH <2 with HNO, Cool, 4 C	14 days	
Other Metals	100	Р	pH <2 with HNO ₃ Cool, 4 C	6 months	
Cyanide	500	P,G	NaOH to pH >12 Ascorbic Acid Cool, 4 C	14 days 24 hours in presence of S ²	
Sulfide	500	P,G	NaOH to pH >9 Zinc Acetate Cool, 4 C	7 days	
Biochemical Oxygen Demand	1000	P,G	Cool, 4 C	48 hours	
Chemical Oxygen Demand	50	P,G	H_2SO_4 to pH <2	28 days	
Nitrogen (Ammonia, Total Kjeldahl, Nitrate + Nitrite) Total Phosphorus	1050	P,G	H₂SO₄ to pH <2 Cool, 4 C	28 days	
Organics					
Total Organic Carbon	50	P,G	H₂SO₄ or HCl to pH <2 Cool, 4 C	28 days	
Pesticides Semivolatile Organics	2000 G, teflon- lined cap		Cool, 4 C	7 days until extraction 40 days after extraction	
Volatile Organics	80	G, tetlon- lined septum	Cool, 4 C	14 days	

(a) From time of sample collection per USACE EP.4. February, 1991. Evaluation of Dredged Material Proposed for Ocean Disposal. EPA 503/8-91/001.
(b) P = plastic; G = glass. National Oceanographic and Atmospheric Administration. July, 1993. Sampling and Analytical Methods of the National Status and Trends Program. National Benthic Surveillance and Mussel Watch Projects. 1984-1992. NOS ORCA 71. NOAA, Silver Spring, Maryland.

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 8 of 9

Figure 5-1. Analytical Task Order

ANALYTICAL TASK ORDER

No: EA LABORATORIES 19 Loveton Circle Sperks, MD 21152 Phone: (410) 771-4920 FAX (410) 771-4407

- Turneround requirement:(See Reverse Side)

 Reguler Stetus
 Accelereted Stetus (edditionel cherge)*
 - Rush Status (edditional charge)*
- * RESULTS REQUIRED BY: (Dete)

CONTACT EA LABS PRIOR TO SENDING SAMPLES

- 2. □ Originel Order □ Amendment Order (Original ATO Document No ____)
- 3. QUOTATION NUMBER :_____
- 4. PROJECT NUMBER: Dept. No.: _____ Tesk No.: _____ Project Neme: _____ Project Contect: _____
- 5. SHIPPING ADDRESS: Compeny Name: ______ Address: ______

Contect:	
Telephone: ()
fex tELEPHONE: ()

- 6. Semple collection: Dete for Bottles Due to Site: : _____ Delivery Dete Due to Leb: _____
- 7. REPORTING REQUIREMENTS: © Report: © EA Stenderd © Other (specify)
 - Electronic: Specify Formet _____
 - (Additionel cherge)

8. QC REQUIREMENTS <u>MUST BE COMPLETED</u>: See Terms end Conditions: QC semples billed et reguler semple rete.

- Image: Matrix Duplicate
 No.

 Image: Matrix SPIKE
 No.

 Image: Matrix SPIKE Duplicate
 No.

 Image: Matrix SPIKE Duplicate
 No.

 Image: FIELD BLANKS
 No.

 Image: Trip Blanks
 No.
- OTHER (as speciofied below)
- 9. PROGRAM REQUIREMENTS:
 - P NPDES D RCRA
 - □ SWDA □ Other:

10. PARAMETERS FOR ANALYSIS:

CATALOG NUMBER	ANALYSIS	NUMBER of SAMPLES	MATRIX**
	· · · · · · · · · · · · · · · · · · ·		
			. <u> </u>
		·	

** Specify: Air, Tissue, Sludge, Soil, Wster, etc.

11. SUPPLIES:

- Deionized Weter D Chein-of-Custody Formsd
- 12. COMMENTS/SPECIAL INSTRUCTIONS: _
- 13. REQUESTED BY: _____ Date: / / _____ Task Order must be completed, signed and dated prior to start of work.

14. ACCEPTED BY: _____ Dete: __/_/___ EA Laboratories

Whits - EA Laboratories Report

Yellow - EA Laboratorias Fils

Pink - Raturn to Originator Gold -

Gold - Originaator

USACE QAPjP Section No.: 5 Revision No.: 0 Date: 13 November 1995 Page: 9 of 9

Figure 5-2. Chain-of-Custody Form.

Compan	v Not			<u> </u>	Project	Manager or (Contact:	r	D			-			ham	60.0	Analy				01			
					Г Г					Num				818 T			Cna	n or C	ustody Re					
Project I	No.				Phone: Project	Name:																	EA Laboratories 19 Loveton Circl Sparks, MD 211 Sparks, MD 211	52 52
Dent ·		Task	•							~													Fax: (410) 771-4	407
Sample	Storage L	ocat	ion:		ATO N	umber:		1													Report Delive	rables:		
	-							۶	1												1 2	3	4 D	E
Рапе	 of	Ŕ	port	# :	L			jie l											•		EDD: Yes/No			
					<u> </u>			ont													DUE TO CLIE	ENT:	······	
Date	Time	Water	Soil		Sample 19	e Identification Characters	n	No. of C													EA Labs Accession Number		Remarks	
																						LPM:		
				1 1 1																				
										ļ														
										<u> _</u> _	ļ							_						
									<u> </u>		<u> </u>							\square						
									 		¦													
									<u> </u>		┼──	-						-+						
								\vdash	<u> </u>	┢									_				· · · · · · · · · · · · · · · · · · ·	
				<u> </u>				<u> </u>	┢									\rightarrow					· · · · · · · · · · · · · · · · · · ·	
								<u> </u>	<u> </u>	_														
									┣—	 													•···	
								<u> </u>	ļ		<u> </u>							_				L		
					1 1 1 1																			
-					<u></u>	<u> </u>																		
							<u> </u>		1		<u> </u>							-+		·				
Sampler	bv: (Sia	natur	e)		┶┵┷╅	Date/Time	Relinquishe	d by:	: (Sic	Inati	lie)	I	ليصحيا)ate/	Time	Re	cei	/ed I	v: (Signature)	<u>.</u>		Date/Time
oup.o.	J. (0.9		-,					•	• •															
Relinqui	shed by:	(Sign	ature			Date/Time	Received by	y Lat	oorat	ory:	(Sigr	nature	8)	_	D)ate/	Time	Ai	rbill	Num	iber:		Sample Shipp	ed by: (Circle)
																							Fed Ex. Pi	uro. UPS
Cooler 1	emp	_c	pН	Yes	<u> </u>	lo Commen	ts:					Cu	stod	y Se	als ir	ntac	<u>ا ا</u>	68		No			Hand Carried	
NOTE: PI	ease Indic	ate m	ethod	number fo	or analyse	es requested.	This will help c	larify a	any q	uesti	ons v	rith la	borate	ory te	chniq	lues.							Other:	

WHITE---EA Laboratories

YELLOW—EA Laboratories

Shaded Areas for Lab Use Only

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 1 of 7

6. CALIBRATION PROCEDURES

Instruments and equipment used in EA Laboratories are controlled by a formal calibration program. The program verifies that equipment is of the proper type, range, accuracy, and precision to provide data compatible with specified requirements. All instruments and equipment that measure a quantity, or whose performance is expected at a stated level, are subject to calibration. Calibration is performed by EA Laboratories personnel using reference standards or externally by calibration agencies or equipment manufacturers.

This section prescribes the practices use by EA Laboratories to implement a calibration program. Development and documentation of the laboratory calibration program is the responsibility of the laboratory managers. Implementation is the responsibility of the supervisors and chemists. The Quality Services Manager (QSM) monitors the procedures. Specifics are not provided because the requirements for the calibration of instruments and equipment are dependent upon the type and expected performance of individual instruments and equipment. Therefore, EA Laboratories uses the guidelines provided herein to develop a calibration program.

Two types of calibration are discussed in this section:

- *Operational calibration*, which is routinely performed as part of an analytical procedure or test method, such as the development of a standard curve for use with an atomic absorption spectrophotometer. Operation calibration is generally performed for instrument systems.
- *Periodic calibration*, which is performed at prescribed intervals for equipment, such as balances and thermometers. In general, equipment which can be calibrated periodically is a distinct, singular purpose unit and is relatively stable in performance.

6.1 CALIBRATION SYSTEM

The following sections contain a discussion of the elements comprising the calibration system.

6.1.1 Calibration Procedures

Written procedures are used by EA Laboratories for all instruments and equipment subject to calibration. Whenever possible, recognized procedures, such as those published by ASTM or the U.S. EPA or procedures provided by manufacturers, are adopted. If established procedures are not available, a procedure is developed considering the type of equipment, stability characteristics

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 2 of 7

of the equipment, required accuracy, and the effect of operational error on the quantities measured. As a minimum, the procedures include:

- Equipment to be calibrated
- Reference standards used for calibration
- Calibration technique and sequential actions
- Acceptable performance tolerances
- Frequency of calibration
- Calibration documentation format

6.1.2 Equipment Identification

Equipment that is subject to calibration is identified by a unique number assigned by EA Laboratories, and calibration records reference the specific instrument identification.

6.1.3 Calibration Frequency

Instruments and equipment are calibrated at prescribed intervals and/or as part of the operational use of the equipment. Calibration frequency is based on the type of equipment, inherent stability, manufacturer's recommendations, values provided in recognized standards, intended data use, specified analytical methods, effect of error upon the measurement process, and prior experience.

6.1.4 Calibration Reference Standards

Two types of reference standards are used within EA Laboratories for calibration:

• Physical standards, such as weights for calibrating balances and certified thermometers for calibrating working thermometers, refrigerators and ovens, are generally used for periodic calibration. Whenever possible, physical reference standards have known relationships to nationally recognized standards (e.g., NIST) or accepted values of natural physical constants. If national standards do not exist, the basis for the reference is documented. Physical reference standards are used only for calibration and are stored separately from equipment used in analyses. In general, physical reference standards are at least four to ten times as accurate as the requirements for the equipment which they are used to calibrate. In general, physical standards are recalibrated annually by a certified external agency, and documentation is maintained by the Quality Assurance staff.

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 3 of 7

• Chemical standards, such as Standard Reference Materials (SRMs) provided by the National Institute of Standards and Technology (NIST) or vendor certified stock solutions and neat compounds, are generally used for operational calibration. EA Laboratories documents all standard preparation activities in order to provide traceability for all standards used for calibration and QC samples.

6.1.5 Calibration Failure

Equipment that cannot be calibrated or becomes inoperable is removed from service. Such equipment must be repaired and satisfactorily recalibrated before reuse. For equipment that fails calibration, analysis cannot proceed until appropriate corrective action is taken and the analyst achieves an acceptable calibration. This is documented in a Nonconformance Record (NCR) which is discussed in Section 13 of this QAPjP.

Scheduled calibration of equipment does not relieve the laboratory staff of the responsibility for using properly functioning equipment. If an equipment malfunction is suspected, the equipment is tagged and removed from service and recalibrated. If it fails recalibration, the above process shall apply. The Division Managers are responsible for the development and implementation of a contingency plan for major equipment failure. The plan includes guidelines on waiting for repairs, use of other instrumentation, subcontracting analyses, and evaluating scheduled priorities.

6.1.6 Calibration Records

Records are prepared and maintained for each piece of equipment subject to calibration. Records demonstrating accuracy of preparation, stability, and proof of continuity of reference standards is also maintained.

Records for periodically calibrated equipment are maintained in the instrument log books, or in the equipment file maintained by the Laboratory Supervisor. Records for periodically calibrated equipment shall include, as appropriate:

- A unique identification number of equipment and type of equipment
- Calibration frequency and acceptable tolerances
- Identification of calibration procedure used
- The date calibration was performed
- The identity of EA Laboratories personnel and/or external agencies performing calibration
- · Identification of the reference standards used for calibration
- The calibration date

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 4 of 7

- Certificates or statements of analysis provided by manufacturers and external agencies and traceability to national standards
- Information regarding calibration acceptance or failure and any repair of failed equipment

For instruments and equipment that are calibrated on an operational basis, calibration generally consists of determining instrumental response against compounds of known composition and concentration or the preparation of a standard response curve of the same compound at different concentrations. Records of these calibrations are maintained in the following documents:

- Standard preparations logbooks contain sufficient information to trace the standards to the original source solution of neat compound.
- The instrument logbook provides an ongoing record of the calibration undertaken for a specific instrument. The logbook should be indexed in the laboratory operations records but should be maintained at the instrument by the chemist. All entries should be signed and dated by the chemist, and reviewed periodically by the Laboratory Supervisor/Manager.
- Copies of the raw calibration data are kept with the analytical sample data. In this way results can be readily processed and verified because the raw data package is complete as a unit. If samples from several projects are processed together, the calibration data is copied and included with each group of data.

6.2 OPERATIONAL CALIBRATION

Operational calibration is generally performed as part of the analytical procedure and refers to those operations in which instrument response (in its broadest interpretation) is related to analyte concentration. Included is the preparation of a standard response (calibration) curve and often the analysis of blanks. Formulas used for calibration are listed in Table 6-1.

6.2.1 Preparation of Calibration Curve

Preparation of a standard calibration curve is accomplished by using calibration standards. The process is summarized as:

- Preparation of a standard calibration curve is accomplished by the analysis of calibration standards that are prepared by adding the analyte(s) of interest to the solvent that is introduced into the instrument.
- The concentrations of the calibration standards are chosen to cover the working range of the instrument or method.
- All sample measurements are made within this working range.

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 5 of 7

- The calibration curve is prepared by plotting or regressing the instrument responses versus the analyte concentrations.
- The concentrations of the analyzed samples are back-calculated from the calibration curve.

6.2.2 Blanks

The analyst determines through the use of reagent and/or solvent blanks if materials used to prepare the standards are free from interfering substances that could affect the analysis. After determining the individual reagent or solvent blanks, the analyst analyzes a method blank, if applicable, to determine if the cumulative blank interferes with the analysis. A method blank is prepared whenever samples are processed through steps that are not applied to the calibration standards. The method blank is prepared by following the procedure step by step, including the addition of all the reagents and solvents in the quantity added to the sample. If this cumulative blank interferes with the determination, steps are taken to eliminate or reduce the interference to a level that will permit the combination of solvents and reagents to be used. If the blank interference cannot be eliminated, the magnitude of the interference must be considered when calculating the concentration of specific constituents in the samples analyzed.

6.2.3 Instrument Calibration Procedures

Appendix B contains the operational calibration procedures and criteria used by the various instrument groups to meet requirements for the analysis of soil/sediment and water samples for this program.

6.3 PERIODIC CALIBRATION

Periodic calibrations are performed for equipment (e.g. balances, thermometers) that is required in the analytical method, but that is not routinely calibrated as part of the analytical procedure. Table 6-2 lists the periodic calibration requirements used by EA Laboratories.

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 6 of 7

TABLE 6-1	SUMMARY OF	OPERATIONAL	CALIBRATION FORMULAS	5
-----------	------------	--------------------	----------------------	---

Linear calibration curves $C = (R - a_0)/a_1$ R = instrument response $a_0 = intercept of regression curve (when concentration is zero)$ $a_1 = slope of regression curve (change in concentration)$	e (instrument response) change in response per
Calibration factors ¹ $CF = \frac{A_x}{C}$ C = concentration (ug/L) CF = calibration factor $A_x = \text{peak size of target compound}$	nd in sample extract
Response factors ¹ $RF = \begin{array}{c} C_{i_{a}}A_{x} \\ C A_{i_{a}} \end{array}$ $RF = \begin{array}{c} C_{i_{a}}A_{x} \\ C A_{i_{a}} \end{array}$ $C = \text{concentration (ug/L)} \\ RF = \text{internal standard response to the internal standard response to the characteristic compound} \\ A_{x} = \text{area of the characteristic standard} \end{array}$	actor l standard (ug/L) c ion for the target ion for the internal

1. Used for quantitation by the external standard technique.

USACE QAPjP Section No.: 6 Revision No.: 0 Date: 13 November 1995 Page: 7 of 7

TABLE 6-2 SUMMARY OF PERIODIC CALIBRATION REQUIREMENTS

Instrument	Calibration Frequency		Acceptance Limits	Corrective Actions
Analytical Balances	Daily: Monthly: Annually:	Sensitivity (with a Class P weight) Checked with Class S weights Calibrated by outside vendor against certified Class S weights	0.001g Std. dev. less than 0.1 mg	Adjust sensitivity Service balance Service balance
Thermometers	Annually:	Calibrated against certified NIST thermometers	±0.5 C	Tag and remove from service
Automatic Pipettors	Quarterly:	Gravimetric check	High volume (>100 mL): ≤1.0% relative error as RSD Low volume (<100 mL): ≤2.0% relative error as RSD	Service or replacement

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 13 November 1995 Page: 1 of 23

7. LABORATORY PROCEDURES

This section details the types of documentation used by EA Laboratories to ensure the integrity of the data produced.

7.1 ANALYTICAL METHODS

All inorganic and organic compounds for this project are determined using the methods listed in Table 7-1. Copies of the laboratory SOPs are in Appendix C. To meet program specific regulatory requirements for chemicals of concern, all methods are followed as stated with exceptions noted below:

7.1.1 PCB Congeners

For all sediment samples taken outside of Baltimore Harbor and all split samples, PCB concentrations will be determined separately from pesticides and the PCB extract will be acidified to remove interfering compounds. This procedure is expected to lower the MDL to approximately $10 \ \mu g/kg$ for all Aroclors that would otherwise have MDL's greater than $10 \ \mu g/kg$.

The Baltimore District USACE has determined that if total PCB concentration is greater than 11.6 ug/kg, congeners will be determined. Samples from outside of Baltimore Harbor will be subject to the 11.6 ug/kg test. Samples taken inside the Harbor (22 samples) will not be subject to congener analysis.

In order to achieve the required detection limits for PCB arochlors in the sediment samples taken outside the harbor, pesticides and PCBs will be extracted separately using two aliquots of sample. The pesticide fraction, extracted with only one surrogate, tetrachloro-m-xylene, will be analyzed in the usual manner and the extract saved for PCB Congener analysis, if required. The PCB extract will be concentrated to 2 ml (five times less than the volume specified in the standard method), subjected to acid cleanup according to SW846 Method 3665 to eliminate possible interferences, and analyzed by dual-column gas chromatography. If the total arochlor concentration in the PCB extract exceeds 11.6 ug/kg, the pesticide extract will be subject to congener identification and quantitation.

7.1.2 Water Quality Parameters

Water quality parameter methods will be modified for sediment analyses based on methods outlined in Table 7-1.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 13 November 1995 Page: 2 of 23

7.1.3 Elutriate Test

The Elutriate is prepared by subsampling approximately 1 L of the dredged material from the well-mixed original sample. The dredged material and unfiltered site water are then combined in a sediment-to-water ratio of 1:4 on a volume basis at room temperature $(22^{\circ} \pm 2^{\circ}C)$. This is best accomplished by volumetric displacement. After the correct ratio is achieved, the mixture is also stirred vigorously for 30 min with a magnetic stirrer. At 10-min intervals, the mixture is also stirred manually to ensure complete mixing. After the 30-min mixing period, the mixture is allowed to settle for 1 hour. The supernatant is then siphoned off and centrifuged or filtered through a 0.45- μ m-mesh filter to remove particulates prior to chemical analysis.

It has been determined that 10 L of site water and 2.5 L of sediment sample will be required for each elutriate test in order to provide the necessary volume of elutriate for the analytical methods indicated.

7.1.4 Semivolatile Organics - PAHs

In order to achieve the target detection limits (TDLs) referenced in QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations (EPA 823-B-95-001, April 1995) for sediment samples, PAHs will be analyzed utilizing the alternative SW846 Method 8310 (HPLC).

7.1.5 Pesticides

For sediment samples only, a surrogate sample will be prepared for pesticides analysis using TCX, a spiking compound used in QA/QC for pesticide/PCB analyses. This is being done to allow for a separate PCB analysis.

7.2 DETECTION LIMITS

The detection limit is a statistical concept that corresponds to the minimum concentration of an analyte above which the net analyte signal can be distinguished with a specified probability from the signal due to the noise inherent in the analytical system. The method detection limit (MDL) was developed by the EPA Environmental Monitoring and Support Laboratory for NPDES monitoring under the Clean Water Act and has found wide acceptance in other EPA programs. The MDL is "the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero" (40 CFR 136, Appendix B).

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 13 November 1995 Page: 3 of 23

The actual quantitation limit for a given analysis will vary depending on instrument sensitivity and matrix effects.

Detection limits applicable to this project are listed in Tables 7-2 and 7-3 for sediment and water samples. The tables include the TDLs referenced in the ITM, and the laboratory MDL determined using a reference sediment.

Laboratory MDL studies are performed according to the procedure identified in 40 CFR 136 Appendix B. Organics analyses will use 30 g of sediment (dry-weight basis). The amounts used for the inorganic analyses are given in the applicable analytical method.

Sediment MDLs are determined and reported on a dry weight basis.

Method detection limit (MDL) studies will be used as the basis for any method modifications which will allow the laboratory to effectively achieve the TDLs.

Project reporting level: For this project, data will be reported following the guidance in "Chemical Concentration Data Near The Detection Limit" (EPA/903/8-91/001) using the laboratory determined MDLs (Tables 7-2 and 7-3). The MDL procedure (40 CFR 136) will be modified from the specified 7 aliquots to 3 se 5 discrete receiving site samples. Sample data will be reported as a sample quantitation limit (SQL) per the same guidance with dilution, cleanup and method modifications taken into account.

7.3 STANDARD OPERATING PROCEDURES

A standard operating procedure (SOP) is a written step-by-step description of laboratory operating procedures exclusive of analytical methods. EA Laboratories documents all procedures in formal, approved SOPs, which are issued in a document-controlled manual (EA Manual EAL-002). All SOPs are submitted in draft to the Quality Services Manager (QSM) who is responsible for initiating the review and approval process and for distributing and controlling the final SOPs (EAL-SOP-088).

The SOPs address the following areas:

- Storage containers and sample preservatives
- Sample receipt and logging
- Sample custody
- Sample handling procedures
USACE QAPjP Section No.: 7 Revision No.: 1 Date: 13 November 1995 Page: 4 of 23

- Sample transportation
- Glassware cleaning
- Laboratory security
- Quality control procedures and criteria
- Equipment calibration and maintenance
- Documentation
- Safety
- Data handling procedures
- Document control
- Personnel training and documentation
- Sample and extract storage
- Preventing sample contamination
- Traceability of standards
- Data reduction and validation
- Maintaining instrument records and logbooks
- Nonconformance
- Corrective actions
- Records management

The table of contents of the EA Laboratories SOP Manual is given in Appendix C. The QSM is responsible for maintaining the original copies of all SOPs, as well as an historical file of all versions.

7.4 RECORDKEEPING

7.4.1 General Requirements

EA Laboratories maintains extensive records to ensure that all aspects of the analytical process are adequately documented because the keeping of laboratory records is a legal requirement. These records convey:

- What was done.
- When it was done.
- Who did it.
- What was found.

The requirements for laboratory recordkeeping are given in EAL-SOP-065. All data entries are made in indelible, water-resistant ink. The date of the entry and the observer is clear on each

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 13 November 1995 Page: 5 of 23

entry. The observer uses his/her full name or initials. An initial and signature log is maintained so that the recorder of every entry can be identified. All information is recorded in a notebook or on other records at the time the observations are made. Recording information on loose pieces of paper is not allowed.

When a mistake is made, the wrong entry is crossed out with a single_line, initialed and dated by the person making the entry, and the correct information recorded. Obliteration of an incorrect entry or writing over it is not allowed; neither is the use of correction tape or fluid on any laboratory records.

7.4.2 Laboratory Records

The following records are used to document analytical activities in the laboratory. These are in addition to those discussed elsewhere in this manual, such as chain-of-custody (COC) forms, log-in sheets, maintenance records (Section 11), and nonconformance forms (Section 13).

Reagent and Titrant Preparation Records: The procedure for each analysis includes the procedures for reagent/ titrant preparation; this includes concentration, storage, and discard information. After a reagent/titrant is prepared, the following information is entered on a label affixed to the storage bottle: (1) its identity, (2) intended use, (3) titer/concentration, (4) preparation date, (5) storage requirement, (6) discard date, and (7) preparer. For titrimetric analyses, the procedure includes directions for standardizing the titrant; the laboratory data sheets include space for titrant standardization data.

Standards Preparation Logs: The preparation of stock, intermediate, and working standard solutions is recorded in standards preparation logbooks which are specific to the requirements of each operational group. Each standard is assigned a number that is used to trace the preparation from stock to working standards and to reference the analysis of the standards. The logbooks are completed by the appropriate analysts as they prepare the standards and are reviewed by the supervisor.

Sample Preparation Logs: Sample preparation operations, such as digestions and extractions, are documented in sample preparation logs which are specific to the operations involved. The information in these logs can include: the date, the analyst, sample identification, weight or volume of sample used, reagents used, and final volume. It can also include the volume of spiking, surrogate, or internal standard solution.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 13 November 1995 Page: 6 of 23

Bench Data Sheets: Laboratory bench data sheets are used for those analyses in which instrument responses are manually transcribed from instrument readout or from recorder tracings. The data sheets are preprinted to reflect the requirements of the analysis and are used to ensure that the information is recorded in a complete and organized manner.

Instrument Run Logs: The run log is used for recording data generation, instrument malfunctions, repairs, and maintenance activities. Data generation from an instrument requires that the sequence of the introduction of standards, field samples, and QC samples be recorded in the instrument run log. The following information is recorded when applicable: instrument identification, date, time, analyst, sample identifications, dilutions, and filenames for disk storage.

Strip Chart Recordings/Chromatograms/Computer Output: All strip chart recordings, chromatograms, computer output, and other instrument-generated records are clearly labeled with the following information: instrument identification, date, analyst, and sample identifications. The operational conditions are also recorded if applicable.

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 7 of 23

TABLE 7-1 ANALYTICAL METHODS

Parameter	Method	Method Number	Matrix	Reference
SAMPLE PREPARATION				
Metals Digestion	Nitric Acid - Hydrogen Peroxide	3050	SO	(1)
Semivolatile Organics, Pesticides Extraction	Continuous Extraction	3520	W	(1)
Semivolatile Organics, Pesticides/PCBs Extraction	Soxhlet Extraction	3540	SO	(1)
Organotins Extractions	Solvent Extraction	NS&T	SO	(2)
Soluble Salts Extraction	Aqueous Extraction	10-2	SO	(3)
Total Metals Digestion (FAA/ICP)	Nitric Acid - Hydrochloric Acid	3010	W	(1)
Total Metals Digestion (GFAA)	Nitric Acid	3020	W	(1)
Volatile Organics Preparation	Purge and trap	5030	W,SO	(1)
ORGANICS - EXTRACTION CLEANUP				
Acid-base Partition Cleanup	Liquid-liquid Partitioning	3650	W,SO	(1)
Alumina Column Cleanup	Adsorption Column Chromatography	3610	W,SO	(1)
Florisil Column Cleanup	Adsorption Column Chromatography	3620	W,SO	(1)
Gel Permeation Cleanup (GPC)	Size Exclusion Procedure	3640	W,SO	(1)
Silica Gel Cleanup	Adsorption Column Chromatography	3630	W,SO	(1)
Sulfur Cleanup	Treatment with Cu, Hg, or TBA-sulfite	3660	W,SO	(1)
ORGANICS				
Acid Extractable Organic Compounds	Gas Chromatography/Mass Spectrometry	8270	W,SO	(1)
Base-Neutral Extractable Organic Compounds	Gas Chromatography/Mass Spectrometry	8270	W,SO	(1)
Polynuclear aromatic hydrocarbons (PAH)	HPLC - UV, fluorescence	8310	W,SO	(1)
Halogenated Hydrocarbon Pesticides	Gas Chromatography - ECD	8080	W,SO	(İ)
Polychlorinated Biphenyls	Gas Chromatography - ECD	8080	W,SO	(I)
Organotins	Capillary GC/FPD	NS&T	SO	(2)

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 8 of 23

•

TABLE 7-1 ANALYTICAL METHODS

Parameter	Method	Method Number	Matrix	Reference
Volatile Organic Compounds	Gas Chromatography/Mass Spectrometry	8240	W,SO	(1)
METALS				
Aluminum	Atomic Emission - ICP	6010	W,SO	(1)
Antimony	Atomic Emission - Trace ICP	6010	W,SO	(1)
Arsenic	Atomic Eluission - Trace ICP	6010	W,SO	(1)
Arsenic	Atomic Absorption - Furnace	7060	W,SO	(1)
Bervllium	Atomic Emission - ICP	6010	W,SO	(1)
Cadmium	Atomic Emission - ICP	6010	W,SO	(1)
Chromium, Total	Atomic Emission - ICP	6010	W,SO	(1)
Copper	Atomic Emission - ICP	6010	W,SO	(1)
Iron	Atomic Emission - ICP	6010	W,SO	(1)
Lead	Atomic Absorption - Furnace	7421	W,SO	(İ)
Lead	Atomic Emission - Trace ICP	6010	W,SO	(İ)
Manganese	Atomic Emission - ICP	6010	W,SO	(İ)
Mercury	Atomic Absorption - Cold Vapor	7470	W	(1)
Mercury	Atomic Absorption - Cold Vapor	7471	SO	(1)
Nickel	Atomic Emission - ICP	6010	W,SO	(İ)
Selenium	Atomic Absorption - Furnace	7740	w,so	(İ)
Selenium	Atomic Emission - Trace ICP	6010	W.SO	ŭ
Thallium	Atomic Absorption - Furnace	7841	W.SO	ă
Thallium	Atomic Emission - Trace ICP	6010	w.so	(I)
Zinc	Atomic Emission - ICP	6010	W,SO	(1)

INORGANIC NONMETALS

.

60787.26

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 27 November 1995 Page: 9 of 23

Parameter	Method	Method . Number	Matrix	Reference
Cvanide Total	Colorimetric - Automated UV	9012	w so	(1)
Sulfide, total	Titrimetric	9030	W SO	(1) (1)
Total Organic Carbon	Oxidation - Infrared	9060	W	(1) (1)
Total Organic Carbon	Induction Furnace	Plumb	SO	(4)
Biochemical Oxygen Demand	BOD (5 day, 20C)	405.1 Mod	W.SO	(5)
Chemical Oxygen Demand	Colorimetric - Manual	410.4 Mod	W.SO	(5)
Nitrogen, Ammonia	Colorimetric - Automated Phenate	350.1 Mod	W.SO	(5)
Nitrogen, Total Kjeldahl	Colorimetric - Autoanalyzer II	351.2 Mod	w.so	(5)
Nitrogen, Nitrate + Nitrite	Colorimetric - Cadmium Reduction	353.2 Mod	W.SO	(5)
Phosphorus, Total	Persulfate Digestion	365.3 Mod	w,so	(5)
PHYSICAL PARAMETERS				
Grain Size	Seive Analysis	D422	SO	(6)
Atterberg Limits	Physical Measurement	D4318	SO	(6)
Moisture Content	Gravimetric	D4959	SO	(6)

TABLE 7-1 ANALYTICAL METHODS

Matrix codes:

W - Estuarine water, elutriates SO - Sediments

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 10 of 23

TABLE 7-1 ANALYTICAL METHODS

Parameter	Method	Method Number	Matrix	Reference

References:

- 1. United States Environmental Protection Agency. January 1995. Test Methods for Evaluating Solid Waste. Physical/Chemical Methods. EPA SW-846, 3rd edition, including Final Update II. U.S. EPA, Washington, D.C.
- 2. National Oceanographic and Atmospheric Administration. July, 1993. Sampling and Analytical Methods of the National Status and Trends Program, National Benthic Surveillance and Mussel Watch Projects. 1984-1992. Volume 4. NOS ORCA 71. NOAA, Silver Spring, Maryland.
- 3. Page, A.L., R.H. Miller, and D.R. Keeney, eds. 1982. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd edition. American Society of Agronomy, Madison, Wis.
- 4. Plumb, R.H., Jr., 1981. "Procedure for Handling and Chemical Analysis of Sediment and Water Samples", Technical Report EPA/CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, New York.
- 5. United States Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. U.S. EPA, Cincinnati, Ohio.

6. American Society for Testing and Materials. Annual Book of ASTM Standards. Volume 4.08. ASTM, Philadelphia, PA.

> USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 11 of 23

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
Pesticides and PCBs GC/ECD - organochlo	orine compounds (SW84	6 8080)	
Aldrin	ug/kg	0.20	10
α-BHC	ug/kg	1.1	-
β-ΒΗϹ	ug/kg	0.17	-
δ-BHC	ug/kg	0.20	-
γ-BHC (Lindane)	ug/kg	0.73	10
α-Chlordane	ug/kg	0.10	10
y-Chlordane	ug/kg	0.10	10
Chlordane (Technical)	ug/kg	3.7	10
4,4'-DDD	ug/kg	1.4	10
4.4'-DDE	110/kg	0.20	10
4,4'-DDT	ug/kg	1.6	10
Dieldrin	ug/kg	13	10
Endosulfan I	ug/kg	0.10	10
Endosulfan II	ug/kg	0.20	10
Endosulfan sulfate	ug/kg	0.51	10
Endrin	ug/kg	1.4	10
Endrin aldehyde	ug/kg	0.20	10
Endrin ketone	ug/kg	0.30	10
Heptachlor	ug/kg	0.83	10
Heptachlor epoxide	ug/kg	0.10	10
Methoxychlor	ug/kg	12	10
Toxaphene	ug/kg	53	50
Aroclor 1016	ug/kg	10	-
Aroclor 1221	ug/kg	10	-
Aroclor 1232	ug/kg	10	-
Aroclor 1242	ug/kg	10	-
Aroclor 1248	ug/kg	4.3	-
Aroclor 1254	ug/kg	9.3	-
Aroclor 1260	ug/kg	1.3	-
PCBs GC/ECD - (SW846 8080) ^(d)			
Aroclor 1016	ug/kg	4	11.6
Aroclor 1221	ug/kg	10	11.6
Aroclor 1232	ug/kg	3	11.6
Aroclor 1242	ug/kg	4	11.6
Aroclor 1248	ug/kg	1	11.6

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes. (c) TDL refers to total (not speciated).

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 12 of 23

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

Parameter Un	úts	Laboratory MDL ^(a)	Recommended TDL ^(b)
Aroclor 1254	ug/kg	2	11.6
Aroclor 1260	ug/kg	0.3	11.6
PCB Congeners - GC/ECD - (SW846 8080)			
2,4'-Dichlorobiphenyl (BZ # 8)	ug/kg	0.97	1
2,2',5-Trichlorobiphenyl (BZ # 18)	ug/kg	0.72	1
2,4,4'-Trichlorobiphenyl (BZ # 28)	ug/kg	0.84	1
2,2',3,5'-Tetrachlorobiphenyl (BZ # 44)	ug/kg	0.72	1
2,2',4,5'-Tetrachlorobiphenyl (BZ # 49)	ug/kg	0.97	1
2,2',5,5'-Tetrachlorobiphenyl (BZ # 52)	ug/kg	1.3	1
2,3',4,4'-Tetrachlorobiphenyl (BZ # 66)	ug/kg	0.89	1
3,3',4,4'-Tetrachlorobiphenyl (BZ # 77)	ug/kg	1.8	1
2,2',3,4,5'-Pentachlorobiphenyl (BZ # 87)	ug/kg	0.82	1
2,2',4,5,5'-Pentachlorobipheny1 (BZ # 101)	ug/kg	0.83	1
2,3,3',4,4'-Pentachlorobiphenyl (BZ # 105)	ug/kg	0.86	1
2,3',4,4',5-Pentachlorobiphenyl (BZ # 118)	ug/kg	1.0	1
3,3',4,4',5-Pentahlorobiphenyl (BZ # 126)	ug/kg	1.3	1
2,2',3,3',4,4'-Hexachlorobiphenyl (BZ # 128)	ug/kg	1.0	1
2,2',3,4,4',5'-Hexachlorobiphenyl (BZ # 138)	ug/kg	1.0	1
2,2',4,4',5,5'-Hexachlorobiphenyl (BZ # 153)	ug/kg	0.99	1
2,3,3',4,4',5-Hexachlorobiphenyl (BZ # 156)	ug/kg	1.2	1
3,3',4,4',5,5'-Hexachlorobiphenyl (BZ # 169)	ug/kg	1.6	1
2,2',3,3',4,4',5-Heptachlorobiphenyl (BZ # 170)	ug/kg	0.98	1
2,2',3,4,4',5,5'-Heptachlorobiphenyl (BZ # 180)	ug/kg	1.1	1
2,2',3,4,4',5',6-Heptachlorobiphenyl (BZ # 183)	ug/kg	0.63	1
2,2',3,4,4',6,6'-Heptachlorobiphenyl (BZ # 184)	ug/kg	0.79	1
2,2',3,4',5,5',6-Heptachlorobiphenyl (BZ # 187)	ug/kg	0.78	1
2,2',3,3',4,4',5,6-Octachlorobiphenyl (BZ # 195)	ug/kg	1.2	1
2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl (BZ # 206)	ug/kg	1.2	1
2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (BZ # 20)9) ug/kg	1.0	1
Semivolatile organics GC/MS - (SW846 3540/ 8270))		
Benzidine	110/ko	280	-
Benzoic acid	-6/ ~6 119/kg	380	100
Benzyl alcohol	uø/kø	- 30	50
Bis(2-chloroethyl) ether	ug/kg	140	•

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes. (c) TDL refers to total (not speciated).

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 13 of 23

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
Bis(2-chloroethoxy)methane	ug/kg	81	-
Bis(2-ethylbexyl) phthalate	ug/kg	130	50
4-Bromophenyl phenyl ether	ug/kg	31	•
Butylbenzylphthalate	ug/kg	- 86	50
Carbazole	ug/kg	49	•
4-Chloroaniline	ug/kg	27 0	-
4-Chloro-3-methylphenol	ug/kg	48	-
2-Chloronaphthalene	ug/kg	59	-
2-Chlorophenol	ug/kg	124	•
2-Chlorophenol-d4	ug/kg	120	-
4-Chlorophenyl phenyl ether	ug/kg	65	-
Cyclohexanone	ug/kg	200	-
Dibenzofuran	ug/kg	44	50
Di-n-butyl phthalate	ug/kg	49	50
1,2-Dichlorobenzene	ug/kg	190	20
1,2-Dichlorobenzene-d4	ug/kg	200	-
1,3-Dichlorobenzene	ug/kg	190	20
1,4-Dichlorobenzene	ug/kg	180	20
3,3'-Dichlorobenzidine	ug/kg	290	
2,4-Dichlorophenol	ug/kg	61	
Diethyl phthalate	ug/kg	48	50
4,6-Dinitro-2-Methylphenol	ug/kg	62	-
2,4-Dimethylphenol	ug/kg	160	20
Dimethyl phthalate	ug/kg	41	50
2,4-Dinitrophenol	ug/kg	110	-
2.4-Dinitrotoluene	ug/kg	52	-
2,6-Dinitrotoluene	ug/kg	70	-
1,2-Diphenylhydrazine	ug/kg	36	-
Di-n-octyl phthalate	ug/kg	34	50
2-Fluorobiphenyl	ug/kg	56	•
2-Fluorophenol	ug/kg	150	-
Hexachlorobenzene	ug/kg	60	10
Hexachlorobutadiene	ug/kg	150	20
Hexachloroethane	ug/kg	180	100
Hexachlorocyclopentadiene	ug/kg	74	-
Isophorone	ug/kg	76	-
l-Methylnaphthalene	ug/kg	•	20
2-Methylnaphthalene	ug/kg	76	20

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes. (c) TDL refers to total (not speciated).

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 14 of 23

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
2-Methylphenol	ug/kg	. 84	50
3+4-Methylphenol	ug/kg	80	-
4-Methylphenol	ug/kg	80	100
2-Nitroaniline	ug/kg	58 ,	-
3-Nitroaniline	ug/kg	210	-
4-Nitroaniline	ug/kg	88	-
Nitrobenzene	ug/kg	120	-
Nitrobenzene-d.	ug/kg	120	-
2-Nitrophenol	ug/kg	110	-
4-Nitrophenol	ug/kg	62	-
N-Nitrosodiphenylamine	ug/kg	61	20
N-Nitrosodimethylamine	ug/kg	160	-
N-Nitroso-di-n-propylamine	ug/kg	79	-
2,2'-Oxybis(1-chloropropane)	ug/kg	120	-
Pentachlorophenol	ug/kg	69	100
Phenol	ug/kg	91	100
Phenol-d4	ug/kg	86	-
Pyridine	ug/kg	120	-
Terphenyl-d ₄	ug/kg	52	-
2,4,6-Tribromophenol	ug/kg	63	-
1,2,4-Trichlorobenzene	ug/kg	140	10
2,4,5-Trichlorophenol	ug/kg	32	-
2,4,6-Trichlorophenol	ug/kg	60	-
Semivolatile organics HPLC - PAHs (SW846 8310)-30 grams - Soil		
Acenaphthene	ug/kg	16	20
Acenaphthylene	ug/kg	36	20
Anthracene	ug/kg	0.88	20
Benzo[a]anthracene	ug/kg	0.81	20
Benzo[b]fluoranthene	ug/kg	1.7	20
Benzo[k]fluoranthene	ug/kg	0.83	20
Benzo[a]pyrene	ug/kg	0.78	20
Benzo[ghi]perylene	ug/kg	1.9	20
Chrysene	ug/kg	1.1	20
Dibenzo[a,h]anthracene	ug/kg	1.9	20
Fluoranthene	ug/kg	2.9	20
Fluorene	ug/kg	3.6	20
Indeno[1,2,3-cd]pyrene	ug/kg	1.7	20

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

,

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 15 of 23

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
Naphthalene	ug/kg	17	20
Phenanthrene	ug/kg	0.71	20
Pyrene	ug/kg	0.85	20
1-Methylnaphthalene	ug/kg	-	20
2-Methylnaphthalene	ug/kg	-	20
Organotins (NS&T)			
Tributyltin	mg/kg	0.8	10 ^(c)
Dibutlytin	mg/kg	0.8	10 ^(c)
Monobutyltin	mg/kg	0.8	10 ^(c)
Volatile organics - 5g GC/MS (SW846 8240)			
Acetone	ug/kg	3.5	-
Acrolein	ug/kg	4.7	-
Acrylonitrile	ug/kg	3.1	-
Benzene	ug/kg	0.43	10
Bromodichloromethane	. ug/kg	0.51	-
Bromoform	ug/kg	0.40	-
Bromofluorobenzene	ug/kg	0.41	-
Bromomethane	ug/kg	0.46	-
2-Butanone	ug/kg	0.81	-
methyl tert-Butyl ether (MTBE)	ug/kg	0.62	-
Carbon disulfide	ug/kg	0.64	-
Carbon tetrachloride	ug/kg	0.25	-
Chlorobenzene	ug/kg	0.30	-
Chloroethane	ug/kg	0.94	-
2-Chloroethyl vinyl ether	ug/kg	0.45	-
Chloroform	ug/kg	0.38	10
Chloromethane	ug/kg	0.86	-
3-Chloro-1-propene	ug/kg	0.36	-
Dibromochloromethane	ug/kg	0.56	-
1,2-Dibromoethane	ug/kg	0.57	-
1,2 Dichlorobenzene	ug/kg	0.32	-
l,2-Dichloroethene (total)	ug/kg	0.56	-
1,3-Dichlorobenzene	ug/kg	0.33	•
l,4-Dichlorobenzene	ug/kg	0.48	-
Dichlorodifluoromethane	ug/kg	0.59	•
Dichlorofluoromethane	ug/kg	0.24	-

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 16 of 23

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
1 1-Dichloroethane	ug/k g	0 39	_
1.2-Dichloroethane	ug/kg	0.59	-
1 2-Dichloroethaue-d4	ug/kg	0.55	_
1 1-Dichloroethene	ug/kg	0.55	_
1 2-Dichloropropane	ug/kg	0.45	-
cis-1 3-Dichloropropene	ug/kg	0.05	_
trans-1 3-Dichloropropene	ug/kg	0.30	-
Diisopropyl ether	ug/kg	0.47	-
Ethylbenzene	ug/kg	0.38	-
2-Hevenone	ug/kg	0.48	10
4 Mothyl 2 pontonono (MIDK)	ug/kg	0.90	-
4-Methylene chlaride	ug/kg	0.73	-
	ug/kg	0.05	-
Styrene	ug/kg	0.39	
T-trachless at as a	ug/Kg	0.44	-
Tetrachioroethene	ug/kg	0.53	10
Toluene-d ₈	ug/kg	0.31	•
l oluene	ug/kg	0.27	10
1,1,1-1 fichioroenane	ug/kg	0.31	
1,1,2-1 richloroeinane	ug/kg	0.63	-
This is a second	ug/kg	0.31	10
I fichiorofiuoromethane	ug/kg	0.50	-
1,2,3-1 richloropropane	ug/kg	0.41	-
Vinyl acetate	ug/kg	0.68	-
Vinyl chloride	ug/kg	0.44	-
m&P-Xylenes	ug/kg	0.55	10(c)
o-Xylene	ug/kg	0.39	10 ^(c)
Inorganic nonmetals			
Cyanide (SW846 9012)	mg/kg	0.083	2.0
Nitrogen,			
ammonia (EPA 350.1)	mg/kg	0.50	0.1
nitrate + nitrite (EPA 353.2)	mg/kg	0.16	-
total Kjeldahl (EPA 351.2)	mg/kg	10.0	-
Phosphorus, total (EPA 365.3)	mg/kg	1.7	-
Sulfide (SW846 9030)	mg/kg	21.0	0.1
TOC (Plumb, 1981)	mg/kg		0.1%
BOD (EPA 405.1 Mod)	mg/kg	••	-
COD (EPA 410.4 Mod)	mg/kg		•

... (a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.
 (c) TDL refers to total (not speciated).

USACE QAPjP Section No.: 7 Revision No.: 0 Date: 22 November 1995 Page: 17 of 23

TABLE 7-2 METHOD DETECTION LIMITS (MDLS) FOR SEDIMENT SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
Metals - Cold Vapor (SW846 7471)			
Mercury	mg/kg	0.05	0.2
Metals - Furnace (SW846)			
Antimony	mg/kg	0.3	2.5
Arsenic	mg/kg	0.1	5.0
Beryllium	mg/kg	0.1	2.5
Cadmium	mg/kg	0.1	0.3
Chromium	mg/kg	0.1	5.0
Copper	mg/kg	0.1	5.0
Lead	mg/kg	0.1	5.0
Nickel	mg/kg	0.3	5.0
Selenium	mg/kg	0.1	1.0
Thallium	mg/kg	0.2	0.2
Metals - ICP (SW846)			
Aluminum	mg/kg	15.5	50
Beryllium	mg/kg	0.1	2.5
Chromium	mg/kg	0.5	5
Copper	mg/kg	0.4	5
Iron	mg/kg	6.3	50
Lead	mg/kg	2.4	5
Manganese	mg/kg	0.6	5
Nickel	mg/kg	0.9	5
Silver	mg/kg	0.4	0.2
Zinc	mg/kg	1.1	15
Metals-Trace ICP (SW846 6010)			
Antimony	mg/kg	0.1	2.5
Arsenic	mg/kg	0.1	5.0
Cadmium	mg/kg	0.1	0.3
Lead	mg/kg	0.1	5.0
Selenium	mg/kg	0.2	1.0
Thallium	mg/kg	0.2	0.2

(a) MDL determined according to the procedure specified in 40 CFR 136. Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 22 November 1995 Page: 18 of 23

TABLE 7-3 METHOD DETECTION LIMITS (MDLS) FOR SITE WATER AND ELUTRIATE SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
Pesticides and PCBs GC/ECD - organochlorine	compounds (SW846 80	80)	
Aldrin	ug/L	0.007	0.04
α-BHC	ug/L	0.006	-
β-ВНС	ug/L	0.003	-
δ-BHC	ug/L	0.003	•
γ-BHC (Lindane)	ug/L	0.010	0.1
α-Chlordane	ug/L	0.005	0.14
γ-Chlordane	ug/L	0.005	0.14
Chlordane (Technical)	ug/L	0.11	0.14
4,4'-DDD	ug/L	0.030	0.1
4,4'-DDE	ug/L	0.014	0.1
4,4'-DDT	ug/L	0.022	0.1
Dieldrin	ug/L	0.034	0.02
Endosulfan I	ug/L	0.009	0.1
Endosulfan II	ug/L	0.007	0.1
Endosulfan sulfate	ug/L	0.018	0.1
Endrin	ug/L	0.031	0.1
Endrin aldehyde	ug/L	0.011	0.1
Endrin ketone	ug/L	0.025	0.1
Heptachlor	ug/L	0.017	0.1
Heptachlor epoxide	ug/L	0.004	0.1
Methoxychlor	ug/L	0.24	0.5
Toxaphene	ug/L	0.62	0.5
Aroclor 1016	ug/L	0.073	-
Aroclor 1221	ug/L	1.1	-
Aroclor 1232	ug/L	0.30	•
Aroclor 1242	ug/L	0.40	-
Aroclor 1248	ug/L	0.24	-
Aroclor 1254	ug/L	0.28	. •
Aroclor 1260	ug/L	0.04	-
Semivolatile organics GC/MS - (SW846 8270)			
Acenaphthene	ug/L	3	10
Acenaphthylene	ug/L	3	10
Anthracene	ug/L	2	10

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 22 November 1995 Page: 19 of 23

TABLE 7-3 METHOD DETECTION LIMITS (MDLS) FOR SITE WATER AND ELUTRIATE SAMPLES

Parameter	Units	Laboratory Recommended MDL ^(a) TDL ^(b)	
Benzidine	ug/L	2	-
Benzo[a]anthracene	ug/L	1	10
Benzo[b]fluoranthene	ug/L	1	10
Benzo[k]fluoranthene	ug/L	2	10
Benzo[a]pyrene	ug/L	· 1	10
Benzo[ghi]perylene	ug/L	1	10
Benzoic acid	ug/L	2	50
Benzyl alcohol	ug/L	2	50
Bis(2-chloroethyl) ether	ug/L	4	•
Bis(2-chloroethoxy)methane	ug/L	4	-
Bis(2-ethylhexyl) phthalate	ug/L	7	10
4-Bromophenyl phenyl ether	ug/L	3	-
Butylbenzylphthalate	ug/L	2	10
Carbazole	ug/L	2	-
4-Chloroaniline	ug/L	6	-
4-Chloro-3-methylphenol	ug/L	1	-
2-Chloronaphthalene	ug/L	3	-
2-Chlorophenol	ug/L	4	-
2-Chlorophenol-d ⁴	ug/L	4	-
4-Chlorophenyl phenyl ether	ug/L	3	-
Chrysene	ug/L	2	10
Cyclohexanone	ug/L	4	-
Dibenzo[a,h]anthracene	ug/L	2	10
Dibenzofuran	ug/L	3	10
Di-n-butyl phthalate	ug/L	2	10
1,2-Dichlorobenzene	ug/L	4	10
l,2-Dichlorobenzene-d⁴	ug/L	4	•
1,3-Dichlorobenzene	ug/L	4	10
l,4-Dichlorobenzene	ug/L	4	10
3,3'-Dichlorobenzidine	ug/L	10	- .
2,4-Dichlorophenol	ug/L	3	-
Diethyl phthalate	ug/L	3	10
4,6-Dinitro-2-Methylphenol	ug/L	2	-
2,4-Dimethylphenol	ug/L	4	10
Dimethyl phthalate	ug/L	4	10
		•	

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 22 November 1995 Page: 20 of 23

TABLE 7-3 METHOD DETECTION LIMITS (MDLS) FOR SITE WATER AND ELUTRIATE SAMPLES

Parameter	Units	Laboratory Recommended MDL ^(a) TDL ^(b)	
2.4-Dinitrophenol	ug/L	2	-
2.4-Dinitrotoluene	ug/L	1	_ (
2.6-Dinitrotoluene	ug/L	1	-
1.2-Diphenylhydrazine	ug/L	2	-
Di-n-octyl phthalate	ug/L	2	10
Fluoranthene	ug/L	2	10
2-Fluorobiphenyl	ug/L	4	-
Fluorene	ug/L	2	10
2-Fluorophenol	- <u>e</u> - ug/L	4	
Hexachlorobenzene	ug/L	3	10
Hexachlorobutadiene	-8 - ug/L	5	50
Hexachloroethane	ug/L	4	50
Hexachlorocyclopentadiene	ug/L	3	-
Indeno[1.2.3-cd]pyrene	ug/L	1	10
Isophorone	ug/L	2	-
1-Methylnaphthalene	ug/L	-	10
2-Methylnaphthalene	ug/L	4	10
2-Methylphenol	ug/L	3	10
4-Methylphenol) ug/L	3	10
3+4-Methylphenol	ug/L	3	•
Naphthalene	ug/L	5	10
2-Nitroaniline	ug/L	1	•
3-Nitroaniline	ug/L	4	-
4-Nitroaniline	ug/L	3	-
Nitrobenzene	ug/L	5	-
Nitrobenzene-d	ug/L	4	-
2-Nitrophenol	ug/L	4	-
4-Nitrophenol	ug/L	1	-
N-Nitrosodiphenylamine	ug/L	2	50
N-Nitrosodimethylamine	ug/L	4	-
N-Nitroso-di-n-propylamine	ug/L	3	-
2,2'-Oxybis(1-chloropropane)	ug/L	4	-
Pentachlorophenol	ug/L	2	50
Phenanthrene	ug/L	2	10
Phenol	ug/L	4	10

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 22 November 1995 Page: 21 of 23

TABLE 7-3 METHOD DETECTION LIMITS (MDLS) FOR SITE WATER AND ELUTRIATE SAMPLES

Parameter	Units	Laboratory MDL ^(a)	Recommended TDL ^(b)
Pyrene	ug/L	1	10
Pyridine	ug/L	6	• ·
Terphenyl-d ₁₄	ug/L	2	-
2,4,6-Tribromophenol	ug/L	3	-
1,2,4-Trichlorobenzene	ug/L	5	10
2,4,5-Trichlorophenol	ug/L	2	-
2,4,6-Trichlorophenol	ug/L	2	-
Volatile organics GC/MS - 5 mL purge (SW	846 8240)		
Acetone	ug/L	5	-
Acrolein	ug/L	8	-
Acrylonitrile	ug/L	5	-
Benzene	ug/L	1	5
Bromodichloromethane	ug/L	1	-
Bromofluorobenzene	ug/L	1	
Bromoform	ug/L	1	-
Bromomethane	ug/L	1	
2-Butanone	ug/L	1	
methyl tert-Butyl ether (MTBE)	ug/L	1	-
Carbon disulfide	ug/L	1	-
Carbon tetrachloride	ug/L	1	-
Chlorobenzene	ug/L	1	-
Chloroethane	ug/L	1	-
2-Chloroethyl vinyl ether	. ug/L	1	-
Chloroform	ug/L	1	5
Chloromethane	ug/L	2	-
3-Chloro-1-propene	ug/L	1	•
1, 2-Dibromoethane (EDB)	ug/L	1	-
Dibromochloromethane	ug/L	1	-
1,2 Dichlorobenzene	ug/L	0.8	-
cis-1,2-Dichloroethene	ug/L	1	•
trans-1, 2-Dichloroethene	ug/L	1	-
1,3-Dichlorobenzene	ug/L	1.	•
1,4-Dichlorobenzene	ug/L	1	-
Dichlorodifluoromethane	ug/L	1	-

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes. (c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 22 November 1995 Page: 22 of 23

TABLE 7-3 METHOD DETECTION LIMITS (MDLS) FOR SITE WATER AND ELUTRIATE SAMPLES

Parameter	Units	Laboratory Recommended MDL ^(a) TDL ^(b)		
1,1-Dichloroethane	ug/L	1	-	
1,2-Dichloroethane	ug/L	1	-	
1,2-Dichloroethane-d4	ug/L	1	-	
1,1-Dichloroethene	ug/L	1	-	
Dichlorofluoromethane	ug/L	1	-	
1,2-Dichloropropane	ug/L	1	-	
cis-1.3-Dichloropropene	ug/L	1	-	
trans-1,3-Dichloropropene	ug/L	0.8	-	
Diisopropyl ether	ug/].	0.9	-	
Ethylbenzene	ug/L	1	5	
2-Hexanone	ug/L	1	•	
4-Methyl-2-pentanone (MIBK)	ug/L	1	-	
Methylene chloride	ug/L	1	-	
Styrene	ug/L	0.9	-	
1.1.2.2-Tetrachloroethane	ug/L	1	-	
Tetrachloroethene	ug/L	1	5	
Toluene-d.	ug/L	1	•	
Toluene	ug/L	1	5	
1.1.1-Trichloroethane	ug/L	1	-	
1,1,2-Trichloroethane	ug/L	1	-	
Trichloroethene	ug/L	1	5	
Trichlorofluoromethane	ug/L	1	-	
1, 2, 3-Trichloropropane	ug/L	1	-	
Vinyl acetate	ug/L	3	-	
Vinvl chloride	ug/L	1	-	
m&n-Xvlene	ug/L	2	5 ^(c)	
o-Xylene	ug/L	1	5 ^(c)	
Inorganic nonmetals/general organics				
Cvanide (EPA 335.3)	mg/J	5.0	-	
BOD (EPA 405 1)	mg/l	0.67	-	
COD (EPA 410.4)	mø/l	0.44	-	
Nitrogen	me L	0.11		
ammonia (EPA 350.1)	mg/L	0.063	0.03	

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes.

(c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

USACE QAPjP Section No.: 7 Revision No.: 1 Date: 22 November 1995 Page: 23 of 23

TABLE 7-3 METHOD DETECTION LIMITS (MDLS) FOR SITE WATER AND ELUTRIATE SAMPLES

Parameter	Units	Laboratory Recommended MDL ^(a) TDL ^(b)	
nitrate+nitrite (EPA 353.2)	mg/L	. 0.011	_
total Kieldahl (EPA 351.2)	mg/L	0.14	-
Phosphorus, total (EPA 365.3)	mg/L	0.015	-
Sulfide (EPA 376.1)	mg/L	0.84	0.1
TOC (EPA 415.2)	mg/L	0.069	0.1%
Metals - Cold Vapor (SW846 7470)			
Mercury	ug/L	0.1	0.2
Metals - Furnace (SW846 7000 series)			
Chromium	ug/L	1.0	1
Copper	ug/L	1.0	1
Nickel	ug/L	3.0	1 .
Metals - ICP (SW846 6010)			
Aluminum	ug/L	29 .0	40
Beryllium	ug/L	1.0	0.2
Iron	ug/L	20.0	10
Manganese	ug/L	5.0	1
Zinc	ug/L	6.0	1
Metals-Trace ICP (SW846 6010)			
Antimony	ug/L	1.0	3
Arsenic	ug/L	1.0	1
Cadmium	ug/L	1.0	1
Lead	ug/L	1.0	1
Selenium	ug/L	2.0	2
Thallium	ug/L	2.0	1

(a) MDL determined according to the procedure specified in 40 CFR 136, Appendix B.

(b) TDL recommendations are derived from EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA 823-B-95-001, April 1995. Levels not provided for all analytes. (c) TDL refers to total (not speciated).

(d) Final extract volume 2.0 ml; MDLs estimated based on 10 ml final extract determinations.

ę

USACE QAPjP Section No.: 8 Revision No.: 0 Date: 13 November 1995 Page: 1 of 5

8.0 DATA REDUCTION, VALIDATION, AND REPORTING

8.1 DATA REDUCTION

8.1.1 Field Data Reduction

Field data reduction will vary depending on the type of data being collected and the operating unit from which the data is being collected. Data reduction will generally consist of particular procedures that are applied to the data and of the consolidation of data from various sources. All equations used to calculate concentrations or other values will be presented. All calculated results will be verified by someone other than the originator of the calculations.

8.1.2 Laboratory Data Collection and Reduction

Data Collection: For inorganic and general organic analyses where the instruments are not directly coupled to computerized data systems, the raw data are instrument responses in the form of meter, recorder, or printer output. The chemist performing the analysis enters the bench-generated data into a bound laboratory workbook specific for each parameter. All entries are made in ink. These data consist of instrumental responses (absorbances, percent transmittances, etc.), standard and spike concentrations, sample numbers, and any other pertinent information. The workbooks are under the control of the group supervisor who is responsible for their security. For computerized instruments the output is in the form of printer output and files on magnetic disks, which are filed by sample batch.

For chromatographic organic analyses, the raw data are instrument responses in the form of chromatograms, integrator outputs, or computer-generated data files. The chromatograms and printer output are stored in project-specific files. The data files are archived on magnetic tape or disks.

Data Reduction: Data reduction includes the processes that define or compute either the values or numbers of data items. The data reduction processes used in the laboratory include establishment of calibration curves, calculation of sample concentrations from instrument responses, and computation of quality control parameters (Table 3-1). Calibration is discussed in Section 6 of this QAPjP. Table 8-1 lists the formulas used to calculate sample concentrations.

Sample Calculations: The reduction of instrument responses to sample concentrations takes different forms for different types of methods. The discussion below deals with nonchromatographic and chromatographic methods and solid sample calculations.

USACE QAPjP Section No.: 8 Revision No.: 0 Date: 13 November 1995 Page: 2 of 5

For most spectrophotometric analyses, the sample concentrations are calculated from the measured instrument responses using a calibration curve. The sample concentrations can be back-calculated from a regression equation fitted to calibration data. For gravimetric and titrimetric analyses, the calculations are performed according to equations given in the method.

For chromatographic analyses, the unknown concentrations are determined using response factors with external standardization. Quantitation by the external standard technique for GC analyses involves calculation of the concentrations of the target compound from the sample response and the response of a standard solution of the compound. These calculations are generally performed by the associated computerized data systems. The data are transferred to summary tables, which are given to the reports group.

Final concentrations will be reported on a dry-weight basis for sediments. Prior to analysis, the percent solids of a sediment sample will be determined and the appropriate correction applied to determine the "corrected" weight needed to achieve the required dry weight for the sediment sample analysis. The dry-weight concentration is then calculated from the analytical concentration of the "corrected" sediment sample.

Reporting Conventions and Units: The number of conventions set forth in the figures for reported data will be consistent with the EAL-SOP-172. Reporting units used are those commonly used for the analyses performed. Concentrations in sediment samples are expressed in terms of weight per unit dry weight (e.g., mg/kg (dry), ug/kg (dry)).

8.2 DATA VALIDATION

8.2.1 Field Data Validation

Field data validation will consist of both quantitative measures (QA/QC samples) and qualitative evaluation. Qualitative evaluation will generally consist of reviewing documentation of field activities, how well collection procedures were followed, and field instrument performance. Project field data will also be compared to historical data, when available.

Validation is the prime responsibility of the project manager who addresses the following areas:

- Proper chain-of-custody, sample handling, and decontamination procedures followed.
- Samples collected according to specified methods.
- Field instrumentation calibrated according to specified methods.
- Quality control samples (e.g., blanks, replicates) collected as required.

USACE QAPjP Section No.: 8 Revision No.: 0 Date: 13 November 1995 Page: 3 of 5

• Field data sheets and logbooks completed and in agreement with sample container labels and chain-of-custody forms.

8.2.2 Laboratory Data Validation

Laboratory quality control criteria for method performance and sample measurement bias are listed in Appendix A, and include the following:

- holding times
- initial and continuing calibration
- laboratory blanks
- surrogate recoveries
- matrix spikes and matrix spike duplicates

In addition to the quality control parameters, data are assessed against the stated requirements on the chain-of-custody and sample handling procedures (Section 5). The reviewers also check that transcriptions of raw or final data are correct and that calculations are performed correctly and verified.

The data review process includes initial review by the analyst during sample analysis and data generation, followed by QC Chemist review and Manager/Supervisor review. Data review checklists are used to document the performance and review of the quality control and analytical data. No data can be released without compliant method performance criteria except with the approval of the appropriate Division Manager and the LPM.

8.3 LABORATORY REPORTS

The laboratory Reports group receives the data package after the Division Manager has released it. Reports assembles the draft report by collecting and incorporating:

- all the data packages for each analysis associated with the reported samples.
- the QC chemist narratives.
- other report-related information, such as copies of chain-of-custody, communication records, and nonconformance forms.

The Laboratories' draft report contains all the information specified in Appendix D. It is prepared and reviewed by the Reports staff, and released by the Reports Supervisor. The draft data report is then reviewed by the appropriate Division Managers who sign the report narrative to certify that

USACE QAPjP Section No.: 8 Revision No.: 0 Date: 13 November 1995 Page: 4 of 5

Bay Sediment Sampling and Analysis

the report meets the Data Quality Objectives for precision, accuracy, and completeness specified for the project. The report is forwarded to the LPM who releases the report to the client. A copy of the report is filed in the Central Project File.

USACE QAPjP Section No.: 8 Revision No.: 0 Date: 13 November 1995 Page: 5 of 5

TABLE 8-1 SAMPLE CONCENTRATION CALCULATION FORMULAS

Application	Formula	Symbols
Linear regression calibration curves	C = (R - a ₀)/a ₁	 C = analytical concentration R = instrument response a₀ = intercept of regression curve (instrument response when concentration is zero) a₁ = slope of regression curve (change in response per change in concentration)
Calibration factors '	$C = \frac{A_{c}V_{c}}{CFV_{c}}$	C = concentration (ug/l.) CF = calibration factor A_x = peak size of target compound in sample extract V_f = final volume of extracted sample (mL) V_i = initial volume of sample extracted (mL)
Response factors ¹	$C = \frac{C_{i} A_{i} V_{f}}{RF A_{i} V_{i}}$	$C = \text{ concentration (ug/L)}$ $RF = \text{ internal standard response factor}$ $C_u = \text{ concentration of the internal standard (ug/L)}$ $A_x = \text{ area of the characteristic ion for the target compound}$ $V_i = \text{ final volume of extracted sample (mL)}$ $A_u = \text{ area of the characteristic ion for the internal standard}$ $V_i = \text{ initial volume of sample extracted (mL)}$
Residues '	$\mathbf{R} = \frac{\mathbf{W} - \mathbf{T}}{\mathbf{V}} \times 1.000.000$	R ^e = residue concentration (mg/L) W = weight of dried residue + container (g) T = tare weight of container (g) V = volume of sample used (mL)
Solid samples '	$K = \frac{C V D}{W (%S/100)}$	K = dry-weight concentration (mg/kg) C = analytical concentration (mg/L) V = final volume (mL) of processed sample solution D = dilution factor W = wet weight (g) of as-received sample taken for analysis ${}^{\circ} \circ S =$ percent solids of as-received sample

Used for quantitation by the external standard technique

2.

Used for quantitation by the external standard technique Used for quantitation by the internal standard technique Used for total, filterable, and filterable, and volatile residues as well as gravimetric oil and grease Some values for the conversion factor include. 50,000 for alkalizity, and hardness, 8,000 for Winkler; 16,000 for iodometric sulfide, and 35,500 for residual chlorine Used to calculate the dry-weight concentration of a solid sample from the analytical concentration of the processed sample. 3. 4.

5.

6. Conversion factor to convert g/mL to mg/L:

<u>mg.g.i0՝mL.i0՝mg</u> L mL L g

ı

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 1 of 7

9. INTERNAL QUALITY CONTROL CHECKS

A quality control program is a systematic process that controls the validity of analytical results by measuring the accuracy and precision of method and matrix, developing expected control limits, using these to detect anomalous events and requiring corrective action techniques to prevent or minimize the recurrence of these events. Quality control measurements for analytical protocols are designed to evaluate laboratory performance, and measurement biases resulting from the sample matrix and field performance.

- Laboratory method performance: All quality control criteria for method performance must be met for all target analytes for data to be reported. These criteria generally apply to instrument tune, calibration, method blanks, laboratory control samples (LCS), MDL verification sample, and Standard Reference Materials (SRM). In some instances where method criteria fail, useable data can be obtained and are reported with client approval. The narrative will then include a thorough discussion of the impact on data quality.
- Sample performance: The accuracy and precision of sample analyses are influenced by both internal and external factors. Internal factors are those associated with sample preparation and analysis. Internal factors are monitored by the use of internal quality control samples. Quality control field samples are analyzed to determine any measurement bias due to the sample matrix based on evaluation of matrix spikes (MS) and matrix spike duplicates (MSD). If acceptance criteria are not met, matrix interferences are confirmed either by reanalysis or by inspection of the LCS results to verify that laboratory method performance is in control. Data are reported with appropriate qualifiers or discussion.
- Field performance: Quality control samples are used to evaluate the effectiveness of the sampling program to obtain representative samples, eliminating any cross contamination. These include trip blanks (for volatile organics), field replicates and field blanks.

9.1 LABORATORY QUALITY CONTROL SAMPLES

Quality control samples specified in the ITM will be analyzed at the frequency stated below for each matrix. Standard Reference Materials (SRMs) will be obtained from National Institute of Standards and Technology (NIST) or a comparable source, if available. Acceptance criteria are listed in Appendix A. With concurrence of the U.S. Army Corps of Engineers, Baltimore District, only one sediment SRM sample will be run, and no water SRM.

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 2 of 7

Sediment Samples		
Standard Reference Material	1 for this project	
Method Blanks	1 per analytical batch of 1-20 samples	
Laboratory Control Sample	1 per analytical batch of 1-20 samples	
Surrogates	Spiked into all field and QC samples	
Matrix Spike/Matrix Spike Duplicate	1 per analytical batch of 1-20 samples	
Water Sa	amples	
Standard Reference Material	l per analytical batch of 1-20 samples (not applicable)	
Method Blanks	1 per analytical batch of 1-20 samples	
Laboratory Control Sample	1 per analytical batch of 1-20 samples	
Surrogates	Spiked into all field and QC samples	
Matrix Spike/Matrix Spike Duplicate	1 per analytical batch of 1-20 samples	

9.1.1 Standard Reference Material

Standard Reference Materials (SRM) represent performance-based QA/QC. A standard reference material is a soil/solution with a certified concentration that is analyzed as a sample and is used to monitor analytical accuracy. SRMs, if available, will be performed for every batch of twenty (20) or fewer samples.

5

9.1.2 Method Blanks

The method (reagent) blank is used to monitor laboratory contamination. This is usually a sample of laboratory reagent water processed through the same analytical procedure as the sample (i.e., digested, extracted, distilled). One method blank is prepared and analyzed every day that samples are prepared.

The method blank must contain less than or equal to three times the method detection limit (MDL) limit for the compounds of interest. If this criteria is not met, then all sample processing will be halted until corrective measures are taken and documented. All samples processed with the out-of-control method blank will be reprocessed and reanalyzed. If analytes are detected at <3

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 3 of 7

9.1.3 Laboratory Control Sample

The Laboratory Control Sample is a fortified method blank analyzed with each analytical batch of twenty (20) or fewer samples. These samples generally consist of reagent water or solid fortified with the analytes of interest for single-analyte methods and selected analytes for multi-analyte methods according to the appropriate analytical method. They are prepared and analyzed with the associated sample batch. The analyte recovery from each is used to monitor analytical accuracy.

The percent recovery is calculated and plotted onto control charts with warning limits at two (2) standard deviations (95% confidence limit), and control limits at three standard deviations (99% confidence limit). Control charts are used to alert the laboratory of the need to check method procedure through trend analysis of the charts (EAL-SOP-247).

9.1.4 Matrix Spike/Matrix Spike Duplicate

A fortified sample (matrix spike) is an aliquot of a field sample which is fortified with the analyte(s) of interest and analyzed to monitor matrix effects associated with a particular sample. Samples to be spiked are chosen at random. The final spiked concentration of each analyte in the sample should be at least ten times the calculated MDL. A duplicate fortified sample (matrix spike duplicate) will be performed for every batch of twenty (20) or fewer samples.

9.1.5 Surrogates

Surrogates are organic compounds that are similar to analytes of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are spiked into all blank, standards, samples, and spiked samples prior to analysis for organic parameters. Generally, surrogates are not used for inorganic analyses. Percent recoveries are calculated for each surrogate. Surrogates shall be spiked into samples according to the appropriate analytical method (Section 7 of this QAP). Surrogate spike recoveries shall fall within the control limits set in accordance with procedures specified in the method. Surrogate recoveries will not be calculated if sample dilution causes the surrogate concentration to fall below the quantitation limit.

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 4 of 7

9.2 CONTROL CHARTS

Quality control charts are graphical plots that are used to determine whether a process is in a state of statistical control. The vertical axis of the control chart is the value of the parameter being measured, and the horizontal axis is the time or sequence of the measurements. A control chart is characterized by a central line, warning limits, and control limits. The central line is the mean, theoretical, or most probable value for the measured parameter. The limits are values on either side of the central line with which are associated probabilities that an observed value will be within the limits. The warning limits are the 2σ or 95% limits; that is, if the process is operating correctly and only random scatter is being observed, nineteen out of twenty points should fall inside the warning limits. The control limits are the 3σ or 99% limits; only one point in a hundred should fall outside these limits by chance alone.

9.2.1 Accuracy and Precision Charts

The control charts used in the laboratory are generated from the analysis of laboratory control samples (LCS), which are used to demonstrate that a method is in control, apart from sample matrix effects (NEESA 1988). The data from the LCS measurements are plotted on two Shewhart control charts; one for accuracy, and the other for precision. The parameter that is plotted on the accuracy chart is the percent recovery of the LCS measurement, calculated from:

percent recovery $(\% R) = \frac{\text{found concentration}}{\text{expected concentration}} \times 100$

The moving ranges between each successive pair of percent recoveries are calculated and plotted on the precision chart:

moving range $(R_i) = |\%R_{i+1} - \%R_i|$ for i = 1,2,3...(n-1)

9.2.2 Calculation of Chart Limits

To calculate the warning and control limits for the charts, 20-30 values of the percent recoveries are collected. From these data the mean percent recovery, $\overline{\%R}$, and the mean moving range, \overline{R} , are calculated. The central line of the accuracy chart is the mean percent recovery, $\overline{\%R}$. For control charts based on the moving range of two measurements, the upper and lower warning and

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 5 of 7

control limits of the accuracy chart are given by:

Upper control limit (UCL) $= \overline{\%R} + 2.660\overline{R}$ Upper warning limit (UWL) $= \overline{\%R} + 1.773\overline{R}$ Lower warning limit (LWL) $= \overline{\%R} - 1.773\overline{R}$ Lower control limit (LCL) $= \overline{\%R} - 2.660\overline{R}$

The central line of the precision chart is the mean moving range, \overline{R} . The warning and control limits for the precision chart are given by:

 $UCL = 3.267 \overline{R}$ $UWL = 2.511 \overline{R}$ LWL = 0LCL = 0

The limits are updated at least quarterly or when the method is changed significantly.

9.2.3 How the Charts are Used

As the value for the control sample is calculated it is compared against the established limits. If the value is within the limits, the analysis is in control and data generated can be used. The percent recovery and the associated run information are entered into the LIMS data base from which they can be retrieved to plot control charts and to update the limits.

9.2.4 Out-of-Control Situations

The following three conditions are used with the control charts to indicate that a possible out-of-control situation exists:

- 1) any point outside the control limits;
- 2) any two consecutive points between the warning and control limits; or
- 3) seven successive points on the same side of the central line.

When one of these conditions exists, the method and the calculations must be investigated to

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 6 of 7

determine if a cause for the condition can be found. When an analyst observes that an out-ofcontrol situation has occurred, the analyst's supervisor is notified, and the appropriate corrective action procedures are initiated. No further analyses are performed until the situation is remedied. If the problem cannot be identified or corrected, the Laboratory Manager and Quality Assurance Manager are notified.

An out-of-control event and the corrective action taken are documented on a nonconformance record form which is discussed in Section 13 of this QAP.

9.2.5 References

American Society for Testing and Materials. 1976. ASTM Manual on Presentation of Data and Control Chart Analysis. STP 15D. ASTM, Philadelphia.

Duncan, A.J. 1974. Quality Control and Industrial Statistics, 4th edition. Irwin, Homewood, Ill.

Naval Energy and Environmental Support Activity. 1988. Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Program, 2nd rev. NEESA 20.2-047B. NEESA, Port Hueneme, Calif.

United States Environmental Protection Agency. 1979. Handbook for Analytical Quality Control in Water and Wastewater Laboratory. EPA-600/4-79-019. U.S. EPA, Cincinnati, Ohio.

9.3 APPLICATION OF CONTROLS

Analytical quality control results are calculated using the formulas in Table 9-1, and are compared with the control limits in Appendix A to determine if the data can be reported. If the limits are exceeded, appropriate corrective action must be taken as specified in Appendix B.

USACE QAPjP Section No.: 9 Revision No.: 0 Date: 13 November 1995 Page: 7 of 7

TABLE 9-1 ANALYTICAL QUALITY CONTROL FORMULAS

SAMPLE	FORMULA	SYMBOLS		
Spikes (as %R from the concentrations of the analyte in the spiked and unspiked samples)	Percent recovery = $\frac{A - B}{C} \times 100$	 A = sample concentration of the spiked sample (ppm) B = sample concentration of the unspiked 		
		sample (ppm) C = concentration of the spike (ppm)		
Duplicates	$\mathbf{M}_{22} = \mathbf{X}_{1} + \mathbf{X}_{2}$	$X_1 = concentration of first replicate$		
(as the mean and relative percent difference (RPD) of the duplicates)	$\frac{1}{2}$	$X_2 =$ concentration of second replicate		
	$RPD = \frac{ X_1 - X_2 }{Mean} \times 100$	· ·		

Bay Sediment Sampling and Analysis

USACE QAPjP Section No.: 10 Revision No.: 0 Date: 13 November 1995 Page 1 of 5

10. PERFORMANCE AND SYSTEMS AUDITS

An individual audit plan will be developed to provide a basis for each audit. This plan will identify the audit scope, activities to be audited, audit personnel, any applicable documents, and the schedule. Checklists will be prepared by the auditors and used to conduct all audits. They will be developed to accomplish the necessary reviews and to document the results of the audit.

Audits may involve on-site visits by the auditor. Items to be examined may include the availability and implementation of approved work procedures; implementation and documentation of health and safety procedures; calibration and operation of equipment; packaging, storage, and shipping of samples obtained; performance documentation; and nonconformance (variance) documentation.

The records of operations will be reviewed to verify that laboratory and field-related activities were performed in accordance with the appropriate approved procedures. Items reviewed will include, but will not be limited to, the calibration records of equipment, daily field activity logs, chain-of-custody documentation, and data resulting from field and laboratory operations.

10.1 LABORATORY PERFORMANCE AND SYSTEM AUDITS

Audits are performed routinely to review and evaluate the adequacy and effectiveness of laboratory performance and quality assurance program, to ascertain if the QAPjP is being completely and uniformly implemented, to assess the effectiveness of the laboratory quality assurance program, to identify nonconformances, and verify that identified deficiencies are corrected. The Laboratory Quality Services Manager (QSM) is responsible for such audits and will perform them according to a schedule planned to coincide with appropriate activities on the project schedule and sampling plans. Such scheduled audits may be supplemented by additional audits for one or more of the following reasons:

- when significant changes are made in the QAPjP
- when it is necessary to verify that corrective action has been taken on a nonconformance reported in a previous audit
- when requested by the EA Project Manager or Laboratory QSM.

10.1.1 Performance Audits are independent sample checks made by a supervisor or auditor to arrive at a quantitative measure of the quality of the data produced by one section or the entire measurement process. Performance audits are conducted by introducing control samples, in addition to those used routinely, into the data production process. These control samples will

USACE QAPjP Section No.: 10 Revision No.: 0 Date: 13 November 1995 Page 2 of 5

include performance evaluation samples of known concentrations. Where a SRM of similar matrix is available, it will be used.

The results of performance audits are evaluated against the criteria in Appendices B and C in this QAPjP and summarized in the analytical report narrative summarized and maintained by the QSM and distributed to the supervisors who must investigate and respond to any results that are outside the control limits.

10.1.2 Systems Audits are on-site qualitative inspections and reviews of the quality assurance system used by some part of or the entire measurement system. System audits are conducted by the corporate QA group with the assistance and involvement of field, laboratory, and project personnel. The audits are performed against the requirements, specified in the QAPjP. A checklist is generally generated from the requirements and becomes the basis for the audit. The results of any deficiencies noted during the audit are summarized in an audit report. Examples of an audit checklist and report form are given in Figures 10-1 and 10-2, respectively.

10.2 AUDIT PROCEDURES

Prior to an audit, the designated lead auditor prepares an audit checklist (Figure 10-1). During an audit and upon its completion, the auditor(s) will discuss the findings with the individuals audited and discuss and agree on corrective actions to be initiated. Within 7 days of completion of an audit, the auditor will prepare and submit an audit report (Figure 10-2) to the Manager of the audited group, the Project Manager, and the Quality Services Manager. Minor administrative findings that can be resolved to the satisfaction of the auditor during an audit are not required to be cited as items requiring corrective action. Findings that are not resolved during the course of the audit and findings affecting the overall quality of the project will be included in the audit report.

Within 7 days, the Manager of the audited group will prepare and submit to the QSM and EA Project Manager a reply to the audit. This reply will include, at a minimum, a plan for implementing the corrective action to be taken on nonconformances indicated in the Audit Report, the date by which such corrective action will be completed, and actions taken to prevent reoccurrence. If the corrective action has been completed, supporting documentation should be attached to the reply. The Auditor will ascertain (by reaudit or other means) if appropriate and timely corrective action has been implemented.

Records of audits will be maintained in the project files. Audit files will include, as a minimum, the Audit Report, the reply to the audit, and any supporting documents. It is the responsibility

60787.26

USACE QAPjP Section No.: 10 Revision No.: 0 Date: 13 November 1995 Page 3 of 5

of the Project Manager to conform to the established procedures, particularly as to development and implementation of such corrective action(s).

10.3 DOCUMENTATION

To ensure that the previously defined scope of the individual audits is accomplished and that the audits follow established procedures, a checklist will be completed during each audit. The checklist will detail the activities to be executed and ensure that the auditing plan is accurate. Audit checklists will be prepared in advance and will be available for review. At a minimum, the checklist will allow space for the following information:

- date and type of audit
- name and title of auditor
- description of group, task or facility being audited
- names of lead technical personnel present at audit
- checklist of audit items according to scope of audit
- deficiencies or nonconformances

Following each system, performance, and data audit, the QSM will prepare a report to document the findings of the specific audit. The report is submitted to the Director, EA Laboratories; Director, Corporate Quality Assurance; and the Laboratory Manager of the audited group to ensure that objectives of the QA program are met. In general, the format of the audit quality assurance reports will consist, at a minimum, of the following:

- description and date of audit
- name of auditor
- copies of completed, signed, and dated audit form and/or checklist
- summary of findings of the audit including any nonconformance or deficiencies
- date of report and appropriate signatures
- description of corrective actions

A copy of the signed and dated report for each audit will be maintained by the QSM, and will also be placed in project files as necessary.

USACE QAPjP Section No.: 10 Revision No.: 0 Date: 13 November 1995 Page 4 of 5

EA LABORATORIES INSPECTION CHECKLIST

.

DIVISION/AREA:	PROJECT/PROGRAM:
AUDIT NUMBER:	AUDIT FINDING REPORT:
Q.A. AUDITOR:	DATE:

COMMENT			NTS
INSPECTION PARAMETERS	YES	NO	N/A
1. Standard Operating Procedures			
a. Date/Revision No. of applicable SOPs			
b. Copy of SOP(s) present in work area			
c. SOP(s) have proper signatures and are current			
d. Personnel awareness of SOP(s) requirements			
2. Protocol			
a. Personnel awareness of protocol requirements			
b. Are specific protocol requirements being followed?			
3. Equipment Records			
a. Are equipment/instrument SOP(s) available for inspection?			
b. Is user aware of SOP(s)?			
c. Is the equipment/instrument manual in the work area?			
d. Is there an instrument Use Log in the area?			
c. Where are maintenance/service records with part(s) replacement numbers kept? Are they current?			
f. Where are calibration, standardization, inspection and cleaning records kept? Are they current?			
4. Protective Clothing			
a. Is the protective clothing required for the observed procedure being properly wom?			
5. Data Records			
a. Are supervisor's signatures present where required?			
b. Are data properly recorded in ink? On the computer?			
c. Are error corrections made by a single line in ink with date, initials and explanation?			
d. Are all blanks filled in?			

* Attach a separate sheet for comments.

Figure 10-1. Audit Checklist.
AFR VERIFICATION							
REASON FOR REJECTION							
DATE RESPONSE RECEIVED	AUDIT	OR		RESPONSE	ACCEPTABLE	YES	NO
COMPLETED BY AUDITOR	I						
DATE		SUBMITTED BY	<u> </u>		MANAGEME		
CORRECTIVE ACTION		3					
COMPLETED BY AUDITED ORGA	NIZATION	(<u>`</u>					
SCHEDULED RESPONSE DATE			RESPONSI	BLE FOR CORF		ON	
RECOMMENDED CORRECTIVE ACTIO	N						
						. <u></u>	
REQUIREMENTS							
COMPLETED BY AUDITOR							
INDIVIDUAL CONTACTED		AREA			PROJECT/P	ROGRAM NUMBER	
AUDITOR SIGNATURE DATE		/BER	AFR NUME	IER			
	-						
	0) 771-492	20					
1 9	_oveton C	ircle		Auc	lit Find	ing Report	
EA	EA Laboratories						

USACE QAPjP Section No.: 10 Revision No.: 0 Date: 13 November 1995 Page 5 of 5

Figure 10-2. Audit Report Form.

USACE QAPjP Section No.: 11 Revision No.: 0 Date: 13 November 1995 Page: 1 of 4

11. PREVENTIVE MAINTENANCE

Periodic preventive maintenance is required for all sensitive equipment. Instrument manuals will be kept on file for reference if equipment needs repair. The troubleshooting section of factory manuals may be used in assisting personnel in performing maintenance tasks.

Major instruments in the laboratory are covered by annual service contracts with manufacturers. Under these agreements, regular preventive maintenance visits are made by trained service personnel. Maintenance is documented and maintained in permanent records by the individual responsible for each instrument.

Division Managers are responsible for preparation and documentation of the program. Supervisors implement the program, and the Quality Services Manager reviews implementation to verify compliance during scheduled internal audits. For each operational group, the preventive maintenance program includes the following:

- Listing of the instruments and equipment that are included in the program.
- Frequency of maintenance considering manufacturer's recommendations and/or previous experience with equipment.
- For each instrument in the program a file is maintained for the following information:
 - List of spare parts maintained by the laboratory
 - External service contracts
 - Items to be checked and/or serviced during maintenance and directions for performing maintenance (if external service is not provided or if not stated in manufacturer's instrument manuals)

Specific preventive maintenance practices, their frequency of performance, and available spare parts forlaboratory equipment are described in Table 11-1.

USACE QAPjP Section No.: 11 Revision No.: 0 Date: 13 November 1995 Page: 2 of 4

TABLE 11-1. PREVENTIVE MAINTENANCE REQUIREMENTS

Instrument	Item Checked/Serviced	Frequency
Gas Chromatograph	EC (Ni-63) wipe test	Semiannually
	Clean detectors: ECD/FID/NPD	As needed
	Change column	As needed
	Change gas wool plug	As needed
	Clean insert	As needed
	Replace septum	As needed
	Change fuses	As needed
	Reactivate external carrier gas filler	As needed
	dryers	As needed
	Clean and silanize or replace glass liners or injectors	As needed
GC/MS	GC/MS maintenance is the same as GC with the following additions:	
•	Diffusion pump oil	Biweekly
	Mechanical pump oil	Ouarterly
	Power con. air filter	Biweekly
•	Water bay filter	Biweekly
	Interface box	Biweekly
	Vacuum chaff filter	Semiannually
	Turbo pump oil	Annually
	Water filter (if applicable)	Semiannualy
	Computer air filter	Monthly
	Card cage air filter	Monthly
	Source-clean ceramics, polish lenses	As needed
	Clean poles and ceramics on the poles	As needed
	Clean contacts on the component boards	As needed
	Vacuum the component boards	As needed
	Clean grob and replace quartz insert	As needed
	Replace septum	Daily
	Injection port liner checked	Daily
	Column maintenance	As needed
	Disk drive	Semiannually (service
		engineer) or as needed
·	Printer	Quarterly
Technicon Autoanalyzer	Lamp	As needed
-	Change Cd column	As needed
	Replace filters	As needed
	Pump	Each Run
	Replace tubing	As needed/daily
	Optics	Quarterly
	Sampler	Quarterly
	Replace oil in CN distillation bath	As needed

1

,

USACE QAPjP Section No.: 11 Revision No.: 0 Date: 13 November 1995 Page: 3 of 4

TABLE 11-1. PREVENTIVE MAINTENANCE REQUIREMENTS

Instrument	Item Checked/Serviced	Frequency
Atomic Absorption-Furnace Spectrophotometer	Lamps Optics Clean furnace windows Replace graphite tube Replace contact rings Replace quartz windows Clean optics Align background lamp Check wave length	Each run Quarterly by service technician Daily As needed, or 8-100 samples Quarterly or as needed Semiannually or as needed Daily Quarterly by service representative Quarterly by service representative
Inductively Coupled Plasma Spectrophotometer	Sample introduction system Check pumps Clean, realign torch Replace nebulizer Clean mixing chamber Replace pump tubing	Daily Daily Monthly or as needed Monthly or as needed Monthly or as needed Daily, or as needed
Total Organic Carbon Analyzer	Check oxygen purity Check Heater Add acid	Each new cylinder As needed Monthly
Refrigerators/Freezers	Temperature checked and logged Compartment cleaned	Daily on each work day Quarterly
Walk-In Coolers	Temperature checked and logged Unit cleaned	Daily on each work day Quarterly
Balances	Service representative calibration Internal weight train, gears, electronics	Annually Annual service
Thermometers	Calibrated	Annually
Class S Weights	Calibrated	Annually
Deionized/Organopure Water	Conductivity check Ion-exchange bed changed Replace filters	Weekly Weekly As needed
Vacuum Pumps and Air Compressor	Check performance Lubrication, belts, etc.	Weekly As needed

USACE QAPjP Section No.: 11 Revision No.: 0 Date: 13 November 1995 Page: 4 of 4

TABLE 11-1. PREVENTIVE MAINTENANCE REQUIREMENTS

Instrument	Item Checked/Serviced	Frequency
Water Baths	Water Level	Added as needed
	Bath cleaned	Six Months

5

USACE QAPjP Section No.: 12 Revision No.: 0 Date: 13 November 1995 Page: 1 of 1

12. DATA QUALITY ASSESSMENT

Data assessment is a systematic process of reviewing data against a set of criteria to identify outliers or errors. Laboratory data review is discussed in Section 8 of this QAP. Each report narrative includes a discussion of the quality control samples and evaluates data usability based on the data.

USACE QAPjP Section No.: 13 Revision No.: 0 Date: 13 November 1995 Page: 1 of 4

13. CORRECTIVE ACTIONS

13.1 OBJECTIVES

The objectives of the corrective action procedures presented below are to ensure that recognized errors in performance of sample and data acquisition leads to effective remedial measures and that those steps required to correct an existing condition are documented to provide assurance that any data quality deficiencies are recognized in later interpretation and are not recurrent in the course of the project.

13.2 RATIONALE

Many times corrective measures are undertaken by project staff in a timely and effective fashion but go undocumented. Such incidents may be of a recurrent type that might not be recognized by other staff performing the same activity. In other cases, corrective actions are of a complex nature and may require scheduled interactions between departmental groups. In either case, documentation in a formal or informal sense can reinforce the effectiveness and duration of the corrective measures taken.

13.3 CORRECTIVE ACTION METHODS

13.3.1 Immediate Corrective Actions

Immediate corrective actions are of a minor or routine nature such as correcting malfunctioning equipment, correction of data transcription errors, and other such activities routinely made in the field, laboratory or office by technicians, analysts and other project staff. These should be documented as prescribed in the project quality control procedures, as required. Specific documentation should be limited to notations in logbooks, notebook or on data sheets or other such forms. Such notations should be initiated and dated by the person performing the corrective action.

13.3.2 Long-Term Corrective Actions

Long-term corrective action shall be used to identify and eliminate causes of nonconformances which are of a complex nature and that are formally reported between management groups. A

USACE QAPjP Section No.: 13 Revision No.: 0 Date: 13 November 1995 Page: 2 of 4

formal system for reporting and recording these corrective actions shall use the following procedure.

13.3.3 Corrective Action Steps

For either immediate or long-term corrective actions, steps comprising closed-loop corrective action system are as follows:

- Define the problem
- Assign responsibility for investigating the problem
- Investigate and determine the cause of the problem
- Determine a corrective action to eliminate the problem
- Assign and accept responsibility for implementing the corrective action
- Establish effectiveness of the corrective action and implement the correction and
- Verify that the corrective action has eliminated the problem.

Nonconformance events associated with analytical work are documented using EA Laboratories Nonconformance Records (NCRs) which are reviewed and acknowledged by the Quality Services Manager (EAL-SOP-072).

13.3.4 Audit Based Nonconformances

Following audits, corrective action is initiated by documenting the audit finding and recommended corrective action on an Audit Finding Report discussed in Section 10. The corrective action undertaken by the designated responsible party is documented with an implementation schedule and management approval. The implementation is verified by the auditor on the same form which is then made part of the project audit report record. Other means of documenting long-term corrective action are equally acceptable if the seven (7) elements listed above are addressed.

13.4 CORRECTIVE ACTION REPORT REVIEW AND FILING

Immediate and long-term corrective actions require review to assure that, during the time of non-conformance, erroneous data were not generated or that, if possible, correct data were acquired instead. Such confirmation and review is the responsibility of the supervisor of the staff implementing the corrective action.

60787.26

USACE QAPjP Section No.: 13 Revision No.: 0 Date: 13 November 1995 Page: 3 of 4

13.5 CORRECTIVE ACTIONS REPORTS TO MANAGEMENT

The Project Manager is informed verbally of analytical non-conformance events as soon as possible and decisions made after evaluation are documented in the NCR. Copies of each NCR are maintained in the report file, and addressed in the final data report.

USACE QAPjP Section No.: 13 Revision No.: 0 Date: 13 November 1995 Page: 4 of 4

Figure 13-1 Laboratory Nonconformance Record Form

5.

EA LABORATORIES

LABORATORY NONCONFORMANCE RECORD

NONCONFORMANCE

Client		Sample(s) and Report Number	
Test ·	Method	Instrument	Date of Occurrence
Failed Tuning Failed Calibration Instrument Instability Instrument Malfunction	Power Failure Broken or Lost Aliquo Insufficient Volume of Poor Aliquot Preserva	t Exceeded Matrix Inter Aliquot Out-of Con Ation Missing Q Other	Holding Time ference htrol QC Parameter IC Parameter
Detailed Description			
	· · ·		
Signature of Originator			Date

CORRECTIVE ACTION: MUST DEMONSTRATE CONTROL REESTABLISHED

Instrument Retuned Instrument Recalibrated Instrument Serviced	Sample(s) Re-Prepared Sample(s) Reanalyzed Laboratory Management Notified Other
Detailed Des ription	
	Date of Completion
Signature of Responsible Perwon	Date

VERIFICATION OF NONCONFORMANCE AND CORRECTIVE ACTION

Signature of Division Manager	Date
NOTIFICATION	
Client Contact Required? Yes No	Date of Contact
Detailed Description	
Signature of Laboratory Project Manager	Date

ACKNOWLEDGEMENT

Signature of Laboratory Quality Assurance Manager	Date	

USACE QAPjP Section No.: 14 Revision No.: 0 Date: 13 November 1995 Page: 1 of 1

14. QUALITY ASSURANCE REPORTS

Fundamental to the success of this program is the active participation of management through awareness of project activities, and during development, review, and operation of the project. Management will be informed of quality central activities through the receipt, review, and/or approval of:

- the QAP
- audit reports
- corrective action reports
- analytical report narratives.

USACE QAPjP Section No.: 15 Revision No.: 0 Date: 13 November 1995 Page: 1 of 2

15. REFERENCES

- American Public Health Association (APHA), American Water Works Association, and Water Environment Federation. 1992. Standard Methods for the Examination of Water and Wastewater. Eighteenth or most recent version. APHA, Washington, D.C.
- American Society for Testing and Materials. 1976. ASTM Manual on Presentation of Data and Control Chart Analysis. STP 15D. ASTM, Philadelphia.
- American Society for Testing and Materials (ASTM). Annual Book of ASTM Standards. Volume 4.08. ASTM, Philadelphia, PA.
- Duncan, A.J. 1974. Quality Control and Industrial Statistics, 4th edition. Irwin, Homewood, Ill.
- EA Engineering, Science, and Technology, Inc. 1995. *Quality Assurance Management Plan.* EA Manual EAL-001. EA, Sparks, MD. Unpublished.
- EA Engineering, Science, and Technology, Inc. 1995 or most recent update. Standard Operating Procedures. EA Manual EAL-002. EA, Sparks, MD. Unpublished.
- National Oceanographic and Atmospheric Association (NOAA). 1993. Sampling and Analytical Methods of the National Status and Trends Program. National Benthic Surveillance and Musel Watch Projects. 1984-1992. NOS ORCA 71, Silver Spring, MD.
- Naval Energy and Environmental Support Activity (NEESA). 1988. Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Program, 2nd rev. NEESA 20.2-047B. NEESA, Port Hueneme, Calif.
- Page, A.L., R.H. Miller, and D.R. Keeney, eds. 1982. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd Edition, American Society of Agronomy, Madison WI.
- Plumb, R.H. Jr. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report EPA/CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY.

USACE QAPjP Section No.: 15 Revision No.: 0 Date: 13 November 1995 Page: 2 of 2

- U.S. Environmental Protection Agency (EPA). 1979. Handbook for Analytical Quality Control in Water and Wastewater Laboratory. EPA-600/4-79-019. U.S. EPA, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA). 1979. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. EPA. Cincinnati, OH.
- U.S. Environmental Protection Agency (EPA). 1991. Standard Operating Procedures and Quality Assurance Manual. EPA, Region IV, Environmental Compliance Branch.
- U.S. Environmental Protection Agency (EPA). 1995. Test Methods for Evaluating Solid Waste. Physical/Chemical Methods. EPA SW-846, 3rd Edition including Final Update II. EPA, Washington D.C.
- U.S. Environmental Protection Agency (EPA)/U.S. Army Corps of Engineers (USACE). 1995. EPA QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations - Chemical Evaluations. EPA-823-B-95-001.
- U.S. Environmental Protection Agency (EPA)/U.S. Army Corps of Engineers (USACE). 1991. Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Manual. EPA-503/8-91/001.

APPENDIX A

/

.

LABORATORY QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY

APP

QUALITY CONTROL CRITERIA FOR PRECISION & AC. VIEW FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Concentration		Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
SW6010 Metals by	Inductively Coupled Plasma Atomic Emission S	pectroscopy					
Matrix Spike	Aluminum	2000		75-125		<20	
	Antimony	500	50	75-125	75-125	< 20	<20
	Arsenic	2000	(d)	75-125	75-125	<20	< 20
	Beryllium	50	5	75-125	75-125	<20	<20
	Cadmium	50	5	75-125	75-125	<20	<20
	Chromium	200	20	75-125	75-125	< 20	< 20
	Copper	250	25	75-125	75-125	< 20	<20
	Iron	1000		75-125		<20	
	Lead	500	50	75-125	75-125	< 20	< 20
	Manganese	500	50	75-125	75-125	<20	<20
	Nickel	500	50	75-125	75-125	< 20	<20
	Selenium	2000	(d)	75-125	75-125	< 20	< 20
	Zinc	500	50	75-125	75-125	< 20	< 20
LCS	Aluminum	4000	(d)	85-102	45-155	< 15	< 15
	Antimony	2000	(d)	80-110	31-245	<15	<15
	Arsenie	2000	(d)	80-120	49-149	<15	<15
	Beryllium	100	(d)	91-104	64-140	< 15	<15
	Cadmium	1000	(d)	80-109	52-144	<15	<15
	Chromium	400	(d)	85-107	54-142	<15	<15

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD). for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard; therefore, concentrations will vary.

(c) Approximate value: actual value determined through standardization of stock.

(f) SRM and LCS are the same reference solid matrix standard.

13 November 1995

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Concentration		Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
	Copper	500	(d)	90-103	57-145	<15	< 15
	Iron	2000	(d)	91-105	51-148	< 15	<15
	Lead	2000	(d)	87-105	53-142	<15	< 15
	Manganese	1000	(d)	88-105	67-135	<15	< 15
	Nickel	1000	(d)	91-103	55-146	<15	<15
	Selenium	2000	(ḋ)	80-120	52-147	< 15	<15
	Žinc	1000	(d)	85-105	52-149	< 15	<15
SRM	Aluminum	(d)	(d)	80-120	(1)		
	Antimony	(d)	(d)	80-120	(1)		
	Arsenic	(d)	(d)	80-120	(f)		
	Beryllium	(d)	(d)	80-120	(f)		
	Cadmium	(d)	(d)	80-120	(f)		
	Chromium	(d)	(d)	80-120	(ſ)	·	
	Copper	(d)	(d)	80-120	(1)		
	lron	(d)	(d)	80-120	(f)	·	
	Lead	(d)	(d)	80-120	(1)		
	Manganese	(d)	(d)	80-120	(ſ)		
	Nickel	(d)	(d)	80-120	(f)		
	Selenium	(d)	(d)	80-120	(1)		
	Zinc	(d)	(d)	80-120	(f)		

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

(f) SRM and LCS are the same reference solid matrix standard.

13 November 1995

APP

QUALITY CONTROL CRITERIA FOR PRECISION & AC. Y FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Con	centration	Accu	racy (%R)	Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(ıng/kg)	Water	Soil	Water	Soil
SW7060 Arsenic b	y Graphite Furnace Atomic Absorption						
Matrix Spike	Arsenic	40	40	75-125	75-125	< 20	<20
LCS	Arsenic	25	(d)	74-115	49-149	< 15	<15
SRM	Arsenic		(d)	80-120	(1)		<15
SW7421 Lead by	Graphite Furnace Atomic Absorption	· · · · · · · · · · · · · · · · · · ·					
Matrix Spike	Lead	20	20	75-125	75-125	< 20	<20
LCS (b)	Lead	25	(d)	75-117	53-142	< 15	<15
SRM	Lead		(d)	80-120	(ĺ)		<15
SW7470/7471 Me	cury by Cold Vapor Atomic Absorption						
Matrix Spike:	Mercury	1	1	75-125	75-125	< 20	< 20
LCS (b)	Mercury	4	(d)	83-114	48-156	< 15	< 15
SRM	Mercury		(d)	80-120	(f)		<15
SW7740 Selenium	by Graphite Furnace Atomic Absorption						
Matrix Spike:	Selenium	10	10	75-125	75-125	< 20	< 20
LCS (b)	Selenium	50	(b)	77-104	52-149	< 15	<15
SRM	Selenium		(d)	80-120	(1)		<15
SW7841 Thallium	by Graphite Furnace Atomic Absorption	· · · · · · · · · · · · · · · · · · ·					
Matrix Spike	Thallium	50	50	75-125	75-125	< 20	<20
LCS (b)	Thallium	25	(d)	70-111	50-150	<15	<15
SRM	Thallium		(d)		(1)		< 15

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD); for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Concentration		Accu	racy (%R)	Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
SW8080 Organoch	Norine Pesticides and PCBs by GC/ECD				•		
Matrix Spike	gamma-BHC (Lindane)	0.5	0.017	56-123	46-127	<15	< 50
	Heptachlor	0.5	0.017	40-131	35-130	< 20	<31
	Aldrin	0.5	0.017	40-120	34-132	< 22	< 43
	Dieldrin	1.0	0.033	52-126	31-134	<18	<38
	Endrin	1.0	0.033	56-121	42-139	<21	< 45
	4,4'-DDT	1.0	0.033	38-127	23-134	<27	< 50
Surrogate Spike	DCB	0.2	0.007	30-150	30-150		
	тсх	0:2	0.007	30-150	30-150		
LCS	gamma-BHC (Lindane)	0.5	0.017	32-168	0-177	<20	< 25
	Heptachlor	0.5	0.017	36-118	16-150	<20	< 25
	Aldrin	0.5	0.017	18-129	21-142	< 20	< 25
	Dieldrin	1.0	0.033	55-120	31-143	< 20	< 25
	Endrin	1.0	0.033	56-126	26-160	< 20	< 25
	4,4'-DDT	1.0	0.033	20-146	0-189	< 20	< 25
SW8080 PCB Con	geners						
Matrix Spike	2,4'-Dichlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',5-Trichlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,4,4'-Trichlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,5'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD); for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APP X A

QUALITY CONTROL CRITERIA FOR PRECISION & AC CY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Concentration		Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
	2,2',5,5'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,3',4,4'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	3,3',4,4'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',4,5'-Tetrachlorobiphenyl 0.05 2,2',4,5,5'-Pentachlorobiphenyl 0.05		0.017	50-120	50-120	≤30	≤30
			0.017	50-120	50-120	≤30	≤30
	2,3,3',4,4'-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,3',4,4',5-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤ 30
	2,2',3,4,5'-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	3,3',4,4',5-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	< 30	< 30
	2,2',3,4,4',5',6-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	< 30	< 30
	2,2',3,4,4',6,6'-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	< 30	< 30
	2,2',3,3',4,4'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,4',5'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,3,3',4,4',5-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	3,3',4,4',5,5'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',4,4',5,5'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤ 30
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5,6-Octachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (%RPD); for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value; actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Con	centration	Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
	2,2',3,3',4,4',5,5',6-Nonachlorbiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5,5',6,6'-Decachlorbiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
SURROGATE	тсх	0.02	0.007	30-150	30-150		
LCS	2,4'-Dichlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',5-Trichlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,4,4'-Trichlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,5'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',5,5'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120 ·	≤30	≤ 30
	2,3',4,4'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',4,5'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	3,3',4,4'-Tetrachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',4,5,5'-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,3,3',4,4'-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	<u>≤</u> 30
	2,3',4,4',5-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,5'-Pentachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	3,3',4,4',5-Pentachlorobiphenyl	0.05	0.017	50-120	_50-120	≤30	≤30
	2,2',3,3',4,4'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,4',5'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,3,3',4,4',5-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	3,3',4,4',5,5'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard; therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCOUNTRY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Con	centration	Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Water(ug/L) Soil(mg/kg)		Soil	Water	Soil
	2,2',4,4',5,5'-Hexachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,4',5,5'-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,4,4',5',6-Heptachlorobiphenyl 0.0!		0.017	50-120	50-120	≤30	≤30
	2,2',3,4,4',6,6'-Heptachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5,6-Octachlorobiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5,5',6-Nonachlorbiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
	2,2',3,3',4,4',5,5',6,6'-Decachlorbiphenyl	0.05	0.017	50-120	50-120	≤30	≤30
SW8240 Volatile (Organic Compounds by GC/MS						
Matrix spike	Benzene	50	50	76-127	66-142	<11	<21
	Toluene	50	50	76-125	59-139	< 13	<21
	Chlorobenzene	50	50	75-130	60-133	<13	<21
	1,1-Dichloroethene	50	50	61-145	59-172	<14	<22
	Trichloroethene	50	50	71-120	62-137	<14	<24
Surrogate Spike	1,2-Dichloroethane-d4	50	50	76-114	70-121		
	4-Bromofluorobenzene (BFB)	50	50	86-115	74-121		
	Toluene-d8	50	50	88-110	81-117		
LCS	Benzene	50	50	75-122	81-118	<11	<15
	Toluene	50	50	77-127	75-127	< 13	< 15

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (%RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Concentration		Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
	Chlorobenzene	50	50	76-128	73-128	< 13	< 15
	1,1-Dichloroethene	50	50	75-123	74-124	<14	<15
	Trichloroethene	50	50	72-126	76-117	< 14	<15
SW8270 Semivolat	tile organics by GC/MS						
Matrix Spike	Phenol	200	6.7	12-110	26-90	< 42	< 35
	2-Chlorophenol	200	6.7	27-123	25-102	< 40	< 50
	1,4-Dichlorobenzene	100	3.3	36-97	28-104	< 28	< 27
	N-Nitroso-di-n-propylamine	100	3.3	41-116	41-126	< 38	< 38
	1,2,4-Trichlorobenzene	100	3.3	39-98	38-107	< 28	<23
	4-Chloro-3-methylphenol	200	6.7	23-97	26-103	< 42	< 33
	Acenaphthene	100	3.3	46-118	31-137	<31	< 19
	4-Nitrophenol	200	6.7	10-80	11'-114	< 50	< 50
	2,4-Dinitrotoluene	100	3.3	24-96	28-89	< 38	<47
	Pentachlorophenol	200	6.7	9-103	17-109	< 50	<47
	Ругепе	100	3.3	26-127	35-142	<31	< 36
Surrogate Spike	Nitrobenzene d5	100	3.3	35-114	23-120		
	2-Fluorobiphenyl	100	3.3	43-116	30-115		
	Terphenyl-d14	100	3.3	33-141	18-137		
	2-Fluorophenol	200	6.7	21-100	25-121		
	Phenol-d5	200	6.7	10-94	24-113		

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (%RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(c) Approximate value: actual value determined through standardization of stock.

(f) SRM and LCS are the same reference solid matrix standard.

13 November 1995

APP- X A

QUALITY CONTROL CRITERIA FOR PRECISION & AC CONCY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

-		Spike Concentration		Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
	2,4,6-Tribromophenol	200	6.7	10-123	19-122		
LCS	Phenol	200	6.7	41-85	33-105	< 15	< 20
	2-Chlorophenol	200	6.7	50-84	42-102	< 15	< 20
	l,4-Dichlorobenzene	100	3.3	44-84	51-106	<15	< 20
	N-Nitroso-di-n-propylamine	100	3.3	57-96	50-111	< 15	< 20
	1,2,4-Trichlorobenzene	100	3.3	34-85	49-108	< 15	< 20
	4-Chloro-3-methylphenol	200	6.7	50-88	40-103	<15	< 20
	Acenaphthene	100	3.3	48-92	52 [:] 106	< 15	< 20
	4-Nitrophenol	200	6.7	59-110	33-130	< 15	< 20
	2,4-Dinitrotoluene	100	3.3	65-105	56-114	<15	< 20
	Pentachlorophenol	200	6.7	55-103	27-130	<15	< 25
	Pyrene	100	3.3	53-113	48-111	<15	< 20
SW8310-PAHs (H	PLC)						
Matrix spike	Benzo[a]anthracene	0.64	0.0213	40-120	30-150	< 25	<35
	Benzo[b]fluoranthene	1.28	0.0427	40-120	30-150	<25	< 35
	Benzo[k]fluoranthene	0.64	0.0213	40-120	30-150	< 25	<35
	Benzo[a]pyrene	0.64	0.0213	40-120	30-150	< 25	<35
	Chrysene	0.64	0.0213	40-120	30-150	< 25	< 35
	Dibenz(a,h)anthracene	1.28	0.0427	40-120	30-150	< 25	<35
	Indeno[1,2,3-cd]pyrene	0.64	0.0213	40-120	30-150	< 25	< 35

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Con	entration	Accu	racy (%R)	Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
Surrogate spike	Benzo (e) pyrene	8.0	0.267	40-120	30-150		
	4,4'-Dibromooctafluorobiphenyl	12.8	0.427	30-120	25-150		
	p-Terphenyl	7.5	0.250	30-150	30-150		
LCS (b)	Benzo[a]anthracene	0.64	0.0213	40-120	30-150	< 25	<35
	Benzo[b]fluoranthene	1.28	0.0427	40-120	30-150	<25	<35
	Benzo[k]fluoranthene	0.64	0.0213	40-120	30-150 ·	< 25	<35
	Benzo[a]pyrene	0.64	0.0213	40-120	30-150	< 25	<35
	Chrysene	0.64	0.0213	40-120	30-150	<25	<35
	Dibenz(a,h)anthracenc	1.28	0.0427	40-120	30-150	<25	<35
<u></u>	Indeno[1,2,3-cd]pyrene	0.64	0.0213	40-120	30-150	< 25	< 35
SW9012 Total and	amenable cyanide by automated colorimetry						
Matrix Spike	Cyanide	94.3	943	75-125	75-125	< 20	< 20
LCS	Cyanide	94.3	943	80-120	80-120	< 20	< 20
SRM	Cyanide	(d)	(d)	80-120	80-120		
SW9060 Total Org	canic Carbon						
Matrix Spike	КНР	20000	500000	80-120	71-133	< 20	< 50
LCS	КНР	20000	500000	80-114	71-133	<15	< 50
SRM	КНР	(d)	(d)	80-120	80-120		
SW 9030 Total Su	lfide						
Matrix Spike	Sullīde	6900 (e)	725 (e)	75-125	30-80	< 20	< 20

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard; therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURCY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Con	centration	Accuracy (%R)		Precision (b)	
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
LCS	Sulfide	6900 (e)	725 (e)	80-120	30-80	<20	< 20
SRM	Sulfide	(d)	(d)	80-120			
EPA 365.3 Total F	Phosphorus						
Matirx Spike	Potassium dihydrogen phosphate	50		75-125		< 20	
LCS	Potassium dihydrogen phosphate	40		70-102		<20	
SRM	Potassium dihydrogen phosphate	(d)		80-120			
EPA351.2 Nitroge	n, Total Kjeldahl						
Matrix Spike	Ammonium Chloride	400	200	75-125	75-125	< 20	<20
LCS	Ammonium Chloride	4.8	200	75-120	75-120	< 20	<20
SRM	Ammonium Chloride	(d)		80-120			
EPA353.2 Nitrate	plus Nitrite						
Matrix Spike	Potassium Nitrate	50		75-125		<20	
LCS	Potassium Nitrate	50		95-106	•••	< 20	
SRM	Potassium Nitrate	(d)		80-120			
EPA350.1 Nitroge	n, Anımonia						
Matrix Spike	Ammonium Chloride	50	12.5	75-125	75-125	<20	< 20
LCS	Ammonium Chloride	50	12.5	91-110	75-125	<20	<20
SRM	Ammonium Chloride	(d)		80-120			
EPA 405.1 Bioche	mical Oxygen Demand					·	
Matrix Spike	Glucose, Glutamic acid	NA	NA	NA	NA	NA	NA

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(b) Precision for matrix spikes is listed for relative % difference (% RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

(d) LCS is commercially prepared reference standard: therefore, concentrations will vary.

(e) Approximate value: actual value determined through standardization of stock.

APPENDIX A QUALITY CONTROL CRITERIA FOR PRECISION & ACCURACY FOR MATRIX SPIKES, MATRIX SPIKE DUPLICATES, SURROGATES, LABORATORY CONTROL SAMPLES, AND STANDARD REFERENCE MATERIALS (a)

		Spike Con	centration	Accur	acy (%R)	Precisi	on (b)
QC Parameter	Spiking Compounds	Water(ug/L)	Soil(mg/kg)	Water	Soil	Water	Soil
LCS	Glucose, Glutamic acid	20000		69-107		< 20	
SRM	Glucose, Glutamic acid	(d)		80-120	<u></u>		
EPA410.4 Chemic	al Oxygen Demand						.
Matrix Spike	КНР	25000		75-125		< 20	
LCS	КНР	25000		88-111		< 20	
SRM	КНР	(d)		80-120			
Tributyl Tin					•		
Matrix Spike	Tributyltin chloride, Dibutyltin chloride	0.1	4	40-120	40-120	< 30	< 30
Surrogate Spike	Tripentyltin	0.1	4	10-120	10-120	< 30	< 30

(a) Laboratory Control Sample (LCS) limits are based on historical performance data and are updated annually.

(h) Precision for matrix spikes is listed for relative % difference (% RPD): for the LCS the value is the precision calculated as the moving range for successive LCS recoveries.

(c) RL - Reporting Limit.

- (d) LCS is commercially prepared reference standard: therefore, concentrations will vary.
- (e) Approximate value: actual value determined through standardization of stock.

(f) SRM and LCS are the same reference solid matrix standard.

13 November 1995

APPENDIX B

LABORATORY QUALITY CONTROL AND CORRECTIVE ACTION PROCEDURES

(

APPELIX B SUMMARY OF LABORATORY QUALITY CONTROL AND

ECTIVE ACTION PROCEDURES

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action					
SW6010 Metals/I Aluminum, Arsen	SW6010 Metals/ICP Aluminum, Arsenic, Antimony, Beryllium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel, Selenium, Silver, Zinc							
Rinsate blank	1 per sampling event	None	None, report result.					
Holding time	6 months from sampling	Digestion and analysis are completed within holding time.	Laboratory Project Manager contacts client to determine if sample will be processed or site resampled.					
Calibration	 Initial calibration. Verify using a mid-level standard prior to each analytical sequence and, at a minimum, middle and end of each batch 	 Initial calibration per instrument manufacturer's specifications. Continuing calibration should be within ±15% of initial calibration on average for all analytes, not to exceed ±25% for any one analyte 	 If initial calibration fails, verify standard preparation. If continuing calibration fails, reanalyze the standard. If similar results are obtained, recalibrate instrument. All sample extracts analyzed since the last acceptable calibration must be reanalyzed. Document actions taken. 					
Interelement Check Sample	Daily	Concentration of analyte subject to potential spec- tral interference is within 20 percent of known value.	 Recalibrate instrument and reanalyze interelement check sample. Check interelement correction factors and update if necessary. Document actions taken. 					
Method Blank	I per analytical batch .	Concentration of target analytes is less than three times the MDL.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. Reanalyze or reprepare analytical batch if sample results <10 times blank value. If samples cannot be reanalyzed or reprepared, qualify data. 					
LCS	1 per analytical batch	Acceptance criteria listed in Appendix A.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standards. Validate LCS preparation. Reprepare and reanalyze LCS and samples. If repreparation of samples is not possible, qualify data. Document actions taken. 					
SRM	1 per analytical batch	Acceptance criteria listed in Appendix A.	 Validate instrument parameters, sensitivity and linearity. Validate standards. Validate SRM preparation. Reprepare and reanalyze SRM and samples. If repreparation of samples is not possible, qualify data. Document actions taken. 					

.

.

.

⁽a) Abbreviations: RPD, relative percent difference: MDL, method detection limit: QC, quality control: LCS, laboratory control sample: SRM, standard reference material: SD, standard deviation: MS/MSD, matrix spike/matrix spike duplicate.

APPENDIX B SUMMARY OF LABORATORY QUALITY CONTROL AND CORRECTIVE ACTION PROCEDURES

Page 2

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action
MS/MSD	1 per 20 samples	Acceptance criteria listed in Appendix A.	 Verify spike concentration is at least 50 percent of the unspiked concentration. Verify that correct spiking solutions and amounts were used. Check method blanks and LCS recovery. Reprepare and reanalyze samples if laboratory error is suspected. If no errors or problems are discovered for sample preparation, qualify data. Document actions taken.
Metals SW7060 - Arsenic SW7421 - Lead/F SW7470, SW7471 SW7740 - Seleniu SW7841 - Thalliu	/F - Mercury/CV m/F m/F		
Rinsate blank	l per sampling event	Nonc	None, report results.
Holding time	6 months from sampling for all metals, except 28 days for mercury	Digestion and analysis are completed within holding time.	Laboratory Project Manager contacts client to determine if sample will be processed or site resampled.
Calibration	 Initial 5 point calibration. Verify using a mid-level standard prior to each analytical sequence and, at a minimum, middle and end of each batch 	 Initial calibration curve is linear (r = >0.995). Continuing calibration standard concentration is within ±15% of initial calibration on average for all analytes, not to exceed ±25% for any one analyte. 	 If initial calibration fails, verify standard preparation. If continuing calibration fails, reanalyze the standard. If similar results are obtained, recalibrate instrument. All sample extracts analyzed since the last acceptable calibration must be reanalyzed. Document actions taken.
Method Blank	l per analytical batch	Concentration is less than three times the MDL of the analyte.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. Reanalyze or reprepare analytical batch. If samples cannot be reanalyzed or reprepared, qualify data.
LCS	One per analytical batch	Acceptance criteria listed in Appendix A.	 Validate instrument parameters, sensitivity and linearity. Validate standards. Validate LCS preparation. Reprepare and reanalyze LCS and samples. If repreparation of samples is not possible, qualify data. Document actions taken.

(a) Abbreviation RPD, relative percent difference; MDL, method detection limit; QC, quality control; LCS, laboratory set sample; SRM, standard reference material; SD, standard deviation; MS/MSD, matrix spike/mat

duplicate (b) Acceptanc

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action
SRM	One per analytical batch (1 sediment SRM only for entire sampling effort for this project)	Acceptance criteria listed in Appendix A.	 Validate instrument parameters, sensitivity and linearity. Validate standards. Validate SRM preparation. Reprepare and reanalyze SRM and samples. If repreparation of samples is not possible, qualify data. Document actions taken.
MS/MSD	1 per 20 samples	Acceptance criteria listed in Appendix A for soil and tissue must be met for 80% of the target analtyes.	 Verify that the spike concentration is at least 50 percent of the unspiked concentration. Verify that correct spiking solutions and amounts were used. Check method blanks and LCS recovery. Reprepare and reanalyze samples if laboratory error is suspected. If no errors or problems are discovered for sample preparation, qualify data. Document actions taken.
SW8080 - Organ	chlorine pesticides, PCB Congeners		· · · · · · · · · · · · · · · · · · ·
Rinsate blank	1 per day	None	None, report results.
Holding time	5 days (water), 10 days (sediment) from sampling to extraction; 40 days for analysis after extraction	Extraction and analysis are completed within holding time.	Laboratory Project Manager contacts client to determine if sample will be processed or site resampled.
Calibration	 Initial 5 point calibration. Verify continuing calibration using a mid-level standard prior to each analytical sequence and at a minimum, in the middle and end of each batch. 	 Initial calibration %RSD for all target analytes is < 20%, or use calibration curve (r=≥0.995) if %RSD > 20%. Continuing calibration should be within ±15% of initial calibration on average for all analytes. 	 If initial calibration fails, verify standard preparation. Recalibrate. If continuing calibration standard fails, reanalyze the standard. If similar results are obtained, recalibrate instrument. Document actions taken.
Method Blank	1 per analytical batch	Concentation of each target analyte is less than 3 times the MDL.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. Reanalyze or reprepare analytical batch. If samples cannot be reanalyzed or reprepared, qualify data.
LCS	1 per analytical batch	Acceptance criteria listed in Appendix A for sediment must be met for at least 80% of the target analytes.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate LCS standard. Validate LCS preparation. Reprepare and reanalyze LCS and affected samples. If repreparation of samples is not possible, qualify data. Document actions taken.

⁽a) Abbreviations: RPD, relative percent difference; MDL, method detection limit; QC, quality control; LCS, laboratory control sample; SRM, standard reference material; SD, standard deviation; MS/MSD, matrix spike/matrix spike duplicate.

.

(b) Acceptance criteria for LCS, SRM and MS/MSD are in Appendix A.

Т

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action
Surrogate spike	All field and QC samples	Acceptance criteria listed in Appendix A.	 Examine all QC (including but not limited to LCS, MB). If surrogate in LCS and/or MB is out-of-control, check quantitation. If quantitation is correct reanalyze. If similar results are obtained from reanalysis, obtain fresh, verified surrogate solution and reanalyze the analytical batch. If samples cannot be reprepared, qualify data. If surrogate spike in LCS and MB are acceptable but out-of-control for samples, validate preparation of samples. If no errors or problems are discovered for sample preparation, qualify data. If errors are discovered in preparation of samples, reprepare QC samples and all affected samples.
MS/MSD	I set per 20 samples	Acceptance criteria listed in Appendix A for sediment must be met for at least 80% of the target analytes.	 Analyze spiking solution. If spiking solution is valid, qualify data. If spiking solution is not valid, obtain fresh, certified spiking solution and reanalyze the sample and the associated matrix spikes. If reanalysis of samples is not possible, qualify data. Document actions taken.
SW9060 - TOC SW9012 - Cyanide SW9030 - Total S EPA365.3 - Total EPA351.2 - Nitrog EPA353.2 - Nitrot EPA 350.1 - Nitro EPA405.1 - Bioch EPA410.4 - Chem	e, total and amenable aufide Phosphorus gen, Total Kjeldahl T e plus Nitrite gen, Ammonia emical Oxygen Demand pical Oxygen Demand		
Rinsate blank	l per day	None	None, report results.
Holding time	28 days from sampling, except: Cyanide: 14 days from sampling BOD: 48 hours from sampling Total sulfide: 7 days from sampling.	Preparation and analysis are completed within hold- ing time.	Laboratory Project Manager contacts client to determine if sample will be processed or site resampled.
Calibration	 Initial 5 point calibration. Verify using a mid-level standard prior to each analytical sequence and, at a minimum, middle and end of each batch 	 Initial calibration curve is linear (r = ≥0.995). Continuing calibration standard concentration is within ±15% of initial calibration on average for all analytes, not to exceed ±25% for any one analyte. 	 It initial calibration fails, verify standard preparation. Recalibrate. If continuing calibration standard fails, reanalyze the standard. If similar results are obtained, recalibrate instrument. All sample extracts analyzed since the last acceptable calibration must be reanalyzed. Document actions taken.

Т

(a) Abbreviation RPD, relative percent difference: MDL, method detection limit: QC, quality control; LCS, laboratory duplicate

1.CS, laboratory ______sample; SRM, standard reference material; SD, standard deviation; MS/MSD, matrix spike/ma

(b) Acceptant

.

Т

Page 4

APPENDIX B SUMMARY OF LABORATORY QUALITY CONTROL AND SECTIVE ACTION PROCEDURES

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action			
Method Blank	l per analytical batch	Concentration of target analyte is less than 3 times the MDL.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. Reanalyze or reprepare analytical batch. If samples cannot be reanalyzed or reprepared, qualify data. 			
LCS	1 per analytical batch	Acceptance critèria listed in Appendix A must be met for each target analyte.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standards and LCS preparation. Correct any problems and document. Reprepare and reanalyze method blank, LCS and all field samples. If repreparation of samples is not possible, qualify data, and note in the report narrative. Document all actions taken 			
SRM	1 per analytical batch	Acceptance criteria listed in Appendix A must be met for each target analyte.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standards and SRM preparation. Correct any problems and document. Reprepare and reanalyze method blank, SRM and all field samples. If repreparation of samples is not possible, qualify data, and note in the report narrative. Document all actions taken 			
MS/MSD	1 set per 20 samples	Acceptance criteria listed in Appendix A must be met for each target analyte.	 Analyze spiking solution. If spiking solution is valid, qualify data. If spiking solution is not valid, obtain fresh, certified spiking solution and reanalyze the sample and associated matrix spikes. 			
SW8240 - Volatile organics						
Trip blank	1 per shipment to tab	Target compounds are not present at concentrations greater than the RL.	None required.			
Equipment blank	l per day	Target compounds are not present at concentrations greater than the RL.	None required.			
Field duplicate	1 set per 10 samples	Within 10 percent for water samples and within 30 percent RPD for soils	None required.			
Holding time	14 days from sampling (preserved); 7 days (unpreserved)	Analysis is completed within holding time.	Notify client, determine if laboratory to proceed or if client will resample.			
Tuning	Every 12 hours	Within limits of method	Adjust instrument parameters.			

(a) Abbreviations: RPD, relative percent difference; MDL, method detection limit; QC, quality control; LCS, laboratory control sample; SRM, standard reference material; SD, standard deviation; MS/MSD, matrix spike/matrix spike duplicate.

APPENDIX B SUMMARY OF LABORATORY QUALITY CONTROL AND CORRECTIVE ACTION PROCEDURES

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action
Calibration curve	Established initially at 5 concentration levels, verilied every 12 hours at mid level	 Initial calibration %RSD for all CCCs is less than 30 percent; RF for SPCCs is >0.30 (0.25 for bromoform). Continuing calibration %D for CCCs from initial calibration is less than 25 percent; RF for SPCCs is >0.30 (0.25 for bromoform). 	 Recalibrate instrument. Reanalyze samples since last criteria met. Document actions taken.
Method Blank	I per analytical batch	Concentration is less than the RL of the analyte except that the common laboratory contaminates MeC12, MEK, and acetone are less than five times the RL.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. Reanalyze or prepare analytical batch. If samples cannot be reanalyzed or reprepared, qualify data.
LCS	1 per analytical batch	Values are within three SD of mean historical values or method control limits of precision and accuracy. Acceptance criteria are in Appendix A.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standards. Validate LCS preparation. Reanalyze LCS and samples. If repreparation of samples is not possible, qualify data. Document actions taken.
Surrogate spike	All laboratory blanks, LCS, MS/MSD and field samples	See Appendix A for surrogate spiking compounds, spike concentrations and control limits.	 Examine all QC (including but not limited to LCS, MB). If surrogate in LCS and/or MB is out-of-control, check quantitation. If quantitation is correct reanalyze. If similar results are obtained from reanalysis, obtain fresh, verified surrogate solution and reanalyze the analytical batch. If samples cannot be reprepared, qualify data. Document actions taken.
MS/MSD	I set per 20 samples	See Appendix A for matrix spiking compounds, spike concentrations, and control limits.	 Analyze spiking solution. If spiking solution is valid, qualify data. If spiking solution is not valid, obtain fresh, certified spiking solution and reanalyze the sample and the associated matrix spikes. If reanalysis of samples is not possible, qualify data. Document actions taken.

SW8270 - Semivolatile organics

(a) Abbreviatio

(b) Acceptanc

D, relative percent difference: MDL, method detection limit; QC, quality control; LCS, laboratory generalized standard reference materia

duplicate.

Page 6

cember 1995

X B SUMMARY OF LABORATORY QUALITY CONTROL ANL

AP

ECTIVE ACTION PROCEDURES

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action
Equipment blank	1 per day	Target compounds are not present at concentrations greater than the RL.	None required.
Sampling duplicate	1 set per 10 samples	Within 10 percent for water samples and within 30 percent RPD for soils.	None required.
Holding time	Aqueous: extract within 7 days of sampling; analyze within 40 days of extraction. Solid: extract within 14 days of sampling; analyze within 40 days of extraction.	Extraction and analysis are completed within holding time.	Notify client, determine if laboratory to proceed or if client will resample.
Tuning	Every 12 hours	Within limits of method	Adjust instrument parameters.
Calibration curve	Established initially at 5 concentration levels, verified every 12 hours at mid level	 Initial calibration %RSD for all CCCs is less than 30 percent; RF for SPCCs is >0.05. Continuing calibration %D for CCCs from initial calibration is less than 30 percent; RF for SPCCs is >0.05. 	 Reanalyze check standard. If similar results are obtained recalibrate instrument. Reanalyze samples since last criteria met. Document actions taken.
Method Blank	l per analytical batch	Concentrations are less than the RL of the analyte except that the common laboratory contaminate bis- 2-ethylhexylphthalate is less than five times the RL.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. Reanalyze or prepare analytical batch. Il samples cannot be reanalyzed or reprepared, qualify data. Document actions taken.
LCS	1 per analytical batch	80 percent of values are within three SD of mean historical values or method control limits of preci- sion and accuracy. Acceptance criteria are in Appendix A.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standards. Validate LCS preparation. Reanalyze LCS and samples. If repreparation of samples is not possible, qualify data. Document actions taken.

⁽a) Abhreviations: RPD, relative percent difference, MDL, inethod detection finit; QC, quality control; UCS, laboratory control sample, SRM, standard reference material; SD, standard deviation: MS/MSD, matrix spike/matrix spike duplicate.
APPENDIX B SUMMARY OF LABORATORY QUALITY CONTROL AND CORRECTIVE ACTION PROCEDURES

•

Page 8

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action		
Surrogate spike	All blanks, LCS, and samples	Surrogate spiking compounds, spike concentrations and control limits are consistent with Appendix A.	 Examine all QC (including but not limited to LCS, MB). If surrogate in LCS and/or MB is out-of-control, check quantitation. If quantitation is correct reanalyze. If similar results are obtained from reanalysis, obtain fresh, verified surrogate solution and reanalyze the analytical batch. If samples cannot be reprepared, qualify data. If surrogate spike in LCS and MB are acceptable but: (a) any 2 base/neutral or and 2 acid surrogate secovery is < 10%, repreparation and reanalysis is required. If results are repeated on reanalysis, qualify data. If errors are discovered in preparation of samples, reprepare QC samples and all affected samples. Document actions taken. 		
MS/MSD	1 sct per 20 samples	See Appendix A for matrix spiking compounds, spike concentrations, and control limits.	 Analyze spiking solution. If spiking solution is valid, qualify data. If spiking solution is not valid, obtain fresh, certified spiking solution and reanalyze the sample and the associated matrix spikes. 		
Tributyltin		· · · · · · · · · · · · · · · · · · ·			
Matrix Spike	1 per 20 samples	In accordance with Appendix A.	 Examine all QC (including but not limited to LCS, MB). If surrogate in LCS and/or MB is out-of-control, check quantitation. If quantitation is correct reanalyze. If similar results are obtained from reanalysis, obtain fresh, verified surrogate solution and reanalyze the analytical batch. If samples cannot be reprepared, qualify data. If surrogate spike in LCS and MB are acceptable but: (a) any 2 base/neutral or and 2 acid surrogates are out-of-control for samples, or (b) any one surrogate recovery is <10%, repreparation and reanalysis is required. If results are repeated on reanalysis, qualify data. If errors are discovered in preparation of samples, reprepare QC samples and all affected samples. Document actions taken. 		
Surrogate Spike	All blanks, samples, LCS	In accordance with Appendix A.	 Analyze spiking solution. If spiking solution is valid, qualify data. If spiking solution is not valid, obtain fresh, certified spiking solution and reanalyze the sample and the associated matrix spikes. 		

(a) Abbreviation RPD, relative percent difference: MDL, method detection limit: QC, quality control: LCS, laboratory and sample: SRM, standard reference material: SD, standard deviation; MS/MSD, matrix spike/ma

duplicate

(b) Acceptar

.

QC Check	Frequency	Acceptance Criteria	Corrective Action
LCS	1 per 20 samples	In accordance with Appendix A.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standards. Validate LCS preparation. Reanalyze LCS and samples. If repreparation of samples is not possible, qualify data. Document actions taken.
SW8310 Polyni	iclear Aromatic Hydrocarbons by HP	LC	-
Equipment blank	l per day	Target compounds are not present at concentrations greater than the RL.	None required.
Field duplicate	~10%	Within 35 percent RPD for soils	None required.
Holding time	Water: extract within 7 days of samping; analyze within 40 days of extraction.	Extraction and analysis are completed within holding time.	Notify client, determine if laboratory to proceed or if client will resample.
	Solid: extract within 14 days of sampling; analyze within 40 days of extraction.	·	
Calibration curve	Initial 5 point calibration, verified daily at mid level and at end of sequence.	 Initial calibration curve (r ≥0.990) Continuing calibration %D from initial calibration no greater than +/-15 percent. 	 Reanalyze check standard. If similar results are obtained, recalibrate instrument. Evaluate data useability. Reanalyze if data useability is impacted. Document actions taken in a Nonconformance Record, and in the analytical report.
Method Blank	I per analytical batch	Concentration is less than the RL of the analyte.	 Determine source of contamination, i.e. instrument, blank water, reagents. Take appropriate corrective action and document. If preparation in error reanalyze or prepare analytical batch. If samples cannot be reanalyzed or reprepared, qualify data. Document actions taken in a Nonconformance Record, and in the analytical seport.

(b) Acceptance criteria for LUS, SRM and MS/MSD are in Appendix A.

⁽a) Abbreviations: RPD, relative percent difference; MDL, method detection limit; QC, quality control; LCS, laboratory control sample, SRM, standard reference material; SD, standard deviation; MS/MSD, matrix spike/matrix spike duplicate.

APPENDIX B SUMMARY OF LABORATORY QUALITY CONTROL AND CORRECTIVE ACTION PROCEDURES

Page 10

QC Check	Frequency	Acceptance Criteria ^b	Corrective Action
LCS	I per analytical batch	Control analyte values are within three SD of mean historical values or method control limits of preci- sion and accuracy. Acceptance criteria are in Table A-7.	 Validate instrument parameters, sensitivity and linearity. Correct problems and document. Validate standard and LCS preparation. Correct any problems and document. Reprepare and reanalyze the method blank, LCS and all field samples in the batch. If repreparation of samples is not possible, qualify data, and note in the report narrative. Document all actions taken in a Nonconformance Record.
Surrogate spike	All field and QC samples	Surrogate spiking compounds spike concentrations and control limits are in Table A-7.	 Examine all QC (including but not limited to LCS, MB). If surrogate in LCS and/or MB is out-of-control, check quantitation. If quantitation is correct reanalyze. If similar results are obtained from reanalysis, obtain fresh, verified surrogate solution and reprepare the analytical batch. If samples cannot be reprepared, qualify data. If surrogate spike in LCS and MB are acceptable but out-of-control for samples, validate preparation of samples. If no errors or problems are discovered for sample preparation, qualify data. If errors are discovered in preparation of samples, reprepare QC samples and all affected samples. Document actions taken in a Nonconformance Record and in the report narrative.
MS/MSD	1 set per 20 samples	Matrix spiking compounds, spike concentrations, and control limits are in Table A-7	 Analyze spiking solution. Verify that correct spiking solutions and amounts were used. Check method blanks and LCS recovery. Reanalyze samples if laboratory error is suspected. Document actions taken.

.

(a) Abhrevia duplicate

(b) Accepta

.

APPENDIX C

STANDARD OPERATING PROCEDURES

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

EAL-SOP-	Subject		

GROUP SECTION: GENERAL LABORATORY DISTRIBUTION (ALL)

- 015-2 Balance use and calibration verification
- 018-3 Waste and sample disposal
- 042-2 Recording temperatures of laboratory equipment
- 045-1 Procedure for numbering SOPs
- 047-1 Determination of nonchromatographic instrument detection limits
- 048-0 Determination of chromatographic instrument detection limits
- 049-1 Determination of method detection limits
- 050-1 ALKAL (Forms of alkalinity calculation program)
- 051-3 Completing chain-of-custody records
- 058-0 Calculating control limits using the moving range
- 059-0 Dixon's outlier test
- 061-0 Test codes for LIMS
- 062-1 Cleaning of glassware
- 063-1 Determination of percent solids
- 064-0 Determination of percent moisture
- 065-1 Record keeping
- 066-1 Acid disposal procedure
- 067-3 Accepting sample deliveries
- 069-1 Cleaning procedure for bailers
- 070-0 Sample security
- 072-1 Reporting nonconformances
- 076-0 Calibrating QC check weights
- 077-2 Verifying balance calibration with Class S weights
- 087-0 Syntax conventions for LIMS computer use
- 088-3 Submission and approval of EA Laboratories SOPs
- 089-2 Material safety data sheets
- 100-2 Maintaining instrument logbooks

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

Subject

EAL-SOP-

40-0	General requirements for laboratory control samples
72-2	Analytical results reporting convention
74-2	Working thermometer calibration
75-0	Determining the icepoint reading of certified thermometers
′ 6- 0	MOVRANGE (moving-range control chart program)
7-2	Reporting protocol for solid sample results
0-0	Technical Training For EA Laboratories Personnel
2-0	EA Laboratories' Dress Code
8-1	USATHAMA control chart requirements
90-1	Holding time policy
92-1	Labelling standards with expiration dates
95-2	Sample Batching
96-1	Central Office Project Files
11-0	Document Control
58-1	Sample Batching Procedures for Organic Extractions
53-0	LCS Data Entry Using dBase IV
59-0	Use of Non Conformance Report (NCR) Database
87-0	Preparing and collecting wipe samples
293-2	EA Laboratories Employee Orientation and Training Program
95-0	Frequency for the Determination of Detection Limits Studies
01-3	Method Performance Documentation
03-1	EA Laboratories Client Report Deliverables
04-2	EA Laboratories Data Package Deliverables
05-0	EA Laboratories Client Report Narrative
06-0	Intermediate File Submittals
)7-0	Intermediate File Naming Conventions
2-0	EA*LIMS TSOLID Application Usage

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

EAL-SOP-	Subject	•	
		 علميكم المتفك أملنك أنفد بكديد مشتك الراكات التركي والراك الأركان والمراجع	

GROUP SECTION: REPORTS

- 187-1 Completing the EA Laboratories report review checklist
- 224-0 Initial Report Procedures
- 230-0 Formation of R2 tables for final reports
- 231-1 Procedure of copying, binding, and mailing reports
- 275-0 USATHAMA Lot Data Packages (LDPs)

GROUP SECTION: SAMPLE MANAGEMENT

- 034-1 Filling out Container Request Forms
- 035-3 Manual sample log-in
- 036-2 LIMS sample log-in
- 038-4 Assigning storage locations for samples
- 039-4 Internal Custody Transfer of Samples
- 040-3 Receiving and accepting sample delivery
- 043-2 Preparing sample containers
- 062-1 Cleaning of Glassware
- 074-3 Health and safety during sample receipt
- 202-1 Tracking Sample Container Lots
- 204-1 Reporting pH of Incoming Samples
- 257-0 Measuring pH of Analytical Samples at Sample Receipt
- 309-0 Criteria for Sample Rejection as Regulated Under SDWA

GROUP SECTION: GC/MS

- 111-0 BNA (semivolatiles) Sample receipt, logging and tracking
- 115-0 Preventing Glassware Contamination in VOA Samples
- 119-0 Sample preparation for product samples

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

EAL-SOP-	Subject	

- 122-0 Updating reference spectra on the H/P GC/MS systems
- 123-0 Preparation of diskette deliverable for H/P GC/MS data
- 141-0 Preparation of Volatile Standards
- 214-2 pH Measurements of Volatiles Samples
- 259-3 USATHAMA criteria for reporting of data for GC/MS compounds

GROUP SECTION: METALS

- 001-0 Calibration blank
- 002-0 Pipettes, pipettors, and sample cups
- 003-0 Handling standard metal solutions
- 004-0 Calculation of % recovery for metals
- 005-0 Coding protocol for CLP
- 006-1 Instrumental protocols for ICP analysis
- 007-0 True values for ICP QC solutions
- 008-0 Preparation of LCS for ICP analysis
- 009-0 Preparation of matrix spikes for ICP analyses
- 010-0 Furnace QC solutions
- 011-0 Data handling
- 060-0 Data transfer from ICP to SMARTLOG using a floppy disk
- 073-0 Data transfer from P-40 ICP to SMARTLOG
- 091-0 Microwave digestion procedure for aqueous samples for analysis by GFAA
- 092-0 Microwave digestion procedure for sludge samples
- 093-0 Mercury digestion
- 094-0 MDS-205 (Microwave drying system)
- 095-0 IDRIS installation
- 096-0 Determining the background equivalent concentration on the Perkin-Elmer 6500
- 097-0 Redigestion Notification Forms
- 098-0 Perkin-Elmer 5100 graphite furnace

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

EAL-SOP-	Subject
099-0	Determining the background equivalent concentration (BEC) for the PE 6500
101-1	Traceability and equivalency of standards
102-0	Sample and digestate storage
103-0	Perkin-Elmer AA 5000/HGA 500
105-0	Sample management
106-0	Perkin-Elmer AA 5000/HGA 500 with Auto AA data station
107-0	Microwave digestion procedure for aqueous samples for analysis by ICP
130-0	Data entry into SMARTLOG
203-0	Technical & Managerial Review of Lab Operations and Data Packages for the Metals Laboratory
236-0	Furnace Digestion Method 7761 - SW-846
246-0	Microwave Sample Preparation - Soil
247-0	Water Sample Preparation - ICP
248-0	Water Sample Preparation - Furnace
249-0	Soil/Sediment Sample Preparation - Furnace

- 273-0 Pipette Calibration Verification
- 288-0 Preparation of Fish tissue for Metal Analysis

GROUP SECTION: INORGANICS

- 012-1 Proper pH and ISE electrode maintenance
- 054-0 Technicon chemical hygiene
- 055-1 Technicon maintenance
- 057-1 Sample handling for TKN, TP, and CN
- 139-0 Inorganic calculation Formulae
- 315-0 Labtronics Software: Use of QCALIB Regression Program

GROUP SECTION: GC

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

EAL-SOP-	Subject]
		_

- 108-0 Inventory and Wipe Test Tracking of Electron Capture Detectors
- 153-0 Assessment of GC volatiles instrument malfunctions
- 157-0 Data handling in GC
- 158-0 Preventing contamination in GC extractable samples
- 159-0 Installing and maintaining capillary columns
- 160-0 Preventative maintenance for GC instrumentation
- 161-0 Preparing and maintaining packed columns for use with an EC detector
- 162-0 GC extractables sample receipt, tracking and logging
- 163-0 GC Volatiles Analysis Sample Handling
- 165-0 Sample and extract storage in GC
- 191-0 TPH Fingerprinting by Method 8015 (modified)
- 193-0 Determination of GC and HPLC Calibration Curve Linearity
- 214-2 pH Measurements of Volatiles Samples

GROUP SECTION: EXTRACTIONS

- 029-3 Sulfur removal using TBA reagent
- 032-2 Micro-D Florisil cleanup of pesticide/PCB extracts
- 033-1 Cleaning organic glassware
- 078-0 Operation of annealing oven controller
- 079-0 Sample tracking in extractions
- 083-1 Surrogate and matrix spike standards storage
- 261-2 TCLP Extraction Procedure
- 272-0 Monitoring the TCLP Rotary
- 284-0 Determination of % Lipids (Gravimetric)
- 289-0 Preparation of Fish Tissue for Organics Analysis
- 292-0 Preparation of Plant Tissue for Analysis

GROUP SECTION: DATA MANAGEMENT

EA LABORATORIES

STANDARD OPERATING PROCEDURES (SOPs) TABLE OF CONTENTS

EAL-SOP-	Subject		
		· · ·	

- 216-1 Network Backup Procedures
- 217-0 LIMS Backup Procedures
- 218-0 LIMS Booting Procedures
- 219-0 LIMS DataBase Archive Procedures

GROUP SECTION: HPLC

ANALYTICAL METHODS

٦

.

APPENDIX D

Method for TOC in Sediment

•-

ø

ς.

from Plumb, 1981

Procedures for Sediment Beeples (SLD, 83)

Nethod 1: Sample Ignition

Apparatus

Induction furnace such as the Leco WR-12, Dohrmann DC-5C, Coleman CH analyzer, or Perkin Elser 240 elemental analyzer

Combustion boats

Kicrobalance

Desiccator

Reagents

10 percent hydrochloric acid: mix 100 ml concentrated HCl with 900 ml distilled water.

Copper oxide fines.

Benzoic acid.

Procedure

Dry at 70°C and grind the sediment sample.

Weigh a combustion boat and record the weight. Place 0.2 to 0.5 g homogenized sediment in the combustion boat and reweigh. Combustion boats should not be handled with the bare hand during this process.

If total carbon or inorganic carbon is to be determined, Cupric oxide fines may be added to the sample to assist in combustion. Combust the sample in an induction furnace. Record the result as total carbon.

If organic carbon is to be determined, treat a known weight of dried mediment with several drops of 10 percent HCL. Wait until the effervencing is completed and add more acid. Continue this process until the incremental addition of acid causes no further effervescence. Do not add too much acid at one time as this may cause loss of sample due to frothing.

Dry the sample at 70° C and place in a desiccator. Add Cupric oxide fines, combust the sample in an induction furnace, and record the result as organic carbod.

<u>Calculations</u>

The carbon content of the sample can be calculated as:

Sc = veight of tube (after-before) = 27.29 sample weight

Derivation of factor:

27.29 = i2.011 (molecular weight carbon) h4.011 (molecular weight carbon dioxide) = 100\$

When the total sample results are used, the result is percent carbon in the sample. When acid-treated samples are used, the result is percent organic parbon. Inorganic carbon is calculated as total carbon winus organic carbon.

Method 2: Differential Combustion***

Apparatus

Sargent programmed microcombustion apparatus or equivalent Microbalance

Prosedure

Air dry the sediment sample. Using a mortar and pestle, grind the sample to pass a 100-mesh screen.

Combust a known vight of sediment at a programmed heating rate of 300° to 950° C ir bld min and then maintain 950° C for 20 min. Trap the CO₂ in ascarite and record the weight as total carbon. A sample size should be selected that will produce 25 to 50 mg CO₂.

Weigh a second portion of the dried sediment. Combust this sample at a programmed rate of 300° to 650° C in 10 min and maintain 650° C for 20 min. Trap the CO₂ in ascarite and record the weight as organic carbon.

Calculations

The total carbon concentration, C_t , of the sample (in mg/g) is calculated as follows:

$$C_{t} = \frac{\binom{x}{t}}{\binom{g}{t}}$$

4

Vnere

xt = weight of CO₂ =volved at 950°C, mg

g = weight of sample combusted, g

The organic carbon, C_0 , concentration of the sample (in mg/g) is calculated as follows:

$$C_{o} = \frac{\binom{x_{o}}{(g)}}{\binom{x_{o}}{(g)}}$$

where

 x_0 = weight of CO₂ evolved at 650°C, mg

g = weight of sample combusted, g

Inorganic carbon, C_{I} , (in mg/g) is calculated as: $C_{I} = C_{t} - C_{0}$

Method 3: Wet Combustion***

A third method has been used for carbon in sediments. This is based on the oxidatic. of the sample with dichromate and back titration of the sample with ferrous armonium sulfate. References are provided for the procedure but details are not given. The procedure is similar to the chemical oxygen demand test which is not specific for carbon. The wet combustion method is a redox procedure and any reduced chemicals in the sediment samples (ferrous iron, manganous manganese, sulfide) will react with the dichromate. Therefore, this procedure is not recommended unless other instrumentation is not available.

References

- U. S. Environmental Protection Agency. "Manual of Methods for Chemical Analysis of Water and Wastes." Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center; Cincinnati, Ohio. 298 p. (1974).
- U. S. Environmental Protection Agency. "Methods for Chemical Analysis of Water and Wastes." Environmental Monitoring and Support Laboratory, Office of Research and Development, EPA; Cincinnati, Ohio (1979).
- Giovannini, G., Poggio, G., and Sequi, P. "Use of an Automatic CHN Analyser to Determine Organic and Inorganic Carbon in Soils." Unpublished Report, Laboratory of Soil Chemistry, via Corridoni, Pise, Italy. 9 p. (1975).
- 4. K wrad, J. C., Chesters, G., and Keeney, D. R. "Determination of Organic- and Carbonate-Carbon in Freshwater Lake Sediments by a Microcombustion Procedure." J. Thermal Analysis 2:199-208 (1970).
- Kemp, A. L. W. "Organic Matter in the Sediments of Lakes Ontario and Erie." Proc. 12th Conference Great Lakes Research 12:237-249 (1959).
- 6. Environment Canada. "Analytical Methods Manual," Inland Waters Directorate, Water Quality Branch; Ottava, Canada (1974).
- American Public Health Association. <u>Standard Methods for the</u> <u>Examination of Water and Wastewater</u>, APHA; New York, New York. 1193 p. (1976).
- Gaudette, H. E., Flight, W. R., Toner, L., and Folger, D. W. "An Inexpensive Titration Method for the Determination of Organic Carton in Recent Sediments." J. Sed. Petrology 44:249-253 (1974).

APPENDIX E

• •

ANALYTICAL REPORT TABLE OF CONTENTS

<u>Sc</u>	ction	L	Page
1.	NA	RRATIVE	010000
	A .	Analytical Narrative	010000
	B .	Methods (Table 1)	010000
	С.	Data Qualifiers (Table 2)	010000
	D.	Summary Tables (Table 3, Table 4, etc.)	010000
2.	СН	IAIN OF CUSTODY	020000
3.	vo	LATILES DATA	030000
	A .	QC Summary	030000
		1. Surrogate Percent Recovery (Form II VOA)	030000
		2. Matrix Spike/Matrix Spike Duplicate Summary (Form III VOA)	030000
		3. Laboratory Control Sample Summary (Form 111 VOA-M)	030000
		4. Control Charts	030000
		5. Method Blank Summary (Form IV VOA)	030000
		6. GC/MS Tuning, BFB (Form V VOA)	030000
		7. Internal Standard Area Summary (Form VIII VOA)	. 030000
	B .	Sample Data (Form 1 VOA), (Form 1 VOA-T1C)	030000
		1. Data for Sample	030000
	С.	Standards Data	030000
		1. Initial Five Point Calibration (Form VI VOA + raw instrument data)	030000
		2. Continuing Calibration Check (Form V > VOA + raw instrument data)	030000
	D.	Raw QC Data	030000
		1. BFB Tune Data	030000
		2. Method Blank (Form 1 VOA + raw instrument data)	030000
		3. Matrix Spike Data (Form 1 VOA + raw instrument data)	030000
		4. Matrix Spike Duplicate Data (Form 1 VOA + raw instrument data)	030000
		5. Laboratory Control Sample Data (Form I VOA + raw instrument data)	030000
	E.	Laboratory Logs	030000
		1. Standards Preparation Logs	030000
		2. Instrument Run Logs	030000
	F.	Technical Review Checklist and Other Analysis Documentation (*)	030000

(a) "Other Analysis Documentation" refers to any written documentation associated with the analysis not covered in the Table of Contents (e.g., memos, NCRs, communications records).

Section			Page
4. 5	SEMIVOLATILES DATA		
ļ	4. Q	QC Summary	
	1.	Surrogate Percent Recovery (Form II SV)	040000
	2.	Matrix Spike/Matrix Spike Duplicate Summary (Form III SV)	040000
	3.	Laboratory Control Sample Summary (Form III SV-M)	040000
	4.	Control Charts	040000
	5.	Method Blank Summary (Form IV SV)	040000
	6.	GC/MS Tuning, DFTPP (Form V SV)	040000
	7.	Internal Standard Area Summary (Form VIII SV)	040000
B	s. Sa	mple Data (Form I SV), (Form I SV-TIC)	040000
	1.	Data for Sample	040000
С	. Sta	indards Data	040000
	1.	Initial Five Point Calibration (Form VI SV + raw instrument data)	040000
	2.	Continuing Calibration Check (Form VII SV + raw instrument data)	040000
D	. Ra	w QC Data	040000
	1.	DFTPP Tune Data	040000
	2.	Method Blank (Form I SV + raw instrument data)	040000
	3.	Matrix Spike Data (Form I SV + raw instrument data)	040000
	4.	Matrix Spike Duplicate Data (Form I SV + raw instrument data)	040000
	5.	Laboratory Control Sample (Form I SV + raw instrument data)	040000
	6.	GPC Data ^(b)	040000
E	. Labo	pratory Logs	040000
	1.	Extraction Logs	040000
	2.	Standards Preparation Logs	040000
	3.	Instrument Run Logs	040000
G	. Te	chnical Review Checklist and Other Analysis Documentation	040000
5. PESTICIE		DE/PCB DATA	050000
A	. QC	Summary	050000
	1.	Surrogate Percent Recovery (Form II PEST)	050000
	2.	Matrix Spike/Matrix Spike Duplicate Summary (Form III PEST)	050000

(a) "Other Analysis Documentation" refers to any written documentation associated with the analysis not covered in the Table of Contents (e.g., memos, NCRs, communications records).(b) UV traces for GPC calibration solution, and chromatograms and data system reports for GPC blank.

<u>S</u>	ectior	1			Page
		3.	Laboratory Control Sample Summary (Form III PES	Т-М)	050000
		4.	Control Charts		050000
		5.	Method Blank Summary (Form IV PEST)		050000
		•			
	В.	Sample Data (Form I PEST)			050000
		1.	Data for Sample		050000
				22 - C C C C C C C	
	С.	Sta	ndards Data	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$	050000
		1.	Initial Calibration of Single Component Analytes (Fo	rm VI PEST-1).	
			(Form VI PEST-2)		050000
		2.	Initial Calibration of Multicomponent Analytes (Form	n VI PEST-3)	050000
		3.	Analyte Resolution Summary (FORM VI PEST-4)	· · · ,	050000
		4.	Calibration Verification Summary (FORM VII-1)		050000
		5.	Calibration Verification Summary (FORM VII-2)		050000
		6.	Analytical Sequence (FORM VIII PEST)	a second second second second second second second second second second second second second second second second	050000
		7.	Florisil Cartridge Check (FORM 1X-1 PEST)		050000
		8.	Pesticide GPC Calibration (FORM IX-2 PEST)	· · ·	050000
		9.	Pesticide Identification Summary for Single Compone	ent Analytes	
			(FORM X PEST-A)	····· · ······· · · · · · · · · · · ·	050000
		10.	Pesticide Identification Summary for Multi-Component	nt Analytes	
			(FORM X PEST-B)		050000
			· · · · · · · · · · · · · · · · · · ·		050000
	D. Raw OC Data		050000		
			-	and the second second second second second second second second second second second second second second second	05,0000
		1.	Method Blank	· · · · · · · · · · · · · · · · · · ·	050000
		2.	Matrix Spike Data	· ' 1	050000
		3.	Matrix Spike Duplicate Data		050000
		4.	Laboratory Control Sample		050000
		5.	GPC Data (b)		050000
					0,0000
	Ε.	Lab	oratory Logs		050000
		t	Extraction Logs		
		2	Standards Prenaration Logs		050000
		3 In	estrument Run Logs		050000
		J. 11	Stement Rull Logo		00000
	F.	Tec	hnical Review Checklist and Other Analysis Documen	tation (*)	050000
6.	HPLC DATA				060000
	A .	QC	Summary		060000

(a) "Other Analysis Documentation" refers to any written documentation associated with the analysis not covered in the Table of Contents (e.g., memos, NCRs, communications records).

<u>Section</u>	i · · ·	Page -
	1. Surrogate Percent Recovery (Form II)	060000
	2. Matrix Spike/Matrix Spike Duplicate Summary (Form 111)	060000
	3. Laboratory Control Sample Summary (Form III)	060000
	4. Control Charts	060000
	5. Method Blank Summary (Form IV)	. 060000
B .	ection	060000
	1. Data for Sample	060000
<u>.</u> C.	Standards Data	060000
•	1. Initial Calibration of Single Component Analytes (Form VI PEST-1),	
	(Form VI PEST-2)	060000
	2. Initial Calibration of Multicomponent Analytes (Form VI PEST-3)	060000
	3. Calibration Verification Summary (FORM VII-1)	060000
	4. Calibration Verification Summary (FORM VII-2)	060000
ı	5. Analytical Sequence (FORM VIII PEST)	060000
D.	Raw QC Data	060000
	1. Method Blank	060000
	2. Matrix Spike Data	060000
	3. Matrix Spike Duplicate Data	060000
	4. Laboratory Control Sample	060000
	5. GPC Data ^(b)	060000
É .	Laboratory Logs	060000
	1. Extraction Logs	060000
	2. Standards Preparation Logs	060000
	3. Instrument Run Logs	060000
F .	Technical Review Checklist and Other Analysis Documentation (*)	060000
7. METALS DATA		070000
A .	Analytical Results	070000
	1. Inorganic Analysis Data Sheets (FORM 1)	070000
B.	Quality Control Data	070000
	1. Initial and Continuing Calibration Verification (FORM II Part 1-IN), (FORM II Part 1-2)	070000

(a) "Other Analysis Documentation" refers to any written documentation associated with the analysis not covered in the Table of Contents (e.g., memos, NCRs, communications records).

Sectio	n		Page
	2 Planks (EODM III IN)	All and All and All and All and All and All and All and All and All and All and All and All and All and All and	070000
	2. Blanks (FORM III-IN)	A Second State of the second state of the s	070000
	3. ICP Interference Check Sample (FORM IV-IN)	19	070000
	4. Spike Sample Recovery (FORM V Part I-IN)	No. 1	070000
	5. Post Digest Spike Sample Recovery (FORM V Pa	int 2-IN)	070000
	6. Duplicates (FORM VI)		070000
	7. Laboratory Control Sample (FORM VII)	7 19 44	070000
	8. Control Charts		070000
	9. Standard Addition Results (FORM VIII)	St. And Beach	070000
	10. ICP Serial Dilutions (FORM IX)		070000
	11. Instrument Detection Limits (FORM X)		070000
	12. ICP Interelement Correction Factors (FORM XI F	Parts 1 & 2)	070000
	13. ICP Linear Ranges (FORM XII)	at the second	070000
	14. Preparation Log (FORM XIII)		070000
	15. Analysis Run Log (FORM XIV)	and the second second second second second second second second second second second second second second second	070000
		 A strain of the strain s	
С	Raw Data		070000
D	Chaboratory Logs		070000
		(1) 22.12 (A. B.2. F. 2. C. 2.2. 1975) -1.	
	1. Digestion Logs		070000
	2 Standards Preparation Logs		070000
E	Technical Review Checklist and Other Analysis Docun	nentation (a)	070000
	Teeninear Review Checkinst and Other Finallysis 2000		
8 6	ENERAL CHEMISTRY DATA	ديولو ¹ تا جنري	080000
o. o	CHERRE CHEMISTRY DATA	287 14 1 B. 13	000000
٨	Analytical Decults		080000
D D	Our line Control Date		
D	Quanty Control Data	$_{L_{2}}C_{4}C_{p} \stackrel{3}{\rightarrow} M_{n_{1}}$ () ()	080000
	1 Initial and Continuing Calibration (Form VI)		080000
	2. Method Blank Summary (Form III)	Page 1	080000
	2. Method Blank Summary (Form MA & VP)		080000
	5. MS/MSD Summary (Form VA & VB)		080000
	4. Duplicate Summary (Form IV)		080000
	5. Laboratory Control Sample (Form II)	to the picture post of the second	080000
	6. Control Charts		080000
С	Raw Data		080000
D	Laboratory Logs	- 41C	080000
	1. Digestion/Distillation Logs	to a constant to a state of the	080000
	2. Standards Preparation Logs		080000
E	Technical Review checklist and Other Analysis Docum	nentation (*)	080000

(a) "Other Analysis Documentation" refers to any written documentation associated with the analysis not covered in the Table of Contents (e.g., memos, NCRs, communications records).