COMMISSION OF
 geology, mines and water resources

Artiuv B. Stewart, Chairman Baltimore
Richard W. Cooper Salisbury
G. Victor Cushwa Williamsport
John C. Geyer Baltimore
Harry R. Hall Hyattsville

CONTENTS

Physical Properties of Nonmarinfe Cretaceous Ctays in the Maryland Coastal l'lain 1
Introcluction 1
Pre-Cretaccous systems 3
Cretaceous system 3
Nonmarine division 7
Facies 1 i
Facies 2 8
Potential uses 9
Selfcted Bibliograpify 10
IIGURES

1. Map of Maryland showing physiographic provinces and areas on plates 1 to 5 2
2. Chart showing color names corresponding to \$unsell notations for hue, walue and chroma 6

1LATES

1. Map showing outcrop) area of nonmarine Cretaceous strata in (ecil County and locations of auger borings and exposures listed in Table 1 In pooket
2. Map showing outcrop area of nommarine ("retaceous strata in Harford County and locations of auger borings and exposures listed in Table 2.... In pocket
3. Map showing outcrop area of nonmarine Cretaceous strata in Ibaltimore County and locations of auger borings and exposures listed in Table 3........ In pooked
4. Map showing outcrop area of nonmarine Cretaceous strata in Anne Arundel and Howard Counties and locations of auger horings and exposures listed in Table 4
In pocket
5. Map showing outcrop area of nonmarine Cretaceous strata in I'rince Georges County and locations of auger borings and exposures listed in Table 5. In pocket

'IMBLES

1. Geologic sections of clay-hearing materials in auger borings and outerops in Cecil County with data relating to their physical properties.................. in pocket
2. Geologic sections of clay-bearing materials in auger borings and outcrops in Harford County with data relating to their physical properties.... In procket
3. Geologic sections of clay-loaring materials in auger loorings and outcrops in lbaltimore County with data relating to their physical properties........... In pocket
4. Geologic sections of clay-bearing materials in auger borings and outcrops in Ame Arundel and Howard Counties with data relating to 1 heir physical properties
In procket
5. Geologic sections of clay-hearing materials in auger borings and outcrops in I'rince Georges County with data relating to their physical properties
In procker
6. Ablreviations and symbols appearing under headings 1, 2, etc. of tables 1 to 5 \&

PHYSICAL PROPERTIES OF NONMARINE CRETACEOUS CLAYS IN THE MARYLAND COASTAL PLAIN

BY
MAXWELL M. KNECHTEL, ${ }^{1}$ HOWARD P. HAMLIN, ${ }^{2}$ JOHN W. HOSTERMAN, ${ }^{1}$ and DOROTHY CARROLL ${ }^{1}$

INTRODUCTION

Argillaceous materials in nonmarine sedimentary strata of Cretaccous age in the Maryland Coastal Plain have been investigated in pursuance of cooperative agreements between the Maryland Department of Geology, Mines and Water Resources and two agencies of the United States Department of the Interior: the Geological Survey and the Bureau of Mines. Listed in tables 1 to 5 are data relating to the geology, mineralogy, chemistry, and potential uses of sampled clay-bearing materials typical of the nonmarine strata, as well as a few materials associated with underlying pre-Cretaceous crystalline rocks and superjacent marine Cretaceous strata. The localities listed in the tables are marked on Plates 1 to 5, which also show areas wherein the crystalline rocks, nonmarine strata and marine strata are exposed; profiles on each of these plates give a general impression of the geologic structure, stratigraphic relations, and overall thickness of the nonmarine strata.

The areas shown lie partly on the Atlantic Coastal Plain and partly within the Piedmont physiographic province (fig. 1). The two provinces are separated by a somewhat vaguely defined transitional belt averaging about 5 miles in width, known as the "Fall Zone" or "Fall Line", which extends in a northeasterly direction across the State. The bedrock deposits are extensively concealed by soil and alluvium. They have been logged in many water wells but are readily visible at the surface only in small exposures along streams and in excavations such as road cuts, gravel and clay pits and abandoned iron ore workings.

Virtually all the types of material exposed or logged are believed to be represented among the samples collected for study. Those from a few of the localities listed in column 1 in Tables 1 to 5 , came from surface exposures; all the rest were taken from exploratory holes, most of which were about 100 feet deep. The holes were bored with a truck-mounted 5 -inch auger. Most of the holes

[^0]

Figerf. 1. Map of Maryland showing physiographic provinces and areas on plates 110.5

were bored close to lines laid out nearly normal to the strike of the Cretaceous rocks (for example, Pl. 1, lines 1, 2, and 3). The holes were spaced with a view to exploring stratigraphic intervals encompassing the entire thickness of the nommarine Cretaceous sequence. The positions of the holes, as projected along the lines, are indicated in the geologic profiles on Plates 1 to 5 ; the materials brought to the surface by the auger or measured in surface exposures are logged under heading 2 of 'Tables 1 to 5 .

PRE-CRETACEOUS SYSTEMS

The sedimentary deposits of Cretaceous age rest unconformably on older crystalline rocks of the Piedmont province. Within the Fall Zone the lowermost sedimentary strata crop out in contact with the crystalline rocks. The contact was reached in a number of the boreholes. The lowernost materials recorded in most such borings, and in a few of the outcrops from which samples were taken, are saprolites associated with the great unconformity. The finely divided ($<2 \mu$) fractions of these argillaceous materials, which are products of the decomposition of the crystalline rocks, ordinarily give X-ray diffraction patterns characterist ic of mixtures that contain much kaolinite and a little illite (finely divided dioctaherlral mica). Most of the samples show considerable montmorillonite by X-ray, and a few show a little chlorite. The crystalline rocks that were altered to form the saprolites, probably as a result of weathering in Early Cretaceous time, are believed to include gabbros, granites, gneisses, and other metamorphic rocks. This interpretation is supported by evidence based on the heavy-mineral suites (Tables 1 to 5, heading 3) and on details of geologic mappling in the vicinity of each borehole and outcrop. (See geologic maps listed in the Bibliography.)

CRETACEOUS SYSTEM

Sedimentary strata of Cretaceous age, comprising deposits of gravel, sand, silt and clay, crop out over large parts of the Coastal Plain bordering Chesapeake Bay; they are present also within the Fall Zone in upland areas that are separated from each other by valleys cut into crystalline rocks of preCretaceous age. The geologic structure of the Cretaceous strata is essentially homoclinal, with prevailing northeasterly strike and gentle southeasterly dip). The overall thickness of the strata increases gradually in the direction of the dip. The Cretaccous rocks rest unconformably on the crystalline rocks and are overlain by sedimentary deposits of Tertiary and Quaternary ages, which consist of gravel, sand, silt and clay. These overlying deposits, though not differentiated in Plates 1 to 5 , are present in most stream valleys and on many upland areas.

The sequence of Cretaceous strata is readily separable into two parts: the upper part, comprising the Matawan and Monmouth formations, is made up

1. (Loculities, elc.)

Power-auger station

* Notation employed refers to published 71_{2} minute topographic quadrangle sheets learing the following names:
I-21 Washington East
1-22 Lanham
J-21 Beltsville
J-22 Laurel
J-23 Odenton
J-24 Round Bay
K-22 Savage
K-23 Relay
K-24 Curtis Bay
L,-23 Baltimore West
L- 24 Baltimore East
I. 25 Middle River

M-24 Towson
M-25 White Marsh
M-26 Elgewood
N -26 Bel Air
$\mathrm{N}-27$ Aberdeen
$\mathrm{N}-28$ Havre de Grace
N-29 North Fast
N-30 Elkton
()-28 Kising Sun

O-29 Bay View
O-30 Newark West

* Notation employerl refers to nine $2^{1 \frac{1}{2}}$ minute subquadrangles within each $71 / 2$ minute topographic quadrangle, as shown in diagram below:

$N W$	N	NE
W	C	E
SW	S	SE

2. (Geologic section)

OT Nlluvial cleposits of Quaternary and late 'Tertiary (?) age (not shown on Plates 1-5)
K.nm Nommarine sedimentary materials of Cretaceous age
pK Rocks of pre-Cretaccous age

3. (Mineralogy)

$+\quad 1$ or 2 grains only
++ Less than 1 per cent
$2 \quad$ And other oxides
${ }^{3}$ Nearly all is blue-green variety; pyroxene is included
Epidote generally dominant; zoisite atho commonly present
Present in light, rather than heavy, mineral fraction
Both authigenic and detrital
4. X-ray emission analysis, elc.

None
5. $p I I$

None
6. (Grain-size distribulion)
$<$ Less than
$>$ More than
tr Trace

7. (Propertics, elc.)

trenglh:

SS Very strong
S Strong
M+ Above avcrage
aI Moderate
I. Low

LL. Very low
Texture and workability:
I'L. Very plastic
II Ilastic
pl Slightly plastic
Ay Mcaly
SMI Very smooth
Sm Smonth
sm l'airly smooth
ST Very sticky
St Sticky
st Slightly sticky
L.g Long-working
lg Fairly long-working
Sh Very short working
sh Short-working
FY Fatty
ft Slightly fatty
Sy Very sandy
Sy Sandy
sy Slightly sandy
Gy Gritty
gy Slightly gritty
I ardness:
h lairly hard
(11 Hard
II Very hard
1 III Stect hard
He Hard, crumbly
Sc Soft, crumlly
V Vitreous
GV Glazed, vitrcous
Yunsell color notution:
Hue (e.g., 7.5 YR) followed by value/chroma
(e.g., 5/6).

Exception: motation for neutral hue is N
followed lyy value (e.g., N4). For color
names corresponding to notations, see
Fig. 2.

8. (Suggesied products)

LWAs Aggregate, lightweight, sintercel
A Artware
LGA Artware, low grade
CB Brick, common
1313 Brick, luff
LBBB Brick, light louff
FBC Brick, face, cream or buff
DB Brick, decorative
CW Ceramic ware
PF Filler, for paper
I'tF Filler, mineral, low-grade
0 Ocher
OD Oil decolorizer
$\mathrm{Pr} \quad$ ligment (red)
P Pottery
LGP l'ottery, low-grade
SIHDR Refractory, super heat-duty
HHIDR Refractory, high heat-duty
IHDR Refractory, intermediate heat-duty
LHDR Refractory, low heat-duty
SR Refractory, silica
CSW Stoneware, chemical
LGCS Stoneware, chemical, low-grade
T Tile
DT Tile, drain
CFT Tile, chimney-flue
QT Tile, quarry
ST Tilc, structural
WW Whitcware

Ex Expansion

of materials that accumulated in a marine environment; the lower part, which contains the clays with which this report is concerned, accumulated under terrestrial (that is, nonmarine) conditions. This lower part is customarily sul)divided into five geologic formations which are known, in ascending order, as the Patuxent, Arundel and Patapsco (the Potomac group) and the Raritan and Magothy. In preparation of this report, however, it has been found expedient to treat the nonmarine sequence as a single unit and to refer to the upper and lower parts of the Cretaceous sequence as the marine and nonmarine divisions, respectively. The marine division contains abundant fossil remains of organisms that lived in salt water, whereas the underlying nonmarine strata include argillaceous deposits which carry lignitized wood fragments, plant spores and pollen. Bones and teeth of dinosaurs are also reported to liave been found in this division decades ago during mining of iron ore from the Arundel clay. A further contrast between the marine and nonmarine parts of the Cretaceous sequence is found in the mineralogy of the fine-grained fractions of the contained argillaceous materials. Whereas many of the marine strata are composed of greensand that contains variable amounts of glauconite, this clay mineral is not known to occur in the underlying nonmarine deposits. In addition, the clay mineral montmorillonite occurs as an independent constituent of many of the marine materials but is found in the nonmarine sequence only intimately interlayered with the clay mineral illite.

Nonmarine Division

The pre-Cretaceous crystalline rocks of the Piedmont Province and the Appalachian Mountains were the principal sources of the nonmarine Cretaceous clastic materials, and these materials were transported by southeast-ward-flowing streams to the sites of deposition. The coarser clastic materials are made up of rounded to subangular fragments, chiefly of quartz. The finely divided $(<2 \mu)$ constituents give X-ray diffraction patterns characteristic of mixtures of kaolinite with illite and highly illitic mixed-layer clay. Most of the deposits that make up the nonmarine division belong to one or the other of two readily distinguishable facies that are deseribed here as facies 1 and facies 2.

Facies 1

Deposits of facies 1, which make up by far the greater part of the nonmarine division, include little or no organic matter. Most of these deposits contain appreciable amounts of disseminated iron that is largely in the trivalent, or ferric, state and the prevailing coloration of these sediments is, accordingly, that of reddish to brownish ferric oxide. In the Munsell hue-value-chroma system of notation (fig. 2) the colors of facies 1 deposits are typically of yellow-red hue, with values higher than 3 and chroma higher than 2. (See Tables 1 to 5, heading 7, subheading "before firing"). Assuming that the iron was trans-
ported to sites of deposition as ferric oxide, in the manner described by Carroll (1958), the iron in the reddish to brownish argillaceous materials can have undergone little or no chemical alteration since deposition of the sediments.

Facies 2

The deposits of facies 2 occur in many localized bodies of secondary material, typically of a medium to dark grayish color of yellow-red hue, value less than 6 and chroma less than 3 . These deposits began accumulating immediately after deposition of the transported materials.
In places where swampy conditions existed, reaction with abundant organic matter reduced the transported iron from the trivalent to the bivalent condition to form ferrous compounds. In this condition the iron was largely leached from the sedimentary material and locally became segregated therein to form swarms of ferruginous nodules. In many places these nodules were composed of iron carbonate (siderite) and in other places they were heavy lumps of iron sulfide (pyrite) that formed by replacement of vegetal debris. The sulfide nodules, many of which retain the shapes of twigs or other fragments of wood they replaced, are especially numerous in bodies of facies 2 material in the uppermost strata of the nonmarine sequence. Finely divided $(<2 \mu)$ fractions of facies 2 materials give X-ray diffraction patterns that indicate intimate mixtures of clay minerals that are closely comparable to the mixtures in the finely divided facies 1 materials, except for a tendency to be slightly higher in kaolinite.
Though the aggregate volume of the bodies of grayish lignitiferous material of facies 2 is small compared with the volume of the enclosing more highly colored non-lignitiferous materials that are characteristic of facies 1 , such bodies occur at many horizons within the sequence of Cretaceous nonmarine sedimentary strata. These bodies range from small lenses occupying no more than a few dozen cubic yards to deposits many yards thick that underlie many acres. Such bodies are especially numerous, well developed and extensive in the stratigraphic zone, shown on most published maps as Arundel clay, that crops out at many places between Washington, D. C., and the Susquehanna River. In this zone ferruginous nodules are locally abundant and tend to be larger than the average for the Cretaceous sequence as a whole. They were once mined as iron ore (Singewald, 1911) from open pits, many of which are now filled with water.
Much of the iron that was reduced chemically and became segregated after the sediments of facies 2 came to rest in the Coastal Plain province has since become reconstituted as ferric oxide. This has happened to some of the disseminated residual iron in the argillaceous materials and to nearly all the iron in the carbonate nodules, a large proportion of which have been converted to lumps composed wholly of ferric oxide in the form of limonite. Many of these nodules, however, still have carbonate cores. Where ferric oxide has thus re-
formed, the brownish to reddish cast of the argillaceous materials observed in outcrops is, in some places, so intense as to render such material hard to distinguish from the highly colored materials of facies 1.

POTENTIAL USES

Firing and other tests, results of which are reported under headings 7 and 8 of Tables 1 to 5, were performed at the Electrotechnical Experiment Station, U. S. Bureau of Mines, Norris, Tennessee, in general accordance with the claytesting procedures described by Klinefelter and Hamlin (1957). For many of the materials that were examined at the localities marked on Plates 1 to 5, however, data relating to the mineralogy, chemistry, and potential uses (tables 1 to 5, headings 3-8) are, for various reasons, either lacking or incomplete. For example, the boreholes at localities O, P, Q and R, Plate 4 , are not listed in Table 4 because none of the samples taken from these holes were subjected to extensive testing. The uppermost strata of the nonmarine sequence, as found in the holes at localities O and P , are excessively sandy, and the marine strata that were penetrated in all four of these holes, consisted chiefly of greensand, which has little, if any, value as ceramic raw material. Some of the greensand may prove to be suitable for some important industrial uses (for example, as water softener, or as acid-activable oil-decolorizing agent) and for agricultural uses largely because of its content of potassium. It is probable, also, that additional testing of the saprolites associated with the unconformity at the base of the Cretaceous section would result in discovery of important potential uses other than those suggested in the tables.

The appreciable differences, in both carbon and iron content, between the grayish (facies 2) and the more highly colored (facies 1) argillaceous materials are responsible for significant differences in their behavior when fired at kiln temperatures within the range commonly used in manufacture of ceramic wares. The reddish to brownish raw materials typical of facies 1, because of the oxidizing influence of the kiln atmosphere that forms in the presence of their relatively high ferric iron content, tend to yield reddish to brownish fired products, whereas those yielded by the relatively iron-free lignite-bearing materials, which characterize facies 2 , tend to become buff or whitish in the reducing kiln atmosphere that forms as the black organic matter burns out. As a consequence the respective materials are commonly spoken of as "red-burning" and "buff-burning". At a number of places in the Maryland Coastal Plain, reddish to brownish clay closely comparable to that of many of the "red-burning" materials listed in Tables 1 to 5 has been dug from open pits for manufacture of hard fired common and face brick, drain tile, floor tile, flower pots, and terra cotta. Large tonnages of material suitable for manufacture of such products are present in the areas shown in Plates 1 to 5 as underlain by sedimentary materials of nonmarine origin.

A separate suite of uses has grown up for the relatively small available quanti-
ties of "buff-burning" grayish, lignite-bearing argillaceous materials of facies 2, which are commonly described as "blue clay". Clay of this kind that is mined from the upper part of the section exposed in an open-pit working at Poplar, Baltimore County (Table 3, locality (i, materials 1, 2 and 3) has been marketed as raw material for manufacture of artware and fire-clay sanitary ware, for preparation of low-duty refractory mortars and for bonding silicon carbide in the manufacture of abrasives and kiln furniture. Clay taken from lower levels in the pit (materials 4, 5, 6 and 7), most of which has a more fatty consistency, has been marketed for manufacture of texture tile, red tile (material 5), fire-clay sanitary ware and stoneware, and as filler for linoleum cement and accoustical tile cement. Comparable material has been shipped from another working, near Harundale, Anne Arundel County (Table 4, locality F, material 3), for sanitary ware manufacture and from one near Contee, Prince Georges County (Table 5, locality A, materials 1a, 1c and 1d), to be used in lowgrade refractory mortars, grinding wheels, and therapeutic hoof packings for race horses. A small proportion of the nonmarine clay of Cretaceous age that is mined primarily for manufacture of common and face brick and tile at plants in the vicinity of Washingt on and Baltimore comes from pockets of "blue clay" that are uncovered from time to time (e.g., Table 5, locality B, material 1c) and is made into buff brick. A small amount of such clay, taken from a road cut near the town of North East, Cecil County (Table 1, locality J), has been used by a nearby plant for manufacture of fire brick and other low-grade refractory products.

Selected Bibliography

Bascom, F., and Miller, B. L., 1920. Description of the Elkton and Wilmington quadrangles, Maryland-Delaware-New Jersey-Pennsylvania: U. S. Geol. Survey, Geol. Atlas, Folio 211.

Bascom, F., Shattuck, G. B., and others, 1902. Map of Cecil County showing the geological formations: Maryland Geol. Survey,
Bennett, R. R., and Meyer, R. K.. 1952. Geology and ground-water resources of the Baltimore area: Maryland Dept. of Geology, Mines and Water Resources Bull. 4.
Bennion, U., and Brookhart, J. W., 1949. The water resources of Anne Arundel County: Maryland Dept. of Geology, Mines and Water Resources Bull. 5.
Carroll, Dorothy, 1958. Role of clay minerals in the transportation of iron: Geochim. et Cosmochim. Acta, v. 14, p. 1-28.
Cloos, E., and Broedel, C. H., 1940. Geologic map, of Howard and adjacent parts of Montgomery and Baltimore Counties, Maryland: Maryland Geol. Survey.
Cooke, C. W., and Cloos, E., 1951. Geologic Map of Prince Georges County and the District of Columbia: Maryland Dept. of Geology, Mines and Water Resources.
Darton, N. H., 1939. Gravel and sand deposits of eatstern Maryland: U. S. Geol. Survey Bull. 906 A.
Dingman, R. J., and Ferguson, H. F'., 1956. The water resources of Baltimore and Harford Counties: Maryland Dept. of (reology, Mines and Water Resources Bull. 17.

Kelly, K. L., and Judd, D. B., 1955. The ISCC-NBS method of designating colors and a dictionary of color names: U. S. Dept. of Commerce, National Bureau of Standards Circ. 553.
Klinefelter, T. A., and Hamlin, II. P., 1957. Syllabus of clay testing: U. S. Bureau of Mines Bull. 565.
Maryland Geological Survey, 1911. Lower Cretaceous volume.
Maryland Geological Survey, 1916. Map of Anne Arundel County showing the geological formations: Scale $1: 62,500$.
Maryland Geological Survey, 1916. Upper Cretaceous volume.
Maryland Geological Survey, 1925. Map of Baltimore County and Baltimore City showing the geological formations: Scale 1:62,500.
Mathews, E., B., Johannsen, A., Miller, B. L., and Bibbins, A., 1904. Map of Harford County showing the geological formations: Maryland Geol. Survey
Miller, B. L., Bibbins, A. B., and Keith, Arthur, 1911. Map of Prince Georges County and District of Columbia showing the geological formations: Maryland Geol. Survey.
Munsell Color Company, Inc., 1929. Munsell book of color.
Munsell Color Company, Inc., 1950. Munsell soil color charts, special form for use of soil scientists, geologists and archacologists.
Munsell Color Company, Inc., 1954. Munsell soil charts.
Otton, E. G., 1955. Ground-water resources of the southern Maryland coastal plain: Maryland Dept. of Geology, Mines and Water Resources Bull. 15.
Overbeck, R. M., Slaughter, 'T. H., and Hulme, A. F.., 1958. The water resources of Cecil, Kent and Queen Annes Counties: Marsland Dept. of Geology, Mines and Water Resources Bull. 21.
Richards, II. G., Groot, J. J., and Germeroth, R. M., 1957. Cretaceous and Tertiary geology of New Jersey, Delaware and Maryland, in Guidelook for field trips, 1957 Annual Meeting, Geol. Soc. America and associated societies, 1). 183.
Ries, II., 1902. Report on the clays of Maryland: Maryland Geol. Survey, v. 4, p. 203-505.
Singewald, J. T., Jr., 1911. Report on the iron ores of Maryland with an account of the iron industry: Maryland Geol. Survey, v. 9, p. 12I-327.
Spangler, W. B., and Peterson, J. J., 1950. Geology of Atlantic Coastal I'lain in New Jersey, Delaware, Maryland and Virginia: .Am. Assoc. Petroleum Geologists Bull., v. 34, p. 1-99.
Vokes, H. E., 1957. Geography and geology of Maryland: Maryland Dept. of Geology, Mines and Water Resources Bull. 19.

			\pm												${ }^{\text {un }}$			**	51	20,	5ix	\% ${ }^{\text {a }}$	-	,	,				$=$
		Sex	vir																			and	\%		mox		,		=-m
		\% =		3							\%						-		\%								x	${ }^{\text {max }}$	\pm
		2ax	$\pm \pm$											" ${ }^{\text {max }}$	- \% \% m		\%		\%		\%		\%	边				$=$
		"2waw	"**											-	"404				,	, ${ }^{\text {a }}$	\cdots	-		-		\cdots			
		$={ }^{2}$						\|												En: max	ame	:oximix	\%		m				
		Exas									$+x^{2}$		5																
				fis								\% mix						en	$y^{2 m o n}$		4		amm	$4 .$					
		2asm									S			$\sqrt[6]{6}$	$\frac{t}{x}$			y			Pex		x_{0}^{2}						$=$
		x^{4} asamix										axixisis			x_{2}^{2}		\%				5	5					x_{2}		\pm
		5axame															里:								y^{2}				5
		Vaxamex			1						Ex									(5		\%						\pm
								$x^{*}+{ }^{2}+$			4			5															
	$\operatorname{man}^{\prime \prime}$	\%			Rex																								
		zas	\cdots																										
		5uswasmex	-												" ${ }^{\circ}$										"* ${ }^{\text {amm }}$	aman			

[^0]: ${ }^{1}$ U. S. Geological Survey.
 ${ }^{2}$ Ceramic Engineer, U. S. Bureau of Mines.

