



STATE OF MARVLAND BOARD OF NATURAL RESOURCES DEPARTMENT OF GEOLOGY, MINES AND WATER RESOURCES JOSEPH T. SINGEWALD, JR., Director BULLETIN 22

# THE WATER RESOURCES OF CARROLL AND FREDERICK COUNTIES

THE GROUND-WATER RESOURCES By Gerald Meyer

THE SURFACE-WATER RESOURCES By Robert M. Beall



PREPARED IN COOPERATION WITH THE GEOLOGICAL SURVEY UNITED STATES DEPARTMENT OF THE INTERIOR

BALTIMORE, MARYLAND

COMPOSED AND PRINTED AT THE WAVERLY PRESS, INC. Baltimore, Md., U.S.A.

## COMMISSION OF GEOLOGY, MINES AND WATER RESOURCES

| ARTHUR B. STEWART, Chairman | Baltimore    |
|-----------------------------|--------------|
| RICHARD W. COOPER           | Salisbury    |
| G. VICTOR CUSHWA            | Williamsport |
| Join C. Geyer               | Baltimore    |
| HARRY R. HALL               | Hyattsville  |



## CONTENTS

| THE GROUND-WATER RESOURCES. By Gerald Meyer          | 1   |
|------------------------------------------------------|-----|
| Abstract                                             | 1   |
| Introduction                                         | 2   |
| Location of the area                                 | 2   |
| Purpose, scope, and methods of investigation         | 2   |
| Previous investigations                              | 4   |
| Well-numbering system                                | 5   |
| Acknowledgments                                      | 5   |
| Population and economy                               | 5   |
| Climate                                              | 6   |
| Physiography and general geology                     | 8   |
| Drainage                                             | 10  |
| Hydrology                                            | 11  |
| The hydrologic cycle                                 | 11  |
| Ground-water hydrology                               | 12  |
| General principles                                   | 12  |
| Definition of an aquifer.                            | 13  |
| Hydrologic properties of the water-bearing materials | 1.3 |
| General characteristics                              | 13  |
| Porosity and specific yield                          | 13  |
| Permeability and transmissibility.                   | 16  |
| Coefficient of storage                               | 10  |
| Recharge storage and discharge of ground water       | 10  |
| Water-table and artesian aquifers                    | 23  |
| Source of water discharged from wells                | 25  |
| Cone of depression.                                  | 25  |
| Hydraulic interference between wells                 | 26  |
| Well hydraulics                                      | 27  |
| Source of water discharged from springs              | 28  |
| Utilization of ground water                          | 30  |
| Amounts used                                         | 30  |
| Methods                                              | 31  |
| Aquifer and well evaluation by pumping-test methods  | 33  |
| Drillers' accentance tests                           | 2.2 |
| Specific_capacity tests                              | 25  |
| Aquifer tests                                        | 27  |
| Analysis of well data                                | 20  |
| Introductory statement                               | 39  |
| Relation of yield of wells to rock type              | 39  |
| Relation of yield of wells to doub                   | 40  |
| Relation of yield of wells to topographic position   | 40  |
| Depth of weathering and well yield                   | 42  |
| Quality of ground water                              | 43  |
| Sources of mineral constituents                      | 41  |
| Relation of chemical character to use                | 57  |
| Silica (SiO.)                                        | 53  |

| Iron (Fe) and manganese (Mn)                                     | 53 |
|------------------------------------------------------------------|----|
| Calcium (Ca) and magnesium (Mg)                                  | 53 |
| Sodium (Na) and potassium (K)                                    | 54 |
| Aluminum (Al), copper (Cu), zinc (Zn), and lithium (Li)          | 54 |
| Bicarbonate (HCO <sub>3</sub> ) and carbonate (CO <sub>3</sub> ) | 54 |
| Sulfate (SO <sub>4</sub> )                                       | 55 |
| Chloride (Cl) and nitrate $(NO_2)$                               | 55 |
| Fluoride (F)                                                     | 55 |
| Phosphate (PO <sub>4</sub> )                                     | 55 |
| Dissolved solids                                                 | 55 |
| Hardness                                                         | 56 |
| Hudrogen ion concentration and carbon dioxide (CO <sub>2</sub> ) | 56 |
| Dedicolements                                                    | 57 |
| Taurantura of the ground water                                   | 58 |
| Temperature of the ground water bearing properties               | 62 |
| reologic formations and their water-bearing properties.          | 62 |
| Precambrian rocks of the South Mountain-Catoctin Mountain area   | 62 |
| Early Precambrian rocks                                          | 62 |
| Granodiorite and granite gneiss                                  | 03 |
| Geology                                                          | 03 |
| Water-bearing properties.                                        | 03 |
| Chemical quality                                                 | 64 |
| Late Precambrian volcanic series                                 | 64 |
| Swift Run formation                                              | 64 |
| Geology                                                          | 64 |
| Water-bearing properties                                         | 64 |
| Catoctin metabasalt                                              | 65 |
| Geology                                                          | 65 |
| Water-bearing properties                                         | 65 |
| Aquifer and well-performance tests—Burkittsville                 | 65 |
| Chemical quality                                                 | 67 |
| Aporhyolite                                                      | 67 |
| Geology                                                          | 67 |
| Water-bearing properties                                         | 67 |
| Aquifer and well-performance tests—Foxville                      | 68 |
| Chemical quality                                                 | 69 |
| Metamorphosed Paleozoic rocks of sedimentary origin              | 69 |
| Cambrian system                                                  | 70 |
| Loudoun formation.                                               | 70 |
| Geology                                                          | 70 |
| Water-bearing properties                                         | 71 |
| Weverton quartzite                                               | 71 |
| Geology                                                          | 71 |
| Water-bearing properties.                                        | 72 |
| Aquifer and well-performance tests-Yellow Springs                | 72 |
| Chemical quality                                                 | 73 |
| Harpers phyllite                                                 | 73 |
| Geology                                                          | 73 |
| Water-bearing properties.                                        | 73 |
| Chemical quality                                                 | 74 |
| Antietam quartzite                                               | 74 |

## Contents

| Geology                                               | 74 |
|-------------------------------------------------------|----|
| Water-bearing properties.                             | 75 |
| Limestones of the Frederick Valley                    | 75 |
| Cambrian system                                       | 76 |
| Tomstown dolomite                                     | 76 |
| Geology.                                              | 76 |
| Water-bearing properties                              | 77 |
| Frederick limestone                                   | 77 |
| Geology                                               | 77 |
| Water-bearing properties.                             | 78 |
| Aquifer and well-performance tests—Adamstown.         | 78 |
| Chemical quality                                      | 82 |
| Ordovician system                                     | 82 |
| Grove limestone                                       | 82 |
| Geology                                               | 82 |
| Water-bearing properties.                             | 83 |
| Chemical quality                                      | 84 |
| Silicate crystalline rocks of the Piedmont Upland     | 84 |
| Baltimore gneiss.                                     | 84 |
| Geology                                               | 84 |
| Water-bearing properties                              | 85 |
| Eastern sequence of crystalline schists               | 86 |
| Setters formation                                     | 96 |
| Geology                                               | 00 |
| Water-bearing properties                              | 00 |
| Wissahickon formation (oligoclase mica-schiet facies) | 00 |
| Geology                                               | 00 |
| Water_bearing properties                              | 80 |
| Peters Creek quartzite                                | 00 |
| Geology                                               | 01 |
| Water-bearing properties                              | 07 |
| Chemical quality                                      | 07 |
| Metamorphosed volcanic rocks of the western Piedmont  | 07 |
| Sams Creek metabasalt                                 | 07 |
| Geology                                               | 07 |
| Water-bearing properties                              | 0/ |
| Chemical quality                                      | 66 |
| Libertytown metarhyolite                              | 89 |
| Geology                                               | 89 |
| Water bearing purportion                              | 89 |
| Chamier bearing properties                            | 89 |
| Tiemenille et allite                                  | 89 |
| I jamsville phyllite                                  | 89 |
| Geology                                               | 89 |
| Water-bearing properties                              | 90 |
| Chemical quality                                      | 90 |
| Orbana phyllite                                       | 90 |
| Watar harris and the                                  | 90 |
| Chaminal International Chaminal Properties            | 91 |
| Unennical quality                                     | 91 |
| western sequence of crystalline schists               | 92 |

vii

| Sugarloaf Mountain quartzite                           | 92  |
|--------------------------------------------------------|-----|
| Geology                                                | 92  |
| Water-bearing properties                               | 92  |
| Marburg schist                                         | 92  |
| Geology                                                | 92  |
| Water-bearing properties                               | 92  |
| Aquifer and well-performance tests—Mount Airy.         | 93  |
| Chemical quality                                       | 103 |
| Wissahickon formation (albite-chlorite facies)         | 103 |
| Geology                                                | 103 |
| Water-bearing properties                               | 103 |
| Aquifer and well-performance tests—Hampslead           | 104 |
| Chamical quality                                       | 111 |
| Carbonate realize of the Biedmant unland               | 112 |
| Cash evenille menhie                                   | 113 |
|                                                        | 113 |
| Geology                                                | 113 |
| Water-bearing properties                               | 112 |
| Wakeheld marble                                        | 113 |
| Geology                                                | 113 |
| Water-bearing properties                               | 114 |
| Aquifer and well-performance tests— <i>Westminster</i> | 115 |
| Chemical quality                                       | 117 |
| Silver Run limestone                                   | 117 |
| Geology                                                | 117 |
| Water-bearing properties                               | 118 |
| Chemical quality                                       | 118 |
| Mesozoic sedimentary rocks                             | 118 |
| Triassic system (Newark group)                         | 118 |
| New Oxford formation                                   | 120 |
| Geology                                                | 120 |
| Water-bearing properties                               | 121 |
| Aquifer and well-performance tests— <i>Taneylown</i>   | 122 |
| Chemical quality                                       | 124 |
| Gettysburg shale                                       | 124 |
| Geology                                                | 124 |
| Water-bearing properties                               | 124 |
| Chemical quality                                       | 126 |
| Intrusive rocks of various ages                        | 126 |
| Serpentine and metagabbro                              | 126 |
| Geology                                                | 126 |
| Water-bearing properties                               | 126 |
| Sykesville formation                                   | 126 |
| Geology                                                | 126 |
| Water-bearing properties                               | 127 |
| Pegmatite                                              | 127 |
| Geology                                                | 127 |
| Water-bearing properties                               | 127 |
| Diabase                                                | 127 |
| Geology                                                | 127 |
| Water-bearing properties                               | 128 |

## Contents

| Cenozoic sedimentary rocks                         | 128 |
|----------------------------------------------------|-----|
| Quaternary system                                  | 128 |
| Mountain wash (alluvial cones)                     | 128 |
| Geology                                            | 128 |
| Water-bearing properties                           | 128 |
| Terrace deposits and stream alluvium               | 129 |
| Geology                                            | 129 |
| Water-bearing properties                           | 131 |
| Future development of ground water                 | 131 |
| Records of wells and springs                       | 132 |
| Carroll County                                     | 134 |
| Frederick County.                                  | 170 |
| Logs of wells                                      | 220 |
| THE SURFACE-WATER RESOURCES. By Robert M. Beall.   | 229 |
| Abstract                                           | 229 |
| Introduction.                                      | 229 |
| Definition of terms and abbreviations              | 230 |
| Streamflow measurement stations                    | 231 |
| Topography and drainage                            | 235 |
| Carroll County                                     | 235 |
| Frederick County                                   | 235 |
| Surface-water utilization                          | 236 |
| Quality of surface water                           | 241 |
| Gaging stations in Carroll and Frederick Counties  | 244 |
| Complete-record stations.                          | 244 |
| Partial-record stations.                           | 245 |
| Characteristics of runoff                          | 246 |
| Floods                                             | 246 |
| Average runoff                                     | 247 |
| Flow-duration studies                              | 247 |
| Low-flow frequency.                                | 253 |
| Discharge records                                  | 255 |
| Patapsco River Basin                               | 256 |
| 1. Cranberry Branch near Westminster.              | 256 |
| 2. North Branch Patapsco River at Cedarhurst.      | 260 |
| 3. North Branch Patapsco River near Reisterstown   | 262 |
| 4. North Branch Patapsco River near Marriottsville | 264 |
| 5. South Branch Patapsco River at Henryton         | 268 |
| 6. Pinev Run near Sykesville                       | 270 |
| Potomac River Basin                                | 273 |
| 7. Little Catoctin Creek at Harmony.               | 273 |
| 8. Catoctin Creek near Middletown                  | 278 |
| 9 Catoctin Creek near Lefferson                    | 202 |
| 10 Potomac River at Point of Rocks                 | 282 |
| 11. Monocacy River at Bridgeport                   | 205 |
| 12 Big Pine Creek at Bruceville                    | 200 |
| 13 Little Pipe Creek at Avondale                   | 204 |
| 14 Owens Creek at Lantz                            | 304 |
| 15. Hunting Creek at Limtown                       | 315 |
| 16 Fishing Creek near Lewistown                    | 210 |
| A CALLER CLOCK HOLE DOULDFOULD                     | 917 |

ix

| 17. Monocacy River near Frederick 3             | 323  |
|-------------------------------------------------|------|
| 18. Linganore Creek near Frederick              | 327  |
| 19. Monocaey River at Jug Bridge near Frederiek | 33   |
| 20. Bennett Creek at Park Mills 3               | 39   |
| References                                      | 43   |
| INDEX                                           | \$47 |

### TABLES

| 1.  | Mean Monthly Precipitation at Emmitsburg and Westminster                               | 6     |
|-----|----------------------------------------------------------------------------------------|-------|
| 2.  | Mean Monthly Temperature at Emmitsburg and Westminster                                 | 8     |
| 3.  | Water-Bearing Properties of Roeks in Carroll and Frederick Counties                    | 14    |
| 4.  | Porosity of Rocks.                                                                     | 16    |
| 5.  | Use of Ground Water in Carroll and Frederick Counties, 1956–57                         | 30    |
| 6.  | Summary of Hydrologic Coefficients Determined by Aquifer Tests                         | 39    |
| 7.  | Average Depth and Yield of Wells in Carroll and Frederick Counties by Geologic         |       |
|     | Units                                                                                  | 41    |
| 8.  | Average Yield of Crystalline-Rock Wells in Carroll and Frederick Counties accord-      |       |
| 0   | to Topographie Position                                                                | 44    |
| 9.  | Depths of Weathering in the Aquifers of Carroll and Frederick Counties according to    |       |
| 10  | Provinces and Rock Types.                                                              | 40    |
| 10, | Monthly Average Concentrations of Chemical Constituents in Rainwater at Wash-          | A 177 |
|     | ington, D. C.                                                                          | -1/   |
| 11. | Chemical Analyses of Ground Water in Carroll County                                    | 49    |
| 12. | Chemical Analyses of Ground Water in Frederick County                                  | 50    |
| 13. | Radioenemieal Analyses for I wo Wells in Carroll and Frederick Counties and            | - 7   |
| 1.1 | Maximum Permissible Toleranees                                                         | 51    |
| 14. | Average Yield, Specific Capacity, and Yield per Foot of Hole for Wells in the Pre-     | 60    |
| 15  | Camonan Koeks in the South Mountain-Catoetin Mountain Area                             | 02    |
| 13. | Average Vield, Specific Capaeity, and Vield per Foot of Hole for Wells in the Meta-    | 70    |
| 16  | Morphosed Paleozoic Sedimentary Kocks.                                                 | 70    |
| 10. | Average Vield, Specific Capacity, and Vield per Poot of Hole for Wells in the Line-    | 76    |
| 1 7 | Data for Wells at the Adamstown Company                                                | 70    |
| 18. | Drawdown in Observation wells in Adamstown Aquifer Tests                               | 80    |
| 19. | Average Vield, Specific Capacity, and Vield per Foot of Hole for Wells in the Silicate | 00    |
|     | Crystalline Rocks of the Piedmont Upland                                               | 85    |
| 20. | Average Vield, Specific Capacity, and Vield per Foot of Hole for Wells in the Car-     |       |
|     | bonate Rocks of the Piedmont Upland                                                    | 112   |
| 21. | Yield and Specific Capacity of Wells Car-Ce 2 and Ce 3 at Westminster                  | 117   |
| 22. | Average Yield, Speeific Capacity, and Yield per Foot of Hole for Wells in the Roeks    |       |
|     | of the Triassic System                                                                 | 120   |
| 23. | Summary of Auger-Hole Sampling of Flood Plain Deposits.                                | 129   |
| 24. | Logs of Auger Holes in the Flood Plain Deposits.                                       | 130   |
| 25. | Records of Wells and Springs in Carroll County                                         | 134   |
| 26. | Records of Wells and Springs in Frederick County                                       | 170   |
| 27. | Drillers' Logs of Wells in Carroll and Frederick Counties                              | 220   |
| 28. | Drainage Areas of Streams in Carroll and Frederick Counties                            | 237   |
| 29. | Principal Water-supply Facilities in Carroll and Frederick Counties Using Surface-     |       |
|     | water                                                                                  | 240   |
| 30. | Extremes and Average of Determinations of Alkalinity, pH, Hardness and Tur-            |       |
|     | bidity of Raw and Finished Water at the Linganore Creek Water Treatment                |       |
|     | Plant, City of Frederick                                                               | 241   |

Х

## Contents

| 31.      | Monocacy River at Bridgeport, Maximum, Minimum and Average Values of Chem-<br>ical Constituents and Related Physical Measurements                           | 242        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 33.      | Stream-gaging Stations in Carroll and Frederick Counties                                                                                                    | 245<br>245 |
| 34.      | erick.                                                                                                                                                      | 249        |
| 35.      | Average Discharge of Streams in Carroll and Frederick Counties                                                                                              | 250        |
| 30.      | Magnitude and Frequency of Annual Low Flow, Monocacy River near Frederick                                                                                   | 251        |
| 01.      | ELCUDES                                                                                                                                                     | 400        |
| 1        | FIGURES                                                                                                                                                     |            |
| 1.       | and Frederick Counties.                                                                                                                                     | 3          |
| 2.       | Average Monthly Precipitation and Temperature at Stations in Carroll and Fred-<br>erick Counties and Evaporation at Stations in Wicomico and Prince Georges |            |
| 2        | Counties.                                                                                                                                                   | 7          |
| 3.<br>4. | Hydrographs Showing Fluctuations of Water Levels in Four Wells in Carroll County                                                                            | 9          |
| -        | and Precipitation at Westminster.                                                                                                                           | 18         |
| 5.       | And Precipitation at Frederick                                                                                                                              | 20         |
| 6        | Well-Completion Report Form                                                                                                                                 | 34         |
| 7.       | Specific-Capacity Curves Based on Drawdown and Pumping Rate for Short Periods                                                                               | 01         |
| 8        | of Pumping at Three Depths of Drilling of a Well in Schist                                                                                                  | 36         |
| 0.       | tions                                                                                                                                                       | 42         |
| 9.       | The Frequency Distribution of Wells by Yield and by Depth                                                                                                   | 43         |
| 10.      | The Relation Between Yield and Depth of Wells.                                                                                                              | 44         |
| 11.      | Diagram Showing Relation Between Well Yields and Position of Water Table in                                                                                 | 4.5        |
| 12       | Comparison of Typical Chemical Analyses of Ground Water in Equivalents per                                                                                  | 45         |
| 1 60 .   | Million                                                                                                                                                     | 52         |
| 13.      | Comparison of Mean Monthly Temperature of Shallow Ground Water in the Mary-                                                                                 |            |
|          | land Piedmont and Mean Monthly Air Temperature at Westminster                                                                                               | 59         |
| 14.      | Temperature Logs of Two Wells in the Catoctin Metabasalt at the Catoctin Moun-                                                                              |            |
| 4.5      | tain National Park                                                                                                                                          | 61         |
| 15.      | Graphs of Data for Aquifer Test on Well Fr Ed 6 near Formille, Frederick County                                                                             | 00         |
| 17       | Graphs of Draudown in Observation Wells Fr Ed 1 and Ed 3 and Computation of                                                                                 | 09         |
| 17.      | Hydrologic Coefficients for Adamstown Aquifer Tests                                                                                                         | 81         |
| 18.      | Block Diagram of Mount Airy Well-Field Area Showing Locations of Production<br>Wells and Test Holes                                                         | 04         |
| 19.      | Geological and Geophysical Data for Mount Airy Test Hole 3                                                                                                  | 96         |
| 20.      | Progressive Positive Effect on the Spontaneous-Potential Log for Mount Airy Test                                                                            |            |
|          | Hole 3 Caused by Pumping the Well                                                                                                                           | 97         |
| 21.      | Decline of Water Levels in Wells Caused by Two Days of Pumping from Mount Airy                                                                              |            |
|          | Public-Supply Well 1                                                                                                                                        | 100        |
| 22.      | Isometric Drawing of Mount Airy Well Field Showing Positions of the Water Table                                                                             | 10:        |
| 22       | Graubs of the Decline in Water Levels During Amiles Test at U.                                                                                              | 101        |
| 43.      | Index Man Showing Location of Wells and Configuration of Land Surface                                                                                       | 106        |
| 24.      | Sample Logs and Drilling-Time Logs for Wells Car-Bf 27 and Bf 28 at Hampstead                                                                               | 107        |

 $\mathbf{x}\mathbf{i}$ 

| 25. | Graphs of Step-Drawdown Tests on Wells Car-Bf 16 and Bf 17 at Hampstead          | 108 |
|-----|----------------------------------------------------------------------------------|-----|
| 26. | Profiles of the Water Table in the Vicinity of Well Car-Bf 17 Prior To and After |     |
|     | Pumping                                                                          | 110 |
| 27. | Graphs of Data for Aquifer Test at Westminster                                   | 116 |
| 28. | Logs of Wells in the Triassic Rocks at Taneytown                                 | 121 |
| 29. | Match of Taneytown Aquifer-Test Data to the Type Curve and Deviation from        |     |
|     | Type Curve Attributed to Recharge from Piney Creek                               | 123 |
| 30. | Graphs of River Stages from Automatic Water-Stage Recorders                      | 232 |
| 31. | Typical Rating Curve Showing Stage-Discharge Relation                            | 234 |
| 32. | Location Map of Principal Streams and Gaging Stations                            | 239 |
| 33. | Frequency of Annual Floods on Monocacy River at Jug Bridge near Frederick        | 248 |
| 34. | Duration Curves of Daily Flow on Monocacy River near Frederick                   | 252 |
| 35. | Magnitude and Frequency of Annual Low Flows on Monocacy River near Fred-         |     |
|     | erick                                                                            | 254 |

## PLATES

| 1. | Map of Carroll County Showing Wells and Springs                        | In pocket |
|----|------------------------------------------------------------------------|-----------|
| 2. | Map of Frederick County Showing Wells and Springs.                     | In pocket |
| 3. | Geologic Map of Carroll and Frederick Counties                         | In pocket |
| 4. | Fig. 1. Gaging Station on Linganore Creek near Frederick               | 345       |
|    | Fig. 2. Price Standard Current Meter and Pygmy Meter Suspended on Wad- |           |
|    | ing Rods Used to Measure Discharge                                     | 345       |
| 5. | Fig. 1. Engineer Making Discharge Measurements by Wading               | 346       |
|    | Fig. 2. Highway Bridge Equipment Used to Measure Discharge at Stages   |           |
|    | Higher than Wading                                                     | 346       |

xii

## THE WATER RESOURCES OF CARROLL AND FREDERICK COUNTIES

### THE GROUND-WATER RESOURCES

ΒY

### GERALD MEYER

### ABSTRACT

Carroll and Frederick Counties are in central Maryland and include parts of the Piedmont and Blue Ridge physiographic provinces. The Piedmont, which includes most of the area of these counties, is underlain by metamorphic rocks of Precambrian or Cambrian age, chiefly schist and phyllite and associated marble and limestone. At its west edge, along the east foot of Catoctin Mountain, the Piedmont is underlain by Cambrian and Ordovician limestone and Triassic shale and sandstone. The Blue Ridge includes the mountainous western part of Frederick County and is formed chiefly by metabasalt and quartzite and smaller bodies of shale, conglomerate, slate, and phyllite.

The average daily use of ground water in Carroll and Frederick Counties in 1956 and 1957 was about 6.6 million gallons, of which about 16 percent was for institutional and public supplies, 15 percent for industrial and commercial supplies, and 69 percent for rural domestic and farm supplies. Ground water in small to moderate amounts is available nearly everywhere. Under especially favorable conditions of geology and hydrology, moderately large supplies are obtainable, but prospecting is required to outline the favorable areas. Application of available knowledge of the occurrence of ground water in the rocks of these counties may aid substantially in the location and development of groundwater supplies in untried areas. Optimum development requires that well construction, well-field patterns, and pumping regimens be adapted to the local geohydrologic conditions.

In most of the rocks ground water occurs chiefly in pores and fractures in the mantle of semidecomposed rock that underlies the surface and in fractures in the fresh bedrock below. Solution by moving water has enlarged the openings in the carbonate rocks to a much greater degree (some of the openings being of cavernous dimensions) than in the siliceous rocks, and the wells of largest yield generally penetrate the carbonate rocks. Statistical analysis of well records shows a general relation among the yield of a well, ground-water levels in the vicinity, the geology, and the topography. Most wells yield 5 to 20 gpm, but those favorably situated geohydrologically may yield as much as

several hundred gallons per minute. Owing to small storage capacity of the rocks resulting from their low porosity and to low permeability, continuous pumping may result in a substantial decrease in well yield. Pumping tests long enough to enable predicting the effect of long-term pumping should be made before it is concluded that a satisfactory yield is obtainable from a well. Test drilling, detailed geologic mapping, and aquifer and well-performance tests, should precede development of major ground-water supplies.

Geophysical methods used in the ground-water study of Carroll and Frederick Counties include electric and temperature logging and currentmeter surveys. Drilling-time logs also were made. Aquifer tests and wellperformance tests, particularly specific-capacity step tests, were made to determine the performance characteristics of wells and the water-bearing ability of aquifers.

Periodic measurements of water levels in wells show that ground-water levels fluctuate in a more or less uniform pattern from year to year, the levels being highest in the late winter and early spring and lowest in the late summer and early fall. The yields of wells vary with the amount of ground water in storage. When droughts occur during periods when ground-water replenishment normally begins, well yields may be seriously reduced. The water-level observations show no overall long-term upward or downward trend. In a few localities heavy pumping has lowered ground-water levels appreciably, reducing well yields.

Chemical analyses of well and spring water show that few problems of chemical quality of ground water exist in Carroll and Frederick Counties. The siliceous rocks yield water generally low in mineral content, with the exception of the Triassic sediments which yield hard water. The carbonate rocks yield hard water. Locally, high iron concentration may be an objectionable feature. Ground-water temperatures fluctuate seasonally, but generally not more than a degree or two. The average ground-water temperature is 53°F.

### INTRODUCTION

### Location of the Area

Carroll and Frederick Counties are in central Maryland (fig. 1). Carroll County is bordered on the east by Baltimore County and the North Branch of the Patapsco River and on the south by the South Branch of the Patapsco River. Frederick County is bordered on the west by Washington County and on the south by Montgomery County and the Potomac River. The Pennsylvania State line is the northern boundary of both counties.

### Purpose, Scope, and Methods of Investigation

The purpose of the investigation was to obtain basic information on the occurrence, availability, and quality of ground water in Carroll and Frederick



FIGURE 1. Map of Maryland Showing the Physiographic Provinces and the Location of Carroll and Frederick Counties

Counties. A general study of the lithologic and hydrologic characteristics of the rocks and an inventory of their present use as sources of water was made, and samples of the ground water were collected for determination of its mineral content and chemical properties. This study is one of a series of investigations of the ground-water resources of the counties of Maryland being made by the United States Geological Survey and the Maryland Department of Geology, Mines and Water Resources.

An inventory of 1,270 wells and springs was made, and the data are listed in Tables 25 and 26. Drillers' logs of wells were available in the records of the Department of Geology, Mines and Water Resources, and selected ones are given in Table 27. Geophysical surveys (electric logs, temperature logs, and fluid-velocity surveys) were made of several wells. Aquifer tests and specificcapacity tests were made.

Fluctuations of ground-water levels were determined in 11 wells by periodic tape measurements and by continuous water-level recorders. Measurements in most of the wells began in 1946.

Chemical analyses of water samples from 61 wells and springs were made by the Quality of Water laboratory of the Geological Survey. The data are given in Tables 11 and 12.

### **Previous Investigations**

Records of 47 wells in Carroll County and 37 wells in Frederick County are given in a report on the water resources of Maryland, Delaware, and the District of Columbia by Clark, Mathews, and Berry (1918, p. 428-430, 440-442). The occurrence of ground water and its relation to the geology are summarized briefly by Bennett (1946, p. 165-187) in a report on the physical features of Carroll and Frederick Counties. He gives the rate of use of ground water from public-supply systems and lists a large number of well records in the files of the Maryland Department of Geology, Mines and Water Resources. In the same report Stose and Stose (p. 1-131) describe the geology of the two counties. A companion publication of that report is a geologic map (Jonas and Stose, 1938) of Frederick County and parts of Washington and Carroll Counties. Geologic investigations of South Mountain by Cloos (1950), of Catoctin Mountain by Whitaker (1955), and of Sugarloaf Mountain by Scotford (1951) and Thomas (1952) have led to a different interpretation of the structural geology of these mountains from that of Jonas and Stose, which necessitated revision of their stratigraphic description of those parts of Frederick County. The existence of conflicting conclusions may have some bearing on detailed evaluation of data on the occurrence of ground water in the mountainous parts of the area, but for convenience the map by Jonas and Stose is used in this report for identifying water-bearing formations.

### Well-Numbering System

The locations of inventoried wells and springs are shown on Plates 1 and 2. Each well or spring has an identifying number. Uppercase letters on the left and right sides of the well-location maps designate 5-minute intervals of latitude, and lowercase letters on the top and bottom of the maps designate 5-minute intervals of longitude. The 5-minute quadrangles formed by the intersections of the lines are identified by a combination of the letters. The wells and springs in each 5-minute quadrangle are assigned consecutive numbers, approximately in the order in which they were inventoried. Where confusion might occur when referring to specific wells, the abbreviation for Carroll County (Car) or Frederick County (Fr) is placed before the coordinate letters. For example, well Fr-Bc 2 is in Frederick County, within the quadrangle identified by "B" and "c", and is the second well inventoried in that quadrangle.

### Acknowledgments

The full cooperation of well drillers, municipal and industrial-plant officials, and residents of the area greatly facilitated the collection of data. Watersupply facilities were made available for aquifer and well-performance tests by the towns of Mount Airy, Taneytown, and Hampstead, and the Black and Decker Manufacturing Co. (Hampstead) and Thomas and Co. (Adamstown).

The investigation was under the general supervision of A. N. Sayre, chief of the Ground Water Branch of the U. S. Geological Survey, and under the immediate supervision of E. G. Otton, district geologist in charge of cooperative ground-water investigations in Maryland. Charles P. Laughlin, engineering aid of the Geological Survey, made the well inventory in a large part of Frederick County and effectively assisted in other fieldwork and in office work.

### Population and Economy

Carroll and Frederick Counties are among the most prosperous and productive agricultural counties of the State. Dairying is the most important farm activity; poultry, grain, and vegetables also are important sources of agricultural income. Industries in the two counties include vegetable canning, clothing manufacture, and rock quarrying. The chief mineral products are lime, cement, and crushed stone.

Carroll County has an area of 456 square miles, of which about 86 percent is used for agricultural purposes. The value of all farm products in 1950 was about \$11.5 million. The chief industrial enterprises are vegetable canning and manufacture of portable tools, rubber goods, cement, apparel, and accessory products for the linoleum industry. The value of manufactured products was about \$17.6 million in 1947. The population of Carroll County was 44,970 in 1950. Westminster (pop. 6,140) is the county seat and largest municipality in the county.

Frederick County has an area of 670 square miles, of which 80 percent is used for agricultural purposes. The value of all farm products in 1950 was about \$16.1 million. Industrial enterprises include manufacture of apparel, brushes, bricks and the canning of vegetables. The value of manufactured products was about \$12.1 million in 1947. Most of the manufacturing plants are in the city of Frederick. The population of Frederick County was 62,287 in 1950. Frederick (pop. 18,142) is the county seat and largest municipality.

### Climate

The climate of Carroll and Frederick Counties is temperate and moderately humid. The annual precipitation usually is between 40 and 46 inches and the mean annual temperature between 52° and 55°F. Precipitation and temperature records are available for stations at Westminster, in Carroll County, and at Emmitsburg, Frederick, and Unionville in Frederick County.

Precipitation is distributed fairly evenly through the year, ranging from an average of about 3 inches in February to an average of a little more than 4 inches in July and August. The mean monthly precipitation at Emmitsburg and Westminster, which have the longest periods of record, 89 and 46 years respectively, is given in Table 1 and shown graphically in figure 2. Annual snowfall averages about 25 inches.

The temperature in Carroll and Frederick Counties ranges from about an average of 31° or 32°F in January to 75°F in July. The mean monthly temperatures at Emmitsburg and Westminster are given in Table 2, and for Westminster are shown graphically in figure 2. The first killing frost occurs near the end of October and the last about the end of April.

There are no evaporation stations in Carroll or Frederick County. An evaporation pan is in operation at Beltsville (Prince Georges County), about

| Month    | Emmitsburg | Westminster | Month     | Emmitsburg | Westminster |
|----------|------------|-------------|-----------|------------|-------------|
| January  | 3.27       | 3.21        | July      | 4.22       | 4.02        |
| February | 3.01       | 2.93        | August    | 4.17       | 4.60        |
| March    | 3.98       | 3.72        | September | 3.69       | 3.75        |
| April    | 3.62       | 3.45        | October   | 3.55       | 3.30        |
| May      | 4.20       | 3.76        | November  | 3.33       | 3.02        |
| June     | 4.20       | 4.10        | December  | 3.16       | 3.22        |
|          |            |             | Year      | 44.40      | 43.08       |

## TABLE 1 Mean Monthly Precipitation at Emmitsburg and Westminster

(in inches)



FIGURE 2. Average Monthly Precipitation and Temperature at Stations in Carroll and Frederick Counties and Evaporation at Stations in Wicomico and Prince Georges Counties

20 miles south of Carroll County, from May through October each year. Average monthly measurements at the Beltsville station, based on a 15-year record, are:

|           |  |  |   |   |   |   |  |   |   |  |  |   |   |  |   |  | Inches |
|-----------|--|--|---|---|---|---|--|---|---|--|--|---|---|--|---|--|--------|
| May       |  |  |   |   |   |   |  |   |   |  |  |   |   |  |   |  | 6.6    |
| June      |  |  |   |   |   |   |  |   |   |  |  |   | • |  | • |  | 6.5    |
| July      |  |  |   |   |   |   |  |   |   |  |  |   |   |  |   |  | 7.1    |
| August    |  |  |   |   |   |   |  |   |   |  |  |   |   |  |   |  | 6.1    |
| September |  |  |   |   |   |   |  |   |   |  |  |   |   |  |   |  | 4.7    |
| October   |  |  | • | • | • | • |  | • | • |  |  | • |   |  |   |  | 3.3    |

A 4-year record is available for a station formerly operated at Salisbury (Wicomico County) throughout the year. The records of both stations are presented graphically, as monthly averages, in figure 2. The graphs show the

#### TABLE 2

| Month    | Emmitsburg | Westminster | Month     | Emmitsburg | Westminster |
|----------|------------|-------------|-----------|------------|-------------|
| January  | 31.2       | 31.9        | July      | 75.2       | 75.0        |
| February | 32.4       | 32.6        | August    | 72.8       | 73.1        |
| March    | 40.9       | 41.9        | September | 66.3       | 67.4        |
| April    | 51.9       | 51.9        | October   | 55.3       | 55.7        |
| May      | 62.3       | 62.8        | November  | 43.7       | 45.0        |
| Tune     | 70.2       | 70.8        | December  | 33.7       | 35.0        |

Mean Monthly Temperature at Emmitsburg and Westminster

(in degrees F)

rate of evaporation varies with the temperature, although wind velocity, humidity, sunshine, and other meteorological factors also play an important part.

Precipitation, temperature, and evaporation have a direct bearing on the occurrence of ground water in Carroll and Frederick Counties.

### Physiography and General Geology

Carroll and Frederick Counties lie within two physiographic provinces (fig. 1)—the Piedmont province, which includes the area east of Catoctin Mountain, and the Blue Ridge province, which includes the area west of the east foot of Catoctin Mountain. The Piedmont is gently rolling and of moderate relief; the Blue Ridge is predominantly rugged and mountainous.

The Piedmont is subdivided into eastern and western divisions, separated by Parrs and Dug Hill Ridges in central Carroll County (fig. 3). The eastern division and the eastern part of the western division are characterized by moderate relief, gentle slopes, and rounded hills. The rocks are predominantly schist and phyllite, of Precambrian or possibly Cambrian<sup>1</sup> age, and some carbonate rocks and metavolcanics. The western part of the western division is a slightly to moderately rolling area that includes the low-lying Frederick Valley, underlain by Cambrian and Ordovician limestone, and the slightly higher Triassic upland, underlain by Triassic shale and sandstone. A prominent ridge of quartzite separates the Frederick Valley from the Piedmont upland area to the east.

The Blue Ridge province includes Catoctin Mountain, Middletown Valley, and South Mountain. Catoctin and South Mountains are northeastwardtrending ridges whose crests are formed by quartzite of Cambrian age. Metabasalt and aporhyolite of Precambrian age are the most widely distributed rocks of the mountains. Other rocks include shale, slate, phyllite, and con-

<sup>1</sup> The stratigraphic nomenclature and age designations used in this report do not necessarily follow the usage of the U. S. Geological Survey.



glomerate. The Middletown Valley, a rolling upland between the mountain ridges in the southwestern part of Frederick County, is underlain by granodiorite and granite gneiss of Precambrian age.

The stratigraphy and structure of Carroll and Frederick Counties are complicated by faults, unconformities, and bodies of intrusive rocks. Four areal stratigraphic columns are shown in the explanation accompanying the geologic map of the counties (Plate 3). The oldest rocks, the "injection complex," are exposed in the Middletown Valley as the core of the Middletown anticline. These early Precambrian rocks are overlain by volcanic rocks, chiefly metamorphosed rhyolite and basalt flows of late Precambrian age. Lower Cambrian quartzite, phyllite, and dolomite overlie the volcanic series. Overlying this largely arenaceous series are the Upper Cambrian and Lower Ordovician limestones of the Frederick Valley.

East of the Frederick Valley rocks of the Martic overthrust block are exposed. The oldest, the Baltimore gneiss of early Precambrian age, occurs at the southeastern tip of Carroll County as a part of the Woodstock anticline. Metamorphosed sedimentary rocks of the Glenarm series overlie the Baltimore gneiss unconformably and are cut by granitic and gabbroic intrusives. Intricately folded volcanic rocks and marble of the Glenarm series occur between the other Glenarm rocks and the east edge of the Frederick Valley. Quartzites of Cambrian age overlie the volcanic rocks and form Sugarloaf Mountain in southern Frederick County and small ridges in northern Carroll County.

The rocks of the Martic overthrust block and the limestones of the Frederick Valley are unconformably overlain by sedimentary rocks of Triassic age. Upper Triassic diabase dikes and sills are intruded into the Triassic sedimentary rocks and the adjacent older rocks.

Quaternary unconsolidated deposits of sand, clay, gravel, and cobbles are associated with major streams in their present positions and erosional remnants of similar deposits mark former positions of the streams at higher levels. Remnants of extensive Quaternary mountain-wash deposits occur along the east flank of Catoctin Mountain.

#### Drainage

The Potomac River flows southeastward across the strike of the rocks along part of the southern boundary of Frederick County. Its major tributary in this area is the Monocacy River, which flows southward from Pennsylvania across the Triassic upland and the eastern edge of the Frederick Valley to join the Potomac River at the southern tip of Frederick County. Eastwardflowing tributaries of the Monocacy head on the east slope of Catoctin Mountain and in the mountainous area to the west. Tributaries flowing westward to the Monocacy head on the slopes of Dug Hill Ridge and Parrs Ridge.

In the Middletown Valley, Catoctin Creek flows southward to the Potomac in deeply incised meanders along the center of the valley. This creek and its tributaries, which head on the east slope of South Mountain and the west slope of Catoctin Mountain, drain practically the entire Middletown Valley and part of the mountainous area to the north between South and Catoctin Mountains.

East of Dug Hill and Parrs Ridges the Piedmont upland is drained by the South Branch and the North Branch of the Patapsco River and their tributaries. Most of the tributaries head near Dug Hill and Parrs Ridges and flow southward or southeastward. The South Branch and the North Branch join at the southeastern tip of Carroll County to become the Patapsco River. The North Branch is dammed about 2 miles north of the junction to form the Liberty Reservoir, a part of the Baltimore City water-supply system. A small part of the northeast tip of Carroll County is drained by small tributaries of the Gunpowder Falls of Baltimore County.

### HYDROLOGY

### The Hydrologic Cycle

Hydrology is the science concerned with the occurrence of water in and on the earth and the physical and chemical relations of water to the earth. The basic concept of hydrology is a dynamic cycle of circulation of water upward by evaporation from oceans and other bodies of surface water, movement through the atmosphere, deposition on the land by precipitation, and then return to the atmosphere by evaporation, or to surface-water bodies by overland flow and flow through subsurface passages. This circulation is known as the hydrologic cycle.

Some components of the hydrologic cycle are measured more easily than others. The amount of precipitation can be estimated from measurements at a network of stations. The U. S. Weather Bureau maintains about 120 such stations in Maryland. Within the two counties weather stations are maintained at Emmitsburg, Frederick, Unionville, and Westminster. Streamflow can be measured directly. In Carroll and Frederick Counties three continuous-record stream-gaging stations operate within the Patapsco River Basin and eleven in the Potomac River Basin. Changes in ground-water storage are observed by means of continuous or periodic measurements of water levels in a network of 116 observation wells and 2 springs. Water-level measurements do not indicate directly the volumes of the changes in storage, but they are essential to determinations of those volumes. Soil-moisture measurements are made intermittently, as a part of special projects of the cooperative ground-water program, by the U. S. Soil Conservation Service and by State agencies concerned with agricultural development.

### Ground-Water Hydrology

### General Principles

Ground-water hydrology is concerned with that portion of the hydrologic cycle which pertains to water below the surface of the earth, particularly water in the zone that is completely saturated. But in the study of ground water all parts of the hydrologic cycle must be considered, for all are intimately related to the replenishment, storage, and discharge of ground water.

Water seeping into soil during and after a period of rainfall or snow-melt may evaporate immediately from the soil, either directly or through plant transpiration, or it may be retained to satisfy a soil-moisture deficiency and later discharged by evapotranspiration. The water escaping capture and discharge by these means continues downward under the pull of gravity and satisfies moisture deficiencies in the remainder of the vadose zone (the zone of soil and rock above the fully saturated rocks). What remains merges with the water in the zone of saturation and becomes, by definition, ground water. It then moves slowly and, perhaps for the first time since entering the soil, laterally toward nearby surface drainage channels, where it is discharged as springs or seeps; or, as it nears the land surface, it may be evaporated to the atmosphere or transpired by plants.

Although under certain geologic conditions ground water may flow many miles underground, so that its exit from the ground may be a long distance from its entrance, in Carroll and Frederick Counties the precipitation that replenishes the ground-water bodies ordinarily is discharged not far—hundreds or thousands of feet or perhaps a few miles—from where it entered the ground. This is because the major zones of circulation are at shallow depth, and the land surface is incised by a dense network of streams. Also, the shallow rocks are broken by joints and other openings which allow the ground water to move readily to local surficial drainageways. The popular concept that the mountains of Maryland are the catchment and recharge areas for the aquifers of the Piedmont and Coastal Plain is erroneous.

The ground water moves smoothly by laminar (viscous, streamline) flow, except in some of the near-surface cavernous openings in the limestones of the Frederick Valley and in the immediate vicinity of wells being pumped at high rates, where the flow is turbulent as in streams and pipes. Local variations in rock permeability and topography complicate the pattern of movement, but it is always in the direction of the hydraulic gradient, from points of high pressure head to points of lower head. The natural rate of movement of ground water is ordinarily only a few inches or feet a day; in the relatively impermeable residual materials formed by weathering of bedrock and in massive crystalline rocks themselves, the ground water moves so slowly that it is almost stagnant.

### Definition of an aquifer

A geologic formation, part of a formation, or group of formations from which it is economically feasible to obtain ground water in usable quantity is called an "aquifer". The rock formations of Carroll and Frederick Counties are all waterbearing, in that nearly everywhere they are capable of yielding water in usable quantities to wells or springs; in most places, however, only the shallow parts of the formations where joints are open and solution is active can be considered aquifers, the deeper parts being essentially non-waterbearing. Joints of the principal systems may transect several formations and interconnect them hydrologically. Local zones of fracture or shear may create nearly isolated small aquifers, but ordinarily these zones are not entirely isolated hydraulically from neighboring rocks. In the Triassic rocks, for example, the beds of competent sandstone are fractured cleanly and somewhat commonly and may be better waterbearers than the interbedded shale in which fractures are more poorly developed. Many of the joints in the sandstone do not continue into the bordering shale, but some do persist through both rock types and tend to integrate the rocks hydraulically.

Unlike the stratified deposits of the Maryland Coastal Plain to the east, where the aquifers are generally parallel to the formational contacts, the aquifers in the consolidated rocks of Carroll and Frederick Counties tend to parallel the land surface and thus are roughly horizontal and cut across the rock structures. Erosion has removed most of the weathered material along the major streams. The weathered material that remains between the streams has been divided by them into physically and hydrologically separate units. Minor streams which have not eroded the rocks deeply have not created such distinct and separate physical and hydraulic units.

### Hydrologic properties of the water-bearing materials

### General characteristics

The general water-bearing characteristics, or hydrologic properties, of the rocks of Carroll and Frederick Counties are summarized in Table 3. Because a given rock type may occur in innumerable topographic and structural situations, its hydrologic character may vary over a wide range, so that the descriptions in the table are necessarily highly generalized.

### Porosity and specific yield

The porosity of a rock, the percentage of its total volume occupied by voids, determines the volume of water that can be stored in the rock. Openings existing at the time the rocks were originally deposited or emplaced form "primary porosity"; fractures, openings developed by weathering and solution,

| Rock type                                         | Geologic formations in<br>which it occurs                                                                                                                                                       | General water-bearing characteristics                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schist                                            | Antietam quartzite, Set-<br>ters formation, Wissa-<br>hickon formation, Pe-<br>ters Creek quartzite,<br>Sams Creek metaba-<br>salt, Marburg schist                                              | Water occurs in fractures, along planes of schistosity and<br>shear zones, and in weathered mantle. Principal source<br>of ground water in both counties. Adequate domestic sup-<br>plies everywhere and larger supplies locally. Water gen-<br>erally is soft and low in mineral content.                                                                                                                       |
| Gneiss                                            | Baltimore gneiss, "injec-<br>tion complex"                                                                                                                                                      | Water occurs in fractures, along planes of schistosity and<br>shear zones, and in weathered mantle. Important as a<br>source of water in western Frederick County; of minor im-<br>portance in Carroll County. Adequate domestic supplies<br>generally available and larger supplies locally. Water is<br>soft and generally low in mineral content, except for iron<br>locally.                                 |
| Quartzite                                         | Loudoun formation,<br>Weverton quartzite,<br>Antietam quartzite,<br>Setters formation, Pe-<br>ters Creek quartzite,<br>Urbana phyllite, Sug-<br>arloaf Mountain<br>quartzite, Marburg<br>schist | Water occurs chiefly in fractures. Mantle generally thin. An<br>important source of ground water in both counties. Inter-<br>bedded quartzite makes moderately good aquifers of some<br>of the schist and phyllite that otherwise are mediocre water-<br>bearers. Adequate supplies for domestic and limited com-<br>mercial or industrial use available. Water is generally soft<br>and low in mineral content. |
| Phyllite and slate                                | Loudoun formation,<br>Harpers phyllite,<br>Ijamsville phyllite,<br>Urbana phyllite, Mar-<br>burg schist                                                                                         | Water occurs in fractures and along cleavage planes of slaty<br>rocks. Weathered mantle thin to absent. Adequate domes-<br>tic supplies generally obtainable, but locally only one of<br>several wells may be successful. Little likelihood of obtain-<br>ing large supplies except under most favorable conditions.<br>Water is soft and low in mineral content.                                                |
| Metabasalt                                        | Catoctin metabasalt,<br>Sams Creek meta-<br>basalt                                                                                                                                              | Water occurs in fractures and shear zones and in weathered<br>mantle. Important source of water in western Frederick<br>County but of less importance in Carroll County. Adequate<br>domestic supplies obtainable but larger supplies rare.<br>Water is soft and low in objectionable mineral content.                                                                                                           |
| Aporhyolite, meta-<br>rhyolite, and rhyo-<br>lite | Libertytown metarhyo-<br>lite, other unnamed<br>bodies of rock                                                                                                                                  | Water occurs chiefly in fractures. Weathered mantle generally<br>tbin. Moderately important source of water for domestic<br>supplies in western Frederick County; of minor importance<br>in Carroll County. The chemical quality of the water is<br>good.                                                                                                                                                        |
| Granodiorite and diorite                          | "Injection complex"                                                                                                                                                                             | Water occurs in fractures, along planes of schistosity and<br>shear zones, and in weathered mantle. Important source of<br>ground water in Frederick County; no rocks of this type in<br>Carroll County. Adequate domestic supplies available<br>nearly everywhere; larger supplies available locally. The<br>chemical quality of the water is good.                                                             |
| Monzonite and peg-<br>matite                      | Sykesville formation,<br>small unnamed bodies<br>of rock                                                                                                                                        | Water occurs in fractures, along planes of schistosity and<br>zones of shear, and in weathered mantle. Moderately im-<br>portant source of water in southeastern Carroll County.<br>Adequate domestic supplies available; large supplies ob-<br>tainable locally. Water is soft and low in mineral content.                                                                                                      |
| Serpentine, meta-<br>gabbro, and dia-<br>base     | Unnamed bodies of rock                                                                                                                                                                          | Water occurs in fractures and shear zones. Of minor impor-<br>tance as sources of ground water. Adequate domestic sup-<br>plies obtainable, but not larger supplies.                                                                                                                                                                                                                                             |

|               |            |    | TAB   | LE | 3       |     |           |          |
|---------------|------------|----|-------|----|---------|-----|-----------|----------|
| Water-bearing | Properties | of | Rocks | in | Carroll | and | Frederick | Counties |

| Rock type                                     | Geologic formations in<br>which it occurs                                                                                              | General water-bearing characteristics                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limestone, dolomite<br>and marble             | Tomstown dolomite,<br>Frederick limestone,<br>Grove limestone,<br>Wakefield marble,<br>Silver Run limestone,<br>unnamed bodies of rock | Water occurs in fractures and openings in shear zones, some of<br>which are solutionally enlarged. Rocks are major sources of<br>ground water, particularly in Frederick County. Adequate<br>domestic supplies obtained nearly everywhere. Chances of<br>obtaining moderately large to large supplies are good.<br>Water is hard but otherwise of good chemical quality.                          |
| Sandstone and shale                           | New Oxford formation,<br>Gettysburg shale                                                                                              | Water occurs in fractures and, to a small extent, in the pores<br>of sandstone. Adequate domestic supplies available to wells<br>everywhere; larger supplies can be obtained locally. Water<br>is of good quality generally but locally is hard.                                                                                                                                                  |
| Clay, silt, sand,<br>gravel, and cob-<br>bles | Mountain wash, terrace<br>deposits, stream allu-<br>vium                                                                               | Water occurs in pore spaces. Owing to poor sorting and thin-<br>ness of the deposits, they are generally of minor importance<br>as sources of ground water. Where saturated, these deposits<br>may supply water to underlying bedrocks when water is<br>pumped from these rocks by wells. Water quality generally<br>is good, but water from some terrace and stream deposits<br>has marshy odor. |

TABLE 3-Continued

and other openings developed later form "secondary porosity." Original porosity may be increased by such processes as fracturing, or decreased by such processes as the filling of pore spaces in sand with cement to form a sandstone.

The rocks in Carroll and Frederick Counties that have the highest primary porosity are the unconsolidated Quaternary alluvium and mountain wash, which have a porosity estimated to be 20 to 30 percent in most places. Locally, the porosity of these deposits may be higher or lower, according to the size, shape, and sorting of the component particles. The primary porosity of the consolidated sedimentary rocks—the Cambrian and Ordovician limestones and Triassic shales and sandstones—is smaller, about 1 to 10 percent, and that of the igneous and metamorphic rocks is smallest, generally 1 percent or less. Laboratory porosity measurements for some of the rock types of the area are given in Table 4.

Secondary porosity is far more important to the occurrence of ground water in Carroll and Frederick Counties than is primary porosity, because consolidated rocks in which the principal porosity is secondary occupy a much larger area than other rocks. Although crystalline rock that is unfractured and unweathered is of low porosity, the crystalline rocks generally are fractured and are overlain by a mantle of mechanically and chemically weathered silty or clayey rock of relatively high porosity. Dense nonporous metabasalt or granite is rendered moderately porous by secondary processes such as jointing or shearing. The porosity of limestone and marble commonly is increased appreciably by solutional enlargement of existing voids as water moves through them, or by selective solution of granules or crystals of the rock.

| Rock type             | Number of specimens | Measured range in<br>porosity<br>(percent) | Average<br>porosity<br>(percent) |
|-----------------------|---------------------|--------------------------------------------|----------------------------------|
| Igneous               |                     |                                            |                                  |
| Diabase               | 2                   | 0.17-1.00                                  | 0.58                             |
| Gabbro                | 3                   | .0062                                      | . 29                             |
| Granite               | 17                  | .44-3.98                                   | 1.11                             |
| Granodiorite          | 1                   | —                                          | .50                              |
| Sedimentary           |                     |                                            |                                  |
| Limestone             | 7                   | .27-4.36                                   | 1.70                             |
| Limestone (dolomitic) | 2                   | _                                          | 2.08                             |
| Sandstone             | 6                   | 1.62-26.40                                 | 9.25                             |
| Sandstone (clayey)    | 1                   |                                            | 6.10                             |
| Metamor phic          |                     |                                            |                                  |
| Gneiss                | 5                   | .30-2.23                                   | .78                              |
| Marble                | 7                   | .31-2.02                                   | .62                              |
| Marble (dolomitic)    | 2                   |                                            | .60                              |
| Quartzite             | 3                   | _                                          | .46                              |
| Slate                 | 3                   | .00-1.06                                   | _                                |

### TABLE 4

Porosity of Rocks<sup>1</sup>

<sup>1</sup> Adapted from a table compiled by J. H. Griffith (1937).

Not all the water stored in the openings in rocks is recoverable. Some is retained by molecular attraction. The ratio (generally expressed as a percentage) of the volume of water that drains by gravity from a rock to the total volume of the rock is known as the "specific yield." The complementary term, "specific retention," refers to the water that is retained against the pull of gravity. Together the specific yield and specific retention equal the porosity of the rock. A saturated rock having a specific yield of 25 percent, for example, will yield by gravity drainage a volume of water equal to 25 percent of the rock's volume. If 1 inch of rainwater were to percolate down to the water table in an aquifer having this specific yield, it would increase the thickness of the saturated zone by 4 inches. In reciprocal terms, a 1-foot decline of the water table would represent discharge of 3 inches of water.

### Permeability and transmissibility

Permeability, frequently confused with porosity, refers to the ability of a rock to transmit water under head. As defined by the Geological Survey, the *coefficient of permeability* is the rate of flow of water in gallons per day under a hydraulic gradient of 1 foot per foot at a temperature of 60°F across a section of the rock 1 foot square. The field coefficient of permeability is the same

measured at the prevailing temperature of the water instead of at 60°F. Permeability is governed chiefly by the number, size, shape, and degree of interconnection of the openings in a rock. Although permeability and porosity are related, the relationship may be either direct or inverse. The porosity of clay, which is extremely fine grained, is high; but, owing to the minuteness of the interstices between particles of the clay, water clings to the particles by molecular attraction and does not move through the clay freely. Hence, the permeability of clay—its ability to transmit water—is low, despite its high porosity. The much larger interstices in well-sorted sand and gravel transmit water more readily—the permeability is high—although their porosity frequently is less than that of clay.

The metamorphic rocks consist principally of silicate minerals and are comparatively insoluble. The principal water-bearing openings in these rocks are fractures, chiefly tension joints and shear fractures. Microscopic openings along cleavage planes play a relatively unimportant role in the circulation of ground water. Weathering is important to the occurrence of ground water in foliated metamorphic rocks because, with their innumerable though small openings along planes of schistosity, they are especially susceptible to weathering. They yield a residuum which invariably is more permeable than the original fresh rock. Weathering also enlarges joints and other fractures through solution.

The important openings in the Triassic shale and sandstone are those formed by jointing, although some original interstitial porosity has survived. Lack of solutional enlargement of the joints is shown by the smooth, intact condition of the joint surfaces where exposed at the land surface. The Cambrian and Ordovician limestones contain joints and openings along bedding planes, many enlarged solutionally.

The term *coefficient of transmissibility*, introduced by Theis (1935, p. 520), is used to express the gross permeability of a rock body. It is the average field coefficient of permeability times the thickness in feet of saturated rock. More specifically, this coefficient is defined as the rate of flow of water, in gallons per day at the prevailing temperature of the water, under unit hydraulic gradient, across a section of rock 1 foot wide that extends the full saturated thickness of the rock body. The coefficient is useful for calculating the rate of discharge of ground water to streams and for predicting the effects on ground-water levels of withdrawing water from wells. It is determined in the field by means of controlled pumping tests (aquifer tests). Values for the coefficient of transmissibility determined in the aquifer tests made during this investigation (Table 6) are relatively low in comparison with those in many other areas, ranging from 430 to 7,300 gpd per foot, except for one test which yielded a value of 52,000. Recently another constant, the coefficient of leakage, or "leakance," was introduced (Hantush and Jacob, 1955) which expresses the



ability of poorly permeable rock bodies to transmit water to neighboring permeable ones by upward or downward leakage. One determination of this coefficient is included in the described aquifer tests.

### Coefficient of storage

The term "specific yield," is applicable only to water-table conditions. The analogous term that covers artesian conditions also is the *coefficient of storage*, which is defined as the volume of water released from, or taken into, storage per unit surface area of the aquifer per unit change in the component of head normal to that surface. For water-table aquifers the coefficient of storage is approximately equal to the specific yield. Ordinarily the coefficient of storage of an artesian aquifer is only a hundredth to a thousandth as large as that of a water-table aquifer. Approximate values for the coefficient of storage determined by the aquifer tests of rocks in Carroll and Frederick Counties, with one exception, range from 0.03 to 0.004, indicating a range from water-table conditions to semiartesian conditions. The exception was a determination of 0.000017 for an artesian water-bearing zone in limestone (Table 6).

### Recharge, storage, and discharge of ground water

A knowledge of the characteristics of water-level fluctuations in aquifers is important to an understanding of the relations between recharge, storage, and discharge of ground water. Hydrographs of water level fluctuations in ten wells in Carroll and Frederick Counties are shown in figures 4 and 5.

The major fluctuations are caused as follows:

(1) Rises and reductions in rates of decline caused by recharge from precipitation.

(2) Declines caused by natural discharge of water from the ground-water reservoirs-mainly drainage to streams.

(3) Declines caused by pumping of wells and rises caused by cessation of pumping, these fluctuations being substantial but local.

A number of other factors cause minor fluctuations of water levels, among them variations in the rate of evaporation and transpiration from the groundwater reservoirs, variations in load at the land surface caused by changes in barometric pressure, moving railroad trains, etc. The latter fluctuations are characteristic of artesian aquifers.

The relation between precipitation and natural water-level fluctuations is not simple and direct. Evaporation in the air, at the land surface, and just below the land surface and transpiration by plants consume most (about 70 percent, according to data on precipitation and streamflow) of the precipitation during the summer and early fall. During this period little rainwater reaches the water table, and water levels decline in spite of the fact that precipitation in Maryland ordinarily is then high. Recharge to the ground-water



FIGURE 5. Hydrographs Showing Fluctuations of Water Levels in Six Wells in Frederick County and Precipitation at Frederick

reservoirs is greatest in the winter and early spring. During this period relatively little precipitation is diverted by evapotranspiration and water levels rise. Water levels, therefore, fluctuate in most wells in a systematic annual cycle, being highest in winter and early spring and lowest in summer and early fall. This cyclic pattern is well exemplified by the record of well Car-Bb 1, but is shown also by the hydrographs of most of the other observation wells in figures 4 and 5.

The yield of wells varies with the amount of ground water in storage. When droughts reduce recharge in periods of normally low ground-water levels, such as late summer and fall, well yields may be reduced substantially.

Under certain geohydrologic conditions, particularly in areas underlain by calcareous rocks, deviations from the general pattern of fluctuations may occur. For example, the water level in well Car-Cb 2 (fig. 4), which is at the edge of a wide outcrop of the Wakefield marble near its contact with metabasalt, fluctuates within a range of only a few tenths of a foot. The nature of the fluctuations indicates complex geohydrologic conditions, including at times what is seemingly a siphoning action. Well Fr-Ee 1 (fig. 5) also is in calcareous rocks, but in the broad belt of the Frederick limestone in the Frederick Valley. Its fluctuations correspond more closely to those in noncalcareous rocks. The hydrograph is smoother than typical hydrographs of wells in the Piedmont and mountainous areas owing to the greater storage capacity of the Frederick limestone and the more moderate topographic relief.

The magnitude and character of water-level fluctuations are related also to the topography. Water levels beneath hills fluctuate through a greater range than do those beneath valleys. A short record in well Fr-Dc 25 (fig. 5), at Braddock Heights on the crest of Catoctin Mountain, shows a range of fluctuations in part of 1956 of nearly 20 feet. In contrast, well Car-Bb 1 (fig. 4), in the Triassic upland characterized by low relief, shows a range of fluctuations of not quite 6 feet in eight years.

Under natural conditions ground-water storage reflects the balance between recharge and discharge. Although ground-water levels fluctuate from season to season and year to year, the long-term picture is one of equilibrium between recharge and discharge. Thus, in areas where little or no water is withdrawn, water levels in wells are essentially the same today as they were decades ago. The popular concept that ground-water levels in Maryland have declined persistently through the years applies only to certain local heavily pumped areas.

The natural balance between recharge and discharge permits a reasonable approximation of the magnitude of this component of the hydrologic cycle by means of streamflow records. The records are analyzed to determine the "base flow" of the streams—the portion of the total streamflow discharged from the ground-water reservoirs. The procedures are described by Houk (1921, p. 165) and Meinzer and Stearns (1929, p. 111), among many others. The values obtained by such an analysis of streamflow are less by a small amount than the total discharged from, or recharged to, the ground-water reservoirs, for a small amount of ground water is intercepted in transit, before reaching the streams, by evapotranspiration and by pumping. However, the ground-water component of streamflow may be said to be equal to the *effective* recharge, because only a negligible amount of the water discharged from the

ground-water reservoirs by evapotranspiration could be salvaged by pumping from wells.

No determinations of base flow were made for streams in Carroll and Frederick Counties, but results of analyses of stream records for neighboring Montgomery, Baltimore, and Harford Counties (Dingman and Meyer, 1954, p. 38– 43; Dingman and Ferguson, 1956, p. 46–52) are applicable to the Piedmont portion of Carroll and Frederick Counties, inasmuch as the geology and physiography are similar. The results cannot be applied to the Frederick Valley or the mountainous area of western Frederick County, which are quite different physiographically and geologically from the Piedmont. Discharge values, expressed in inches of depth over the drainage basin and percent of precipitation on the basis of 43 inches per year, determined for the Rock Creek basin in Montgomery County and the Little Gunpowder Falls basin in Baltimore and Harford Counties are:

|                                 | Inches | Percent of<br>precipitation |
|---------------------------------|--------|-----------------------------|
| Evaporation and transpiration   | 28.2   | 65.5                        |
| Ground-water runoff (base flow) | 10.1   | 23.5                        |
| Direct runoff                   | 4.7    | 11.0                        |
|                                 | 43.0   | 100.0                       |

For these two drainage basins the average total runoff per square mile per day is about 700,000 gallons. Inasmuch as 10.1 inches of the 14.8 inches of total runoff represents ground-water runoff, about 68 percent, or 475,000 gallons, is the ground-water component of the runoff. This discharge from the ground-water reservoirs of 475,000 gpd (330 gpm) per square mile is the theoretical maximum quantity of ground water that could be pumped indefinitely from each square mile of the Piedmont. To recover such an amount over a large area would be impractical, however, for a large number of closely spaced wells would be required and the development and operating costs would be prohibitive. Also, it would be necessary to consider the effects on surfacewater users of depleting the base flow of streams.

The ground water in storage in the rocks permits pumping at rates greater than the recharge, or intake, rate for limited periods. Eventually, however, discharge must be kept in line with recharge if the supply is to be perennial. In areas of heavy pumping in Carroll and Frederick Counties where an appreciable part of the water in storage in the vicinity of pumping wells has been extracted, the water levels will become stabilized if the discharge is kept in line, but the long-term yields of the wells will be less than the original because some of the openings that originally yielded water to the upper part of the well have been drained.
# Water-table and artesian aquifers

Aquifers are commonly classed as either water-table or artesian. This classification is of practical importance in that the production of water from wells, the quantity of water derived from storage by pumping, and the area affected by pumping for a given period are somewhat different for the two conditions. Few aquifers, however, fulfill rigidly all the requirements of either classification. Customarily aquifers are classed as water-table or artesian according to which condition is approached more nearly, or the terms "semiconfined" or "semiartesian" are used to denote intermediate conditions.

Water-table aquifers contain unconfined ground water; that is, the surface of these ground-water bodies—the water table—is in direct contact with the atmosphere in the soil and unsaturated rocks overlying the ground-water body. Wells drilled into water-table aquifers fill with water to the level of the water table.

In an artesian aquifer ground water in a permeable rock is confined under pressure between less permeable rocks. The water level in a well that penetrates the aquifer will rise above the level of the top of the aquifer. Where the artesian head is sufficiently high and the land surface is sufficiently low, wells flow, but the term "artesian" is applied whether or not wells flow.

Inasmuch as the aquifers in Carroll and Frederick Counties are chiefly hydraulically integrated networks of water-filled fracture and solutional openings, the upper parts of which are in contact with the atmosphere, ground water occurs in these counties largely under water-table conditions. However, local variations in lithologic character and permeability of the rocks give to them some of the conditions of artesian aquifers, especially on a small scale. These conditions are revealed in several ways. In many places in both crystalline and sedimentary rocks water from a rainstorm may quickly recharge shallow water-bearing zones, as shown by a rise in water level in shallow wells shortly after the storm; but, because of their more devious connection with the surface, the deeper water-bearing zones show delayed and subdued effects of the precipitation, in the form of smaller and tardier rises of water level in deep wells. If no further addition of water occurs, the water levels in wells in both the shallow and deep horizons gradually tend to assume equilibrium positions. This does not necessarily mean that equilibrium is represented by equal water levels in shallow and deep wells; there may be perennial differences that reflect upward or downward movement of water. Such vertical differences in head are substantial in places. The water levels in dug wells, which penetrate only the uppermost part of the aquifers, indicate reasonably well the head at the water table. But in drilled wells, which ordinarily are uncased for most of their depth and thus tap large sections of the aquifers, the water level represents a composite head of a magnitude somewhere between the highest and lowest heads that exist in the aquifer in the vicinity of the well. Few drilled wells in Carroll and

Frederick Counties are constructed with casings extending a considerable distance into the aquifer and with only a small section of open hole, to permit the measurement of head at a small interval of depth undisturbed by pressures extant at shallower levels.

In general, under water-table conditions in upland locations it would be expected that the head would decrease with depth, reflecting the downward movement of water from the source at the water table to the deeper parts of the aquifer. Near streams, however, the reverse generally should be true: water is rising from the deeper parts of the aquifer to discharge into the streams, and the head should tend to increase with depth.

Obvious evidence of artesian conditions is flowing wells, of which there are a few in Carroll and Frederick Counties. The flow from most of them is intermittent, being related to wet weather and local geohydrologic conditions. Instances are common in which the driller notes a small rise in the water level in a well during drilling, indicating at least local artesian conditions.

Pronounced fluctuations of ground-water levels due to changes in atmospheric pressure and moving railroad trains were measured in a number of wells situated near railroad tracks in several geologically different areas. In the crystalline-rock areas the contrast in permeability between a silty or clayey water-saturated overburden and an underlying, more permeable zone of rock may be sufficient to produce local artesian conditions. An inclined waterbearing fracture, zone of fracture, or permeable stratum bordered by less permeable rock (such as occur in Triassic shale and sandstone and in crystalline rocks) also may contain water under artesian pressure. Deep water-bearing zones that are poorly connected, hydraulically, to shallower zones may be artesian. Examples of the latter are not uncommon in the limestone areas of the Frederick Valley.

The brief records obtained at various wells indicate, tentatively, barometric efficiencies of at least 30 percent. The barometric efficiency of a well is the ratio of its change in water level to the barometric change, expressed in feet of water, that caused the water-level change. Low efficiencies may indicate local or partial confinement of the water, and higher efficiencies more extensive confinement. The diurnal variation in atmospheric pressure appears in the water-level graphs as a gentle wavering of a few hundredths of a foot. Super-imposed on this fluctuation may be a fluctuation of the water level related to the passage of major air masses or to remote pumping.

The fluctuations caused by passing railroad trains were similar in all the wells tested. The water level rose abruptly several hundredths to a tenth of a foot as the engine passed the well. It declined slowly while the lighter passenger or freight cars passed, the aquifer partly adjusting itself to the new load, and then dropped sharply to a few hundredths of a foot below the original level immediately after the last car passed in response to the removal of the load.

Then it very slowly recovered to the static level. The effect was smallest in wells penetrating limestone, presumably because of rigidity of the rock and the freedom with which water can move through its relatively large openings.

Measurements of the effects of trains and atmospheric-pressure changes on water levels serve to demonstrate the existence, even though possibly only local, of artesian conditions. Where such conditions exist, adjustments for barometric effects must be made in studying water-level fluctuations as a part of comprehensive hydrologic studies.

The concept of ground-water storage in artesian aquifers is different from that of storage in water-table aquifers. In a water-table aquifer, water drains by gravity out of openings in the rocks as the water table declines. In an artesian aquifer the voids remain filled with water even when the head is lowered by pumping. The water pumped from storage is derived by slight compaction of the aquifer and expansion of the water itself as the head is lowered. If the pumping is heavy or long-continued enough to lower the water level below the top of the aquifer and thereby dewater some of it, then water-table conditions exist in the area of partial dewatering. An artesian aquifer may change to a water-table aquifer naturally if, as a result of natural ground-water drainage during a period of deficient precipitation, the water level of the aquifer drops below the top of the aquifer. In reverse manner, a water-table aquifer may change to an artesian one if the water table rises to the bottom of a layer of material of low permeability, such as clayey residuum resting on fractured bedrock. Undoubtedly changes of this kind occur in aquifers of Carroll and Frederick Counties as a result both of natural fluctuations of the water table and of fluctuations caused by pumping and cessation of pumping from wells.

# Source of water discharged from wells

#### Cone of depression

When a well is pumped, ground-water levels in its vicinity are drawn down in the general shape of an inverted cone, termed the "cone of depression," whose apex is at the well. The slope of the sides of this cone and its rate of enlargement depend on the coefficients of transmissibility and storage of the aquifer and on the pumping rate. Immediately after pumping starts and for a while thereafter, the water discharged is drawn from storage in the vicinity of the well. As pumping continues the cone of depression expands until it intercepts some source of replenishment, such as a nearby stream, which prevents further lateral growth of the cone by satisfying the withdrawal requirements of the pumping well, or until sufficient natural discharge is intercepted and diverted to the well. The natural discharge that is diverted may be either liquid outflow or evapotranspiration—just so the lowering of water level caused by pumping results in a reduction of the natural discharge. If the pumping is

too heavy, it will not be possible to intercept enough natural discharge to balance the pumping by the time the water level at the well declines excessively, and the pumping must be reduced accordingly.

Most of the water supplied to wells in Carroll and Frederick Counties is derived from the immediate vicinity of the wells, particularly in the case of domestic wells which are pumped at small rates and infrequently. Large ground-water developments may induce recharge from nearby streams or ponds. The well field of the town of Taneytown, Carroll County, borders on Piney Creek, and the available data suggest that some of the pumped water is derived by induced infiltration from the stream (p. 122).

# Hydraulic interference between wells

When the cone of depression developed around one pumped well overlaps that of another, the wells are said to interfere with each other, for they must share the part of the ground-water reservoir that lies between them. The amount of interference depends on the pumping rates of the wells, the distance between them, and the hydrologic and geologic character of the aquifer. A rule-of-thumb spacing of 500 feet is often considered adequate for the rocks of the Maryland Piedmont, but the most efficient spacing, from purely hydrologic considerations, is governed by the nature of the aquifer so that the optimum spacing varies from place to place. A spacing of 500 feet between wells at one place might be unnecessarily generous, whereas at another it might be too close. Aquifer and well-performance tests help determine the proper wellfield pattern. Economic considerations, such as pipeline costs, locations of structures, landscaping, etc., are considerations that may affect the pattern of the well field.

As new wells are drilled or as the discharge rates of existing ones are increased the interference increases, for water levels in the aquifer must decline to provide the increased hydraulic gradient required to bring the additional water into the area of pumping. This decline in water level ordinarily results in a decrease in yield of wells within the area of influence of the pumping. In areas of major ground-water development it is desirable to measure routinely the changes in water levels and yields, as a guide to procedures required to maintain an adequate water supply. Periodic measurements of discharge and pumping levels should be made in all wells being pumped, and measurements of water levels should be made in nonpumping wells also. Many turbine-type well pumps, such as are commonly used in major ground-water developments, are designed to discharge at a nearly constant rate until the pumping level declines to just below the pump bowls. Thus, measurements of the discharge of wells equipped with such pumps may reveal little as to the rate of depletion of an aquifer until it has progressed rather far.

#### Well hydraulics

The ability of a well to furnish water is governed not only by the nature of the aquifer penetrated but also by the construction of the well.

When pumping from a well is started, the water level in the well declines. This decline, termed "drawdown," is requisite to the yield of the well, for it establishes the hydraulic gradient necessary to move water from the aquifer into the well. Thus, a report that a well yields water with no drawdown is erroneous; it may represent an instance in which the drawdown is so small as to be unmeasurable with the available facilities. Ordinarily the water level draws down rapidly at first and then more slowly. After a few days the rate of decline may be so slow that it is thought that the water level has stabilized, but this is true only where there is a source of recharge close by. Generally, the water level continues to lower indefinitely, though at a progressively slower rate, until there is a rise in water level resulting from cessation of pumping from this or another well or from recharge. When pumping of the well is stopped the water level recovers, but not necessarily to the original level.

The yields of wells in the consolidated rocks of Carroll and Frederick Counties are determined almost entirely by the water-bearing characteristics of the aquifer. This contrasts with sand aquifers, such as those in the Coastal Plain of Maryland, in which the efficiency of construction and development of a well affect its yield to an important degree. Nevertheless, not all wells in consolidated rocks are constructed and developed efficiently. Where the major aquifer is the basal part of the weathered zone, as is frequently the case, seating the well casing firmly on the underlying fresh rock may seal off the important part of the aquifer and result in a well of poor yield. On the other hand, too short a casing may allow weathered rock to slump into the well. A well that does not penetrate the permeable zone of the rocks fully will have a smaller yield than one that does and is more susceptible to declining yield during droughts.

Other constructional features that may reduce yield include drilling a crooked hole which limits the size of pump or depth to which the pump can be lowered; drilling too small a hole to accommodate the size of pump needed; and casing and grouting to unnecessarily great depths for sanitary protection, thereby shutting off the important water-bearing zones. In one instance a well 302 feet deep yielded 45 gpm when equipped with a short length of casing. Later the casing was extended to a depth of 104 feet, and the yield of the well was reduced by half.

Drilling of wells by the cable-tool method sometimes introduces "rock flour" (powdered rock) into water-bearing crevices as the drill bit pounds through them. The compressed air commonly used in rotary drilling may force rock cuttings into water-bearing crevices, or drilling mud may seal them off. Ordinarily sufficient water is pumped during the acceptance test made after completion of the well to remove this material, but if it is suspected that some of the crevices are still clogged, steps can be taken to open them, such as by swabbing the well.

Perforated casing has been used in wells drilled in crystalline rocks in the Maryland Piedmont. This casing is equivalent to the well screen used in granular aquifers, except that the openings are considerably larger. Under favorable conditions, perforated casing may be installed opposite weathered material that is water bearing but is somewhat unstable. Wells that would have been unsuccessful if conventional casing had been used were successfully completed by use of such casing. It cannot be used promiscuously, however, for if the weathered material is too soft or the holes are too large, it may flow through the holes or clog them.

The term "yield" is used in reference to the ability of a well to respond to pumping. Although a useful general term, it is somewhat vague. To comprehend the nature of its vagueness is to understand to some degree the hydraulics of wells and hydrology of aquifers in Carroll and Frederick Counties. In an effort to give the term a more definite meaning, qualifying adjectives such as "maximum" and "potential" are used to denote the greatest possible rate of pumping, but ordinarily no effort is made to specify the time factor, which, for other than small domestic pumpage, is important. A typical well in the crystalline rocks of Carroll or Frederick Counties would be capable of yielding, at its lowest practicable pumping level, a certain volume of water on the first day of pumping, but considerably less the second day and even less the third day (Table 21). Further, during seasons of high water table it would be capable of greater yield than during periods of lower water table.

In this report the term "yield" is used interchangeably with "pumping rate" or "discharge rate." The well yields reported by drillers are simply the rates at which they bailed or pumped the wells. The wells may, or may not, be capable of supplying water at a rate greater than that reported and for a period of time longer than that reported. A better unit for expressing the ability of a well to furnish water is the "specific capacity," which relates the pumping rate to the drawdown of the water level.

## Source of water discharged from springs

Springs represent points of intersection between the land surface and the zone of saturated rocks, but this general description belies their complex nature. They are an important means of ground-water discharge. Springs that discharge weakly through a number of indefinite openings are termed "seeps" or "seepage springs." Although inconspicuous and not generally utilized for water supplies, seeps in lowland areas and along the sides of valleys and draws play an important part in the hydrologic cycle, for a substantial amount of ground water is discharged through them. An even larger amount is discharged by diffused seepage directly into the beds of streams. Springs important as sources of water supply generally discharge through a smaller number of more definite openings.

Springs are of various types, but their type is not always ascertainable owing to the presence of soil or talus, vegetal cover, or structures built to collect the flow. The rock structures responsible for many springs lie hidden below surficial deposits which merely conduct the water to the surface but play no important part in causing it to flow. The springs of Carroll and Frederick Counties are "gravity" springs, as opposed to those that result from deepseated flow. Some of the springs discharge along permeable zones of sheared rock, particularly in the schists; some are along local zones of closely spaced joints which favor discharge of ground water; some emerge at the contact between permeable overburden and the underlying less permeable fresh rock; and others discharge from local permeable zones within the overburden. Systems of solutional openings that intersect the land surface may discharge large quantities of ground water. This type of spring is associated with the most soluble rocks, the limestones and marbles. Small seeps emerge in small depressions on flood plains. Such seeps are commonly developed for use simply by means of a dug pit and are, in effect, shallow dug wells. Some of the marshy wet spots on flood plains result from capillary rise of water from the shallow water table. These areas of capillary discharge are not properly classed as seeps or springs as water does not flow from them.

Gravity springs may be classified in the following manner (adapted in part from Bryan):

- a. Depression springs, due to the intersection of the land surface and the zone of saturation. In its general sense this class may include nearly all springs, but in a restricted sense it refers to those that result when a stream cuts down to the water table. Depression springs are common near the heads and along the sides of draws and on stream flood plains.
- b. Contact springs, which discharge where permeable water-bearing rock overlies relatively impermeable rock. In Carroll and Frederick Counties springs of this type occur most commonly along the contact of the permeable mantle with the underlying fresh rock; some occur at the contact of marble with interbedded volcanics; and some occur along the contact between mountain-wash or flood-plain deposits and the underlying bedrock.
- c. Artesian springs, which rise along crevices from a permeable waterbearing zone confined between relatively impermeable rocks. Zones of fracture or shear bordered by more massive and less permeable rocks which serve as confining beds may produce artesian springs in Carroll and Frederick Counties. In like manner, permeable beds in the tilted

Triassic rocks may produce artesian springs. Water in isolated joints fed from higher ground may be under artesian pressure and may form artesian springs.

Obviously these categories overlap. A spring may be both a depression spring and a contact spring, or an artesian spring and a contact spring, or even a combination of all three types.

The discharge of springs in Carroll and Frederick Counties ranges from several hundred gallons per minute for some of the limestone springs to a fraction of a gallon per minute. Most of the springs utilized for water supply discharge between 1 and 10 gpm. The public water-supply systems of many of the towns are entirely or partly dependent upon springs. Most of the springs fluctuate greatly in discharge rate, in accordance with fluctuations of the water table in their vicinity. Some are intermittent wet-weather springs usually those near hilltops where the water-table fluctuations are greatest and those that discharge from small perched ground-water bodies that soon drain. Others, at lower elevations, have access to greater ground-water reserves and are perennial.

#### Utilization of ground water

#### Amounts used

The daily use of ground water in Carroll and Frederick Counties amounted to about 6.6 million gallons in 1956 and 1957. About 16 percent was used for institutional and public supplies, 15 percent for industrial and commercial purposes, and 69 percent for rural domestic and farm supplies. Table 5 shows the uses by counties.

The principal public-supply systems that use ground water for a major part or all of their supply are those of Hampstead, Manchester, New Windsor, Taneytown, and Union Bridge, in Carroll County, and Braddock Heights, Brunswick, Emmitsburg, Middletown, Mount Airy (partly in Carroll County),

| Carroll Co.<br>Frederick Co.<br>Both counties | Institutional and public supplies <sup>a</sup> | Industrial and com-<br>mercial supplies | Domestic and farm supplies | Totals |  |  |  |
|-----------------------------------------------|------------------------------------------------|-----------------------------------------|----------------------------|--------|--|--|--|
| Carroll Co.                                   | 0.36                                           | 0.70                                    | 2.39                       | 3.45   |  |  |  |
| Frederick Co.                                 | .74                                            | .32                                     | 2.11                       | 3.17   |  |  |  |
| Both counties                                 | 1.10                                           | 1.02                                    | 4.50                       | 6.62   |  |  |  |

| - |      | -  | -   | -   | 100    |
|---|------|----|-----|-----|--------|
|   | ° А. | 12 |     | LC. | - Mar. |
| L | 13   | Ð  | 1.1 | 1.5 | ~      |
|   |      |    |     |     |        |

Use of Ground Water in Carroll and Frederick Counties, 1956-57

(million gallons per day)

<sup>a</sup> Includes some ground water supplied to industrial users through public-supply systems.

Myersville, Walkersville, and Woodsboro, in Frederick County. Frederick, the largest municipality in the area, uses surface water.

Pumping of ground water for cannery operations is heavy during the canning season (June to September), but the canneries are shut down during the rest of the year. The water is used chiefly for cooling canned foods.

Although about 5 million gallons of water was used daily for irrigation in the two counties during the irrigating season of 1957, practically all came from streams and ponds. About 300,000 gallons was pumped daily from wells for irrigation in Carroll County, but wells were a negligibly small source of irrigation water in Frederick County. Some ponds are partly or entirely fed by ground water either because they are dug below the water table or because they are spring fed. The water from such ponds should be considered ground water. The practice of supplemental irrigation, which has increased substantially in the last decade, is expected to continue to increase, and the use of ground water for this purpose also will continue to increase.

Not included in Table 5 is the water pumped from several operating quarries. Several million gallons of water is pumped daily from these quarries, most of this being ground water discharged from crevices in the quarry walls and floors. The water is removed to keep the quarries from flooding and is used for washing rock. It is pumped to nearby streams. Also not included is the discharge from ditches dug to reclaim swampy land for cultivation.

## Methods

There are numerous methods of obtaining ground water—wells, radial collectors, infiltration galleries, springs, spring-fed ponds, and others. In Carroll and Frederick Counties drilled wells and springs are the principal means of obtaining ground water. Dug wells, although popular in the past, are rapidly being replaced by the more sanitary, more efficient, and more dependable drilled wells. The greater efficiency of drilled wells lies in the fact that, being deeper than dug wells, usually they penetrate a greater portion of the aquifer. In addition, most of the well hole is open, or uncased, whereas dug wells may be brick walled or lined with concrete rings which inhibit the entrance of ground water. The hard rocks of these counties do not lend themselves readily to the construction of bored, driven, or jetted wells. Locally where the rocks are soft (for example, unconsolidated alluvial deposits that are free of boulders) wells may be constructed by these methods.

Drilled wells are constructed by both the cable-tool percussion method and the rotary method. Only a few drillers use rotary equipment, which although it drills a hole faster, is considerably more expensive than cable-tool equipment and requires greater skill in operation. Compressed air rather than the conventional drilling mud is commonly used to bring cuttings to the surface.

Commonly, domestic drilled wells are 6 inches in diameter, and  $5\frac{5}{8}$ -inch

steel casing is installed, extending from the land surface to bedrock. Most public-supply and industrial wells are 8 inches in diameter. Although the greater diameter increases the yield very little, it permits the use of a larger pump. Also, the heavier 8-inch tools facilitate drilling.

Both developed and undeveloped springs are used in Carroll and Frederick Counties. The developmental structure usually is a brick or concrete-lined collecting pit at the spring site from which the water flows by gravity, or is pumped, to the place of use. Like dug wells, springs are less sanitary and dependable than drilled wells and are gradually being abandoned in favor of drilled wells.

Little can be done to improve the flow of a spring other than to keep the openings free of silt or vegetation and to construct the collecting basin to capture as much as possible of the discharge. Artificial springs may be constructed at favorable sites by drilling horizontally into a hillside.

Infiltration galleries are trenches dug in permeable unconsolidated rocks where the water table is shallow. Drain pipes are laid in the trenches and are inclined toward a central collecting sump from which the water is pumped. In Carroll and Frederick Counties no such galleries are in use, and they would be limited to areas bordering streams where the water table is shallow and the rock soft. Where the water table fluctuates greatly the discharge of infiltration galleries may be intermittent. There is also the problem of susceptibility to contamination, as with other structures that take ground water from shallow depth.

Dual-purpose fish and irrigation ponds dot the countryside of these counties. Most of the ponds are formed by impounding water with earth dams across small draws. The ponds may depend upon surface runoff or spring discharge but most commonly depend on both. Some ponds have been excavated several feet into the zone of saturation in soft rock alongside streams. They are essentially large-diameter wells. Water is discharged from the ponds by pumping, by flow over the spillway, by leakage, and by evaporation. Some ponds in Maryland are replenished with water from wells, but no such ponds are known in Carroll and Frederick Counties.

As electricity became accessible to rural areas, dependence upon windmills, bucket-and-windlass assemblies, and hand pumps declined, and now about 80 percent of the wells in Carroll and Frederick Counties are equipped with electrically powered pumps. Most of them are jet pumps or deep-well cylinder (plunger) pumps having motors of about 1 horsepower and capacities between 3 and 6 gpm. Municipalities and industrial firms commonly use higher capacity pumps, usually deep-well cylinder or turbine pumps. Where the water table is shallow and the specific capacity of the well high, so that the drawdown is not excessive, centrifugal suction pumps are used.

# Aquifer and well evaluation by pumping-test methods

Various field methods are used to determine the performance characteristics and yield of wells and the water-bearing characteristics of aquifers. They include (1) drillers' acceptance tests, (2) specific-capacity tests, and (3) aquifer tests. The first two may be grouped together as "well-performance" tests.

# Drillers' acceptance tests

Upon completing a well the driller bails or pumps it for a short time to bring clear water into it, to clean out crevices in the rock bordering the hole, and to ascertain the availability of the required supply of water. Most wells are drilled with a cable-tool machine, and the dart-valve bailer used to extract cuttings from the well hole during drilling is used generally to withdraw water from the well during the acceptance test. The rate of withdrawal by this method is governed by the capacity of the bailer and the rapidity with which the driller can perform repeatedly the cycle of lowering the bailer, filling it, raising it, and emptying it. Although the water level in the well is fluctuating during the pumping, lowering abruptly when a bailerfull is withdrawn and then rising while the bailer is being emptied and rising further as the bailer is submerged again, ordinarily the driller can determine a reasonable value for an average pumping level. Markings on the bailer cable indicate the depth to which the bailer is lowered.

Most wells are bailer tested for only a short time, a few minutes to 2 hours, but some drillers bail for several hours. Short tests are of questionable value as indicators of well yields. During short periods of pumping most of the water is derived from the well hole and from storage in the rock in the immediate vicinity of the well. During these brief tests the cone of depression of the well is not given a chance to expand so as to show whether storage in the surrounding area is adequate to maintain the yield of the well for longer periods of pumping or during periods of low water table. Industrial, commercial, and public-supply wells generally are test pumped for longer periods, commonly 6 hours to 3 days, and more elaborate equipment is used, such as turbine pumps or cylinder pumps. The discharge rate is estimated on the basis of pump capacity, or where more accurate measurements are desired a meter or a gage of some type is used, or the discharge is estimated from the time it takes to fill a large container of known volume.

Considerable hydraulic information of this nature on wells, as well as geologic information, has been acquired by the Maryland Department of Geology, Mines and Water Resources through implementation of the State Water Resources Law of 1933 and the complementary Well Law of 1945. These laws require that a permit be obtained from the Department before a well is drilled and that a well completion report be filed with the Department after the well

Form 5

# STATE OF MARYLAND

#### DEPARTMENT OF GEOLOGY, MINES AND WATER RESOURCES

The Johns Hopkins University BALTIMORE 18, MARYLAND

#### WELL COMPLETION REPORT

This report must be submitted within 30 days after completion of the well

| WELL D                                                                                                     | ESCRIPTION                                                                                                                    |                                      | Permit Number                        |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| WELL LOG<br>State the kind of formations penetrated, their<br>depth, their thickness, and if water-bearing | CASING ANU SCREEN REC<br>State the kind and size of casing,<br>screen, and other accessories (if no<br>give diameter of well) | CORD<br>liner, shoe,<br>casing used, | Name of Owner                        |
| DECT                                                                                                       | DIAM                                                                                                                          | FFF                                  | PUMPING TEST                         |
| from. to                                                                                                   | . (inches)                                                                                                                    | from . to .                          | Hours Pumped                         |
|                                                                                                            |                                                                                                                               |                                      | Type of Pump Used                    |
|                                                                                                            |                                                                                                                               |                                      | Pumping Rate<br>Gallons per Minute   |
|                                                                                                            |                                                                                                                               |                                      | WATER LEVEL                          |
|                                                                                                            |                                                                                                                               |                                      | Distance from land surface to water: |
|                                                                                                            |                                                                                                                               |                                      | Before Pumping Ft.                   |
|                                                                                                            |                                                                                                                               |                                      | When Pumping Ft.                     |
|                                                                                                            |                                                                                                                               |                                      | APPEARANCE OF WATER                  |
|                                                                                                            |                                                                                                                               |                                      | Clear                                |
|                                                                                                            |                                                                                                                               |                                      | Cloudy                               |
|                                                                                                            |                                                                                                                               |                                      | Taste                                |
|                                                                                                            |                                                                                                                               |                                      | Odor                                 |
|                                                                                                            |                                                                                                                               |                                      | Height of Casing Above Land          |
|                                                                                                            |                                                                                                                               |                                      | SurfaceFt.                           |
|                                                                                                            |                                                                                                                               |                                      | PUMP INSTALLED                       |
|                                                                                                            |                                                                                                                               |                                      | Туре                                 |
|                                                                                                            |                                                                                                                               |                                      | Capacity                             |
|                                                                                                            |                                                                                                                               |                                      | Gallons per Minute                   |
|                                                                                                            |                                                                                                                               |                                      | Gallons per Hour                     |
|                                                                                                            |                                                                                                                               |                                      | Pump Column LengthFt.                |
|                                                                                                            |                                                                                                                               |                                      | REMARKS                              |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      |                                      |
|                                                                                                            |                                                                                                                               |                                      | Well Waa Completed                   |
|                                                                                                            |                                                                                                                               |                                      | Date                                 |
|                                                                                                            |                                                                                                                               |                                      | Well Driller                         |
|                                                                                                            |                                                                                                                               |                                      | Signature                            |
| 1                                                                                                          | 1                                                                                                                             | 1                                    | oightture                            |

FIGURE 6. Well-Completion Report Form

is completed. Figure 6 is a copy of the Well Completion Report form. Owners of commercial, industrial, and public-supply wells, and even domestic wells would find it advantageous to maintain a similar record of their wells in order to facilitate repairs to pumping equipment or wells, and for comparison of acceptance-test data with subsequent well performance to detect changes in yield and specific capacity.

# Specific-capacity tests

Although a simple bailing or pumping test is informative, a more refined evaluation of the hydraulic characteristics of a well is obtained by a specificcapacity test. The specific capacity is the rate of discharge per unit drawndown of the water level, and is commonly expressed in gallons per minute per foot of drawdown. Abbreviating the units to "gallons per foot of drawdown," as is sometimes done, is misleading in that it implies a relation between the volume of water pumped and the resultant drawdown, whereas the intended relation is between the rate of pumping and the drawdown. A simple specific-capacity test consists of pumping a well at a constant rate for a certain period of time and measuring accurately the drawdown caused by the pumping.

As an example, if a well whose initial nonpumping water level was 10 feet below the land surface were pumped at a rate of 20 gpm for 6 hours, and by the end of the 6 hours the water level had declined to 50 feet below the land surface, the specific capacity for a 6-hour period would be

 $\frac{\text{Pumping rate}}{\text{Pumping level - Static level}} = \frac{20 \text{ gpm}}{50 \text{ ft.} - 10 \text{ ft.}}$ 

= 0.5 gpm per foot of drawdown

Specifying the length of pumping time is important because, in most wells, the water level is still declining, even though slowly, at the end of a pumping period, and it is misleading to compare specific capacities determined in tests of greatly different lengths. It is helpful also to give the water-level data as well as the final result, particularly where the water occurs under water-table conditions and the aquifers yield water chiefly from crevices as they do in Carroll and Frederick Counties. The specific capacity decreases with continued pumping, chiefly because of the decreased thickness of saturation in the vicinity of the pumped well and of the withdrawal of water from storage in the uppermost crevices. A number of wells of small yield in Carroll and Frederick Counties are equipped with pumps of high capacity selected on the basis of short tests.

In a well penetrating an extensive aquifer the pumping level will decline approximately in proportion to the logarithm of time, and a seeming tendency of the pumping level to level off after a time should not be interpreted as

stabilization of the water level. This apparent leveling off reflects the logarithmic relation with time, and although the additional water-level decline for each consecutive hour of pumping may be small, the cumulative drawdown after a long period of pumping will be large and significant in comparison to that for a short period. This hydraulic characteristic is not especially important for most domestic wells, but it is of great importance to commercial, industrial, and municipal wells which may be pumped continuously for hours or days.

A refinement of the specific-capacity test is the "step test," which consists of pumping a well for short periods at each of several successively greater pumping rates and determining the drawdown for each pumping rate. Wells in Carroll and Frederick Counties customarily show a decrease in specific capacity with each incremental increase in pumping rate, reflecting, among other things, a decrease in the permeability of the rocks with depth due to the emptying of the uppermost crevices and a diminution in size of crevices with depth. Specificcapacity tests, and especially step tests, are useful in establishing the magnitude of increases in well capacity as a well is deepened. Figure 7 shows specificcapacity curves for step tests made at three stages of the drilling of a well in schist (Car-Bf 29 at Hampstead). A substantial increase in well yield was obtained when the well was deepened from 80 to 107 feet, as indicated by the more moderate slope of the 107-foot curve and its position to the right of the



FIGURE 7. Specific-Capacity Curves Based on Drawdown and Pumping Rate for Short Periods of Pumping at Three Depths of Drilling of a Well in Schist

80-foot curve. The specific-capacity curve for a step test made when the well was 125 feet deep plots only slightly to the right of the 107-foot curve and is practically an extension of it. On the basis of the third step test it was concluded that the important water-bearing zone had been fully penetrated and drilling was terminated. Such tests may also reveal the bottom of an aquifer, inasmuch as the specific capacity will decrease sharply when the pumping level falls below the bottom of the principal water-bearing zone. Step tests have been helpful in the ground-water investigations in Carroll and Frederick Counties, and the results of step tests are included in the descriptions of the water-bearing formations. Specific-capacity tests of the wells involved should precede aquifer tests, because they outline the hydraulic characteristics of the wells and reveal aquifer characteristics that are helpful in planning and deciphering the aquifer tests.

## Aquifer tests

An aquifer test is a test in which measurements of the response of the head of the aquifer to imposition of external forces can be interpreted in terms of transmissibility and storage coefficients. Most such tests involve withdrawing water from or adding water to wells and measuring the resulting changes in head in those and other wells. Theis (1935) developed a formula that relates the change of the water level in an aquifer as a function of time since withdrawal or addition began to the rate of withdrawal of water from or addition of water to a well or wells. The basic formula is widely used in hydrologic investigations to determine coefficients of transmissibility and storage and to evaluate the water-bearing capacity of aquifers and the efficiency of wells. It is superior to earlier formulas in that the time factor is taken into consideration. The formula is:

$$s = \frac{114.6Q}{T} \int_{1.87r^2 B/Tt}^{\infty} \frac{e^{-u}}{u} du$$

where s = the drawdown or recovery of water level in feet at any point within the cone of depression

- Q = the discharge rate of the pumped (recharged) well in gallons per minute
- T = the coefficient of transmissibility in gallons per day per foot
- S = the coefficient of storage
- r = the distance in feet of the point of observation from the pumped (recharged) well
- t = the time in days since pumping (recharge) started or stopped  $u = 1.87r^2S/Tt$

Knowing the transmissibility and storage coefficients, it is possible to substitute

them in the above formula and estimate future water-level drawdown at any time for any pumping rate and at any distance from the well being pumped, on the assumption that the aquifer satisfies the assumptions in the formula.

The formula assumes ideal geologic and hydrologic conditions that do not exist in nature, so that it must be used with caution. The major assumptions are that the aquifer is infinite in areal extent, is homogeneous and isotropic (transmits water equally readily in all directions), has uniform thickness, releases water from storage instantaneously with a decline in head, and is overlain and underlain by impermeable material. It is further assumed that the pumped well is of infinitesimal diameter and completely penetrates the aquifer so that flow toward the well is radial (two-dimensional).

The field procedure is similar to that for specific-capacity tests. The rate or rates of discharge should be held constant and precisely measured, and water levels in observation wells and the pumped well should be measured to 0.01 foot or better to define accurately the shape of the cone of depression and its rate of change in shape. After pumping is stopped, recovery of the water levels also is measured, for the hydrologic coefficients and other information often can be determined from the nature of recovery of the cone of depression. Brown (1953) has summarized the principal procedures for analyzing aquifer-test data.

Various methods have been developed to simplify solution of the Theis equation (Wenzel, 1942; Cooper and Jacob, 1946). Other modifications (Muskat, 1937; Jacob, 1946; Ferris, 1948) are designed to adjust for field conditions that deviate from those required by the basic Theis formula, such as aquifer boundary conditions and leakage from one aquifer to another. These adaptations and the theory on which they are based are relevant to a study of ground water in Carroll and Frederick Counties, where the aquifer characteristics are appreciably different from those required by the basic formula.

In Carroll and Frederick Counties the aquifers are, in the main, neither homogeneous nor isotropic, the water being transmitted through irregularly distributed fractures and solutional openings and through a weathered mantle of variable thickness and permeability. Ordinarily the mantle of weathered rock will satisfy the requirements of the Theis formula more closely than the fresh rocks. Generally in the fresh rocks the permeability decreases with depth as fractures tighten and solutional openings become smaller and less numerous. The "aquifer thickness"—the thickness of the zone in which openings are effective in transmitting water—varies from place to place. The upper surface of the aquifers (the water table) conforms more or less to the land surface, though it is more subdued. The lower aquifer "surfaces" are indefinite zones within which joints and solutional openings disappear. Rock schistosity or foliation or principal directions of jointing may lead to preferred directions of transmission of ground water.

#### TABLE 6

| Location<br>Carroll County<br>Westminster<br>Hampstead<br>Taneytown<br><i>rederick County</i><br>Burkittsville<br>Foxville<br>Adamstown<br>Mount Airy |                                      | Hydrologic coefficients           |         |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|---------|--|--|--|--|--|--|
|                                                                                                                                                       | Water-bearing formation              | Transmis-<br>sibility<br>(gpd/ft) | Storage |  |  |  |  |  |  |
| Carroll County                                                                                                                                        |                                      |                                   |         |  |  |  |  |  |  |
| Westminster                                                                                                                                           | Wakefield marble                     | 52,000                            | 0.004   |  |  |  |  |  |  |
| Hampstead                                                                                                                                             | Wissahickon (albite facies)          | 5,000                             | .03     |  |  |  |  |  |  |
| Taneytown                                                                                                                                             | New Oxford formation                 | 5,000                             | .001    |  |  |  |  |  |  |
| Frederick County                                                                                                                                      |                                      | ,                                 |         |  |  |  |  |  |  |
| Burkittsville                                                                                                                                         | Catoctin metabasalt                  | 6,800                             | .021    |  |  |  |  |  |  |
| Foxville                                                                                                                                              | Aporhyolite                          | 2,200                             | _       |  |  |  |  |  |  |
| Adamstown                                                                                                                                             | Frederick limestone (400-ft. zone) * | 430-680                           | .000017 |  |  |  |  |  |  |
| Mount Airy                                                                                                                                            | Marburg schist                       | 7,300                             | .02     |  |  |  |  |  |  |

## Summary of Hydrologic Coefficients Determined by Aquifer Tests

 $^{\rm a}$  Coefficient of leakage of 0.00016 gpd/ft²/ft determined for overlying semiconfining rock.

Streams, which may act as positive hydraulic boundaries or line sources of recharge (Theis, 1953), intersect the aquifers here and there. In interstream areas, owing to the relatively high elevation of the water table beneath uplands, the aquifers are mound-shaped, the water moving in the directions of slope of the mound surfaces.

Although the aquifers in Carroll and Frederick Counties do not lend themselves readily to analysis by aquifer-test methods, the tests are of value in that they yield approximate values of the hydrologic coefficients, reveal certain hydrologic and geologic characteristics of the aquifers and associated rocks, permit rough estimates of "safe yield," and furnish actual measurements of interference between wells. From this information it is possible to make reasonable estimates of the long-term effects of various pumping regimens. Results of aquifer tests made in Carroll and Frederick Counties are summarized in Table 6. The tests are described in the section on the geologic formations and their water-bearing properties.

#### Analysis of well data

#### Introductory statement

The subsections that follow evaluate the importance of the factors that determine aquifer characteristics and well yields, primarily by means of a statistical analysis of well records. The analysis shows, among other things, the relation between well yields and their depth, their topographic position or geologic setting, and the thickness of the weathered mantle.

Certain characteristics of the well data moderate the significance of the results.

Well data reported by drillers generally are reasonably accurate, but the yields reported may be based on tests ranging in duration from a few minutes to several days. In addition, the wells may or may not be pumped at their maximum rates of output. Conversion of the reported pumping-test data into terms such as specific capacity and yield per foot of depth smooths out the irregularities to some extent. The data on topographic position of the wells are subject to personal interpretation, as there is no precise dividing line between topographic forms.

Although the well data violate some of the requirements of formal statistical analysis—data for some geologic units are voluminous and for others skimpy, for example—the results of the analysis appear to be reasonably reliable. Moreover the well records are the best information available for evaluating the water-bearing properties of the rocks. In some instances statistical reliability has been improved by omitting items for which only a few data were available.

# Relation of yield of wells to rock type

Variations in lithology and structure and in topography and exposure of the rocks in Carroll and Frederick Counties result in differences in their waterbearing properties. Even within one rock body the water-bearing properties vary from place to place. A body of crystalline rock may be massive in one place and schistose in another, closely jointed in one place and widely jointed in another. A sedimentary rock may contain sizable intergranular openings in one place which are filled with a cementing material in another; a carbonate rock may be more soluble in one place than another so that the magnitude of solutional openings varies. The water-bearing properties of most of the rocks are similar to the extent that the bulk of the wells yield between 5 and 20 gpm. A few of the rocks, particularly the carbonate rocks, are capable of furnishing much larger yields to wells. A summary of the average well yield for each geologic unit is given in Table 7 and is shown graphically in figure 8. The units are listed in order of decreasing average yield.

#### Relation of yield of wells to depth

The yields of wells in Carroll and Frederick Counties are not directly proportional to their depth, or even their depth below water level, because the permeability of the rocks is not uniform, ordinarily being greatest at shallow depth and less at successively greater depths. Thus each increment of depth does not cause a corresponding increase in yield.

The frequency with which various yields are obtained is shown in the upper part of figure 9. Most of the wells yield less than 30 gpm. The chance of obtaining a yield larger than this is small, but judicious selection of drilling sites will increase the chance (Table 8). The lower part of figure 9 shows the

# TABLE 7

Average Depth and Yield of Wells in Carroll and Frederick Counties by Geologic Units (For a Few Units the Average Value Shown is Based on Less Than the Total Number of Wells Inventoried)

| Geologic Unit                       | Number<br>of<br>wells | Average<br>depth<br>(feet) | Average<br>yield<br>(gpm) | Average<br>specific<br>capacity<br>(gpm/ft.) | Average<br>yield per<br>foot of<br>depth<br>(gpm/ft) | Rank in<br>water-<br>yielding<br>capacity |
|-------------------------------------|-----------------------|----------------------------|---------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------|
| Wakefield marble                    | 35                    | 139                        | 106                       | 5.8                                          | 0.76                                                 | 1                                         |
| Weverton quartzite                  | 5                     | 391                        | 35                        | .4                                           | . 09                                                 | 2                                         |
| Grove limestone                     | 32                    | 135                        | 32                        | 2.5                                          | .24                                                  | 3                                         |
| Frederick limestone                 | 119                   | 119                        | 25                        | 3.8                                          | .21                                                  | 4                                         |
| Sykesville formation                | 16                    | 125                        | 23                        | 2.7                                          | .18                                                  | 5                                         |
| Silver Run limestone                | 6                     | 141                        | 21                        | .7                                           | .15                                                  | 6                                         |
| Tomstown dolomite                   | 2                     | 79                         | 20                        | 1.0                                          | .25                                                  | 7                                         |
| Marburg schist                      | 86                    | 88                         | 17                        | 2.7                                          | .19                                                  | 8                                         |
| Wissahickon formation, albite-chlo- | 168                   | 100                        | 16                        | 1.5                                          | .16                                                  | 9                                         |
| rite facies                         |                       |                            |                           |                                              |                                                      |                                           |
| Peters Creek quartzite              | 28                    | 99                         | 16                        | 1.5                                          | .16                                                  | 9                                         |
| Catoctin metabasalt                 | 83                    | 91                         | 14                        | 1.1                                          | .15                                                  | 11                                        |
| Aporhyolite                         | 22                    | 52                         | 12                        | .8                                           | .23                                                  | 12                                        |
| Urbana phyllite                     | 39                    | 79                         | 11                        | .4                                           | .14                                                  | 13                                        |
| New Oxford formation                | 161                   | 106                        | 11                        | .7                                           | .10                                                  | 13                                        |
| Gettysburg shale                    | 57                    | 93                         | 10                        | .5                                           | .11                                                  | 15                                        |
| Harpers phyllite                    | 39                    | 169                        | 10                        | .5                                           | .06                                                  | 15                                        |
| Antietam quartzite                  | 23                    | 92                         | 9                         | .8                                           | .09                                                  | 17                                        |
| Sams Creek metabasalt               | 35                    | 98                         | 8                         | .5                                           | .08                                                  | 18                                        |
| Ijamsville phyllite                 | 58                    | 77                         | 8                         | .9                                           | .10                                                  | 18                                        |
| Libertytown metarhyolite            | 9                     | 82                         | 8                         | .7                                           | .10                                                  | 18                                        |
| Baltimore gneiss                    | 2                     | 137                        | 8                         | <.1                                          | .06                                                  | 18                                        |
| Granodiorite and granite gneiss     | 47                    | 74                         | 7                         | .6                                           | .09                                                  | 22                                        |
| Loudoun formation                   | 20                    | 81                         | 6                         | .3                                           | .07                                                  | 23                                        |
| Mountain wash (alluvial cones)      | 5                     | 25                         | 4                         | .4                                           | .16                                                  | 24                                        |
| Metagabbro                          | 1                     | 45                         | 3                         | _                                            | .07                                                  | 25                                        |

frequency of occurrence of well depths. Most of the wells are less than 150 feet deep, and probably most of the wells that were drilled deeper than 150 to 200 feet obtained little water in their lower parts. Two 150-foot wells may be expected to yield more water than one 300-foot well.

The relation between well yield and well depth is shown in figure 10. Inasmuch as ground water occurs in the carbonate rocks under conditions somewhat different from those in the siliceous rocks, the data for wells drilled in these rock types are shown separately. The upper graph shows that practically no increase in yield is obtained by drilling below 200 to 300 feet in the silicate rocks. In yield per foot of depth, the greatest contributions of water come from depths of less than 100 feet. The lower graph suggests that deeper drilling in



FIGURE 8. Comparison of the Average Yield of Wells in the Principal Water-Bearing Formations

the carbonate rocks is more rewarding. However, the 400- to 1,200-foot interval is based on records of only a few wells, and at least one of these apparently obtains most of its water from the shallower part of the interval. Nevertheless, the chances of encountering water-bearing zones in the lower part of this interval in the carbonate rocks are much better than in silicate rocks.

#### Relation of yield of wells to topographic position

The topographic position of a well drilled in the silicate crystalline rocks in Carroll and Frederick Counties is an important factor in regard to its yield. The relation is less apparent, and presumably less significant, in the areas of sedimentary rock and marble, which are characterized by low to moderate relief.

In the areas of silicate crystalline rock, wells drilled in valleys have the highest average yields and those drilled on hilltops have the lowest. On the average, wells drilled on broad upland flat areas or hillsides have intermediate yields. The relations are summarized in Table 8.

Essentially the same relations have been determined for other Maryland counties in the Piedmont province (Dingman and Meyer, 1954; Dingman and Ferguson, 1956).

Draws and valleys are the most productive areas chiefly for the following reasons:





FIGURE 10. The Relation Between Yield and Depth of Wells

| T | Å  | Ι   | 31 | ٢. | Ē | 8 | i |
|---|----|-----|----|----|---|---|---|
| - | ÷. | * * |    | ~  | × | 0 |   |

Average Yield of Crystalline-Rock Wells in Carroll and Frederick Counties According to Topographic Position

|                               | Average yield (gpm) |
|-------------------------------|---------------------|
| Valley, valley flat, and draw | 27                  |
| Hillside                      | 12                  |
| Upland flat                   | 11                  |
| Hilltop                       | 10                  |

(1) In draws and valleys the water table is near the surface, so that a larger part of the well penetrates the saturated zone. Ordinarily, the mantle of weathered rock plays an important part in determining the productivity of crystalline-rock wells, and it is more fully saturated in valleys than on hilltops, though probably not thicker on the average. The relationship is depicted schematically in figure 11. Well A penetrated unsaturated mantle rock above the water table and derived a small supply from the bedrock. Well B penetrated the saturated mantle and obtained a better supply.

(2) The draws and valleys are areas toward which the ground water moves. A well is favorably situated hydrologically when the water table slopes toward it from every direction except the downstream one. A cone of depression developed around a pumped well steepens the gradient toward the well from these directions and may even reverse the downstream gradient. Hilltops, on the other hand, generally overlie ground-water divides, and hence ground water is moving away from wells on hilltops.

(3) Draws and valleys may mark zones of weakness in the rocks—that is, zones of closer fracturing or greater susceptibility to weathering, solution, or



FIGURE 11. Diagram Showing Relation Between Well Yields and Position of Water Table in Crystalline Rocks

erosion. Fracturing, weathering, and solution facilitate development of porous and permeable rock under most circumstances.

#### Depth of weathering and well yield

The yield of many wells in Carroll and Frederick Counties appears to be governed by the depth and character of the weathered zone. When wells are drilled in the Maryland Piedmont, the casing is commonly seated on the ledge of hard rock beneath the mantle rock or weathered zone. Thus, the lengths of casing used in wells indicate approximately the depth of the weathered zone.

The lengths used in 699 wells in the area range from a few feet to 235 feet in a well in limestone in the Frederick valley. The average depth of weathering ranges from 16 feet in the Libertytown metarhyolite to 68 feet in the Wakefield marble. It is significant that the Wakefield marble is the best aquifer (average yield 106 gpm) and the metarhyolite among the poorest (average yield 8 gpm).

Table 9 indicates the depth of weathering according to major provinces and rock groups. The table shows little differences among the major rock groups, except that the depth of weathering in the carbonate rocks of the Piedmont upland province is the greatest, averaging 59 feet in 24 wells. The average depth

# TABLE 9

Depths of Weathering in Carroll and Frederick Counties According to Provinces and Rock Types

| Province and rock group<br>Precambrian rocks of the Sou<br>Mountain-Catoctin Mounta<br>Area<br>Paleozoic metamorphosed rocks<br>sedimentary origin<br>Cambrian and Ordovician lim<br>stones of the Frederick valley<br>Silicate crystalline rocks of th<br>Piedmont Upland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | Depth of weathering <sup>a</sup> |                        |                        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|------------------------|------------------------|--|--|--|--|
| Province and rock group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water-bearing unit                               | No. of<br>wells                  | Maxi-<br>mum<br>(feet) | Aver-<br>age<br>(feet) |  |  |  |  |
| Precambrian rocks of the South<br>Mountain-Catoctin Mountain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Granodiorite and granite gneiss                  | 30                               | 107                    | 30                     |  |  |  |  |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Catoctin metabasalt                              | 60                               | 102                    | 30                     |  |  |  |  |
| Province and rock groupWater-bearing unitrecambrian rocks of the South<br>Mountain-Catoctin Mountain<br>AreaGranodiorite and granite gr<br>Catoctin metabasalt<br>Aporhyolite<br>All unitsaleozoic metamorphosed rocks of<br>sedimentary originLoudoun formation<br>Harpers phyllite<br>Antietam quartzite<br>All unitsambrian and Ordovician lime-<br>stones of the Frederick valleyTomstown dolomite<br>Frederick limestone<br>Grove limestonelicate crystalline rocks of the<br>Piedmont UplandBaltimore gneiss<br>Peters Creek quartzite<br>Sams Creek metabasalt<br>Libertytown metarhyolite<br>Ijamsville phyllite<br>Urbana phyllite<br>Marburg schist<br>Wissahickon formation (alt<br>chlorite facies)<br>All unitsarbonate rocks of the Piedmont<br>UplandWakefield marble<br>Silver Run limestone<br>All units | Aporhyolite                                      | 18                               | 45                     | 26                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All units                                        | 108                              | 107                    | 29                     |  |  |  |  |
| Paleozoic metamorphosed rocks of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loudoun formation                                | 15                               | 125                    | 38                     |  |  |  |  |
| sedimentary origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Harpers phyllite                                 | 31                               | 165                    | 35                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Antietam quartzite                               | 16                               | 40                     | 19                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All units                                        | 62                               | 165                    | 31                     |  |  |  |  |
| Cambrian and Ordovician lime-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tomstown dolomite                                | 2                                | 77                     | 55                     |  |  |  |  |
| stones of the Frederick valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frederick limestone                              | 81                               | 235ь                   | 30                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Grove limestone                                  | 19                               | 195 <sup>b</sup>       | 49                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All units                                        | 102                              | 235ь                   | 34                     |  |  |  |  |
| Silicate crystalline rocks of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Baltimore gneiss                                 | 1                                | 56                     |                        |  |  |  |  |
| Piedmont Upland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peters Creek quartzite                           | 19                               | 56                     | 28                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sams Creek metabasalt                            | 15                               | 60                     | 23                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Libertytown metarhyolite                         | 3                                | 23                     | 16                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ijamsville phyllite                              | 32                               | 57                     | 20                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urbana phyllite                                  | 22                               | 42                     | 17                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marburg schist<br>Wissahickon formation (albite- | 45<br>113                        | 82<br>225              | 25<br>37               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chlorite facies)                                 |                                  |                        |                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All units                                        | 250                              | 225                    | 29                     |  |  |  |  |
| Carbonate rocks of the Piedmont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wakefield marble                                 | 19                               | 170                    | 68                     |  |  |  |  |
| Upland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Silver Run limestone                             | 5                                | 92                     | 47                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All units                                        | 24                               | 170                    | 59                     |  |  |  |  |
| Rocks of the Triassic system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | New Oxford formation                             | 109                              | 75                     | 19                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gettysburg shale                                 | 44                               | 52                     | 18                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All units                                        | 153                              | 75                     | 19                     |  |  |  |  |

<sup>a</sup> Based chiefly on depths of well casings driven to refusal.

<sup>b</sup> Casings in some limestone wells are placed far below the weathered zone to seal off muddy water from cavernous zones.

of weathering is the least in the rocks of the Triassic system, only 19 feet in 153 wells. The average depth of weathering in all the rock units is about 29 feet.

### Quality of Ground Water

#### Sources of mineral constituents

The dissolved gases and mineral salts in the ground waters of Carroll and Frederick Counties include (1) those obtained from the atmosphere as the water vapor precipitates and falls through the atmosphere, (2) those dissolved from the soil and deeper portions of the zone of aeration as the water moves downward to the water table, and (3) those dissolved from the rocks below the water table as water circulates through them. Loss or alteration of previously absorbed mineral or gaseous matter may occur during this cycle. Of those constituents obtained from the atmosphere, carbon dioxide and oxygen are the most significant, for their presence increases appreciably the chemical activity of the water. Rainwater and snow-melt may contain also small quantities of chlorine, sulfur dioxide, hydrogen sulfide, oxides of nitrogen, ammonia, and other constituents. Carter and Sokoloff (1951, p. 14) determined a pH of 5.5, a chloride (Cl) content of 20 to 40 ppm, and traces of sodium, magnesium, zinc, and nitrate in two samples of rainwater collected in northern Baltimore City in the summer of 1951; and a pH of 5.0 to 5.5, chloride of approximately 10 ppm, and traces of sodium, magnesium, and other cations in a sample of rainwater collected near Frederick, Frederick County, during the same summer. Whether the chlorine was free or combined is not known; if combined, it is surprising that only traces of sodium and other cations were reported. Analyses of rainwater collected between July 1955 and July 1956 at Washington, D. C., supplied by Dr. Christian E. Junge, of the Air Force Cambridge Research Center, Bedford, Massachusetts, are summarized in Table 10.

Passing downward through the soil zone, the water may absorb carbon

TABLE 10

| Monthly | Average | Concentrations | of | Chemical | Constituents | in | Rainwaler | at | Washington, | D. | С., |
|---------|---------|----------------|----|----------|--------------|----|-----------|----|-------------|----|-----|
|         |         |                |    | July 195 | 5-July 1956. |    |           |    |             |    |     |

| Constituent      | Range of concentration (ppm) | Average concentration<br>(ppm) |
|------------------|------------------------------|--------------------------------|
| CI-              | 0.14-1.00                    | 0.32                           |
| SO4              | 1.9-7.8                      | 3.6                            |
| $NO_3^-$         | .12-1.80                     | .71                            |
| Na <sup>+</sup>  | .13-1.12                     | .29                            |
| Ca <sup>++</sup> | .1280                        | .40                            |
| $K^+$            | .0542                        | .17                            |
| $Mg^{++}$        | .0217                        | .06                            |
| NH4 <sup>+</sup> | .0270                        | .11                            |

dioxide and organic acids from humus and dissolve mineral matter from soil particles. Additional mineralization of the water occurs by solution of minerals as the water continues to move downward to the water table and then laterally to areas of discharge. The ground water may also deposit mineral matter. In Carroll and Frederick Counties this is shown by local "caulking" of joints and other openings with mineral matter, usually carbonate salts. The mineralogy of the rocks through which the ground water passes ordinarily determines the predominant chemical characteristics of the water. Owing to the great variety of rock types and structural conditions, the geochemistry of ground water in Carroll and Frederick Counties is complex.

Ground water flowing through the limestone and marble of Carroll and Frederick Counties dissolves appreciable quantities of mineral matter, chiefly calcium and magnesium carbonates which are the major constituents of these rocks. Most igneous and metamorphic rocks of the area are composed chiefly of silicate minerals, which are less soluble than carbonates, and ground water in these rocks is not highly mineralized. The principal constituents, however, are generally the same as are found in greater quantity in ground waters in the carbonate rocks. The Triassic rocks yield water somewhat similar to that of the limestone and marble, indicating the presence of abundant calcareous minerals in these rocks. A relatively high sulfate content in the water from the Triassic rocks, however, suggests the presence of gypsum or anhydrite as well as carbonate minerals. Ground water in some of the Triassic shales and sandstones is more highly mineralized than that from the limestones and marbles, presumably because the water in some of the Triassic formations moves more slowly, through minute openings, than it does in the carbonate rocks.

Chemical analyses were made by the Quality of Water Laboratory of the Geological Survey, Washington, D. C., of 21 samples of ground water from Carroll County and 41 samples from Frederick County. The results are given in Tables 11 and 12. The analyses aid in the study of the ground-water hydrology as well as indicating the suitability of the waters for specific purposes. Locally, for example, analyses of dissimilar ground waters may be used to distinguish concealed contacts between geologic formations.

The concentration of dissolved constituents is reported in water analyses as the number of parts by weight in a million parts by weight of water. The mineral constituents determined are divided into the positively charged cations and the negatively charged anions. The cations generally determined are iron, calcium, magnesium, sodium, and potassium; others include aluminum, manganese, copper, zinc, and lithium. The anions determined are bicarbonate, sulfate, chloride, fluoride, nitrate, and, less commonly, phosphate. In addition, silica and carbon dioxide were determined for many of the samples. The specific conductance and pH also were determined and the hardness was calculated. The temperature of the water was measured at the time the samples were

|                    | Hq                                   | 6.4           | 6.1                  | 7.9           | 8.0           | 7.7          | 5.0            | 7.5                  | 5.0                  | 20           | 6.3           | 6.0           | 1.               | 7.4          |              | 7.4           | 10           | 6.7                    | 6.2            | 6.7                    | 6.5                  | 6.7           |
|--------------------|--------------------------------------|---------------|----------------------|---------------|---------------|--------------|----------------|----------------------|----------------------|--------------|---------------|---------------|------------------|--------------|--------------|---------------|--------------|------------------------|----------------|------------------------|----------------------|---------------|
| SS.C)              | Specific conducta<br>at micromhos at | 207           | 64.3                 | 325           | 303           | 351          | 64.0           | 316                  | 491                  | 291          | 1             | 91.6          | 290              | 266          | 296          | 256           | 443          | 4.67                   | 102            | 59.9                   | 73.2                 | 116           |
| (CO <sup>3</sup> ) | Carbon dioxide (                     | l             | 3                    | 1             | I             | 1            | 1              | 90<br>++             | 1                    | l            | 1             | 1             | 9.2              | 7.0          | 4.6          | ыс.<br>20     | 1.2          | 1                      | 1              | 3                      | 0.0                  | +1            |
| d.<br>03<br>03     | Noncarbonate                         | 23            | 15 1                 | 1             | 1             | ī            | 17             | 60                   | 0                    | l            | 1             | 11            | 0                | 26           | 25           | 9             | 28           |                        | 13             | 0                      | 10                   | 0             |
| Harness<br>CaC     | Total                                | 54            | 23                   | 150           | 132           | 137          | 21             | 137                  | 109                  | 76           | 33            | 26            | 116              | 117          | 143          | 115           | 225          | 25                     | 27             | 71                     | 25                   | 27            |
|                    | abiloa bəvlozzid                     | 1             | 51                   | 190           | 182           | 221          | 42             | 1                    | 286                  | 185          | 128           | 1             | l                | 170          | 194          | ł             | 270.         | 80                     | 14             | T                      | 52                   | Ι             |
|                    | Phosphate (PO4)                      | 1             | 0.0                  | 1             | l             | 1.           | 0.             |                      | 1                    | 0.           | 1             | 1             |                  | .1           | Τ.           |               | 0.           | l                      | 1              | 1                      | 0.                   |               |
|                    | (sON) statiN                         | 5             |                      | 3.8           | ÷.+           | 9            | 8.1            | 0                    | 9                    | 1            | 5.0           | 10            | +                | 9            | 90           | 9.0           | 0            | -tr                    | 10             | 10                     | 2                    | 5             |
| _                  | Fluoride (F)                         | 1             | 0.01                 | 0.            | .1            | .11          | 0.             | 1                    | 0                    | 10.          | 1             | 1             | 1                | .01          | .01          | 1             | .2 2         | .01                    | 0              | ī                      | .2                   |               |
| _                  | Chloride (Cl)                        |               | 6.1                  | 9.6           | 0.8           | -            | 5.0            | 6                    | 6                    |              | -             | 2.0           | 1.0              | 2            | 6.3          | 6.6           | 0.2          | 6.0                    | 6.4            | 00                     | 4.1                  | 5.00          |
|                    | (102) stalfate                       | 1             | 3.0                  | 9             |               | 4            | 7.5            | 2                    | 6 7                  | 6.5 3        | -             | -7            | 6.6              | 6.6 1        | -            | 6.2           | ~            | 3.0                    | 5              |                        | 3.2                  | -             |
| 100                | DICH DOUBLE (ILC                     | 8             | 0                    | 4             | 1             | 0 2          | 5.0            | 5 2                  | 9 1                  | 6            |               | 10            | 9                | -            | 1            |               | 0 1          | -                      | -              | 0                      | 00                   | 3             |
| (*0)               | DII) atenodaenia                     | ~             | 1                    | 16            | 15            | 15           | 0              | 6                    |                      | 1            |               | -             | 14               | 2 11         | 2 14         | 13            | 2 24         | 7                      | _              | 4                      | 1                    | 4             |
| _                  | (i.I) muidii.I                       | 1             | 6 0.                 | 1             | 0             | -            |                |                      | 0                    | -            | 1             | 1             | 1                | 00           | 9            | 1             | 6            | 00                     | 6              |                        |                      | ļ             |
| _                  | (A) muissatoT                        | 8             | ~                    | 1.            |               |              | ~              | 9.                   | 6.1                  | 4.           | 1             | .3            |                  |              | -            | .2            | 5 1.         | _                      |                | -                      |                      | 12            |
|                    | (sN) muibo2                          |               | 5                    | 00            | 13            | 19           | 1.8            | 0                    | ++                   | 20           | 1             | 4             | 14               | 5.1          | 3            | 00            | S.           | 6.1                    | 1              |                        | 3.0                  |               |
|                    | (3M) muisənysM                       | 1.6           | 2.5                  | 0.0           | 7.9           | 6.1          | 1.7            | l                    | 15                   | 9.5          |               | 1             | 1                | 3.5          | 4            | 1             | 12           | 2.7                    | 2.4            | Î                      | 1.6                  | 1             |
|                    | (a) muisla)                          | 19            | 5.0                  | 46            | 40            | 45           | 4.8            | ļ                    | 19                   | 12           | ļ             |               | 1                | 41           | 49           | 1             | 65           | 5.4                    | 6.6            |                        | 7.4                  | Î             |
|                    | (uZ) oniZ                            | 1             | 0.03                 |               | I             | ς,           | 00.            | I                    |                      | -            | ļ             | I             | 1                | . 20         | .00          |               | .64          | 1                      | Ī              |                        | 00.                  |               |
|                    | Copper (Cu)                          |               | 0.02                 | 1             | 1             | .01          | .02            | 1                    | l                    | .03          | l             | 1             | l                | .01          | 00.          | l             | .00          | l                      |                | 1                      | 00.                  | 1             |
| fstot ,            | (nM) deancse (Mn)                    | I             | 0.01                 | 1             |               | 00.          | .01            | .01                  | .55                  | .01          | ļ             | I             | l                | .02          | .02          | ļ             | .01          | ļ                      | .05            | 1                      | .01                  | 1             |
|                    | Iron (Fe), total                     | 20            | 0.00                 | .03           | .06           | .39          | .12            | .03                  | .00                  | .06          | 0             | .06           | .0 <del>1</del>  | 60.          | .14          | +0.           | .39          | .70                    | ۲.             | .08                    | .08                  | .08           |
|                    | (IA) munimulA                        | 1             | 0.0                  | 1             | 1             | 00.          | ŝ              |                      | 2.                   | 00.          |               | 1             |                  | 0.           | 4.           |               | 0            |                        | 1.2            | Ĩ                      | 0.                   | 1             |
|                    | (#OiS) abilia                        | 1             | 7.0                  | 17            | 19            | 22           | 4.2            | ļ                    | 7.8                  | 7.8          | 1             | 1             | ł                | 11           | 9.5          | 1             | 9.6          | 21                     | 7.4            | l                      | 11                   | l             |
| noitenr            | 101 gairsəd-rəfs74                   | New Oxford    | Wissahickon (albite) | New Oxford    | do            | do           | Marburg schist | Silver Run limestone | Wissahickon (albite) | do           | do            | do            | Wakefield marble | do           | do           | do            | do           | Peters Creek quartzite | Marburg schist | Peters Creek quartzite | Wissahickon (albite) | qo            |
| τ                  | Date of collection                   | Dec. 21, 1955 | May 12, 1954         | Nov. 18, 1947 | Dec. 18, 1946 | Feb. 5, 1952 | Mar. 15, 1955  | May 14, 1956         | Mar. 20, 1951        | Feb. 5, 1952 | Jan. 19, 1954 | June 21, 1955 | June 22, 1955    | May 12, 1954 | May 12, 1954 | June 22, 1955 | Mar. 9, 1955 | Aug. 1945              | Mar. 21, 1951  | June 22, 1955          | Mar. 9, 1955         | June 20, 1955 |
| Jui                | O Well or spr                        | Ab 2          | Af 8                 | Bb 2-7        | Bb 4          | Bb 9         | Bd 13          | Bd 21-22             | Bf 2                 | Bf 3         | Bf 17°        | Bf 34         | Cb 3             | Cd 16        | Cd 18        | Cd 21         | Cd 23        | Cf 11                  | Dd 1           | De 1                   | De 4                 | De 12         |

Chemical Analyses of Ground Water in Carroll County (chemical constituents in parts per million)

TABLE 11

<sup>a</sup> Iron in solution 0.12.

<sup>b</sup> Manganese in solution 0.00. <sup>c</sup> Analysis by Maryland Department of Health.

|                    | Hq                                | 6.5                 | 8.0              | 6.7          | 6.2           | 6.7                 | 5.9                | 7.0                 | 7.2              | 7.3           | 5.7          | 7.7             | 1.7                 | 1.7         | 7.4             | 6.9                 | 8.0                 | 6.3                 | 6.1           | 6.7                 | 7.5           | 6.3         | 7.2                    |            | 8.0               |                   |                   |               |
|--------------------|-----------------------------------|---------------------|------------------|--------------|---------------|---------------------|--------------------|---------------------|------------------|---------------|--------------|-----------------|---------------------|-------------|-----------------|---------------------|---------------------|---------------------|---------------|---------------------|---------------|-------------|------------------------|------------|-------------------|-------------------|-------------------|---------------|
| 52°C)<br>ance      | Specific conduct<br>(micromhos at | 271                 | 567              | 85.7         | 57.6          | 75.0                | 63.2               | 168                 | 414              | 440           | 32.2         | 417             | 440                 | 982         | 413             | 68.3                | 493                 | 163                 | 200           | 191                 | 192           | 94.9        | 147                    |            | 527               |                   |                   |               |
| (CO <sup>3</sup> ) | Carbon dioxide                    | 1                   | 3.1              | 9.2          | 6             | 1                   | 6.2                |                     | 1                | 1             | 2            | 6.6             | 6.6                 | 2           | 1               | 7.8                 | 4.1                 | 1                   | 0             | 9.8                 | 4.2           | 9.6         | 3.3                    |            | 1                 | _                 |                   |               |
| 03 Sas             | Noncarbonate                      | 613                 | 120              | 9            | 0 1           | 0                   | 16                 | 8 1                 | 29               | 46 1          | 0 3          | 45              | 44                  | 72 1        | 36              | 0                   | 55                  | 12                  | 40 4          | 44                  | 23            | 25          | 27                     |            | 31                |                   |                   |               |
| Harness<br>CaC     | Total                             | 112                 | 280              | 30           | 19            | 32                  | 19                 | 82                  | 183              | 217           | 9            | 216             | 214                 | 454         | 206             | 31                  | 265                 | 30                  | 99            | 20                  | 91            | 35          | 54                     |            | 230               | -                 |                   | _             |
| I                  | abiloa bəvlozei <b>U</b>          | 182                 | 373              | 65           | 47            | 55                  |                    | 1                   | 269              | 306           | 1            | 245             |                     | 1           | 249             | 42                  | 1                   | 100                 |               | 138                 | 128           | 1           | 114                    |            | 322               |                   |                   |               |
|                    | Phosphate (PO4)                   | 0.0                 | 0.               | 0.           | 0.            | 0.                  | 1                  | 1                   | 0.               | Γ.            | 1            | 0.              |                     | 1           | 0.              | 0.                  | 1                   | 1                   |               | ۳.                  | 0.            | 1           | .1                     | _          | 1                 |                   |                   |               |
|                    | Nitrate (NO3)                     | 12                  | 1.6              | 8.5          | 2.1           | 3.0                 | 2.0                | 6.0                 | 11               | 26            | 5            | 34              | 34                  | 35          | 29              | .2.*                | 24                  | 40                  | 21            | 39                  | 11            | 3.0         | 6.6                    |            | 32                |                   |                   |               |
|                    | Fluoride (F)                      | 0.0                 | 4.               | 0.           | 0.            | 0.                  | 1                  | 1                   | 0°               | 0.            | 1            | 0.              | 1                   | 1           | 0.              | .1                  | 1                   | 0                   | ł             | ι.                  | 0.            | 1           | .1                     |            | 0.                |                   |                   |               |
|                    | Chloride (Cl)                     | 12                  | 5.2              | 1.8          | 2.9           | 9.                  | 2.5                | t.                  | 6.0              | 14            | 1.5          | 1.8             | 10                  | 29          | 7.7             | 1.4                 | 5.0                 | 7.4                 | 19            | 11                  | 4.1           | 17          | 5.0                    |            | 12                |                   |                   |               |
|                    | Sulfate (SO4)                     | 51                  | 131              | 4.2          | 2.0           | .1                  | 14                 | 5.4                 | 45               | 22            | 1.0          | 21              | 17                  | 17          | 10              | .2                  | 34                  | 3.0                 | 8.4           | 13                  | 19            | 4.0         | 28                     |            | 29                |                   |                   |               |
| (±00               | Bicarbonate (H)                   | 62                  | 195              | 29           | 24            | 40                  | 3                  | 8                   | 188              | 209           | 10           | 209             | 208                 | 466         | 208             | 39                  | 256                 | 22                  | 32            | 31                  | 83            | 12          | 33                     |            | 243               |                   |                   |               |
|                    | (i.I) muidti.I                    | 0.1                 | .4               | 0.           | 1             | 0.                  | I                  | 1                   | 794<br>*         | .2            | 1            |                 | I                   | 1           | .3              | .1                  | 1                   |                     | 1             | 0.                  | 0.            | 1           | .2                     |            | 1                 |                   |                   |               |
|                    | Potassium (K)                     | 0.7                 | 1.0              | 1.4          | 1.            | 1.7                 | -                  | 2                   | .00              | 9.            | 20           | 1.              | 2                   |             | 1.9             | .1                  | 2                   | 2.0                 | 00            | 9.                  | 5.            | 4           | 00                     |            | -                 |                   |                   |               |
|                    | (sN) muibol                       | 7.7                 | 00<br>00         | 3.1          | 3.7           | 1.7                 | 1.                 | 1.                  | 12               | 6.0           | 2.           | 1.8             | 7                   | 32          | 1.2             | .6                  | 3                   | 8.7                 | ŝ             | 7.0                 | 5.7           | 2.          | 5.1                    |            | 10                |                   |                   |               |
| (                  | 3M) muisənyaM                     | 12                  | 25               | 5.           | 1.8           | 2.7                 | 1                  | I                   | 10               | 23            |              | 27              | 1                   | 1           | 7.6             | 2.3                 | 1                   | 3.6                 | 1             | 6.0                 | 7.8           | 1           | 4.7                    |            | 19                |                   |                   |               |
|                    | (sJ) muisle)                      | 24                  | 70               | 7.2          | 4.6           | 8.0                 | 1                  | 1                   | 56               | 46            | 1            | 41              | 1                   | 1           | 20              | 1.7                 | 1                   | 6.0                 | 1             | 18                  | 19            | 1           | 14                     |            | 61                |                   |                   |               |
|                    | (nZ) aniZ                         | 1.4                 | 1.3              | 2.2          | 1             | 00.                 | 1                  | I                   | 1.2              | 4.8           | 1            | .85             | 1                   | 1           | .18             | 1.4                 | I                   | 1                   | 1             | .10                 | 2.8           |             | .11                    |            | 1                 |                   |                   |               |
|                    | Copper (Cu)                       | 0.00                | 00.              | .04          | 1             | .02                 | ł                  | 1                   | .05              | 00.           | 1            | 00°             | 1                   | 1           | 00.             | .04                 | I                   | 1                   | 1             | 00.                 | .02           | 1           | 00.                    |            | 1                 |                   |                   |               |
| (stota)            | (Manganese (Mn                    | 0.04                | .03              | .02          | 00.           | .35                 | 00.                | I                   | .05              | .02           | 00.          | .01             | .03                 | .50         | .02             | .02                 | 1                   | .00                 | 1             | .03                 | .02           | .02         | 00.                    |            | 1                 |                   |                   |               |
|                    | Iron (Fe), total                  | 1.4                 | .11              | .46          | .02           | .50                 | .02                | .08                 | .02              | .03           | .11          | 60°             | .55                 | .04         | .05             | .18                 | .17                 | .10                 | .04           | .04                 | .11           | 2.1         | .10                    |            | .29               |                   |                   |               |
|                    | (IA) munimulA                     | 0.0                 | 0.               | 1.1          | 0.            | 0.                  | 1                  | ł                   | 0.               | 0.            | 1            | .2              | 1                   | 1           | 0.              | .1                  | 1                   | 1.9                 | 1             | 0.                  | 1.2           | ļ           | 0.                     |            | 1                 |                   |                   |               |
|                    | (sOi8) asilica                    | 23                  | 25               | 15           | 17            | 13                  | ţ                  | l                   | 14               | 44            | ţ            | 6.1             | 1                   | 1           | 8.3             | 6.6                 | ļ                   | 6.8                 | 1             | 19                  | 17            | Ì           | 26                     |            | 10                |                   |                   |               |
| noitemro           | й злітьэстээги                    | Catoctin metabasalt | Gettysburg shale | Aporhyolite  | do            | Catoctin metabasalt | Weverton quartzite | Frederick limestone | Gettysburg shale | New Oxford    | Aporhyolite  | Grove limestone | Frederick limestone | do          | Grove limestone | Ijamsville phyllite | Frederick limestone | Ijamsville phyllite | do            | Catoctin metabasalt | do            | do          | Granodiorite and gran- | ite gneiss | Contact-Frederick | limestone and New | Oxford (limestone | conglomerate) |
| u                  | Date of collectio                 | Apr. 4, 1955        | Apr. 4, 1955     | Apr. 4, 1955 | July 30, 1952 | June 6, 1955        | May 11, 1956       | June 14, 1955       | May 4, 1956      | Dec. 20, 1955 | May 11, 1956 | Dec. 20, 1955   | May 9, 1956         | May 9, 1956 | Mar. 15, 1955   | Dec. 20, 1955       | May 9, 1956         | Mar. 20, 1951       | June 22, 1955 | Apr. 1, 1955        | Dec. 20, 1955 | May 9, 1956 | Dec. 20, 1955          |            | Apr. 14, 1953     |                   |                   |               |
| Zair               | H Mell of sp                      | 4d 2                | Af 4             | Bc 2         | Bd 3-4        | 8d 6                | 8d 9               | Be 3                | Be 11            | Bf 4          | Cb 7         | Ce 6            | Ce 7                | Ce 8        | Cf 1            | Cf 17               | Cf 20               | Cg 1                | Ch 1          | Db 2                | Dc 6          | Dc 16       | Dc 21                  |            | Dd 1              |                   |                   |               |

TABLE 12 Chemical Analyses of Ground Water in Frederick County (chemical constituents in parts per million)

| Dd 3                       | Anr 11 1053                     | New Oxford             | -   | I  | - 64  |       |       | 21    | 1 2   | 0     | c*  | 1  | 1 2 1 | 6 8 | 10  | 0  | 00  | 1  | 162 | 131   | 5      | 2      | 83   | 00  |
|----------------------------|---------------------------------|------------------------|-----|----|-------|-------|-------|-------|-------|-------|-----|----|-------|-----|-----|----|-----|----|-----|-------|--------|--------|------|-----|
| Dd 11                      | May 11 1056                     | Cotoctin motohocalt    | 4   |    | 0.5   | 8     |       | 5     | 2     | N 1/  | 0   |    | 27    | 10  | 0.0 | ?  | 16  |    |     | 112   | 21 10  | 1      | 38   | v   |
| TIDA                       | DCGT 'TT KDTAT                  | Calucilli IIIclauasait | 1   | 1  | cn.   | ŝ     | 1     | 1     |       | 0     | 0   | ]  | 10    | P1  | 2.4 | 1  | D T |    | 1   | 10    | AT 47  | -      | 20   |     |
| Dd 65                      | May 4, 1956                     | New Oxford             | 9.8 | 0. | ·04   | .02   | .03   | 00 51 | 6     | 2.5   | ŧ.  | .2 | 172   | 10  | 3.5 | 0. | 16  | 0. | 203 | 164   | 23 -   | -      | 19   |     |
| Dd 77 <sup>a</sup>         | Dec. 13, 1956                   | Harpers phyllite       | I   | 0. | .06   | .02 3 | 33    | 00    |       | 1     | [   | I  | 23    | [   | 7.2 | 1  | 36  | 1  | ł   | 36.   | 0 37   | 1      | 61 0 | 0.9 |
| De 2                       | Apr. 14, 1953                   | Frederick limestone    | 11  | 1  | .04   | 1     | 1     | 50    | 21    | 6     | 4   |    | 253   | 20  | 0.0 | .2 | 18  |    | 268 | 231   | 24 -   | - 4    | 69   | 7.8 |
| De 15                      | May 9, 1956                     | do                     | I   |    | .02   | - 60- | 1     | 1     | 1     | 4     | 6   | 1  | 188   | 5.2 | 4.5 | 1  | 26  | [  | 1   | 176   | 22 3   | 00     | 59   | 6.7 |
| De 16                      | May 4, 1956                     | do                     | 7.2 | 0. | .04   | .06   | 11    | 77 55 | 3.    | 1 5.0 | 90  | 4. | 152   | 14  | 7.2 | 0. | 18  | -  | 208 | 151   | 27 -   | ~      | 19   | 2.5 |
| Df 2                       | Dec. 21, 1955                   | Libertytown metarhy-   | 1   | 1  | р<br> | 1     |       | - 19  | 00    | 9 17  |     | I  | 09    | 9.6 | 11  |    | 58  | 1  | 1   | 84    | 35     | - 2    | 29   | 6.5 |
|                            |                                 | olite                  |     |    |       |       |       |       |       |       |     |    |       |     |     |    |     |    |     |       |        |        |      |     |
| Df 15                      | May 2, 1956                     | do                     | 1   | 1  | 60.   | .01   | 1     | 1     | -     | 3     | 4.  | 1  | 24    | .4  | 2.0 | 1  | 28  | 1  |     | 37    | 17 9   | .6 1   | 00   | 6.6 |
| Ed 14                      | May 9, 1956                     | Frederick limestone    |     |    | .01   | .03   |       | 1     | 1     | 95    |     | 1  | 282   | 66  | 114 | 1  | 178 | 1  | 1   | 396   | 165 4  | .5 1,1 | 90   | 8.0 |
| Ee 2                       | Mar. 21, 1951                   | Grove limestone        | 7.0 | 1. | .40   | 00    | 1     | - 99  | 24    | 2.8   | 5.6 |    | 275   | 12  | 7.5 | 0  | 36  | 1  | 290 | 263   | 38     | 5      | 04   | 1.7 |
| Ef 2                       | Apr. 1, 1955                    | Sams Creek metabas-    | 18  | -  | .05   | .02   | 00    | 48 49 | 50    | 19    |     | .2 | 279   | 64  | 30  | 1. | 0.  | 0. | 412 | 329 1 | 101 35 | 9      | 80   | 1.4 |
|                            |                                 | alt                    |     |    |       | -     |       |       |       |       | _   |    |       |     |     |    |     |    | -   | -     |        |        |      |     |
| Eh 1                       | Mar. 10, 1955                   | Marburg schist         | 6.1 | 0. | .10   | .01   | 00    | 00 12 | 14    | 52    | 10  | 5  | 258   | 1.9 | 1.9 | *  | .6  | 0. | 283 | 000   | 0 3    | .3 3   | 83   | 0.1 |
| Fb 1                       | Apr. 1, 1955                    | Granodiorite and gran- | 30  | 0. | .16   | .03   | 02 1. | 4     | 9 2.0 | 6.2   | 90  | 0. | 28    | 8.1 | 3.2 | 1. | 16  | 0. | 92  | 33    | 10     | 18 1   | 07   | 6.4 |
|                            |                                 | ite gneiss             |     |    |       |       |       |       | _     |       |     |    | -     |     |     |    |     |    |     |       |        |        |      |     |
| Fc 1                       | Dec. 20, 1955                   | New Oxford (limestone  | 12  | 0. | .53   | .02   | 04 2. | 8     | 6 2.  | 1 5.5 | 3.4 | ₽. | 11    | .2  | 7.5 | 0. | 20  | 0. | 28  | 18    | 6      | 17     | 75.8 | 0.0 |
|                            |                                 | conglomerate)          |     |    |       |       |       |       |       |       |     |    |       |     |     |    |     |    |     |       |        |        |      |     |
| Fd 4                       | Dec. 26, 1946                   | Frederick limestone    | 11  | 1  | .66   | Ì     | 1     | 66    | 10    | 7.5   | 1.8 | 1  | 274   | 48  | 8.4 | F. | 17  | l  | 345 | 288   |        | 1      | 99   | 2.6 |
| Fd 16                      | May 9, 1956                     | do                     | 1   | I  | * 02  | 00.   | 1     |       | -     | 4     | 6.  | I  | 187   | 21  | 3.5 | [  | 13  | 1  | 1   | 180   | 27 9   | 4.     | 63   | 7.5 |
| Fe 18                      | Apr. 30, 1948                   | Urbana phyllite        | 1   | 1  | .07   | 1     | 1     | 1     | 1     | 1     | 1   |    | 000   | 2   | 3   | 1  | 11  | l  | 1   | 100   | 1      | -      | 19   | 6.8 |
| <sup>a</sup> Nic<br>b Iroi | kel 0.09.<br>n in solution 0.06 | _                      |     |    | -     | -     | -     | -     |       | _     | -   | -  | -     | -   |     | -  |     |    | -   |       | -      |        | -    | 1   |
|                            |                                 |                        |     |    |       |       |       |       |       |       |     |    |       |     |     |    |     |    |     |       |        |        |      |     |



FIGURE 12. Comparison of Typical Chemical Analyses of Ground Water in Equivalents per Million

collected, and is given in the remarks column of the well tables (Tables 25 and 26).

Analyses of water from the principal water-bearing formations are shown graphically in figure 12. Owing to variations within each formation in chemical character of the rocks, geologic structure, and topography, as well as other factors, the chemical character of the ground water in a formation varies somewhat from place to place, both vertically and areally, so that the analyses in figure 12 are representative in a general way only. To facilitate comparison of the analyses, the concentrations of the ions are expressed in equivalents per million. When expressed as equivalents per million the sum of the cations equals the sum of the anions. There is some evidence that the mineral content of water in the Triassic formations decreases to the south and east, possibly reflecting a southward and eastward decrease in soluble components in the rocks or the increase in coarseness and permeability.

The Frederick and Grove limestones show little lateral variation in chemical character of the contained ground water, which is a hard calcium magnesium bicarbonate type. A substantial increase in mineralization with depth in at least one place, however, is indicated by a comparison of the analyses of samples from wells Fr-Ce 7 and -Ce 8, which are only about 30 feet apart, and 29 and 275 feet deep, respectively. Dissolved solids were not determined in the two

samples, but the specific conductance, a general indication of dissolved-solids content, was 440 and 982 micromhos, respectively. Relatively high concentrations of chloride, sodium, and nitrate are common in ground waters in limestone and probably are largely products of the decomposition of nitrogenous wastes, indicating some present or former organic contamination. Agricultural fertilizers may be the source of some of these constituents.

# Relation of chemical character to use

The chemical quality and temperature of ground water govern its suitability for most uses. The most important chemical characteristics to be considered for domestic and public-supply uses are the contents of iron, dissolved solids and carbon dioxide, the hydrogen-ion concentration expressed as pH, and the hardness. Industrial users of ground water may be concerned with silica, other cations in addition to iron, trace elements not ordinarily determined in water analysis, such as copper, and the ground-water temperature and its range of fluctuation. Conventional methods for evaluating the suitability of waters for supplemental irrigation indicate that the ground waters of Carroll and Frederick Counties may be classed as good to excellent for this purpose.

# Silica (SiO<sub>2</sub>)

Silica generally is of minor concern in ground waters except for some industrial uses. It contributes to the formation of boiler scale. Silica is the most abundant constituent in the crust of the earth, but it constitutes only a small percentage of the total mineral matter in many ground waters. Silica probably is largely dispersed in water in a colloidal rather than an ionic state. In the analyses the silica content ranges from 4.2 to 44 ppm.

# Iron (Fe) and manganese (Mn)

Locally in Carroll and Frederick Counties iron may be present in the ground water in sufficient quantity to give the water a disagreeable taste and to stain fixtures, utensils, and laundry. When in excess of about 0.3 ppm in ground water, iron will form a reddish-brown precipitate (hydrous ferric oxide) upon exposure to air. The analyses show a range of 0.00 to 2.1 ppm.

Manganese, like iron, is objectionable for its staining propensities when present in amounts of more than 0.3 ppm. Manganese is generally low in the ground waters of Carroll and Frederick Counties, exceeding 0.05 ppm in few samples.

Iron and manganese may be present in ground waters in either ionic or colloidal form.

#### Calcium (Ca) and magnesium (Mg)

Calcium and magnesium are the principal constituents that cause hardness in water. In Carroll and Frederick Counties these ions, particularly calcium,

constitute most of the cation content in the waters of the limestone and marble and the Newark group. Some calcareous schists and phyllites have appreciable quantities of calcium and magnesium. The analyses show a range in calcium content from 1.6 to 99 ppm and in magnesium content from 0.5 to 50 ppm.

# Sodium (Na) and potassium (K)

Sodium and potassium occur in many of the rocks of Carroll and Frederick Counties, and appear in the ground water in small to moderate amounts, sodium being more plentiful than potassium. Moderate quantities of sodium and potassium are unimportant to the usefulness of water for most purposes, but large quantities may render the water unfit for irrigation or some industrial uses. The analyses show a range from 1.2 to 52 ppm for sodium and 0.1 to 6.0 ppm for potassium. In partial analyses the sum of sodium and potassium is reported. Some of the waters may contain sodium derived from organic contamination and potassium from agricultural fertilizers.

# Aluminum (Al), copper (Cu), zinc (Zn), and lithium (Li)

The metallic ions Al, Cu, Zn, and Li are found in very small or trace amounts in most of the ground waters of Carroll and Frederick Counties. It is probable that part of the aluminum, copper, and zinc determined in samples from wells was dissolved from well casings, pump pipes, and pumps. When sampled at the source, spring waters show none or extremely small amounts. To minify the metallic contamination in samples from wells, the wells were pumped for a time before collecting the samples, wells having plastic pump pipes were selected where possible, and the samples were collected as near the well source as the plumbing permitted.

In the usual very small concentrations these metals are unimportant, but where they occur in larger quantities in drinking water they may be physiologically harmful. Copper is the most troublesome. When present in substantial quantity it causes a bluish-green stain on fixtures, and in concentrations above 3.0 ppm it may be toxic (U. S. Public Health Service Drinking Water Standards, 1946). Only in well Fred-Dd 77 at Braddock Heights was the copper content found to be in excess of 3.0 ppm; an analysis of this water in December, 1956, showed a copper content of 3.3 ppm.

# Bicarbonate $(HCO_3)$ and carbonate $(CO_3)$

Bicarbonate ( $HCO_3$ ) is the principal anion in most ground waters of Carroll and Frederick Counties. Although the samples collected were analyzed for carbonate, invariably it was absent. Maryland ground waters rarely contain carbonate. Because carbonate is not present, the bicarbonate represents essentially the alkalinity. High alkalinity is objectionable in boiler-feed waters that are high also in sodium. The concentration of bicarbonate in ground water

in Carroll and Frederick Counties ranges from 3 to 466 ppm, being highest in water from calcareous rocks and least in water from siliceous rocks.

# Sulfate (SO<sub>4</sub>)

A few of the analyses show a high sulfate content, chiefly of waters from the Gettysburg shale and Frederick limestone, although not all analyses for these formations are high in sulfate. The determined values range from 0.1 to 131 ppm. High sulfate is objectionable in boiler-feed water and domestic hot-water systems because it contributes to the formation of a hard calcium sulfate scale.

## Chloride (Cl) and nitrate $(NO_3)$

Only small amounts of chloride and nitrate, several parts per million or less, are present in most ground waters of Carroll and Frederick Counties. However, a number of the analyses in Tables 11 and 12 show relatively high values for these constituents, probably indicating organic contamination. Even small amounts of chloride and nitrate may indicate contamination when they represent an appreciable percentage of the total mineralization. Shallow dug wells, which are difficult to protect from contamination, and wells drilled in cavernous limestones, which permit relatively free movement of contaminating substances, show the highest chloride and nitrate contents.

The small quantities of chloride found in the ground waters of Carroll and Frederick Counties have no bearing on its usefulness, except perhaps for specialized industrial purposes. Nitrate concentrations in excess of about 44 ppm in drinking water may cause infant cyanosis ("blue baby"), and investigators recommend that waters containing such quantities not be used in infants' formulas (Davis and Carlson, 1952).

#### Fluoride (F)

Fluoride is present in the ground waters of Carroll and Frederick Counties in only small amounts, the highest concentration determined being 0.4 ppm. Thus, these waters contain substantially less than the 1.5-ppm limit specified by the Public Health Service for waters subject to its jurisdiction.

#### Phosphate (PO<sub>4</sub>)

Phosphate is physiologically important to both plants and animals. It occurs in very small quantities in some of the ground waters of Carroll and Frederick Counties. None of the concentrations exceed 0.1 ppm. Its presence in these concentrations has little bearing on the usefulness of the water.

#### Dissolved solids

The dissolved solids of water consist almost entirely of the constituents reported in Tables 11 and 12. They may include small quantities of organic material and water of crystallization. Ordinarily waters containing more than 500 ppm of dissolved solids are not recommended for public-water supplies, but a dissolved-solids content up to 1,000 ppm is acceptable if better water is not available. Ground-water samples from Carroll and Frederick Counties show a range from 42 to 412 ppm, well below the recommended limit. In general, water from siliceous rocks contains the least dissolved solids and that from calcareous rocks the most (fig. 12).

#### Hardness

The term hardness refers to the capacity of water to consume or precipitate soap. If mineral constituents causing hardness are present in water in relatively large quantities, the addition of soap to the water forms a sticky insoluble curd. Excessive hardness is objectionable because of the increased quantity of soap required to produce a lather and the difficulty of removing the curd from containers and fabrics. Hardness also causes deposition of scale in steam boilers, water pipes, and cooking utensils.

The principal constituents that cause hardness in water are calcium and magnesium. Other polyvalent cations, such as iron, manganese, aluminum, copper, and zinc cause hardness, and so does the hydrogen ion, but these generally are not present in natural water in large enough quantity to have an appreciable effect. The total hardness and noncarbonate hardness of the water samples analyzed are listed in Tables 11 and 12. The total hardness includes the effect of all hardness-forming constituents that are present in significant quantities; the noncarbonate hardness is that which is in excess of the equivalent bicarbonate. The classification of water according to hardness used in this report is:

| Class of water  | Total hardness<br>(ppm) |
|-----------------|-------------------------|
| Soft            | 0-60                    |
| Moderately hard | 61-120                  |
| Hard            | 121-200                 |
| Very hard       | More than 200           |

The calcareous rocks and the Newark group yield water that is hard to very hard. The other formations generally yield soft to moderately hard water.

#### Hydrogen-ion concentration and carbon dioxide (CO<sub>2</sub>)

Hydrogen-ion concentration in waters is generally indicated by the pH, which is the negative logarithm of the hydrogen-ion concentration in moles per liter of water. A pH of 7 indicates a neutral condition; a pH less than 7, an excess of hydrogen ions over hydroxyl ions; and a pH greater than 7, an excess of hydroxyl ions over hydrogen ions. Water having a low pH is acidic and corrodes well casings, pumping equipment, and distribution systems. Water

having a high pH is alkaline and may deposit mineral matter in water supply systems, though it may be corrosive under certain conditions.

The pH of samples of water from Carroll and Frederick Counties ranged from 5.5 to 8.1. The crystalline silicate rocks characteristically yield water having a pH below 7; the calcareous rocks and Newark group, water having a pH above 7.

The carbon dioxide content of ground water increases its solvent action (corrosiveness). Ground water having a low dissolved-solids content and a pH of about 5 or 6, such as is characteristic of ground waters of the crystalline silicate rocks in Carroll and Frederick Counties, generally contains appreciable amounts of carbon dioxide. Although no simple relation exists between corrosion potential and the quantity of carbon dioxide in ground water, water having a carbon dioxide content in excess of about 10 ppm is likely to be corrosive. It exceeds 10 ppm in sixteen of the analyses in Tables 11 and 12.

### Radioelements

As a part of the nationwide program of the Geological Survey to determine the natural and normal distribution of radioelements in surface and ground waters, as background from which to determine changes caused by atomicenergy activities, radiochemical analyses were made of water samples from two wells, well Car-Bd 13 near Union Mills in Carroll County and well Fr-Cf 1 at Woodsboro in Frederick County. The only naturally occurring radioactive substances in water that are now being determined routinely by the Geological Survey are radium and uranium. Beta-gamma radioactivity also is measured for detection of contamination by artificial radioactive substances. The radiochemical data for Carroll and Frederick Counties and reported maximum permissible tolerances are given in Table 13.

The tolerances are for internal exposure—that is, exposure through drinking the water. The concentrations in the well samples are well within the permissible tolerances. The tolerances for radioelements are largely theoretical and the

|                                             | Radium (Ra)<br>(micromicrocuries<br>per liter) | Uranium (U)<br>(micrograms<br>per liter) | Beta-gamma<br>activity<br>(micromicrocuries<br>per liter) |
|---------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------------------|
| Well Car-Bd 13 (drilled in schist)          | 0.1                                            | 0.7                                      | 5                                                         |
| Well Fr-Cf 1 (drilled in limestone)         | .1                                             | 1.0                                      | 20                                                        |
| Maximum permissible tolerances <sup>a</sup> | 40                                             | 31                                       | 100 <sup>b</sup>                                          |

TABLE 13

Radiochemical Analyses for Two Wells in Carroll and Frederick Counties and Maximum Permissible Tolerances

<sup>a</sup> National Bureau of Standards Handbook 52.

<sup>b</sup> Provisional level of activity believed safe for exposure for a few months.

specifications may change as additional information on the biological effects of radioelements is acquired.

## Temperature of the Ground Water

The temperature of ground water is a valuable property, as it is relatively constant throughout the year and is lower than that of surface water in the summer. These characteristics make it an excellent and dependable medium for storage and extraction of heat. In Carroll and Frederick Counties ground water is utilized for cooling canned foods after cooking and for air conditioning.

The temperature of ground water fluctuates a few degrees between seasons but generally averages about the same as the mean annual air temperature, which in Carroll and Frederick Counties is between 53° and 54°F. Temperatures measured at the discharge points of 55 wells and springs in Carroll and Frederick Counties range between 49° and 62° and average about 53°F. The range of temperature fluctuation of water from any one well or spring generally is considerably less than the 13 degrees indicated by all the measurements, these having been obtained from wells and springs in a variety of geologic and topographic settings and at various times of the year. The annual temperature range of spring and shallow well waters is greater than for deep well waters, owing to the greater susceptibility of the shallow ground-water zones to variations in atmospheric temperature and to the effects of recharging rainwater and snowmelt. The following temperature measurements of spring Car-Af 8, at Lineboro, Carroll County, show a seasonal fluctuation of about 10 degrees in a shallow ground-water zone:

|                  | Temperature ("F |
|------------------|-----------------|
| April 28, 1954   | 51.5            |
| May 11, 1954     | 51.0            |
| May 12, 1954     | 51.0            |
| July 20, 1954    | 59.0            |
| August 10, 1954  | 59.0            |
| October 19, 1954 | 55.0            |
| January 4, 1955  | 49.0            |
| January 4, 1956  | 52.0            |

Measurements at various times of the temperature of water from several drilled wells indicate a much smaller seasonal fluctuation. The temperature of water obtained from a well several hundred feet deep would probably not vary more than a degree or so, provided all the water pumped is derived from deep zones.

Monthly averages of all available spring- and well-water temperatures for the portions of Maryland within the Piedmont and Blue Ridge provinces and mean monthly air temperatures at Westminster are plotted in figure 13. Although 122 measurements from six counties (Harford, Baltimore, Howard,


FIGURE 13. Comparison of Mean Monthly Temperature of Shallow Ground Water in the Maryland Piedmont and Mean Monthly Air Temperature at Westminster

Montgomery, Carroll, and Frederick) were used to give the monthly averages more validity, averages based on the 55 measurements obtained in Carroll and Frederick Counties alone define essentially the same graph. In general the data form an arc, concave downward, the ground-water temperatures being highest in July and August and lowest in January. Low average groundwater temperatures for April, May, and June define a dip in the curve which cannot be explained on the basis of the available data. Ground-water temperature changes ordinarily lag behind atmospheric temperature changes. Lag in transmission of temperature changes through the soil zone to depths of 20 feet was shown by Singer and Brown (1956).

Stream temperatures fluctuate over a wide range, from the freezing point in winter to as high as 85°F in the summer. Thus, stream water is a poor refrigerant in the summer, when the need for coolants of low temperature ordinarily is the greatest. In some parts of the United States conservation of the refrigerant property of the cold winter stream water has been accomplished by introducing the water into the ground in the winter months, through either recharge wells or recharge basins, and then retrieving it by pumping in the warmer season. The local geology, hydrology, and water chemistry determine the feasibility of such a temperature-conservation plan at a given site.

59

Temperature logs yield information on depth to water-bearing zones, magnitude of seasonal water-temperature fluctuations, circulation of ground water, and magnitude of the geothermal gradient. The measuring equipment utilized consists of a thermal element including a thermistor which is lowered into the well by an insulated cable. The cable conducts the effects of electrical-resistance variations in the element caused by temperature variations to a potentiometer circuit at the land surface. Temperature values are read from a microammeter calibrated to read directly in degrees Fahrenheit.

The temperature of rocks is controlled primarily by heat generated in the interior of the earth and transferred outward to the surface of the earth. The rate of increase in temperature as the interior is approached is known as the geothermal gradient. It can be measured in deep wells. The gradient measured to depths of 1,000 feet in wells in Maryland is on the order of 1°F for each 70 to 120 feet in depth. A temperature log of well Fr-Fd 1 at Adamstown shows a temperature of 56.2°F at 100 feet and 63.2°F at 954 feet. Thus, a gradient of 122 feet per degree Fahrenheit is indicated. The log shows evidence of disturbance of the geothermal gradient by ground-water circulation to depths of 400 to 500 feet.

At shallow depths the gradient is continually being altered by atmospherictemperature changes and circulation of ground water. In the winter earth temperatures at shallow depths are below the temperature that would be obtained by extrapolation of the geothermal gradient to shallow depths. In the summer temperatures at shallow depths are raised above the extrapolated gradient. Thus, in a series of graphs depicting the geothermal gradient at various times of the year, the lower part of the graphs would be essentially static throughout the year, but the upper part would waver back and forth in response to seasonal temperature changes.

Temperature logs of two wells at the Catoctin Mountain National Park, in the western part of Frederick County, are shown in figure 14. The wells are along a small tributary of Hunting Creek, about 0.8 mile north of the National Park Service's area office. Well Fr-Bd 7 is about 280 feet downstream from well Fr-Bd 8, and about 30 feet lower in elevation.

Well Bd 7 had flowed slightly at times, but at the time the log was made its water level was about 0.1 foot below the land surface. The well yielded only a few gallons per minute when pumped and was not put into use. Its temperature log shows little influence of ground-water circulation below a depth of 46 feet, and since the well was cased to 45 feet it is understandable that the yield was negligibly small. Below 46 feet the temperature of the water in the well increased rather steadily with depth to the bottom, at a rate of about 280 feet per degree. This is considerably less than a normal geothermal gradient, and it seems likely that this zone must be affected by climatic factors. If it were possible to log to greater depths, an increase in gradient might be expected.



FIGURE 14. Temperature Logs of Two Wells in the Catoctin Metabasalt at the Catoctin Mountain National Park

The large deflection of the shallow part of the log to the left is interpreted to represent a residual zone of cold water dating from the winter of 1955–56, and the deflection far to the right in the uppermost part of the log, a zone of warm water from the late spring and summer of 1956.

Well Fr-Bd 8 was drilled several days before its temperature log was run, and it flowed continuously and slightly. It yielded a good supply of water, and later a pump was installed. During the 24-hour acceptance test, the temperature of the water discharged was measured periodically with a mercury thermometer. The temperature remained constantly at 51.0°F, which is the temperature of the shallow cold water indicated by the temperature log. The temperature of the naturally flowing water was about 51.75°F, showing that the water was warmed by the rocks as it rose slowly; otherwise it should have been at the pumping temperature of 51.0°F. In contrast to that for Bd 7, the temperature log for Bd 8 shows a pronounced effect of ground-water circulation to a depth of about 100 feet. The zone of influx into the well appears to be between depths of 50 and 100 feet, but most of the water may enter in the lower part of this interval. The cold water entering at this depth may be derived from the zone of cold ground water in the 10- to 30-foot interval presumably through a fracture system tapping that shallow cold zone some distance up the valley. Below 102 feet the rocks apparently are impermeable, and the water in the hole at this depth, being essentially stagnant, assumed the temperature of the

rocks. A dashed line drawn from this section of the log to the protrusion at a depth of about 45 feet, which represents the point of maximum warming of the column of water rising up to flow from the well, parallels the gradient indicated by the log of well Bd 7. It serves as a convenient reference line to show the amount of temperature disturbance caused by the circulating ground water. The deflection to the left in the bottom 8 feet of the log is not explainable with present information. It may represent a contribution of cold water from a narrow fracture near the bottom of the well.

# GEOLOGIC FORMATIONS AND THEIR WATER-BEARING PROPERTIES

#### Precambrian Rocks of the South Mountain-Catoctin Mountain Area

Table 14 summarizes the data concerning yields for wells in the South Mountain-Catoctin Mountain province. It shows little difference in the average yield of 113 wells in the depth intervals above 150 feet, where the average yield of wells is about 10 gpm. Eight wells deeper than 150 feet yield an average

| Depth   | Averag | Average yield   |                     | Average specific<br>capacity |               | ge yield<br>of hole |                                |
|---------|--------|-----------------|---------------------|------------------------------|---------------|---------------------|--------------------------------|
| (feet)  | (gpm)  | No. of<br>wells | (gpm/ft.<br>of dd.) | No. of<br>wells              | (gpm/<br>ft.) | No. of<br>wells     | Aquiter or water-dearing unit  |
| 0-50    | 2.5    | (1)             |                     |                              | 0.06          | (1)                 | Granodiorite or granite gneiss |
|         | 9.6    | (16)            | 0.8                 | (13)                         | .26           | (16)                | Catoctin metabasalt            |
|         | 15     | (8)             | .7                  | (5)                          | .33           | (8)                 | Aporhyolite                    |
|         | 11     | (25)            | .7                  | (18)                         | .27           | (25)                | All units                      |
| 50-100  | 7      | (29)            | .4                  | (21)                         | . 10          | (30)                | Granodiorite or granite gneiss |
|         | 10     | (28)            | 1.1                 | (21)                         | .14           | (27)                | Catoctin metabasalt            |
|         | 14     | (10)            | .9                  | (6)                          | . 24          | (10)                | Aporhyolite                    |
|         | 9.3    | (67)            | .7                  | (48)                         | .14           | (67)                | All units                      |
| .00-150 | 8      | (11)            | .6                  | (9)                          | .07           | (11)                | Granodiorite or granite gneiss |
|         | 12     | (10)            | .8                  | (9)                          | .10           | (10)                | Catoctin metabasalt            |
|         | 9.9    | (21)            | .7                  | (18)                         | . 08          | (21)                | All units                      |
| 50+     | 20ª    | (8)             | .3ª                 | (4)                          | .09           | (8)                 | Catoctin metabasalt            |

 
 TABLE 14

 Average Vield, Specific Capacity, and Vield per Foot of Hole for Wells in the Precambrian Rocks in the South Mountain-Catoctin Mountain Area

<sup>a</sup> Well Fr-Ae 31, yielding 160 gpm and having a specific capacity of 21.3 gpm/ft. of drawdown omitted from computations.

of 20 gpm, or nearly twice as much. However, much of the water coming from the deeper wells is known to be derived from the upper part of the holes. This is suggested also by the progressive decrease in the yield per foot of hole for the three depth intervals from 0 to 150 feet. The comparatively high average yield of these eight wells results also from heavy weighting of the data by three wells at the Victor Cullen State Hospital at Sabillasville reported to yield 30 gpm each. The wells were drilled many years ago and the reliability of the information is questionable. The average yield of the 121 wells is 10.5 gpm and the average specific capacity of 88 of the wells is 0.7 gpm/ft. The average yield per foot of hole is 0.15 gpm, which is among the lowest in the two counties.

Generally, the specific capacities and the yields per foot of hole decrease with increasing depth of hole. Nevertheless, the data in Table 14 indicate that drilling to a depth of at least 150 feet is warranted if maximum yields are desired.

# Early Precambrian Rocks

# Granodiorite and Granite Gneiss

Geology.—In Frederick County granodiorite and biotite granite gneiss underlie most of the Middletown Valley between Middletown and the Potomac River. These intrusive rocks have been referred to as the "injection complex" by Jonas and Stose (1939). The most common rock is light-gray to green gneissic granodiorite, interlayered in places with dark hornblende diorite. Biotite granite gneiss and augen gneiss containing layers of mica schist occur in places in the southeastern part of the Middletown Valley. Numerous dikes of green metadiabase transect the older rocks.

Typical drillers' logs of wells are given in Table 27. Common drillers' terms for the rocks of this unit are "mountain rock," "green rock," and "slate." The decomposed rock of the overburden is usually described as "shale" or "clay."

Water-bearing properties.—Nearly all wells in the granodiorite or granite gneiss yield sufficient water for domestic supplies, but only a few wells yield large supplies. The yields of 31 wells average 7 gpm. Only one well yielded as much as 30 gpm.

The average depth of the wells is 74 feet, and the average yield per foot of hole is 0.16 gpm.

Well Fr-Eb 4 at Arnoldtown was reported to yield 30 gpm in a 2-hour test, with a drawdown of 28 feet. The well was 108 feet deep and water-bearing zones were reported at a depth of 40–60 feet in "white sandy rock" and at 107–108 feet in "green rock."

No data are available concerning the water-bearing character of the granodiorite and granite gneiss below a depth of about 131 feet; presumably the fractures and crevices disappear or become very small below 200 or 250 feet, and little additional ground water may be expected.

Chemical quality.—One spring (Fr-Dc 21) and one well (Fr-Fb 1) were sampled for chemical analysis. Inasmuch as the complex includes a variety of rocks, a large number of ground-water analyses would be required to determine areal variations in chemical character of the water. The spring water is a calcium sulfate bicarbonate water; the well water is a calcium bicarbonate water. Both waters have a relatively high silica content. The high concentration of nitrate in the well water may indicate some pollution. Both waters are soft and of moderate mineralization. The well water is slightly acidic (pH 6.4). The high zinc content (1.4 ppm) probably was due to corrosion of the plumbing system. The spring water is weakly alkaline and contains a small amount of zinc.

# Late Precambrian Volcanic Series

The Catoctin metabasalt underlies most of the area between South and Catoctin Mountains north of Middletown and fringes the injection complex south of Middletown. Associated with the metabasalt are aporhyolite, rhyolite tuff, and a basal tuffaceous unit, the Swift Run formation, which underlies small parts of the area between the two mountain ridges.

## Swift Run formation

*Geology.*—The contact between the Catoctin metabasalt and the rocks of the injection complex is marked in places by sericitic quartzite, schist, or tuffaceous slate of the Swift Run formation. Limited outcrops of this formation occur in the vicinities of Burkittsville, Bolivar, Middletown, and Jefferson.

Water-bearing properties.—Because of its small areal extent the Swift Run formation is relatively unimportant as a source of ground-water supplies. It seems likely that moderate yields, on the order of 5 to 15 gpm, may be expected from wells drilled in it.

# Catoctin metabasalt

*Geology.*—The Catoctin metabasalt is a dense green schistose rock which is believed to be a series of metamorphosed lava flows. The metabasalt usually has a cryptocrystalline texture, shows flow banding and amygdules in places, and, where fresh, is very hard. Hornblende schist and rhyolite tuff are interbedded with the metabasalt. Relatively small linear outcrops of the rhyolite tuff, striking northeast, occur throughout the central part of the Catoctin metabasalt area. The tuff consists of slate, in part sericitic, and sericitic quartz schist. Blue fine-grained amygdaloidal meta-andesite outcrops in a long, narrow belt northwest of Wolfsville and as a thin dike just east of Church Hill.

Drillers' logs of 11 wells in the Catoctin metabasalt are given in Table 27.

Water-bearing properties.—The metabasalt is dense and its primary porosity and permeability are small. Ground water moves principally through joint openings. Although the rock is amygdaloidal in places, this characteristic apparently does not contribute to its permeability because the amygdules are generally filled with mineral matter, are squeezed flat, and are hydraulically disconnected. A porosity of only 0.5 percent (Blair, 1955, p. 8) was measured for a sample of metabasalt (greenstone) from Franklin County, Pennsylvania, near the Frederick County line.

Because of its areal extent, the Catoctin metabasalt is an important waterbearing formation in the western part of Frederick County. Adequate water supplies for domestic use and limited commercial and public supplies are generally obtainable.

Well yields range from 1 to 160 gpm and average about 14 gpm. About 18 percent of the wells yield less than 5 gpm. Dry holes are uncommon.

The average depth of wells is about 91 feet and the average yield per foot of hole is 0.15 gpm.

The best well, Fr-Ae 31, west of Emmitsburg, reportedly yielded 160 gpm. The well is 161 feet deep and is a few feet west of a small reservoir on Turkey Creek belonging to the town of Emmitsburg. The well is reported to have been pumped for several days at its maximum capacity with a drawdown of the water level of only 7.5 feet. The high yield very likely is the result of its nearness to the surface reservoir, which may serve as a source of replenishment.

Another excellent well is Fr-Dd 13 on the flood plain of Rock Creek about 2 miles north of Braddock Heights. It is 85 feet deep and was pumped at 50 gpm for 70 minutes with a drawdown of only 6 feet. The driller's log shows "mountain boulders" to a depth of 35 feet overlying "copper rock" (metabasalt) from 35 to 85 feet. The high yield of this well may be attributed to the permeable character of the saturated bouldery colluvium and the nearness of Rock Creek.

Aquifer and well-performance tests.—Burkittsville. A test made on January 27, 1956, on two wells about a mile south of Burkittsville, Frederick County, demonstrated that interference may take place between shallow dug wells and deeper drilled wells, even though the drilled wells are cased to bedrock. The maximum depth of dug wells is usually limited by the depth to bedrock. The test demonstrated that ground water in the voids in the weathered rock and that in the crevices in the upper part of the crystalline rock are hydraulically connected. The data also permitted a rough computation of the coefficients of transmissibility and storage.

The wells are in the western part of the Middletown Valley near the eastern slope of South Mountain in an area underlain by the Catoctin metabasalt. Two farm wells were used: dug well Fr-Eb 7, which is 23.9 feet deep, rock lined, and 9 feet in diameter; and drilled well Fr-Eb 8, which is  $12\frac{1}{2}$  feet east of the center of the dug well, 201.6 feet deep, steel cased, and 6 inches in diameter.

The dug well was pumped for 205 minutes at an average rate of about 67.5 gpm. The yield declined from 74 gpm near the start of pumping to 58 gpm near the end, probably reflecting a decrease in pump efficiency as the water level lowered in the well, but also to some extent dewatering of the rock in the vicinity of the well. The water level in the well lowered 12.6 feet during the test. About 13,800 gallons was pumped, but only 7,800 gallons came from the aquifer, the rest coming from storage in the well. An average discharge, for purposes of hydraulic analysis, would be 7,800 gal./205 min. or 38 gpm. Using this discharge rate, the specific capacity of the dug well is 3.0 gpm per foot of drawdown for the 205 minute test.

The water level in the drilled well was lowered about 2.7 feet during the period that the dug well was pumped, demonstrating hydraulic connection between the two wells. Plotted against the logarithm of time the drawdown measurements made in the drilled well conform reasonably well to a straight line (fig. 15). Using the slope of this line and the modified Theis formula, the



FIGURE 15. Graphs of Data for Aquifer Test near Burkittsville, Frederick County A. Decline in water levels versus time pumping well Eb 7 at 38 gpm.

B. Cross-sections through wells Eb 7 and Eb 8.

C. Semi-log plot of water levels in well Eb 8 versus time and computations of coefficients of transmissibility and storage.

66

transmissibility is about 6,800 gpd per foot and the storage coefficient is 0.02. These coefficients are only approximate because the field conditions do not satisfy all the requirements of the Theis formula.

*Chemical quality.*—The chemical character of ground water in the Catoctin metabasalt is shown by analyses from 1 spring and 5 wells. The water is characterized by a considerable range in mineral content and hardness. Locally, it may contain objectionable quantities of iron. The range in important constituents is:

| Constituent                   | No. of samples | Range (ppm, except for pH) |
|-------------------------------|----------------|----------------------------|
| Dissolved solids              | 4              | 55-182                     |
| Hardness as CaCO <sub>3</sub> | 6              | 32-112                     |
| Total iron (Fe)               | 6              | .03-2.1                    |
| Nitrate (NO <sub>3</sub> )    | 6              | 3-39                       |
| Chloride (Cl)                 | 6              | .6-17                      |
| pH                            | 6              | 6.7-7.5                    |

## A porhyolite

Geology.—Two northeast-trending belts of metamorphosed rhyolitic lava almost entirely surrounded by the Catoctin metabasalt crop out in the northern part of the area between Catoctin and South Mountains. The aporhyolite is chiefly blue or gray in color, cryptocrystalline in texture except for quartz and feldspar phenocrysts, and hard and brittle. Red porphyritic aporhyolite occurs within the western belt near Wolfsville Crossing and Pleasant Walk School and near Sensenbaugh School. Associated with the aporhyolite are relatively small areas of metamorphosed sediments of pyroclastic origin tuffaceous breccias and slates. In the vicinity of Wolfsville Crossing bands of rhyolite tuff occur with the red aporhyolite.

Well logs show that the weathered zone is at least 45 feet thick in places but averages about 26 feet. Drillers commonly describe the material of the zone of pronounced weathering as "clay and boulders," the boulders being masses of the rock not yet decomposed. Well casings commonly extend through this zone to the surface of the underlying fresher rock, frequently termed "mountain rock" or "copper rock" by drillers. The logs of several wells drilled in the aporhyolite are in Table 27.

Water-bearing properties.—The aporhyolite is a moderately good aquifer, but of relatively small areal extent. As the aporhyolite underlies rural areas, wells are drilled principally for farm and domestic use. The yield of 18 wells averages about 12 gpm. About 11 percent of the wells yield less than 5 gpm.

The average depth of wells is approximately 52 feet and the average yield per foot of hole is 0.23 gpm.

The best well is Fr-Bd 6 at Catoctin Mountain Park (Camp David). It yielded 30 to 36 gpm for the first 2 hours of its acceptance test. The well is 230 feet deep and is on a topographic bench at an altitude of about 1,750 feet.

The well may have penetrated metabasalt below the aporhyolite. The principal zone of contribution appeared to be within the weathered aporhyolite at a depth of 26 to 70 feet. That the weathered zone in the vicinity of this well may constitute a "pocket" of limited areal extent is suggested by the aquifer test data and by the substantial decline in yield that occurred during a drought in 1956.

Other good wells are Fr-Bc 10 and Bc 11 near the head of a branch of Hunting Creek, 1 mile southwest of Foxville. Each of these wells was pumped at 30 gpm for 1 hour. Their logs show that weathered rock extends to depths of 45 and 75 feet, respectively. The high yields of these wells may be attributed to their situation in a valley and to the existence of a thick saturated weathered zone.

It is fortunate that adequate domestic supplies of ground water can be obtained from most wells in the aporhyolite at depths of less than 100 feet, for the rock is extremely hard and difficult to drill below the zone of weathering.

Aquifer and well-performance tests.—Foxville. On June 7–8, 1955, a 24-hour acceptance test was run by the driller on well Fr-Bd 6,  $1\frac{1}{2}$  miles northeast of Foxville in the Catoctin Mountain Park. It is one of the few wells in the mountainous part of Frederick County for which a 24-hour acceptance test was run, most such tests being of an hour's duration or less. The well is an exceptionally good one, for yields of 30–40 gpm are uncommon in the mountainous sections of Frederick County.

The well casing extends to a depth of 57 feet. A turbine pump was used to test the well for 24 hours at rates varying from 36 to 24 gpm; the well was pumped at the higher rate for the first 2 hours and reduced to the lower rate thereafter. The water level in the well had lowered 12 feet by the end of the test. The specific capacity for 24 hours was 2.1 gpm per foot. The water-level measurements reflect the variations in pumping rate. The increased rate of decline of the water level after about 720 minutes of pumping, shown in figures 16A and 16C, probably is due in part to a slight increase in pumping rate, but more likely it indicates that the cone of depression had spread laterally to the limits of the pocket of weathered rock contributing water to the well.

Water levels for the period 170 to 720 minutes after pumping started conform reasonably well to a straight line when plotted against the logarithm of time, as shown in figure 16C. The computed coefficient of transmissibility is 2,200 gpd per foot for this period of the test. Owing to the complex geology and hydrology at the well site, the computed transmissibility may be only approximate. About 43 feet of the weathered rock was water-saturated at the start of the test. Dividing this figure into the transmissibility, a coefficient of permeability of about 51 gpd per square foot is obtained, which seems of the right order of magnitude. A computation of the transmissibility, based on the latter part of the hydrograph, where the rate of water-level decline is greater, gives a value of about 650 gpd per foot.





*Chemical quality.*—Two spring-water analyses (Fr-Cb 7, and a composite sample of Fr-Bd 3 and 4) and one well-water analysis (Fr-Bc 2) were obtained for the aporhyolite. The water is soft and of low mineral content. The pH of about 6.0 indicates that the water may be slightly corrosive.

#### Metamorphosed Paleozoic Rocks of Sedimentary Origin

The metamorphosed Paleozoic sedimentary rocks include the Loudoun formation, the Weverton quartzite, the Harpers phyllite, and the Antietam quartzite. Although composed of somewhat different rock types, these units have the same physiographic expression, tending to form hills and ridges.

Table 15 shows the average yield, specific capacity, and yield per foot of hole for 65 wells for 50-foot depth intervals to a depth of 150 feet. Data for depths below 150 feet are grouped together. Table 15 shows that the average yield of 11 wells more than 150 feet deep is 26 gpm, compared with an average yield of 7.1 gpm for 54 wells 150 feet deep or less. This is the result of the inclu-

# TABLE 15

| Depth   | Avera | ge yield        | Average<br>capa     | specific<br>city | Averag<br>per foo | ge yield<br>t of hole | Water bearing unit |
|---------|-------|-----------------|---------------------|------------------|-------------------|-----------------------|--------------------|
| (feet)  | (gpm) | No. of<br>wells | (gpm/ft.<br>of dd.) | No. of<br>wells  | (gpm/<br>ft.)     | No. of<br>wells       | water-bearing unit |
| 0-50    | 2     | (1)             | 0.1                 | (1)              | 0.05              | (1)                   | Loudoun formation  |
|         | 4     | (3)             | .2                  | (3)              | .10               | (3)                   | Harpers phyllite   |
|         | 10    | (1)             |                     | -                | .25               | (1)                   | Antietam quartzite |
|         | 4.4   | (5)             | .2                  | (4)              | .12               | (5)                   | All units          |
| 50-100  | 8.2   | (11)            | .4                  | (8)              | .11               | (10)                  | Loudoun formation  |
|         | 6.7   | (11)            | .4                  | (10)             | .08               | (11)                  | Harpers phyllite   |
|         | 11    | (10)            | 1.3                 | (4)              | . 15              | (10)                  | Antietam quartzite |
|         | 8.5   | (32)            | .6                  | (22)             | .11               | (31)                  | All units          |
| 100-150 | 6.0   | (4)             | .2                  | (4)              | .05               | (5)                   | Loudoun formation  |
|         | 5.2   | (8)             | .3                  | (6)              | .04               | (8)                   | Harpers phyllite   |
|         | 5.3   | (5)             | .1                  | (3)              | .05               | (5)                   | Antietam quartzite |
|         | 5.4   | (17)            | .2                  | (13)             | .04               | (18)                  | All units          |
| 150+    | 5     | (1)             | .2                  | (1)              | .03               | (1)                   | Loudoun formation  |
|         | 35    | (3)             | .4                  | (1)              | .11               | (3)                   | Weverton quartzite |
|         | 29    | (6)             | .7                  | (4)              | .07               | (5)                   | Harpers phyllite   |
|         | 5     | (1)             |                     |                  | .03               | (1)                   | Antietam quartzite |
|         | 26    | (11)            | .6                  | (6)              | .07               | (10)                  | All units          |

Average Yield, Specific Capacity, and Yield per Foot of Hole for Wells in the Metamorphosed Paleozoic Sedimentary Rocks

sion of some public-supply and commercial wells which were drilled to great depths after obtaining fairly high yields at shallow depths. The high average yield of the 11 wells is reflected in high average specific capacities. The progressive decrease in yield per foot of hole drilled for the three depth intervals of 0-50, 50-100, and 100-150 feet would be expected as the rocks become denser, less fractured, and less permeable with increasing depth below the weathered zone.

# Cambrian System

## Loudoun formation

Geology.—The Loudoun formation is the oldest of the Cambrian formations in the area. As mapped by Stose and Stose (1946), the formation crops out on the slopes of Catoctin and South Mountains and in places forms their crests.

Cloos (1951, p. 29) believes that in the South Mountain area it is present on the east slope of the mountain only. Owing to stratigraphic revisions necessitated by his different structural interpretation of Catoctin Mountain, Whitaker (1955) does not consider the Loudoun to be present along the east slope of Catoctin Mountain. The formation is highly variable in character and thickness. It is composed chiefly of soft coarse arkosic quartzite, purer quartzite, quartzose conglomerate, and phyllite or slate. The maximum thickness may be about 300 feet, and the thickness generally is greater in Catoctin Mountain than in South Mountain. Four drillers' logs of wells in this formation are given in Table 27. Few detailed logs are available. Drillers generally refer to the quartzite and conglomerate as "sandstone," "sand," or "sand rock" and to the phyllite or slate as "shale," "shale rock," or "blue slate." The surficial zone of weathered rock is commonly called "clay and boulders" by drillers.

Water-bearing properties.—The Loudoun formation is only a fair waterbearing unit and underlies chiefly uninhabited mountainous parts of Frederick County. Records of 20 wells and 2 springs show that adequate ground-water supplies for domestic use and small commercial or public-supply use are available. Yields of 17 wells range from 1 to 20 gpm and average about  $6\frac{1}{2}$  gpm. About 40 percent of the wells yield 3 gpm or less.

The depths of 20 wells range from 27 to  $153\frac{1}{2}$  feet and average about 81 feet. Based on 15 casing-length records, the average thickness of the weathered zone is about 38 feet. Although the zone of weathering in the Loudoun formation is comparatively thick throughout much of its area, it is unsaturated and contributes little or no water when penetrated by wells.

One of the best wells in the Loudoun formation is Fr-Be 19,  $2\frac{3}{4}$  miles north of Thurmont. It is 71 feet deep and is near the contact of the Loudoun formation with the Harpers phyllite. The well yielded 20 gpm during a 2-hour test with a drawdown of only 10 feet. Its specific capacity thus was 2.0 gpm/ft.

Well Fr-Ae 4,  $2\frac{1}{2}$  miles south of Emmitsburg, also yielded 20 gpm, but its test lasted only half an hour. It is 125 feet deep and the principal water-bearing zone was reported to be at a depth of 115–120 feet. The specific capacity of this well was only 0.3 gpm per foot, which is about the average for the formation.

#### Weverton quartzite

Geology.—Hard vitreous quartzite beds of the Weverton quartzite, which stratigraphically overlies the Loudoun, are the principal ridge formers of both South and Catoctin Mountains. The Weverton forms much of the crests and slopes of the mountains. As mapped by Stose and Stose (1946), the Weverton is absent on Catoctin Mountain south of Braddock Heights, except for the Pine Mountain area, and it is absent on the east prong of South Mountain.

The formation is composed principally of layers of dark- and light-colored quartzite but has a coarse conglomeratic quartzite at its base. Massive vitreous

beds form rocky ledges and cliffs along the mountain slopes. The thickness of the Weverton quartzite is on the order of 500 feet. Whitaker (1955, p. 442– 445) distinguished eight clastic facies of the Weverton in Catoctin Mountain. The distribution of the Weverton on his geologic map of Catoctin Mountain is not everywhere in agreement with the distribution on the geologic map by Stose and Stose.

Water-bearing properties.—The Weverton quartzite is of minor importance as a water-bearing formation owing to its relatively small areal extent and the fact that it underlies rugged uninhabited mountainous parts of western Frederick County. As the unit forms the crests of the mountains, much of it lies above the water table and cannot supply water to wells. Springs are common but few wells are drilled in the formation. A number of wells were drilled for purposes other than domestic, such as for park, municipal, or school use, and were drilled to uncommon depths in search of large supplies. Domestic wells are commonly shallow; probably few exceed 50 feet. The reported yields of three wells in the quartzite were 4, 20, and 80 gpm, respectively. Because so few well yields are known, their average yield of 35 gpm is meaningless.

Well Fr-Bd 28 was drilled about 1930 to a depth of 1,000 feet, in the valley of High Run, to supplement the water supply of the town of Thurmont. A yield of less than 20 gpm was obtained, and the well is not used. Two other wells of the town supply were drilled about half a mile east of this one in the Harpers phyllite.

Well Fr-Ae 28 was drilled near the east foot of Catoctin Mountain to a depth of 850 feet for Mount St. Marys College. A yield of 80 gpm was obtained. The well is equipped with a turbine pump and is maintained as a standby source. The static water level is about 10 feet below the land surface, so that the system of fractures which supplies the water to the well is almost completely filled with water.

Well Wa-Dj 1 is a 400-foot well on the crest of South Mountain at the Washington Monument State Park in Washington County, just west of the Frederick County line. Its log, the source of which is unknown, is:

> 0-300 feet Weverton quartzite 300-400 feet Catoctin metabasalt (greenstone)

A yield of  $1\frac{1}{2}$  gpm was obtained at the formational contact, and this only after the well was dynamited. The static water level was about 138 feet below the land surface in April 1956, suggesting that a substantial part of the Weverton is above the zone of saturation in the well. The poor yield of this well may be typical of wells on the rocky mountain crests.

Aquifer and well-performance tests.—Yellow Springs. A brief test was run on well Fr-Dd 74, a mile northwest of Yellow Springs in the valley of a tributary of Tuscarora Creek. The well is 21.1 feet deep, is 6 inches in diameter, and is

cased for part of its depth. The flatness of the land surface along the stream here suggests that the valley may be partly filled with rock debris. No log for the well is available to establish the depth and character of the rock debris. The well was pumped for 27 minutes at an average rate of 4.4 gpm. The water level declined 0.25 foot, and after pumping was stopped it recovered in 17 minutes to within 0.01 foot of the static level. Thus, the specific capacity was 17.6 gpm per foot, which is among the highest in the two counties.

Although the test was of short duration and small pumping rate, the high specific capacity and rapid recovery of the water level after pumping show that the shallow quartzite here, or perhaps the rock debris overlying it, is moderately permeable. It is likely that at some localities conditions are favorable for induced recharge of the aquifers from the small streams draining the mountain slopes.

*Chemical quality.*—One partial analysis of water from the Weverton quartzite (dug well Fr-Bd 9) showed the sample to be soft and of low mineral content.

# Harpers phyllite

Geology.—The Harpers phyllite underlies a belt of foothills on the east side of Catoctin Mountain in Frederick County. According to Stose and Stose (1946, p. 40) it is bounded by the Triassic border fault on the east and a nearly parallel fault on the west. Nowhere does it occur in normal stratigraphic position overlying the Weverton quartzite. The Harpers also underlies a small area in northern Carroll County east of the Triassic upland. Whitaker's conclusions (1955, p. 445–446) regarding the geology and distribution of the Harpers in the Catoctin Mountain area differ from those of the Stoses. The Harpers, or stratigraphically equivalent rocks, may underlie parts of southeastern Frederick County (Scotford, 1950; Thomas, 1952).

The principal rocks of the Harpers are a bluish-gray phyllite and finely micaceous slate. The total thickness is about 2,000 feet. Drillers commonly refer to the fresh rock as slate or "mountain rock." The term "soapstone" is used for weathered or partly weathered rock, which is easily drilled. The lengths of casing in wells indicate that rock weathering extends to an average depth of about 35 feet, although in some places the weathered zone is much thicker. Parts of the outcrop of the Harpers between Frederick and Emmitsburg are covered by mountain wash, as is shown by the drillers' logs of several wells which refer to sand, gravel, or boulders overlying the Harpers. Logs of 7 wells are given in Table 27, including 4 which are interpreted as having penetrated mountain wash (colluvium) above the bedrock.

Water-bearing properties.—The eastern foothills of Catoctin Mountain are an area of increasing residential development, so that the Harpers phyllite is important as a water-bearing unit. Records of about 40 wells and several springs that yield water from this formation show that adequate supplies for domestic use are generally obtainable, although many of the wells yield only enough water for minimum requirements. The records of a few wells indicate that locally the formation may be capable of supplying sufficient water for small industrial or public supplies.

The yields of wells range from less than 1 to 70 gpm and average about 10 gpm. About 50 percent of the wells yield less than 5 gpm.

The depths of 39 wells range from 9 to 1,140 feet and average about 169 feet. The average value is weighted by two exceptionally deep wells drilled several years ago in searching for a public ground-water supply for the town of Frederick. These wells, Fr-Dd 5 and Dd 6, are 996 feet and 1,140 feet deep, respectively. Exclusive of the 2 deep wells, the average yield per foot of hole drilled is about 0.06 gpm. Well Fr-Dd 5 is the best well in the formation, having a reported yield of 70 gpm.

A 214-foot well, Fr-Dd 44, 0.5 mile north of Yellow Springs, is reported to yield 50 gpm. It had a specific capacity of 2.0 gpm per foot in a 25-hour acceptance test. The high yield may be due to the existence of saturated colluvium at the well site. However, not all wells penetrating the phyllite where it is overlain by saturated colluvium (or alluvium) are successful. Well Fr-Be 2, about 1 mile north of Thurmont, penetrated 19 feet of such material (which was cased off) and 93 feet of the Harpers phyllite. The well was abandoned as unsuccessful because its yield was inadequate.

*Chemical quality.*—Two partial analyses of water from the Harpers are available; both are of samples from well Fr-Dd 77 at Braddock. The water is soft and of moderate mineral content. The water is probably corrosive, owing to the low pH (6.0) and high carbon dioxide content. A water sample collected at the well contained 3.3 ppm of copper, most of which probably was dissolved from the copper pipe submerged in the well. Another sample taken at the kitchen faucet showed a copper content of 3.4 ppm. The high concentrations of nitrate and chloride may indicate pollution of the water.

#### Antietam quartzite

Geology.—The Antietam quartzite is exposed on both sides of the Frederick Valley. On the west side it underlies the foothills of Catoctin Mountain in a series of narrow northeast-trending ridges extending from Point of Rocks at the Potomac River to just south of Yellow Springs. On the east side of the valley it forms a line of one or two conspicuous low ridges, extending from the southeast corner of Frederick County at the Potomac River northeastward to New Midway. In Carroll County the Antietam quartzite underlies a small area northeast of Taneytown near the Pennsylvania State line.

The Antietam quartzite in the eastern foothills of Catoctin Mountain is described by Stose and Stose (1946, p. 41) as a well-bedded light gray, rusty-

weathering, granular quartzite and underlying crumbly sericitic quartz schist. Its thickness here is estimated to be about 300 feet. On the east side of the Frederick Valley the formation is largely quartz schist containing beds of hard gray quartzite. The base of the formation is not exposed here and its thickness is not known.

Drillers commonly refer to the fresh rock of the Antietam as "blue" or "gray slate" or "mountain rock" and to the softer weathered rock as "shale" or, where more intensely weathered, as "clay." Drillers' logs of 5 wells are given in Table 27. The thickness of the weathered zone, based on casing lengths of 16 wells, is as much as 40 feet, but it averages about 19 feet.

Water-bearing properties.—The Antietam quartzite is a water-bearing formation of moderate importance along the east flank of Catoctin Mountain, but it is less important on the east side of the Frederick Valley, an area of sparser habitation owing partly to the more hilly topography. The formation appears to be a poorer water bearer there than to the west of the valley.

Yields of 16 wells range from less than 1 to 20 gpm and average about 9 gpm. Four of the wells yielded less than 5 gpm.

The average depth of 23 wells is 92 feet and the range in depth is from 40 to 209 feet.

Well Fr-Ed 58, 0.5 mile south of Braddock, yielded 20 gpm and is the best well in the aquifer. It is 87 feet deep and had a specific capacity of 4.0 gpm per foot after 1 hour of pumping. The points of entrance of water into the well are not known, but they must be below a depth of 55 feet, the static level at the time of the pump test.

One of the poorest wells in the aquifer, Fr-Cf 24, yielded only  $\frac{1}{2}$  gpm. It is 123 feet deep and is on the crest of a prominent ridge just east of LeGore. The driller's log (Table 27) indicated extremely hard rock beneath about 30 feet of unsaturated weathered rock.

# Limestones of the Frederick Valley

The Paleozoic limestones and dolomites of the Frederick Valley are the Tomstown dolomite and the Frederick and Grove limestones. Because of the soluble character of their contained minerals, these rocks have physical and hydrologic characteristics which set them apart from the other crystalline rocks.

The average yield of 105 wells in these aquifers is 25 gpm, or more than  $2\frac{1}{2}$  times that of the Precambrian volcanic rocks or the metamorphosed Paleozoic noncarbonate sedimentary rocks.

Table 16 shows the grouping by depth intervals of average yield, specific capacity, and yield per foot of hole for wells in the limestone aquifers. The average yield of 21 wells more than 150 feet deep is 50 gpm, whereas the average yield is only 19 gpm for 54 wells less than 150 feet deep. Thus, the well

## TABLE 16

| Depth   | Averag | Average yield   |                     | Average specific<br>capacity |               | ge yield<br>t of hole |                     |  |
|---------|--------|-----------------|---------------------|------------------------------|---------------|-----------------------|---------------------|--|
| (feet)  | (gpm)  | No. of<br>wells | (gpm/ft.<br>of dd.) | No. of<br>wells              | (gpm/<br>ft.) | No. of<br>wells       | Water-bearing unit  |  |
| 0-50    | 13     | (18)            | 4.6                 | (11)                         | 0.33          | (18)                  | Frederick limestone |  |
| 50-100  | 20     | (2)             | 1.0                 | (1)                          | 0.24          | (2)                   | Tomstown dolomite   |  |
|         | 22     | (39)            | 4.5                 | (24)                         | .35           | (39)                  | Frederick limestone |  |
|         | 24     | (8)             | 1.0                 | (4)                          | .32           | (8)                   | Grove limestone     |  |
|         | 22     | (49)            | 3.9                 | (29)                         | .34           | (49)                  | All units           |  |
| 100-150 | 16     | (13)            | 3.0                 | (9)                          | 0.14          | (13)                  | Frederick limestone |  |
|         | 29     | (4)             | . 5                 | (2)                          | .27           | (4)                   | Grove limestone     |  |
|         | 19     | (17)            | 2.5                 | (11)                         | .17           | (17)                  | All units           |  |
| 150+    | 53     | (13)            | 0.3                 | (3)                          | 0.20          | (13)                  | Frederick limestone |  |
|         | 45     | (8)             | 4.1                 | (6)                          | .17           | (8)                   | Grove limestone     |  |
|         | 50     | (21)            | 2.9                 | (9)                          | . 19          | (21)                  | All units           |  |

Average Yield, Specific Capacity, and Yield per Foot of Hole for Wells in the Limestones of the Frederick Valley

data suggest that it is advantageous to drill wells in the limestones to a minimum depth of 150 feet if large yields are desired. However, the maximum average specific capacities and the maximum average yields per foot of well hole are from wells less than 100 feet deep.

# Cambrian System

#### Tomstown dolomite

Geology.—The Tomstown dolomite occurs along a narrow northeast-trending belt at the east foot of Catoctin Mountain between Point of Rocks and Shookstown. It is bordered on the west in normal sequence by the Antietam quartzite and on the east is cut off by the Triassic border fault. Exposures of the dolomite are rare. In most places it is represented by its weathered product, red clay, or is covered by mountain wash. Its thickness is about 200 feet. In an exploratory core-drilling project near Feagaville, Hoy and Schumacher (1956) determined that the Tomstown there is 180 feet thick. They describe (p. 1525) the lower 40 feet as "white to light-gray, medium- to fine-grained, massive to thin-bedded dolomite with minor sericite partings" and the remainder as "gray thin-banded dolomitic limestone with numerous sericite and carbonaceous partings." Water-bearing properties.—Owing to its limited extent, the Tomstown dolomite is of minor importance as a water-bearing formation. Only two wells tap the dolomite; these are well Fr-Fc 6 near Point of Rocks and Fr-Dd 46 at Shookstown. They are 93 and 65 feet deep and yield 30 and 10 gpm, respectively.

# Frederick limestone

*Geology.*—The rocks of the Frederick Valley form a syncline, the Frederick limestone underlying most of the valley and the Grove limestone occupying the axis of the syncline. The outcrop of the Frederick limestone is about 0.5 mile wide near Licksville at the Potomac River, widens northward to about 5 miles in the vicinity of Frederick and then narrows north of Frederick to disappear beneath Triassic sediments in the vicinity of New Midway. Smaller areas of the Frederick limestone occur in the Thurmont-Catoctin Mountain area and between ridges of the Antietam quartzite on the east side of the Frederick Valley.

The Frederick limestone is chiefly thin-bedded dark-blue limestone with dark argillaceous partings. Dark shale occurs near the base of the formation, cropping out along the east side of the Frederick Valley. The stratigraphic thickness of the Frederick limestone is approximately 500 feet. In their logs, drillers generally refer to the limestone rock and the weathered clayey mantle by the correct lithologic terms. Records of eight wells are given in Table 27.

Weathering separates the limestone along bedding planes, and fractures transverse to the bedding split it into tabular blocks which are commonly used for stone fences throughout the valley. In most places a blanket of 10 to 35 feet of reddish smooth-textured or gritty brown residual clay overlies the limestone. The thickness of the clay mantle varies markedly over short distances owing to differential susceptibility of beds of the limestone to weathering and to erosion of the clay. Well Fr-De 16, near Hansonville, penetrated 14 feet of clay over the rock, but relatively fresh limestone crops out about 20 feet from the well. In places wells encounter residual boulders of limestone embedded in the clay.

Because limestone is relatively easily dissolved by water, fractures and partings at shallow depth become enlarged as water circulates through them. Cavernous openings have developed in some areas underlain by the Frederick limestone, but large underground openings are not so numerous as in areas underlain by the Grove limestone. Davies (1950, p. 29) described a large cavern in the Frederick limestone near Adamstown. Large solutional openings and residual boulders give rise to drilling problems and call for special drilling techniques. Boulders tend to deflect the drill bit. Large solutional openings cause deviations of the drill hole from the vertical and loss of drilling fluid in rotary-drilled wells.

Water-bearing properties.—The Frederick limestone is one of the most important water-bearing units in the area. A large number of farm and suburban homes and several commercial and industrial firms are supplied with water from wells in the formation. Well yields range from practically nothing to as much as 275 gpm and average about 25 gpm. The pumping rates of acceptance tests for domestic wells usually are less 30 gpm. That some of the wells for which small yields were reported are capable of considerably greater yield is supported by the small drawdowns during their acceptance tests. Industrial and public-supply wells, on the other hand, ordinarily are tested at their maximum capacity, and their average yield (about 120 gpm) is considerably greater than the overall average. Data for nine high-capacity wells in the Frederick limestone are:

| Location  | Well No. | Depth<br>(feet) | Yield<br>(gpm) | Length of test<br>(hours) | Specific<br>capacity<br>(gpm/ft.) |
|-----------|----------|-----------------|----------------|---------------------------|-----------------------------------|
| Thurmont  | Fr-Be 1  | 192             | 150            |                           | _                                 |
| Do        | Be 3     | 151             | 155            | 24                        | 3.4                               |
| Woodsboro | Ce 8     | 275             | 80             | 2                         |                                   |
| Frederick | De 27    | 200             | 80             | _ 1                       |                                   |
| Do        | Ee 4     | 61              | 275            |                           | 34.7                              |
| Do        | Ee 6     | 120             | 67             |                           | _                                 |
| Adamstown | Fd 1     | 954             | 95             | 108                       | .9                                |
| Do        | Fd 4     | 60              | 120            | _                         |                                   |
| Do        | Fd 7     | 1,209           | 120            | _                         |                                   |
| Do        | Fd 7     |                 | 65             | 48.7                      | .6                                |
| Average   |          | 358             | 120            |                           |                                   |

The best well, Fr-Ee 4, is an industrial well only 61 feet deep in the center of Frederick. It was pumped for several hours at 275 gpm with a drawdown of only 8 feet. The log of the well shows that two cavernous zones were encountered below the water table at depths of 31 and 55 feet. The high sustained yield of this well indicates connection via solution cavities with nearby Carroll Creek.

Depths of wells in the Frederick limestone vary considerably from place to place, even for nearby wells, owing to the differential solubility of the limestone layers and to variations in number and size of water-bearing openings. The wells range in depth from 20 to as much as 1,209 feet and average 119 feet. The few records of deep wells suggest that little water is likely to be encountered below a depth of about 400 or 450 feet. However, where large supplies are needed it may be prudent to prospect for water-bearing zones at even greater depths.

Aquifer and well-performance tests.—Adamstown. Adamstown is in the southern part of the Frederick Valley and is underlain by eastward-dipping beds of the Frederick limestone. The residual red and brown clay overlying the bed-

#### TABLE 17

Reported Depth (ft.) Length of casing Well No. yield (gpm) Remarks (ft.) Fr-Fd 1 954 235 (or 400?) 190 Originally 430 ft. deep, with similar yield. Drilled through dug well 36 ft. deep. Water reported encountered in 3-ft. cav-Fd<sub>2</sub> 150 22 ity at 135 ft. 17 Fd 3 76.8 Fd 4 60 20 120 20 Fd 5 35 Water reported contaminated. Fd 6 65 20 1,209 120 Originally 364 ft. deep, with yield of 80 Fd 7 220 (or 400?) gpm. Equipped with turbine pump.

Data for Wells at the Adamstown Cannery

rock is several feet to about 20 feet thick. Beneath the clay, to a depth of 100 or 150 feet, are residual boulders of limestone embedded in a matrix of residual clay and partly decomposed rock. This zone, particularly the shallower part, is characterized by cavernous solutional openings. It grades downward into solid bedrock, where the ground-water circulation is through joint openings and solutional openings of moderate size. Water-bearing zones of any size probably are absent below a depth of about 400 or 450 feet.

The well field of the former Thomas and Co. cannery was made available for an aquifer test during December 1954. The field consists of seven wells, data for which are given in Table 17.

Well Fr-Fd 7 was the only well in use at the time of the test; the others either had no pumps or were equipped with inoperative pumps. All the wells, especially the shallow ones, yielded muddy water, as is common for wells obtaining water from cavernous openings in the limestone.

Except for well Fd 2, the well records indicate that the principal water-bearing zones occur within two depth intervals, approximately 35 to 80 feet and 350 to 450 feet. Hence, approximately 270 feet of poorly permeable rock lies between these water-bearing zones, although within this interval there are small bodies of permeable rock, as is indicated by the cavity reported in well Fd 2 at a depth of 135 feet. Measurements at various times during the period 1954-57 in deep well Fd 1 and in the shallow dug well in which it is drilled show that the water level in the deep wells is consistently lower than the water level in the shallow wells, the range in head difference being 0.5 to 4 feet. That the two zones are hydraulically connected is indicated by the reported decrease in yield of the shallow wells when the deeper ones were pumped. Also, when a sinkhole collapse occurred beneath the Baltimore and Ohio Railroad tracks along the side of the cannery, dewatering of the sinkhole to facilitate repairs

| Well no.                | Distance<br>from<br>pumped<br>well Fd 7<br>(feet) | Drawdown<br>(feet) | Remarks                                                                            |  |  |  |
|-------------------------|---------------------------------------------------|--------------------|------------------------------------------------------------------------------------|--|--|--|
| (Shallow drilled wells) |                                                   |                    |                                                                                    |  |  |  |
| Fr-Fd 3                 | 203                                               | 1.72               | Equipped with continuous recorder.                                                 |  |  |  |
| Fd 5                    | 229                                               | 1.69               | Manual measurements.                                                               |  |  |  |
| Fd 6                    | 217                                               | 1.74               | Continuous recorder.                                                               |  |  |  |
| (Deep drilled wells)    |                                                   |                    |                                                                                    |  |  |  |
| Fd 1                    | 168                                               | 53.5               | Continuous recorder.                                                               |  |  |  |
| Fd 7                    | 0                                                 | 116.0              | Manual measurements.                                                               |  |  |  |
| (Shallow dug wells)     |                                                   |                    |                                                                                    |  |  |  |
| Fd 41                   | 500                                               | .8+                | Depth 19.6 ft. Data erratic and diffi-<br>cult to interpret.                       |  |  |  |
| Fd 49                   | 600                                               | .45                | Depth 13.9 ft. Data erratic on first day<br>of test, but consistent on second day. |  |  |  |
|                         |                                                   |                    |                                                                                    |  |  |  |

 TABLE 18

 Drawdown in Observation Wells in Adamstown Aquifer Tests

to the track bed was accomplished by pumping deep well Fd 7. It appears that water moves downward from the shallow zone of higher head to the deeper zone of lower head. The direction of subsurface drainage in the Adamstown area apparently is to the west and south toward Tuscarora Creek.

Well Fr-Fd 7 was pumped for 48 hours and 40 minutes. Drawdowns of the water levels in all wells were observed by means of tape measurements or automatic water-level recorders. The wells used for observation were shallow wells Fd 3, 5, and 6 and deep wells Fd 1 and Fd 7. In addition, water levels in two dug wells, Fd 41 and Fa 49, south of the cannery were observed. Pumping rates during the test ranged from 60 to 78 gpm and were measured by the rate of rise of the water level in the cannery's water-storage tank. The weighted average pumping rate was 65 gpm. The drawdown in each well, just before cessation of pumping, is summarized in Table 18.

The pumping level in Fd 7 lowered 183 feet after about 20 hours of pumping, and slowly rose several feet during the remainder of the pumping period. The water level in the observation well Fd 1 declined 55 feet after about 20 hours of pumping, and remained at practically this level for the rest of the pumping period. The drawdown in this well plotted against time since pumping began, on a logarithmic base is shown in figure 17. The three shallow drilled wells responded slowly to the pumping but at a consistently increasing rate with respect to the logarithm of time. The water levels in these wells declined at almost identical rates (Table 18), even though the wells were not at equal



FIGURE 17. Graphs of Drawdown in Observation Wells Fr-Fd 1 and Fd 3 and Computation of Hydrologic Coefficients for Adamstown Aquifer Tests

distances from the pumped well. Water-level data for well Fd 3 are plotted in figure 17, and its graph is representative of the drawdown in all three shallow drilled wells.

The aquifer test data suggest that the deep water-bearing zone responds to pumping as though it were a leaky artesian aquifer (Jacob, 1946; Hantush and Jacob, 1955), in which downward leakage through the overlying poorly permeable limestone replenishes the water-bearing zone as water is withdrawn from it by pumping. Factors suggesting this are the cessation of drawdown in the two deep wells after 20 hours of pumping, and the slow but progressively increasing response of the shallow wells to the pumping. Hantush and Jacob obtained a solution for nonsteady distribution of drawdown in an aquifer in which leakage takes place. Later Hantush (1956) outlined graphical methods for determining the hydrologic coefficients of leaky artesian aquifers, including the coefficient of leakage (leakance) of the semiconfining bed. Recently he applied the leaky-aquifer analysis extensively in a quantitative ground-water study of the Roswell basin (1957). Analysis of the drawdown curve for Fd 1 by the method of Hantush is shown on figure 17. The table of values for the function referred to in the computations may be found in his Roswell basin paper. For the Adamstown test coefficients of transmissibility and storage of 430 gpd/ft. and 1.8  $\times$  10<sup>-5</sup>, respectively, were computed. A coefficient of leakage of  $1.6 \times 10^{-4}$  gpd/ft.<sup>2</sup> was obtained. All three coefficients are important to quantitative evaluation of ground-water circulation, availability of ground-water supplies and interference between wells. Owing to the heterogeneous water-bearing character of the limestones of the Frederick Valley, the coefficients may be strictly applicable only to the rocks in the Adamstown area and only to the extent that the limiting geologic and hydrologic factors are understood.

Analysis by the Theis nonequilibrium recovery formula of the water-level recovery curves for the two deep wells after pumping was stopped gave a transmissibility of 680 gpm per foot, somewhat larger than that computed from the drawdown curves but still a very low figure.

Chemical quality.—Nine well samples and one spring sample were collected for analysis (Table 12). The water is of the calcium bicarbonate type and is moderately hard to very hard. Water-softening units are a fairly common part of water-supply systems using ground water from the Frederick limestone. Most of the analyses show high concentrations of nitrate and variable quantities of chloride which may indicate local organic pollution. In some places iron may be present in objectionable quantities. The range of important constituents in the samples is:

| Constituent                   | No. of samples | Range<br>(in ppm, except for pH) |  |
|-------------------------------|----------------|----------------------------------|--|
| Dissolved solids              | 3              | 208-345                          |  |
| Hardness as CaCO <sub>3</sub> | 10             | 82-459                           |  |
| Total iron (Fe)               | 10             | .026                             |  |
| Nitrate (NO <sub>3</sub> )    | 10             | 6-178                            |  |
| Chloride (Cl)                 | 10             | .4-114                           |  |
| pH                            | 10             | 7.0-8.0                          |  |

Radiochemical data for water from well Fr-Cf 1 are given on p. 57.

## Ordovician System

# Grove limestone

Geology.—The Grove limestone, of early Ordovician age, underlies a linear strip along the center of the Frederick Valley. Small parallel outcrops along the west side of the valley represent subordinate folds of the west limb of the syncline. The main belt is about a mile wide and extends from near Buckeystown northward through Frederick to where it disappears beneath Triassic sediments. The formation is described by Stose and Stose (1946, p. 47) as "a thick-bedded high calcium limestone, with beds of massive dolomite in the lower part and highly quartzose limestone at the base." The basal beds are characterized by an abundance of glassy quartz grains, and in places the siliceous limestone weathers to sand. Owing to their greater resistance to weathering than that of the purer limestone above, these basal beds form low topographic ridges or crop out in narrow linear belts which outline the rock structure. The total thickness of the formation is about 600 feet.

In their logs drillers commonly refer to the rock as limestone, but where it is siliceous they may use the term "sandstone." The siliceous beds are difficult to drill. Logs of six wells are given in Table 27. The weathered mantle of the Grove limestone is variable in thickness and character. Generally it is 20 to 40 feet thick and consists of clay or sand. Solutional cavities are more prevalent in the Grove than in the Frederick limestone, presumably owing to the generally purer character of the Grove. Davies (1950, p. 30) describes several cavernous openings in the formation. Large openings were reportedly encountered during the drilling of several wells, among which are wells Fr-Ee 2 and Ee 3. However, it is not always possible to distinguish creviced openings from soft fissure-filling clay, both of which are penetrated rapidly by the drill. A 7-foot limestone layer penetrated in the midst of 52 feet of red clay at a depth of 38 to 45 feet in well Fr-De 9 near Walkersville may be a residual boulder. Such boulders embedded in the clay mantle frequently deflect the drill bit and make it difficult to drill straight well holes. Inclined bedding or jointing also may deflect well holes.

Water-bearing properties.—The Grove limestone is among the most important water-bearing formations in Frederick County. A number of farms, rural homes, and commercial and industrial firms are supplied with water from wells in this formation. Its outcrop passes through the eastern part of the city of Frederick, where industries utilize it as a source of water. Yields of 20 wells range from a few gpm to about 150 gpm and average about 32 gpm. Data for seven of the best wells producing from the Grove limestone are given below; the average yield of these wells is about 72 gpm and their average depth is 190 feet:

| Location     | Well No. | Depth<br>(feet) | Yield<br>(gpm) | Length<br>of test<br>(hours) | Specific<br>capacity<br>(gpm/ft.) |
|--------------|----------|-----------------|----------------|------------------------------|-----------------------------------|
| Woodsboro    | Fr-Cf 1  | 200             | 130            | 64                           | 3.8±                              |
| Walkersville | De 34    | 330             | 100            | 2                            | 20                                |
| Do           | De 35    | $100\pm$        | 60             |                              |                                   |
| Do           | De 7     | 123             | 45             | 6                            |                                   |
| Do           | De 13    | 70              | 100            | 12                           |                                   |
| Frederick    | Ee 2     | 155             | 30             | 8                            | .33                               |
| Do           | Ee 3     | 350             | 40             | 8                            | .6                                |

The depths of all inventoried wells in the Grove limestone range from 15 to 400 feet and average 135 feet. It is likely that little increase in well yield may be expected below 300 to 400 feet; in most localities the major water-bearing openings appear to be above 100 feet. The average yield per foot of hole drilled is 0.24 gpm.

The best well in the formation is Fr-Cf 1, owned by the town of Woodsboro.

It yielded an average of 130 gpm for 64 hours with a specific capacity of about 3.8 gpm per foot. The well is only a few hundred feet from a diabase dike intruded into the Grove limestone. The high yield may be related to rock fracturing associated with the diabase intrusion and subsequent solutional activity.

*Chemical quality.*—Three samples of water from the Grove limestone were analyzed. The analyses show the water to be similar to that from the Frederick limestone. Calcium and magnesium are the principal cations and bicarbonate the principal anion. The water is moderately high in dissolved solids and is very hard. The water is slightly alkaline and the iron content is low.

| Constituent                   | No. of samples | Range<br>(ppm, except for pH) |
|-------------------------------|----------------|-------------------------------|
| Dissolved solids              | 3              | 245-290                       |
| Hardness as CaCO <sub>3</sub> | 3              | 206-263                       |
| Total iron (Fe)               | 3              | .094                          |
| Nitrate (NO <sub>3</sub> )    | 3              | 29-36                         |
| Chloride (Cl)                 | 3              | 2-7                           |
| pH                            | 3              | 7.4-7.7                       |

The range of important constituents in analyses is:

#### Silicate Crystalline Rocks of the Piedmont Upland

The silicate crystalline rocks of the Piedmont upland are of Precambrian and early Paleozoic age. They lie east of the Frederick Valley in an area characterized by rolling, well-drained hills, locally steeply sloping. Formations in this category are the Baltimore gneiss, Peters Creek quartzite, Sams Creek metabasalt, Libertytown metarhyolite, Ijamsville phyllite, Urbana phyllite, Marburg schist, and Wissahickon formation. The average yield of 266 wells in these rocks is about 13 gpm.

Table 19 shows by depth intervals of 50 feet the average yield, specific capacity, and yield per foot of hole for the wells in these formations. The average yield of wells is highest in the depth interval from 100 to 150 feet and in the interval more than 150 feet. If large-capacity wells are desired, drilling should proceed to a depth of at least 100 or 150 feet. Table 19 also shows the usual progressive decline in average specific capacity and average yield per foot of hole for wells in the successive depth intervals.

#### Baltimore gneiss

*Geology.*—The Baltimore gneiss, of Precambrian age, occurs in a small area at the southeastern tip of Carroll County, as a part of the Woodstock anticline, the major part of which lies to the southeast in Howard and Baltimore Counties. In Carroll County it consists of alternating dark biotitic layers and light-colored granitic layers.

# TABLE 19

| Dopth interval | Averag | e yield                 | Average<br>capa     | specific<br>city        | Avera<br>per ft. | ge yield<br>of hole |                                         |
|----------------|--------|-------------------------|---------------------|-------------------------|------------------|---------------------|-----------------------------------------|
| (feet)         | (gpm)  | Num-<br>ber of<br>wells | (gpm/ft.<br>of dd.) | Num-<br>ber of<br>wells | (gpm/<br>ft.)    | Number<br>of wells  | Water-bearing unit                      |
| 0-50           | 8      | (1)                     |                     | _                       | 0.25             | (1)                 | Peters Creek quartzite                  |
|                | 10     | (4)                     | 1.3                 | (2)                     | .26              | (4)                 | Sams Creek metabasalt                   |
|                | 10     | (3)                     | 6.2                 | (2)                     | .24              | (3)                 | ljamsville phyllite                     |
|                | 10     | (8)                     | 2.9                 | (3)                     | .25              | (8)                 | Marburg schist                          |
|                | 14     | (7)                     | 2.4                 | (2)                     | .35              | (7)                 | Wissahickon formation (albite-chlorite) |
|                | 11     | (23)                    | 3.2                 | (9)                     | . 28             | (23)                | All units                               |
| 50-100         | 12     | (1)                     |                     |                         |                  | _                   | Baltimore gneiss                        |
|                | 10     | (7)                     | 2.2                 | (7)                     | 0.16             | (7)                 | Peters Creek quartzite                  |
|                | . 9    | (4)                     | .2                  | (4)                     | .08              | (4)                 | Sams Creek metabasalt                   |
|                | 12     | (2)                     | 1.0                 | (2)                     | .19              | (2)                 | Libertytown metarhyolite                |
|                | 8.7    | (22)                    | .3                  | (12)                    | .12              | (22)                | ljamsville phyllite                     |
|                | 12     | (17)                    | .4                  | (8)                     | .16              | (17)                | Urbana phyllite                         |
|                | 16     | (34)                    | 2.7                 | (18)                    | .23              | (31)                | Marburg schist                          |
|                | 11     | (72)                    | 1.8                 | (30)                    | .16              | (72)                | Wissahickon formation (albite-chlorite) |
|                | 11     | (159)                   | 1.5                 | (81)                    | .16              | (155)               | All units                               |
| 100-150        | 25     | (3)                     | 0.6                 | (1)                     | 0.25             | (3)                 | Peters Creek quartzite                  |
|                | 7      | (1)                     | .1                  | (1)                     | .04              | (1)                 | Sams Creek metabasalt                   |
|                | 1      | (1)                     |                     | _                       | .01              | (1)                 | Libertytown metarhyolite                |
|                | 5.7    | (7)                     | . 2                 | (4)                     | .06              | (7)                 | ljamsville phyllite                     |
|                | 7.1    | (6)                     | .1                  | (4)                     | ,06              | (6)                 | Urbana phyllite                         |
|                | 7.5    | (11)                    | .6                  | (5)                     | ,06              | (11)                | Marburg schist                          |
|                | 25     | (24)                    | 1.3                 | (9)                     | .20              | (24)                | Wissahickon formation (albite-chlorite) |
|                | 16     | (53)                    | .7                  | (24)                    | . 14             | (53)                | All units                               |
| 150+           | 4      | (1)                     | 0.1                 | (1)                     | 0.02             | (1)                 | Baltimore gneiss                        |
|                | 25     | (6)                     | .3                  | (4)                     | .13              | (6)                 | Peters Creek quartzite                  |
|                | 2      | (1)                     | -                   |                         | .01              | (2)                 | Sams Creek metabasalt                   |
|                | 10     | (2)                     | .1                  | (1)                     | .04              | (2)                 | Ijamsville phyllite                     |
|                | 7      | (4)                     | .1                  | (1)                     | .03              | (3)                 | Marburg schist                          |
|                | 23     | (17)                    | .4                  | (8)                     | .10              | (17)                | Wissahickon formation (albite-chlorite) |
|                | 19     | (31)                    | .3                  | (15)                    | .09              | (31)                | All units                               |

Average Yield, Specific Capacity, and Yield per Foot of Hole for Wells in the Silicate Crystalline Rocks of the Piedmont Upland

Waler-bearing properlies.—Because of its small areal extent the Baltimore gneiss is of little importance as a water-bearing formation. Records of two wells in the Patapsco State Park were obtained. Well Car-Ef 13 is 178 feet deep and reportedly yielded 4 gpm in an 8-hour test with a drawdown of 97 feet and well Car-Ef 14 is 95 feet deep and reportedly yielded 12 gpm. The yield and depth of the latter well are fairly typical for wells drilled in this formation in Baltimore and Howard Counties. Owing to the hilly topography the depth to the water table is relatively great in the localities underlain by the Baltimore

gneiss in Carroll County; thus, in that county the yield of wells may be somewhat less than in Baltimore and Howard Counties, where the topographic relief in the gneissic areas is more subdued.

# Eastern Sequence of Crystalline Schists

### Setters formation

Geology.—The Setters formation overlies the Baltimore gneiss unconformably and its outcrop encircles the dome structures of Baltimore and Howard Counties. The Setters crops out in a northeast-trending ridge in the southeastern corner of Carroll County along the periphery of the Woodstock anticline. Inasmuch as the formation is only about 250 feet thick and is inclined rather steeply,  $25^{\circ}$  to  $45^{\circ}$  to the northwest, its outcrop is narrow. The unit consists of fine- to medium-grained mica schist, coarse-grained vitreous quartzite, and fine-grained micaceous gneiss.

Water-bearing properties.—Its limited outcrop area in Carroll County makes the Setters formation a minor water-bearing unit. In Baltimore and Howard Counties, where its area of outcrop is more extensive, well yields average 10 and 5 gpm and depths 172 and 130 feet, respectively (Dingman and Ferguson, 1956, p. 20; Dingman and Meyer, 1954, p. 23). The formation may be a poorer water-bearing unit in Carroll County owing to the rugged topography along the North and South Branches of the Patapsco River where it is exposed. The hydrologic conditions may be similar to those in the Baltimore gneiss.

# Wissahickon formation (oligoclase-mica schist facies)

Geology.—The Wissahickon formation is divided into two facies, the albitechlorite schist facies that crops out west of the Peters Creek quartzite and the oligoclase-mica schist facies east of the quartzite. The oligoclase-mica schist facies underlies an area of less than 2 square miles in the southeastern corner of Carroll County but is extensive in the counties east and southeast of Carroll County. It consists of interbedded layers of coarse- to mediumgrained mica schist and mica gneiss and thin layers of quartzite. Biotite, muscovite, and quartz are the dominant minerals, there being subsidiary amounts of orthoclase feldspar. Owing to strong contortion of the beds, no reasonable estimate of the thickness of this facies can be made.

Water-bearing properties.—Few data are available on the water-bearing character of the oligoclase-mica facies of the Wissahickon formation in Carroll County. In the other Piedmont counties it is a fair aquifer in which wells average about 135 feet in depth and yield 11 to 12 gpm. In Carroll County the average yield of wells may be slightly less, because its outcrop area near the North and South Branches of the Patapsco River is characterized by rugged well-drained terrain.

#### Peters Creek quartzite

*Geology.*—The Peters Creek quartzite crops out as a northeast-trending belt several miles wide in southeastern Carroll County. It consists of grayish green medium- to fine-grained micaceous quartz schist containing biotite, chlorite and muscovite interbedded with micaceous quartzite. Because the unit is strongly contorted it is not possible to estimate its thickness.

Well logs and casing records show that weathering of the Peters Creek quartzite extends to depths ranging from a few to more than 50 feet and averaging about 28 feet. The weathered rock has been largely stripped away in the deep gorgelike valleys of the North and South Branches of the Patapsco River. In most places these streams flow on fresh rock. Drillers commonly describe the material of the weathered zone as "shale," "sand rock," or "dirt." Generally well casings extend through this zone to the underlying fresh rock, but at some wells the lower part of the weathered zone is firm enough to require no casing and is left uncased. The fresh rock commonly is called by the drillers "granite," "mica rock," or simply "rock." Drillers' logs of four wells drilled in the Peters Creek are given in Table 27.

Water-bearing properties.—The water-bearing character of the Peters Creek quartzite is similar to that of the Wissahickon formation. The Peters Creek is only moderately important as a water-bearing unit. Wells are drilled in this formation principally for domestic supplies, but a carpeting manufacturer at Cedarhurst utilizes water from it for air conditioning and drinking.

Well yields range from 2 to 100 gpm and average 16 gpm. Only about 9 percent of the wells yielded less than 5 gpm. The depths of 28 wells range from 20 to 325 feet and average about 98 feet. The average yield per foot of hole is 0.16 gpm. Specific capacities of 15 wells range from less than 0.1 to 4.4 gpm per foot of drawdown.

The best well is Car-Cf 11, on the bank of the North Branch of the Patapsco River at the plant of Congoleum-Nairn, Inc. It is 200 feet deep and was reportedly pumped at a rate of 100 gpm for 12 hours with little drawdown. The position of the water-yielding zone or zones is not known. The high yield may be due to recharge of the aquifer from the North Branch of the Patapsco. Several other wells drilled at the plant have comparatively small yields and are not used.

*Chemical quality.*—Two partial analyses of water from the Peters Creek quartzite (Car-Cf 11 and Car-De 1) indicate that the water is of the bicarbonate type and is very soft.

#### Metamorphosed volcanic rocks of the Western Piedmont

### Sams Creek metabasalt

Geology.—The Sams Creek metabasalt of Stose and Stose (1946) overlies the Wakefield marble and crops out in a belt of parallel bands extending from

the northeast corner of Carroll County southwestward to the vicinity of New Windsor (Pl. 3). West and southwest of New Windsor the pattern of outcrop is curvilinear. In the vicinity of New Market the outcrop is extensive, but it narrows to a series of linear bands east and southeast of Urbana. The metabasalt is characterized by dissected hills of moderate relief lying between narrow valleys underlain by the much more soluble Wakefield marble. In the northeastern part of its outcrop belt the metabasalt is overlain by the albite-chlorite facies of the Wissahickon formation; in the central part it is overlain by the Ijamsville phyllite and is interbedded with the Libertytown metarhyolite of Stose and Stose (1946); in the southwestern part it is overlain by the Urbana phyllite. The metabasalt is a gravish-green amygdaloidal rock which is massive in some places and schistose in others. Interbedded with it in places are blue and green schist. Well Car-Ce 2 at Westminster was drilled to a depth of 850 feet in the belt of Wakefield marble and Sams Creek metabasalt (Table 27). After penetrating about 170 feet of marble the well penetrated chiefly green schist with thin layers of marble.

The weathered zone, according to 15 well records, may be as much as 60 feet thick but averages only about 23 feet. Drillers customarily describe the weathered material as "shale," or they may refer to the uppermost weathered part as "clay." "Slate" and "rock" are the most commonly used terms for the fresh rock. Logs of five wells are given in Table 27.

Water-bearing properties.—The Sams Creek metabasalt itself is of minor importance as a water-bearing formation, but it is intimately associated with the important water-bearing Wakefield marble. Some of the wells listed in Tables 25 and 26 as producing from the Sams Creek may also penetrate one or more zones of marble and yield water chiefly from them. The log of well Car-Cc 5 at Marston shows that at a depth of 93 to 94 feet an opening was encountered which may be a solutional opening in a thin layer of marble in the metabasalt.

The yields of 18 wells in the Sams Creek metabasalt range from 2 to 20 gpm and average about 8 gpm. About 30 percent of the wells yielded less than 5 gpm. Well depths range from 10 to 1,033 feet and average 95 feet. The average yield per foot of hole drilled is about 0.14 gpm.

The best well is Car-Cc 5 at Marston in Carroll County. It yielded 20 gpm in a half-hour test in 1953 with a drawdown of about 30 feet. The well is 94 feet deep and is situated along a small tributary of Sams Creek. Its location near a creek may explain its comparatively high yield.

Several springs of moderate to small discharge issue from the Sams Creek metabasalt. One of the largest, Fr-Ef 22, issues from the side of a steep draw at a farm just south of New London. Its flow was estimated to be approximately 30 gpm in March 1956.

In general, the Sams Creek metabasalt should not be expected to yield

large ground-water supplies. Because of its low storage capacity, wells on hills may fail as the water table declines during long droughts.

*Chemical quality.*—An analysis of water from well Fr-Ef 2 at New Market shows the water to be hard, moderately high in dissolved solids, and slightly alkaline. The principal cations are calcium and magnesium and the principal anion is bicarbonate, but substantial sulfate also is present.

## Libertytown metarhyolite

Geology.—A belt of scattered outcrops of acidic volcanics called the Libertytown metarhyolite by Stose and Stose (1946), consisting of interbedded schistose metarhyolite and metaandesite occurs between Union Bridge and New Market, chiefly in Frederick County. The Libertytown metarhyolite overlies the Wakefield marble and interfingers with the Sams Creek metabasalt and Ijamsville phyllite. The metarhyolite is a dense, purple, bluish-black, or red rock; the metaandesite is blue or purple. Some quartzite beds are infolded with these rocks.

Well logs and casing-length records indicate that the weathered zone is about 15 feet thick. Drillers commonly refer to the weathered rock as "clay" or "shale" and to the underlying fresher rock as "slate."

Water-bearing properties.—The Libertytown metarhyolite underlies only a small area and is relatively unimportant as a water-bearing formation. Yields of 5 wells range from 1 to 15 and average 8 gpm. The 15-gpm well, Fr-Df 2 at Libertytown, is 86 feet deep and during its acceptance test had a drawdown of 25 feet (specific capacity 0.6 gpm/ft.). It is unlikely that the Libertytown metarhyolite will yield much more than domestic supplies of ground water.

*Chemical quality.*—Chemical analyses were made of water from wells Fr-Df 2 and Df 15 in the Libertytown metarhyolite. Both analyses show evidence of contamination of the wells by organic debris or other sources of nitrate and chloride. Although the natural water appears to be of the calcium magnesium carbonate type, the nitrate content exceeds the bicarbonate in the analysis for well Fr-Df 15 and is about equal to the bicarbonate in the analysis for Fr-Df 2.

#### Ijamsville phyllite

Geology.—The Ijamsville phyllite underlies a large area that encompasses the outcrops of other metavolcanic rocks, extending from near Westminster southwestward through the vicinities of Libertytown and New London and continuing southwestward into Montgomery County. Its broadest belt of outcrop is about 12 miles wide in the area between Mount Pleasant and Taylorsville. The Ijamsville phyllite is chiefly a blue, green, or purple rock, in places showing flattened blobs. It is slaty in places and has been quarried at Ijamsville.

The weathered mantle of the Ijamsville phyllite is commonly thin and locally absent. The maximum thickness reported in well logs is 57 feet and the average is about 20 feet. Drillers generally refer to the fresh rock as "slate" and to its weathered mantle as "shale" or, less often, "clay." Drillers' logs of five wells are given in Table 27.

Water-bearing properties.—Although wells of only small to moderate capacity are obtained in the Ijamsville phyllite, it is an important water-bearing formation because of its wide areal extent. Practically all the wells supply domestic or farm users. Numerous springs occur along hillslopes and near the heads of draws, but, owing to the small storage capacity of the rock, their flow declines markedly during droughts. A large spring, Fr-Dg 11, near the head of a draw on a farm just east of Libertytown, discharged at an estimated rate of 50 gpm in August 1955, but it is reported to cease flowing during dry spells. Another spring several hundred feet downstream in the same draw is reported to be less subject to fluctuations in flow.

The yields of 35 wells range from 1 to 20 and average about 8 gpm. About 20 percent of the wells yield less than 5 gpm. The Ijamsville is drilled with difficulty below the weathered zone, and few wells are more than 100 feet deep. The depths of wells range from 19 to 253 and average about 77 feet. The average yield per foot of hole drilled is about 0.10 gpm.

One of the best wells is Car-Ad 4 at Silver Run in Carroll County, which reportedly yields 20 gpm. It is 93 feet deep. Little other information is available on it and there is no apparent reason for its high yield. A nearby well, Car-Ad 5, is 76 feet deep and yields 15 to 20 gpm. Its high yield is attributed to the thick section of saturated weathered material at the site.

Many dug wells are in use in the outcrop area of the Ijamsville phyllite, but they are gradually being replaced with deeper drilled wells for sanitary and other reasons. Some of the dug wells fail during droughts when the water table falls below their bottoms.

*Chemical quality.*—Three samples of ground water from the Ijamsville phyllite were collected for analysis (Fr-Cf 17, Cg 1, and Ch 1). The analysis for Cf 17 is considered to represent the character of the natural water best; it shows the water to be of the calcium bicarbonate type but of low mineralization and soft. The other two analyses indicate, by their high values for nitrate, the probability of organic contamination. Iron content is low. The water may be somewhat corrosive to plumbing, as the values for pH are in the acidic range.

### Urbana phyllite

Geology.—In eastern Frederick County the Urbana phyllite overlies the Sams Creek metabasalt. The phyllite occupies irregular areas in the vicinity of New Market, from where it extends southwestward in three somewhat parallel bands to the Montgomery County line (Pl. 3). The westernmost and central bands merge in the vicinity of Sugarloaf Mountain and encircle it. The Urbana is chiefly green muscovitic, quartzose phyllite; interbedded with the phyllite are slate, schist, calcareous layers, and quartzite. The quartzite is most prevalent in the upper part of the formation.

A weathered mantle, seldom exceeding 20 feet, overlies the fresh phyllitic rock. The quartzite is generally more resistant to weathering and underlies many ridge crests, cropping out in some places as ledges but otherwise occurring as a weathered mantle of loose sand. Well Fr-Be 10 at Flint Hill, on the crest of a narrow ridge upheld by quartzite, penetrated 100 feet of quartzite, the upper 14 feet of which is weathered sandy material. Some wells penetrate both quartzite and phyllite, as shown by the log of well Fr-Ef 14 (Table 27). Drillers commonly refer to the weathered zone of the phyllite as "clay" or "shale" and to the underlying fresh rock as "slate." Quartzite beds are described as "flint," "sandstone," or "sand rock," and their mantle rock as "sand" or "sandy."

Water-bearing properties.—The water-bearing character of the Urbana phyllite is similar to that of the Ijamsville phyllite. Springs appear to be somewhat less common in areas underlain by the Urbana, presumably because its terrain is less rugged and its drainage pattern less dense, reducing the opportunity for springs to emerge. A spring near Park Mills, Fr-Fe 13, had an estimated flow of 10 to 20 gpm early in 1952. Quartzite beds, common to both formations, appear to influence the water-bearing character of the Urbana to a somewhat greater extent than that of the Ijamsville.

The yields of 23 wells range from 2 to 35 and average 11 gpm. Four of the wells yield less than 5 gpm. The average specific capacity was 0.4 gpm per foot of drawdown. The depths of 39 wells range from 29 to 128 feet and average 78 feet. The formation is difficult to penetrate below the zone of rock weathering because of its toughness; hence, few wells are more than 100 feet deep. The yield per foot of hole drilled is about 0.14 gpm.

The best well, Fr-Ef 8, at a cannery at Monrovia, is approximately 95 feet deep and is reported to yield 35 gpm. No log is available. Its comparatively high yield may be due to its nearness to Bush Creek. The well data suggest that wells penetrating the quartize where it occurs below the water table may be relatively productive. One of the best wells of this type is Fr-Fe 11, near Sugarloaf Mountain. This well is about 87 feet deep and yielded 20 gpm in a 1-hour test with a specific capacity of 0.8 gpm per foot.

*Chemical quality.*—One partial analysis of water from well Fr-Fe 18 at Urbana shows that the water is of the bicarbonate type and is moderately hard but low in iron content.

## Western Sequence of Crystalline Schists

### Sugarloaf Mountain quarztite

Geology.—Stratigraphically overlying the Urbana phyllite is the Sugarloaf Mountain quartzite, which is composed of two thick, hard, ledge-making quartzite beds between which are softer sericitic quartzite and slaty beds. These rocks underlie Sugarloaf Mountain, a hill that stands prominently above the rolling Piedmont hills in southern Frederick County. Some of the quartzite beds assigned to the Urbana phyllite may be a part of the hard lower bed of the Sugarloaf Mountain quartzite (Stose and Stose, 1946, p. 71). These beds may be equivalent in age to the Weverton formation of the Blue Ridge province (Scotford, D. M., 1951; Thomas, B. K., 1952).

Water-bearing properties.—The Sugarloaf Mountain quartzite is relatively unimportant as a water-bearing formation because it underlies only a small, uninhabited area of steep slopes. Throughout much of the outcrop area the water table probably occurs at relatively great depth within comparatively fresh rock containing few and small fractures. Inasmuch as no well data are available for this rock unit, discussion of its water-bearing character would be conjectural.

#### Marburg schist

*Geology.*—The Marburg schist underlies a large area between Ridgeville and Taylorsville along the southern part of the boundary between Frederick and Carroll Counties. It is bordered by the Ijamsville phyllite on the west and by the albite-chlorite facies of the Wissahickon formation on the east. It also underlies a large area in northcentral Carroll County, encompassing the towns of Frizzelburg, Union Mills, and Wentz, lying between Triassic sedimentary rocks on the west and the Wissahickon formation on the east. The principal rock type in the Marburg is bluish-gray to green fine-grained schist containing muscovite, chlorite, quartz, and either albite or ottrelite (Stose and Stose, 1946, p. 74). The schist is injected with quartz along the layering planes and is closely folded. The upper part of the formation is quartzite and conglomerate, these rocks occurring chiefly in the Union Mills-Wentz area and near Watersville.

In most places clay and weathered rock about 25 to 40 feet thick overlie the fresh schist, but, as shown by well logs, the thickness of the weathered zone may range from 5 to 90 feet. Drillers' logs generally report "topsoil and clay" immediately underlying the land surface, beneath which is "shale" (weathered rock) followed by "slate" (bedrock). Drillers refer to the material of quartz veins or quartzites as "flint," but this term is also used to some extent for hard schist or phyllite. Logs of four wells are given in Table 27.

Water-bearing properties .- The Marburg schist is an important water-bear-

ing formation furnishing numerous commercial, domestic, and farm water supplies. Two wells of the Mount Airy public water supply that penetrate the Marburg schist furnish about 75,000 gallons of water daily.

Springs are fairly common but are not utilized to a great extent except to supply ponds and for watering cattle. They occur near the head of draws, along hillslopes, and at the break in slope between hillsides and stream flats. Most of the springs discharge less than 15 gpm and undoubtedly yield much less during extended droughts. The discharge of the largest spring, Fr-Eg 13 at the head of a deep draw near Woodville, was estimated to be about 100 gpm in August 1955.

Except for limited areas along high ridge crests, particularly Parrs Ridge in the Ridgeville area, adequate supplies of ground water can be obtained from wells nearly anywhere within the outcrop of this unit. The yields of 56 wells range from less than 1 to 223 gpm and average about 17 gpm. About a fifth of the wells yield less than 5 gpm. The depths of 85 wells range from 20 to 300 feet and average 87 feet. The average yield per foot of hole drilled is 0.19 gpm.

The two best wells, so far as reported yields are concerned, are Fr-Eh 1 and Eh 2, which supply Mount Airy. Well Fr-Eh 1 was pumped at an average rate of 223 gpm during a 48-hour aquifer test. Well Eh 2 is reported to yield 127 gpm. Both wells are in a small valley west of Mount Airy in a locality underlain by deeply weathered calcareous schist. In some less favorable localities not even domestic supplies are available from the Marburg schist. Wells Car-Dc 7 and Dd 3 in the Taylorsville-Winfield area are among the poorest wells. They are on high ridges far above the water table in localities where fresh rock crops out near the well sites. These wells yielded less than 1 gpm and were abandoned.

Aquifer and well-performance tests.—Mount Airy. The Mount Airy municipal well field consists of wells Fr-Eh 1 and Eh 2 in a small valley flat about 0.5 mile west of the town and about 400 feet from Woodville Branch (fig. 18). The well field is at an elevation of about 640 feet above sea level.

In 1955 four 6-inch test holes were drilled to obtain data on the geology of the well-field area and for use as water-level observation wells during an aquifer test. Short pumping tests were run on each test hole at various stages of drilling to detect increases in capacity as the holes were deepened. During the aquifer test well Fr-Eh 1 was pumped continuously for 48 hours and measurement of the water-level fluctuations were made in all wells. Step drawdown and mutual-interference tests were then run on the two public-supply wells. The details of the test are recorded in an open-file memorandum (Meyer, 1955).

Schist is exposed in road cuts and on hillsides bordering the valley where the well field is located, but the valley floor is underlain by a thick mantle of weathered rock. Quartz veins an inch or two thick cut the schist, many of



FIGURE 18. Block Diagram of Meunt Airy Well-Field Area Showing Locations of Production Wells and Test Holes

94
of them striking north-northeast in the general direction of the schistosity but their dip not everywhere concordant with the schistosity. Cuttings from the deeper parts of the test holes show marble interlaminated in the schist. The rock is similar to the calcareous phyllite described by Thomas (1952, p. 57-58) in the Sugarloaf Mountain area.

Two of the test holes were north of the public-supply wells and along the trend of the valley and strike of the schist and two west of the public-supply wells and normal to the valley trend. Cuttings descriptions, geophysical logs, and pump-test data for test hole 3 are summarized in figure 19. The well logs show 45 to 80 feet of weathered mantle over fresh gray schist. The mantle rock is zoned from top to bottom as follows:

1 foot of soil
15 feet of residual silty clay
15 to 45 feet of soft yellow-brown rotted schist
10 to 50 feet of alternating gray and brown schist of moderate hardness
fresh gray schist (bedrock)

The zones of yellow-brown schist and alternating gray and brown schist are the chief water-bearing materials. According to the tests not much water comes from the bedrock. The yellow-brown rotted schist is physically unstable and much of it was cased off. The zone of alternating gray and brown schist is the most important zone contributing ground water. Presumably in this zone enlargement of fractures has occurred through solution and removal of calcareous material. In one of the test holes, after a yield of 21 gpm was obtained at a depth of 42 feet, driving the casing 1 inch deeper to firmer rock reduced the yield to nothing. In another test hole, raising the casing 0.7 foot increased the well yield by 40 percent.

To determine the relative hardness of the rock at successive depths and to estimate the degree and depth of weathering, drilling-time logs were kept for each test hole. Inasmuch as many variable factors govern the drilling rate of a cable-tool machine these logs are useful for general comparisons only. Drilling-time data for test hole 3 are given in figure 19. The logs show a continuous slight increase in drilling time with depth until the fresh gray rock is encountered, when the drilling time increases abruptly. The important water-bearing zone terminates at approximately the depth of sharp increase in drilling time. As a rule, in the crystalline rocks the important water-bearing zones are the soft, easily drilled zones.

Several of the test holes were electrically logged, but, as casings in the holes sealed off much of the weathered zone, it was possible to log only the basal uncased part of the holes. The spontaneous-potential and resistivity logs for test hole 3 are given in figure 19. The logs begin several feet below the bottom of the casing but their upper segments show the effect of the casing.





FIGURE 20. Progressive Positive Effect on the Spontaneous-Potential Log for Mount Airy Test Hole 3 Caused by Pumping the Well

The spontaneous potential measured in logging crystalline-rock wells is attributed principally to the electrochemical phenomenon that an electrical potential develops when waters of different concentrations of dissolved mineral matter are in contact. Characteristically, spontaneous-potential logs of crystalline-rock wells show lower values in the weathered zone, ordinarily the waterbearing zone, than in the underlying hard rock. In the log of test hole 3 (fig. 19) the lowest readings were obtained in the neighborhood of 50 feet, the basal part of the weathered zone. A very hard zone at about 55 feet is indicated by a pronounced positive deviation.

Generally flow of water from the well into the rock formation produces a negative potential and flow from the formation into the well produces a positive potential. With this relation in mind resistivity and potential logs were run while the test hole 3 was being pumped (fig. 20). The potential logs show a pronounced migration in a positive direction for the basal part of the weathered zone, the water-bearing zone, but considerably less shift for the underlying hard rock. Resistivity logs were nearly identical to those obtained prior to pumping. Potential logs made after pumping ceased and while the water level in the well was recovering are complex and irregular but show a progressive trend towards the values of potential observed prior to pumping.

The differences in electrical resistance measured in well logging are chiefly those determined by the amount and mineral character of the water contained in the rocks. In the Piedmont of Maryland vertical variations in chemical character of the water at any one place generally are small, so that the important factor is the amount of water contained in the rock. Crystalline-rock wells characteristically show low resistivity in the weathered zone (water content relatively high) and high resistivity in the fresh rock (water content relatively low). The resistance log for test hole 3 (fig. 19) shows that the resistance of the more weathered rock is low in comparison to that of the fresher rock. Undulations of the log in the bedrock represent variations in the "freshness" of the rock. Logging the test hole during and after pumping showed no effect on the resistivity curve, presumably because water moving toward the well from neighboring areas was of the same chemical character as that which was in and around the well before pumping.

Current-meter surveys of pumped wells are useful to show the zones contributing water. Figure 19 shows the results of such a survey of test hole 3, while it was being pumped at a rate of about 45 gpm. No flow was measured in the bottom part of the hole; the first measurable flow was at a depth of 49 feet, building up to a maximum at the bottom of the casing at 41.5 feet, above which the full rate of pumping was measured within the casing. The extremely high readings obtained as the current meter passed the lip of the casing are attributed to turbulence around the meter at that point. The survey indicates that water enters the well in the depth interval between 41.5 and approximately 50 feet. This agrees with the position of the contributing zone indicated by the electric logs, particularly that shown in figure 20.

The specific-capacity tests run at successively greater depths as each test hole was drilled show that little or no increase in yield is obtained below the zone of weathered rock.

The relation between pumping rate and drawdown is not a linear one for crystalline-rock wells, owing chiefly to dewatering of the aquifer during pumping and possibly also to a decrease in permeability with depth. For these reasons, specific capacities determined for successively increasing pumping rates become progressively smaller. The following summary of the step-drawdown test for well Fr-Eh 2 shows that the Mount Airy wells exhibit the characteristic decrease in specific capacity with increasing pumping rates:

| Discharge rate<br>(gpm) | Drawdown<br>(feet) | Specific capacity<br>(gpm/ft.) |
|-------------------------|--------------------|--------------------------------|
| 60                      | 7.5 (approx.)      | 8 (approx.)                    |
| 87                      | 19                 | 4.6                            |
| 93                      | 23                 | 4.1                            |

A maximum of about 50 feet of drawdown is available in this well, based on the estimated thickness of the water-bearing zone. Extrapolation of the decline in specific capacity indicated by the test suggests that the maximum capacity of the well for short periods of pumping is about 125 gpm. This tallies closely with the reported yield of 127 gpm when the well was drilled.

Pumping from well Eh 2 was continued after the step test and well Fr-Eh 1, 85 feet distant, was pumped at an average rate of 213 gpm to determine the interference effect. The water level in well Eh 2 lowered an additional 8 feet and its yield decreased from 93 to 75 gpm. A reduction in its capacity of 20 to 25 percent as a result of the combined pumping is indicated.

The static water level of Eh 1 declined 4 feet during the step-drawdown test on well Eh 2, and by the end of the period of combined pumping its water level had declined an additional 26 feet. Its discharge averaged 213 gpm, whereas later when it was pumped alone its yield was about 250–255 gpm for the equivalent period of pumping. Thus, a loss of about 40 gpm due to interference from well Eh 2 is indicated. The drawdown for an equivalent period of pumping was only 23 feet during the later test, as compared with 30 feet during the interference test. A reduction in the well's capacity of about 20 percent due to the interference from well Eh 2 is indicated.

The specific-capacity values used in the above discussion are based on short periods of pumping-1 or 2 hours-and would not be applicable for longer periods of pumping, inasmuch as progressive and pronounced reduction in yield, and hence in specific capacity, occurs during long periods of pumping. During the 48-hour aquifer test, the discharge of well Eh 1 declined from about 255 gpm to about 190 gpm, a decrease of 65 gpm. The water level in the well lowered from 22 feet below the land surface shortly after pumping started to 33 feet at the end of the test. The specific capacity decreased from 11.6 to 6.8 gpm per foot of drawdown, a decrease of about 40 percent after 2 days of pumping. In computing specific capacities the average discharge from the beginning of the test to the particular time being considered was used rather than the discharge that was occurring at that particular time. Extrapolation of the trend indicated by the data suggests that, if pumping were continued for 30 days, the yield would decrease to 52 gpm, or about one-fifth the initial rate, the water level would decline to 51 feet, and the specific capacity would be about 3 gpm per foot of drawdown.

The geologic and hydrologic conditions in the vicinity of the Mount Airy well field are complex and in many ways deviate from the basic assumptions on which are predicated the formulas commonly used to compute aquifer coefficients. Some of the complicating factors for the Mount Airy test are: the proximity of Woodville Branch, which probably serves as a source of recharge; variations in the thickness of the water-bearing zone; differences between lateral and vertical permeability and variations in both; a higher water table in the bordering hills; and a thinning of the aquifer in the bordering hills.

The aquifer test involved 48 hours of continuous pumping from well Eh 1, and measurements of its pumping rate and of the decline in water levels in all the wells and test holes. The water-level data are given in figure 21. Threedimensional profiles of the water table prior to pumping, after 1 day of pumping, and after 2 days of pumping are shown in figure 22. Minor adjustment of measurements was made to compensate for the fact that water levels were rising slowly prior to the test. Figure 22 shows the portion of the water-bearing material that was dewatered and the shape of the cone of depression. The slope of the water table from the stream to the well field during the latter part of the test indicates the possibility of ground-water recharge from the stream.



FIGURE 21. Decline of Water Levels in Wells Caused by Two Days of Pumping from Mount Airy Public-Supply Well 1



The initial parts of the drawdown curves yield unrealistically high transmissibility and storage coefficients, owing to the fact that most of the water pumped during this period was taken from storage in the vicinity of the pumped well, only limited drawdown occurring outside the immediate vicinity of the pumped well. Later, the water levels began to decline at considerably greater rates, with respect to the log of time (fig. 21). At the end of the test the water levels in the wells nearest the pumped well, Eh 2 and test hole 4, were declining at approximately the rate of the pumped well and those at greater distances were declining at somewhat smaller but increasing rates. If pumping had continued for 2 or 3 more days the rates of water-level decline probably would have been nearly the same in all wells.

The drawdown was least in test hole 3, although it is not the farthest from the pumped well. Test hole 2 is nearly twice as far away but its water level lowered 1.5 feet more than that of test hole 3. Presumably the decline in water level in test hole 3 was slowed by its proximity to the stream, from which recharge may occur. Regardless of the stream effect, if the hills bordering the valley constitute impermeable boundaries, then test hole 3 is the most favorably situated hydrologically of all the wells and test holes.

It is possible that the hills bordering the valley are partially effective as impermeable or barrier-type boundaries. Although the water table is at a higher elevation beneath the hills than in the valley, it is farther below the land surface, so that much of the permeable potentially water-bearing material may lie above the water table. If Woodville Branch, which runs along the west side of the valley, is a perfect line source of recharge to the well field, then the hills beyond the stream on the west side of the valley, would be effective as a barrier boundary only after the stream were pumped dry or ceased to flow during dry spells. Only then would the cone of depression be able to expand beyond it.

The water-level data that appear to be the most useful for computations of the hydrologic coefficients are the data for test holes 2 and 4, public-supply well 2, and the pumped well. Computations based on the latter part of the test, using the nonequilibrium method of Theis (1935) and the modified method of Cooper and Jacob (1946), give transmissibilities of 5,400 to 9,400 gpd per foot and storage coefficients of 0.012 and 0.032. Average values are about 7,300 gpd per foot and 0.02, respectively.

The data for test hole 3, the observation well closest to the stream, yield somewhat higher values, 13,000 gpd per foot and 0.051, which support the interpretation that recharge is derived from the stream and that hole 3 is favorably situated with respect to the possibly impervious hills bordering the valley. A previous brief recovery test run on test hole 3 gave a transmissibility of 7,600 gpd per foot, which is in close agreement with the average of 7,300. Probably this earlier test was too brief to be affected by recharge from the stream.

Chemical quality.—Two samples of ground water from the Marburg schist were collected in Carroll County (Car-Bd 13 and Car-Dd 1) and one in Frederick County (Fr-Eh 1). The Carroll County analyses are similar to those of ground water from the other schists of the Maryland Piedmont; the water is low in dissolved solids and is slightly acidic. The water is likely to be somewhat corrosive to plumbing equipment. The water from the Frederick County well is unusual for waters from schist in that it is a sodium bicarbonate water.

Radiochemical data for water from well Car-Bd 13 are given on page 57.

## Wissahickon formation (albite-chlorite schist facies)

*Geology.*—The albite-chlorite schist facies of the Wissahickon formation underlies most of eastern and southern Carroll County. It consists chiefly of closely folded biotitic and chloritic albite schist. Quartz is injected along the layering. The rock is finer grained than the eastern oligoclase-mica schist facies. In the northwestern part of its outcrop belt it is a chlorite-quartz schist. In the northeastern part quartzite beds occur at the base. Some quartzite beds occur stratigraphically higher in the formation southwest of Westminster.

Drillers' logs commonly refer to the fresh rock as "slate" or simply "rock." Colors invariably are described as blue or gray. The term "flint" is used to describe vein quartz and quartzite but is also used occasionally for the schist where it is hard and brittle. Sometimes the word "sandstone" is used to describe the quartzite. Locally, beds of conglomeratic sandstone do occur. The Wissahickon weathers to a silty micaceous overburden, and the term "shale" commonly is used by drillers to describe this material, the word "clay" being used only infrequently. Invariably this zone is described as brown in color. The average thickness of the weathered zone is about 37 feet, but the well logs show that it is 100 feet or more in places. Logs of five wells are given in Table 27.

Water-bearing properties.—By virtue of its large areal extent and moderately good water-bearing properties, the albite-chlorite facies of the Wissahickon formation is an important aquifer in Carroll County. A large percentage of the domestic and farm water supplies are obtained from wells and springs in this unit, and several municipalities, a number of canneries, and a few industrial plants utilize springs or wells in it.

Nearly all the springs in the albite-chlorite facies of the Wissahickon formation discharge along the sides of valleys and draws. Many occur at the contact of the permeable weathered zone with underlying less permeable fresh rock. The springs discharge at small rates, most of them ranging from seeps to a few gallons per minute. The largest springs are those of the Manchester municipal supply, some of which yield 10 to 15 gpm. Here the overburden is thin and the springs likely issue from joints in the rock.

The yields of about 120 wells range from essentially nothing to a reported 300 gpm and average about 16 gpm. About 12 percent of the wells yield less than 5 gpm. The depths of wells range from 21 to 645 feet and average about

100. The two deepest wells, Car-Bf 7 and Bf 8, were drilled to depths of 410 and 645 feet, respectively. The yields of both wells were disappointingly small, averaging only 8 gpm. The average yield per foot of hole drilled is 0.16 gpm.

By intelligent prospecting and the application of knowledge concerning the occurrence of ground water in the crystalline rocks, some fair-sized industrial and public-supply wells have been constructed in this aquifer. Pertinent data concerning six of the best wells are:

| Well number and location | Depth<br>(feet) | Yield<br>(gpm) | Specific<br>capacity<br>(gpm/ft.) | Length<br>of test<br>(hours) |
|--------------------------|-----------------|----------------|-----------------------------------|------------------------------|
| Car-Bf 2, Hampstead      | 165             | 60+            |                                   |                              |
| Bf 17, do                | 202             | 55             | 0.7                               | 13                           |
| Bf 29, do                | 125             | $100\pm$       | $3\pm$                            | 36                           |
| Bf 35, do                | 200             | 68             | .7                                | 24                           |
| Ce 5, Reese              | 400             | 40             | .4                                | 4                            |
| Ce 45, Westminster       | 140             | $300\pm$       | 6±                                | 7                            |

The best well, Car-Ce 45, was drilled for a nursery near Westminster. It reportedly yielded 500 gpm when completed in 1946. It is cased with 90 feet of 8-inch perforated casing. The driller's log indicates that the hole penetrated "shale and blue slate." The high yield is not readily explained except that the well is near the contact with the Wakefield marble. A hydraulic connection may exist between the schist and the marble. The use of perforated casing opposite the saturated zone also may contribute to the high capacity of this well.

Aquifer and well-performance tests.-Hampstead. The water-supply facilities of the Hampstead plant of the Black and Decker Manufacturing Co., were made available for extensive aquifer and well-performance tests during 1954. The plant is on the southern edge of Hampstead, on the Wissahickon formation (albite-chlorite facies). An average of about 45 gpm of ground water is used for drinking, sanitary purposes, air conditioning, and processing. A small surface-water reservoir at the south edge of the plant grounds captures runoff from the roof of the building and from the grounds to augment the well supply. In 1957 the well field consisted of 5 drilled wells, 4 of which were in use, located a few hundred feet north of the building and bordering a small tributary of Deep Run. Although yields of as much as 100 gpm were obtained from some of the wells during their acceptance tests, they have declined in yield when pumped for long periods. The wells also interfere with one another hydraulically. During periods of deficient precipitation, when regional ground-water levels are low, the combined yield of the well field is less than that required for plant operation.

The details of the test and the hydrology of the well field will serve as a

guide in planning the development of ground-water supplies in other areas of similar geology.

Two 6-inch test holes were drilled and seven  $1\frac{1}{2}$ -inch shallow holes were put down with a jeep-mounted power auger near one of the production wells (Car-Bf 17—owner's well 3) to obtain geologic data and for use as observation wells during the aquifer tests. Their locations are shown in figure 23.

In the Hampstead area the fresh bedrock is nearly everywhere blanketed with 50 to 75 feet of weathered rock, consisting of very soft silty weathered schist in the upper part and firmer less decomposed schist at greater depth. Drillers commonly refer to the surficial material as "soil" or "dirt," and to the deeper material as "shale" or "rotten rock." Well cuttings from test holes T-3 and T-4 show the "rotten rock" to consist of soft light-brown and gray schist, intersected by numerous quartz veins. Sample logs and drilling-time logs for these holes are given in figure 24.

Measurements of the strike of the schistosity were made in a shallow railroad cut on the plant grounds. The strike ranges from N.  $36^{\circ}$  E. to N.  $46^{\circ}$  E. The rocks exposed here are strongly weathered, and joints are poorly preserved or obliterated. The principal direction of drainage, to the southwest in the direction of flow of Deep Run, is approximately in alinement with the schistosity of the rocks. A small intermittent stream near the well field trends about N.  $35^{\circ}$  E.

Step drawdown tests at consecutively increasing pumping rates were made in three production wells to determine the decline in specific capacity with increased drawdown. This decline, characteristic of crystalline-rock wells, is attributed to progressive dewatering of the rocks, a reduction in rock permeability with depth, and, in places, lateral thinning of the aquifer. As the pumping rate is increased, the water level in the well declines, but at a disproportionately faster rate for each increment of pumping. In many wells when the water level declines below the bottom of the water-bearing zone (weathered zone) it falls abruptly, because no water is contributed from the underlying fresh rock. The results of two step drawdown tests are shown in figure 25. The graph of well Bf 17 shows the abrupt fall in water level.

The graph for well Bf 16 (fig. 25) shows the pumping levels decreasing more nearly in proportion to increased pumping rates, although specific capacities for larger pumping rates clearly are less than those for smaller rates. The more uniform step pattern is related to the construction of this well. Its casing extends to fresh rock at a depth of 104 feet, probably sealing off the weathered rock so that the chief contributing zone is the fractured bedrock. Dewatering of the bedrock did not begin until the water level was lowered to the bottom of the casing, and, therefore, no pronounced change in specific capacity occurred as the pumping level declined. The water-level response to the pumping was somewhat similar to that of an artesian well. If it had been possible to include



Configuration of Land Surface



FIGURE 24. Sample Logs and Drilling-Time Logs for Wells Car-Bf 27 and Bf 28 at Hampstead

TIME AFTER PUMPING BEGAN, IN MINUTES



Car-Bf 16 and Bf 17 at Hampstead

another step at a higher pumping rate, it is likely that a sharp decrease in specific capacity would have been measured. Because of an obstruction in the well it was not possible to measure the water level below 110 feet. In earlier tests by the driller the pumping levels were 175 and 206 feet below the land surface at discharge rates of 21 and 22 gpm, respectively. These data show that drawing down the water level in a well below the bottom of the most productive part of the aquifer is hydraulically inefficient, for the flow of water from the aquifer into the well is turbulent and the pumping lift is substantially increased. That the same pumping rate could be obtained with a shallower pumping level within the water-bearing zone, was demonstrated in a later test of well Bf 17 when the discharge was reduced to 44 gpm and the pumping level was held at 85 feet.

It would be profitable in areas whose geology and hydrology are similar to those of the Hampstead area to check pumping levels to determine if they are being maintained below the productive water-bearing zone, so that pumping costs are being unnecessarily increased. The solution may be to increase the discharge gradually to the most efficient rate and automatically fix the pumping level accordingly by means of control equipment.

During August 1954 well Bf 17 was pumped for a period of 107 hours. Waterlevel measurements were made by tape in all the wells except observation wells T-3 and T-4 which were equipped with water-level recorders. The discharge of well Bf 17 was throttled to about 24 gpm to insure a constant pumping rate during the test. This necessitated opening the discharge valve from time to time to compensate for a constantly decreasing specific capacity as the pumping level declined. The discharge rate was determined periodically by measuring the time required to fill a container of known volume.

Figure 23 shows the drawdowns in the observation wells during the test plotted on an arithmetic scale versus time since pumping started on a logarithmic scale. The drawdown in the pumped well Bf 17 was 26.5 feet at the end of the test. The slope of the drawdown curves is gentle during the first few hours of the test, gradually steepening as water from storage in the immediate vicinity of the well field was depleted and as the cone of depression expanded. After about 5 hours of pumping the water levels in three of the observation wells (T-2, T-3, and T-6) were declining at the same rate. The drawdowns are significant in that they indicate the continued withdrawal of ground water from storage in the aquifer and form a basis for predicting future yields of wells in the field.

Profiles of the water table prior to the start of the test and just before the end of the test are shown in figure 26. Prior to pumping the water table was nearly horizontal in the plane of wells T-2 to T-4 but sloped downward from well T-2 to T-1. Pumping well 3 lowered the water level in T-2 and T-3, equal distances uphill and downhill from it, by nearly the same amount, but the





FIGURE 26. Profiles of the Water Table in the Vicinity of Well Car-Bf 17 Prior To and After Pumping

lowering in well T-4 was considerably greater than that in T-1, although these wells also are at equal distances from the pumped well. By the end of the test a divide had formed in the water table between well T-1 and the pumped well, apparently because the initial slope of the water table downslope from well T-2 was so large that the pumping was not able to reverse it. The water level in well T-1 rose nearly 0.2 foot after intermittent light rains began on August 5. The ground-water divide would have been more pronounced if this had not occurred, for the water level in well T-1 would have been an estimated 0.6 foot lower. Between August 5 and the end of the test 0.9 inch of rain fell. This well responded rapidly to the precipitation because the water table is relatively shallow in its immediate vicinity and because the water table was declining only slowly. The effect of the rain on the water levels in the other wells is small to undiscernible, owing to the greater depth to the water table in their vicinity and to the fact that the water levels were declining more rapidly. The tail ends of some of the graphs in figure 23 show slight curvature to the right, probably as the result of recharge from the rain.

The hydrologic coefficients were determined by analysis of the drawdown curves in figure 23 and of the slope of a profile of the cone of depression. Coefficients of transmissibility computed from the rates of water-level decline during the last 3 days of the test range from about 4,900 gpd per foot for the observation wells nearest the pumped well to 5,500 gpd per foot for those at greater distances from the pumped well. Storage coefficients computed for wells nearest the pumped well are about 0.017, and for those at greatest distances are about 0.007. The effective thickness of the aquifer is not accurately known. Observation wells T-3 and T-4 penetrate the aquifer completely, but the other observation wells terminate in the upper part of it. Computations based on the profile of the cone of depression between wells 3 and 4 give coefficients of transmissibility and storage of 4,300 gpd per foot and 0.03, respectively; for the profile between wells 5 and 6, 5,300 gpd per foot and 0.0003; and for the profile between 7 and 8, 5,100 gpd per foot and 0.03 (for method see Wenzel, 1942, p. 88–89). A coefficient of transmissibility of 5,000 gpd per foot and a storage coefficient of 0.03 seem in the right order of magnitude to use in computing well spacing, future drawdowns in wells and other hydraulic properties. With an expansion of the well field, rocks of different hydrologic properties might be encountered, and this possibility should be considered in evaluating the hydraulics of an expanded well field. For instance well Car-Bf 45, several hundred yards west of well Bf 17, yields only 20 gpm and apparently is in an area of lower transmissibility.

*Chemical quality.*—Chemical analyses of water samples from seven wells in the albite-chlorite facies of the Wissahickon formation are given in Table 11. They show that the water is usually soft and low in dissolved solids. Owing to its moderately low pH and low mineral content, the water may be corrosive.

| Constituent                   | No. of samples | Range<br>(ppm, except for pH) |
|-------------------------------|----------------|-------------------------------|
| Dissolved solids              | 5              | 51-286                        |
| Hardness as CaCO <sub>3</sub> | 7              | 23-109                        |
| Total iron (Fe)               | 7              | .0008                         |
| Nitrate (NO <sub>3</sub> )    | 7              | 5-96                          |
| Chloride                      | 7              | 4.1-71                        |
| pH                            | 7              | 5.6-6.7                       |

Several of the samples have high concentrations of nitrate, which may indicate contamination. The range of the important constituents in these samples is:

#### Carbonate Rocks of the Piedmont Upland

The carbonate rocks, consisting of the Cockeysville and Wakefield marbles and the Silver Run limestone, characteristically weather to form narrow, somewhat troughlike valleys. The average yield of 32 wells in the Wakefield and Silver Run formations is about 92 gpm. The average yield per foot of hole drilled is 0.72 gpm. Table 20, which shows well-yield data by depth intervals of 50 feet, indicates an erratic increase in yield with increasing well depths.

TABLE 20

| Double Internet | Averag | Average yield       |                         | Average specific<br>capacity |                      | ge yield<br>of hole                    |                               |     |     |                      |
|-----------------|--------|---------------------|-------------------------|------------------------------|----------------------|----------------------------------------|-------------------------------|-----|-----|----------------------|
| (feet)          | (gpm)  | n) No. of wells (2) | (gpm/<br>ft. of<br>dd). | No. of<br>wells              | (gpm/<br>ft.)<br>1.0 | (gpm/<br>ft.) No. of<br>wells<br>1.0 2 | Aquifer or water-bearing unit |     |     |                      |
| 0-50            | 50     |                     | _                       |                              |                      |                                        | Wakefield marble              |     |     |                      |
| 50-100          | 98     | (8)                 | 3.0                     | (5)                          | 1.06                 | (8)                                    | Wakefield marble              |     |     |                      |
|                 | 11     | (1)                 | 1.1                     | 1.1                          | 1.1                  | 1.1                                    | (1)                           | .15 | (1) | Silver Run limestone |
|                 | 88     | (9)                 | 2.7                     | (6)                          | .95                  | (9)                                    | Both units                    |     |     |                      |
| 100-150         | 68     | (7)                 | 10.9                    | (4)                          | . 66                 | (6)                                    | Wakefield marble              |     |     |                      |
|                 | 1.5    | (1)                 | -                       | _                            | .01                  | (1)                                    | Silver Run limestone          |     |     |                      |
|                 | 57     | (8)                 | 10.9                    | (4)                          | . 57                 | (7)                                    | Both units                    |     |     |                      |
| 150+            | 150    | (10)                | 8.8                     | (4)                          | .76                  | (10)                                   | Wakefield marble              |     |     |                      |
|                 | 31     | (3)                 | .5                      | (3)                          | .15                  | (3)                                    | Silver Run limestone          |     |     |                      |
|                 | 122    | (13)                | 5.2                     | (7)                          | .62                  | (13)                                   | Both units                    |     |     |                      |

Average Yield, Specific Capacity, and Yield per Foot of Hole for Wells in the Carbonate Rocks of the Piedmont Upland

Wells in the 150+ interval yield the most water. The highest average yield per foot of hole, 1.06 gpm, is in the depth interval from 50 to 100 feet in the Wakefield marble. These values show an irregular decrease as depth increases. The statistics are weighted by a few exceptional wells near Westminster which yield more than 300 gpm. The statistics indicate, however, if large supplies of ground water are needed, prospecting to depths of at least 150 feet is warranted.

## Cockeysville marble

*Geology.*—On the geologic map of Carroll County (Jonas, 1928) all the marble and limestone in the county are mapped as the Cockeysville marble. A reinterpretation of the geology, shown on a later map (Jonas and Stose, 1938) and discussed in a companion report (Stose and Stose, 1946, p. 55), restricted the Cockeysville to a narrow band of crystalline white marble overlying the Setters formation in the southeast corner of the county near Marriottsville, where it underlies a narrow northeast-trending valley paralleling the ridgelike outcrop of the Setters on its east side. The Cockeysville's thickness is estimated to be about 400 feet. Its outcrop area is less than one-half square mile.

Water-bearing properties. Owing to its small area in Carroll County, the Cockeysville is of negligible importance as a water-bearing formation. Little or no information is available regarding its water-bearing character. In neighboring Baltimore and Howard Counties the Cockeysville generally is a good water-bearing unit, although some wells in it yield little or no water. The average yield of 54 wells in these counties is about 19 gpm, and the average depth about 180 feet, exclusive of one exceptionally deep well in Baltimore County (Dingman and Ferguson, 1956, p. 20).

Dingman and Ferguson (1956, p. 23) have observed that the poorest wells in the Cockeysville are on small rises, which may be underlain locally by a more resistant type of marble, perhaps dolomitic. In Baltimore County, some wells located along contacts of the Cockeysville marble with adjacent formations have penetrated a zone of decomposed rock in the form of clay or mud. In one well it extended to a depth of at least 500 feet (Dingman and Ferguson, 1956, p. 16–17). The existence of this zone is attributed to solution of the marble by mildly acidic ground water moving from the bordering silicate rocks toward the contact and into the marble. Wells penetrating these clayey zones are very poor producers as a rule.

#### Wakefield marble

*Geology.*—The Wakefield marble is intimately associated with the belt of volcanic rocks that extends southwestward from the northeast corner of Carroll County. In Frederick County it crops out east of the Frederick Valley in the vicinity of Sams Creek and Englars Mill. Mostly the Wakefield crops out in narrow linear bands which trend to the northeast, but in places in Frederick

County and southwestern Carroll County the outcrop is a repetitious series of parallel curved bands which suggest folding and subsequent erosion of interbedded volcanic rocks and marble.

Two minor areas of the Wakefield marble in the eastern part of Carroll County, in the vicinities of Millers and Hoffmans Mill, differ from the main belt of marble in their stratigraphic relations in that no volcanics lie between the marble and the Wissahickon formation.

In general, the Wakefield marble is a closely folded white finely crystalline marble consisting of calcite or dolomite, with few impurities. Near its contact with the overlying volcanic rocks it is white or blue mottled with pink and green. Its thickness in the vicinity of Union Bridge is estimated to be 150 feet.

In their logs drillers commonly refer to the unweathered rock in the Wakefield as "limestone," but sometimes as "marble" or simply "rock." Six logs are given in Table 27. Fresh rock is exposed at the surface in only a few places. The weathered mantle is red or brown clay and generally is 10 to 35 feet thick, although in some places weathering extends to depths as great as 100 feet. In places gravel has been reported in wells, either in the lower part of the clay mantle or in the upper part of the bedrock. The term gravel presumably refers to quartz veins, beds of siliceous limestone, or gravel-filled caverns. Wells that apparently penetrated gravel-filled openings are Car-Ce 2 and Ce 3 at Westminster (Table 27). In places the openings may contain sand or clay instead of gravel. Davies (1950, p. 29–30) describes several caverns in the Wakefield marble in Carroll and Frederick Counties.

Water-bearing properties.—In spite of its relatively small areal extent, the Wakefield marble is of considerable importance as a water-bearing formation, particularly in Carroll County, where it is the source of domestic, commercial, and small industrial water supplies. The geologic and structural relations between the volcanic rocks and the Wakefield marble are complex and give rise to a complex hydrology. Several wells apparently start in the volcanic rocks but penetrate layers of marble at depth. Marble zones encountered at shallow depths have been subjected to solutional weathering and in some places are good aquifers, but those encountered at depths of several hundred feet sandwiched between volcanic rocks have undergone little solution and are not aquifers.

Fair-sized springs are numerous, generally occurring at the contact of the marble with silicate rocks or along the edges of the flood plains of streams. A spring at Union Bridge, Car-Cb 3, discharges about 50 gpm from fissured marble and supplies water for about 12 homes, a high school, and a farm.

Owing to the relative ease with which marble is dissolved by ground water, fractures and bedding-plane partings have been enlarged to a greater degree than in the silicate rocks, and wells of considerably higher capacity are obtained. The yield of 27 wells ranges from nearly nothing to several hundred

gallons a minute and averages 106 gpm. The depths of wells in the Wakefield range from 10 to 575 feet and the average depth of 35 wells is 139 feet. The average yield per foot of hole drilled is 0.76 gpm.

The best wells are Car-Ce 2 and Ce 3, owned by a creamery in Westminster. They are in a small valley in the northeastern part of town. The wells were 160 and 116 feet deep, respectively, and during March 1948 they were pumped simultaneously at individual rates of 575 and 540 gpm. Subsequently well Ce 2 was deepened to 850 feet, penetrating layers of schist and thin marble. Because of flowing mud, the shallower openings in the marble were cased off; the well then yielded only 7 gpm and it was later destroyed. The high yields of these wells suggest that an extensive system of solutional openings is present in that part of the Westminster area. The possibility of pollution of the water obtained from such a source should be considered. It has been reported that during late summer and early fall, after periods of heavy ground-water withdrawals, the water levels have lowered considerably in wells in the Westminster valley. The marble aquifer is apparently of limited areal extent. Another excellent well in the Wakefield marble is Car-Cb 8 at Union Bridge. It is 170 feet deep and is reported to yield 400 to 500 gpm for several hours before the pump breaks suction. This well furnishes the water supply for the town of Union Bridge. However, not all wells in the aquifer are successful. Well Car-Cb 1 at the Union Bridge High School was 575 feet deep and was abandoned after reportedly vielding no water. There is no obvious explanation for the wide difference in hydrologic character of the rocks at the various well sites, although such experiences are not uncommon in limestone rocks. A possible explanation for well Cb 1 is that it may have penetrated the Sams Creek metabasalt instead of the Wakefield marble.

Aquifer and well-performance tests.—Westminster. The heterogeneous distribution of voids in the Wakefield marble and its restricted lateral extent limit the successful application of aquifer tests. Although the coefficients determined from the tests are of questionable value, the tests do demonstrate qualitatively the effects of pumping on the water level in the aquifer, interference between wells, specific capacities, and other hydrologic and hydraulic characteristics.

On May 10, 1948, an aquifer test was made at the Koontz Creamery in Westminster. The creamery is in the valley of Cranberry Branch, which is underlain by the Wakefield marble and is bordered on both sides by schist. Well Car-Ce 3 was pumped at a rate of approximately 300 gpm for 61 minutes, during which time the lowering of the water level was measured in well Car-Ce 2, 75 feet away. The immediate vicinity of the wells is underlain by clay and residual boulders, beneath which is cavernous marble from which the water is obtained (fig. 27B). The water-level graph of well Ce 2 during the pumping of Ce 3 is shown in figure 27A. After 20 minutes of pumping, the pump was unavoidably stopped momentarily, the result being an abrupt rise in the water

level in Ce 2. However, 10 minutes after pumping was resumed the water level resumed its downward trend. Figure 27C shows the best match of the drawdown data to the Theis curve. A transmissibility of 52,000 gpd per ft. and a storage coefficient of 0.004 were computed. Deviation of the slope of the water-level curve from that of the type curve in the direction of an increasing rate of drawdown in the latter part of the test (left side of graph) is attributed to partial dewatering of the aquifer in the vicinity of the wells and to boundary effects of the less permeable bordering schists.

The effect of these factors on the productivity of wells in the marble is revealed by a driller's test of these two wells on March 3, 1948, in which they were pumped simultaneously for 3 days. The yield of Ce 2 declined from 600 gpm at the start to 470 gpm at the end; that of well Ce 3 declined from 600 gpm to 550 gpm. Specific capacities declined from 11.3 to 7.0 gpm per foot and 11.3 to 8.2 gpm per foot, respectively. The reported water levels in both wells were nearly the same, lowering from an initial static level of 42 feet to a final pumping level of 109 feet. The drawdown data, the proximity of the wells, and the cavernous character of the aquifer suggest that the wells react essentially



FIGURE 27. Graphs of Data for Aquifer Test at Westminster

- A. Decline of water level in well Car-Ce 2 caused by pumping Ce 3.
- B. Cross section through wells Ce 2 and Ce 3.
- C. Drawdown in Ce 2 versus reciprocal of time; match with Theis type curve; computations of transmissibility and storage.

| Time after pumping started | W              | ell Ce 2                       | Well Ce 3      |                                |  |
|----------------------------|----------------|--------------------------------|----------------|--------------------------------|--|
| (hours)                    | Yield<br>(gpm) | Specific capacity<br>(gpm/ft.) | Yield<br>(gpm) | Specific capacity<br>(gpm/ft.) |  |
| 6                          | 600            | 11.3                           | 600            | 11.3                           |  |
| 28                         | 600            | 10.2                           | 600            | 10.2                           |  |
| 34                         | 500            | 8.2                            | 600            | 9.8                            |  |
| 49                         | 490            | 7.5                            | 570            | 8.8                            |  |
| 71.5                       | 470            | 7.0                            | 550            | 8.2                            |  |

TABLE 21 Yield and Specific Capacity of Wells Car-Ce 2 and Ce 3 at Westminster

as one when pumped simultaneously. The yields and computed specific capacities at various times during the test are given in Table 21.

*Chemical quality.*—Water from two springs (Car-Cb 3 and Cd 2) and three wells (Car-Cd 16, 18, and 23) in the Wakefield marble was sampled for chemical analysis. The analyses show the water to be a moderately to very hard calcium bicarbonate water. Analyses of both the ground water and the rock indicate they are high in calcium but low in magnesium. The range of the important constituents in the ground water from this aquifer is:

| Constituent                   | No. of samples | Range<br>(ppm except for pH) |
|-------------------------------|----------------|------------------------------|
| Dissolved solids              | 3              | 170-270                      |
| Hardness as CaCO <sub>3</sub> | 5              | 116-225                      |
| Total iron (Fe)               | 5              | .0439                        |
| Nitrate (NO <sub>3</sub> )    | 5              | 9-20                         |
| Chloride (Cl)                 | 5              | 4-12                         |
| pH                            | 5              | 7.4-7.7                      |

#### Silver Run limestone

Geology.—The Silver Run limestone crops out sporadically in northwestern Carroll County within an ill-defined belt that extends from the vicinity of Union Mills southwestward to McKinstrys Mill, where its outcrop belt merges with that of the Wakefield marble (Stose and Stose, 1946, p. 58). Outcrops in most places are narrow northeast-trending bands in valleys, but in the area between Uniontown and Linwood the outcrop is irregular in shape and larger in area. In most places the Marburg schist overlies the Silver Run limestone. The Silver Run is principally a thin-bedded finely crystalline blue limestone, but the uppermost beds are calcareous slate. The formation is highly contorted and the original bedding planes are disturbed; near Uniontown and Walls Mill dips of the fold axes range from  $20^{\circ}$  to  $30^{\circ}$ .

Water-bearing properties.—The Silver Run limestone is of minor importance as an aquifer, owing to its small areal extent. Large solutional openings apparently are less plentiful in the Silver Run than in the Wakefield marble. In a few places, where solutional openings are developed, fairly large groundwater supplies may be obtained. The formation is one of the best aquifers in north-central Carroll County.

Six wells in the Silver Run have an average yield of about 21 gpm and an average specific capacity of 0.7 gpm per foot. The averages, however, are weighted by the data from well Car-Bd 21 at Frizzelburg, whose yield of 80 gpm was far above average. The yields of the other 5 wells ranged from 1.5 to 11 gpm. Well Bd 21 is in a belt of the Silver Run limestone which is only a few hundred feet wide. Its log is:

| Thickness<br>(feet) | Depth<br>(feet)                                  |
|---------------------|--------------------------------------------------|
| 92                  | 92                                               |
| 20                  | 112                                              |
| 3                   | 115                                              |
| 75                  | 190                                              |
| 10                  | 200                                              |
|                     | Thickness<br>(feet)<br>92<br>20<br>3<br>75<br>10 |

The well reportedly was pumped at a rate of 80 gpm for 5 hours with a drawdown of 55 feet. Its specific capacity is thus 1.4 gpm per foot. The well of next highest reported yield is Car-Cc 4, near Linwood. It is 71 feet deep and yielded 11 gpm for half an hour with a drawdown of only 5 feet (specific capacity, 2.2 gpm per foot). The few records suggest that the water-bearing properties of the Silver Run limestone are variable from place to place and that there may be no consistent relationship between depths of the wells and their yields. The depths of seven wells range from 29 to 225 feet and average 141 feet. The average yield per foot of hole drilled is about 0.15 gpm.

*Chemical quality.*—The analysis of a composite sample of ground water from the Silver Run limestone collected from wells Car-Bd 21 and 22 at a dairy near Frizzleburg shows the water to be similar to that from the Wakefield marble.

#### Mesozoic Sedimentary Rocks

#### Triassic System (Newark group)

Northwest-dipping beds of red and gray arkosic sandstone and red shale and siltstone of the Newark group of Triassic age occur in northwestern Carroll County and in northeastern Frederick County. These sedimentary rocks, which were deposited under continental conditions, crop out as a wedge-shaped body that tapers in width from about 13 miles at the Pennsylvania State line to a

few miles just northwest of Frederick, where it terminates. The outcrop resumes again just southwest of Frederick and continues southward in a belt about 2 to 3 miles wide to and beyond the Potomac River (Plate 3). The rocks of the Newark group terminate on the west at the Triassic border fault along the base of Catoctin Mountain and on the east at the western edge of the Piedmont upland. Southwest of Frederick the Triassic rocks are bordered on the east by Paleozoic limestones of the Frederick Valley. The lower beds of Triassic age are predominantly arkosic sandstone or arkose and have been assigned to the New Oxford formation. They crop out in the eastern part of the belt of Newark rocks. The upper beds are predominantly shale and have been assigned to the Gettysburg shale. They crop out in the western part of the belt of Newark rocks. The change from one to the other is gradational and the contact between them is placed somewhat arbitrarily on the geologic map. Thin dikes of diabase, generally striking north, cut both formations. Two large diabase sills occur north of Emmitsburg, and two major dikes of diabase extend southward from the eastern sill.

Well logs show the change in lithology from east to west. Logs of wells in the eastern part of the Newark group commonly refer to sandstone or "sand rock" between beds of shale, whereas those of wells in the western part commonly list only shale. The sandstones are dense and appear to have little interstitial permeability, fractures being the important openings that transmit ground water. Apparently the sandstones are more competent than the shales and have developed a denser pattern of fracturing. Shale outcrops generally show widely spaced cracks that are tight, "healed," or indefinite and hackly, whereas sandstone outcrops generally show closely spaced more distinct joints.

The rocks of the Triassic system are characterized by little or no metamorphism and as aquifers are more typical of sedimentary rocks. The average yield of 169 wells is only 11 gpm. The average specific capacity, based on records of 80 wells, is 0.9 gpm per foot and the average yield per foot of hole drilled, based on 154 wells, is 0.11 gpm.

Table 22 shows that the average yield of wells increases with depth. The yields of 21 wells deeper than 150 feet average 18 gpm, whereas the yields of 72 wells 50 to 100 feet deep average only 8.4 gpm. However, the average in the deeper interval (150+) is weighted by a higher proportion of commercial and public-supply wells. The yield per foot of hole decreases from 0.17 gpm in the 0–50 foot interval to 0.08 gpm in the deepest interval (150+) feet). Thus the overall permeability of the Triassic rocks decreases with depth. Much of the ground water in these rocks, as in the crystalline rocks, is transmitted through openings resulting from weathering. Nevertheless, if large supplies of ground water are needed, prospecting to a depth of at least 150 feet seems warranted.

#### TABLE 22

| Depth interval<br>(feet) | Average yield |                    | Average specific capacity |                    | Average yield per<br>ft. of hole |                    |                               |
|--------------------------|---------------|--------------------|---------------------------|--------------------|----------------------------------|--------------------|-------------------------------|
|                          | (gpm)         | Number<br>of wells | (gpm/<br>ft. of<br>dd.)   | Number<br>of wells | (gpm/<br>ft.)                    | Number<br>of wells | Aquifer or water bearing unit |
| 0-50                     | 6.7           | (24)               | 1.7                       | (4)                | 0.15                             | (9)                | New Oxford formation          |
|                          | 9.0           | (3)                | .9                        | (3)                | .20                              | (3)                | Gettysburg shale              |
|                          | 6.9           | (27)               | 1.4                       | (7)                | .17                              | (12)               | Both units                    |
| 50-100                   | 6.9           | (55)               | 0.5                       | (26)               | .09                              | (55)               | New Oxford formation          |
|                          | 13            | (17)               | .7                        | (10)               | .20                              | (17)               | Gettysburg shale              |
|                          | 8.4           | (72)               | .6                        | (36)               | .11                              | (72)               | Both units                    |
| 100-150                  | 18            | (33)               | 2.7                       | (14)               | .14                              | (33)               | New Oxford formation          |
|                          | 7.2           | (16)               | .3                        | (11)               | .06                              | (16)               | Gettysburg shale              |
|                          | 15            | (49)               | 1.6                       | (25)               | .11                              | (49)               | Both units                    |
| 150+                     | 19            | (18)               | .4                        | (9)                | . 09                             | (18)               | New Oxford formation          |
|                          | 10            | (3)                | .3                        | (3)                | .06                              | (3)                | Gettysburg shale              |
|                          | 18            | (21)               | .4                        | (12)               | .08                              | (21)               | Both units                    |

#### Average Yield, Specific Capacity, and Yield per Foot of Hole for Wells in the Rocks of the Triassic System

#### New Oxford formation

Geology.—The New Oxford formation dips westward beneath the overlying Gettysburg shale. The major outcrop belt of the New Oxford extends from just northwest of Frederick northeastward across Carroll County. The formation crops out also southwest of Frederick as a narrow belt that extends southward to the Potomac River. Here it is terminated on the west by the Triassic border fault. Small areas of the New Oxford occur also in the vicinity of Tyrone, in Carroll County, and near the mouth of the Monocacy River, in Frederick County. The rocks are chiefly red, gray, and brownish sandstone and red shale and siltstone. A conglomerate composed of pebbles of limestone and quartz in a fine-grained limy matrix is present in most places at the base of the formation, cropping out generally at its eastern edge. The variety of colored pebbles gives the rock a spotted appearance that is responsible for the local name of "calico." It is known also as "Potomac marble." To the north it changes to a quartz conglomerate.

Drillers generally describe the New Oxford formation as "red shale" or "red



FIGURE 28. Logs of Wells in the Triassic Rocks at Taneytown (Sandstone stippled, shale lined, probable correlations indicated)

rock," noting only the more conspicuous sandstone layers. The sandstone beds are lenticular and do not persist for great distances. The lithologic character of the formation is shown by logs of three wells in figure 28 and logs in Table 27. The depth of weathering ranges from nothing to 70 or 75 feet and averages about 19 feet.

Water-bearing properties.—The New Oxford formation is an important water-bearing unit in both Carroll and Frederick Counties, supplying water to domestic, farm, and industrial users and to the well field of Taneytown.

Small springs, largely seeps, are common along draws and near the heads of valleys. The discharge of individual springs rarely exceeds 5 to 10 gpm.

The yields of 124 wells range from 1 to 65 gpm and average about 11 gpm.

Specific capacities of 54 wells average 0.7 gpm per foot. The depths of 158 wells range from 21 to 530 feet and average about 106 feet. The average yield per foot of hole drilled is 0.10 gpm.

The best wells are those of the Taneytown municipal well field, which consists of 6 wells 140 to 163 feet deep. The well field is less than half a mile north of town on the edge of Piney Creek. Four of the wells are adjacent to one another in a large pumphouse. They have a combined yield of 300 gpm. Their high sustained yield is probably the result of recharge of the aquifer from Piney Creek. Another comparatively good well is Fr-De 3 at Fort Detrick. It is 140 feet deep and yielded 65 gpm in a 3-hour test. It penetrated the basal conglomerate or "calico rock" of the New Oxford formation. Although normally the basal conglomerate does not yield more water than other parts of the formation, solution of the limy matrix may result in higher permeability of the rock locally.

Aquifer and well-performance tests.—Taneytown. During November 1947 an aquifer test was made on the Taneytown public-supply well field. In addition to wells Car-Bb 2 to Bb 5 in the pumphouse about 30 feet south of Piney Creek, a well Bb 7 is 132 feet south of the pumphouse and well Bb 6 is 170 feet southwest of Bb 7 and 332 feet from Piney Creek. Well Bb 33 was drilled in 1956 after the aquifer test was run.

Owing to the town's water demand, it was not possible to control the pumping schedule as rigidly as would be desired. Physical conditions made it impractical to measure well discharge, so that reported pumping capacities had to be used in the computations. Prior to the start of the test the four pumphouse wells had been pumping for about  $6\frac{3}{4}$  hours at a combined rate of 300 gpm. Thus, the water level in well Bb 7, the observation well, was declining slightly just before the test. An adjustment in the data was made for this decline.

The test may be divided into three stages. (1) Pumping of the four wells was stopped, and the recovery of the water level in Bb 7 was measured for about 2 hours. The water level rose at a diminishing rate to 9 feet above its previous level. (2) Then well Bb 6 (the well farthest from Piney Creek) was pumped at a rate of 50 gpm, which caused a decline of 2 feet in the water level in Bb 7 at the end of 1 hour. (3) Finally pumping from the four wells was started and that from Bb 6 continued. An additional drawdown of 8.5 feet was measured in Bb 7 after 44 minutes.

All the water-level graphs constructed from these data show some departure from the standard well-function type curve, likely attributable to the influence of recharge from Piney Creek. Computations for the first stage of the test (the recovery curve of the water level in well Bb 7), give a transmissibility coefficient of 14,000 gpd per foot and a storage coefficient of 0.00025. Using the second stage of the test (the drawdown effect of pumping well Bb 6) a match



FIGURE 29. Match of Taneytown Aquifer-Test Data to the Type Curve and Deviation from Type Curve Attributed to Recharge from Piney Creek

of the first part of the curve to the type curve gives coefficients of 5,500 gpd per foot and 0.00016, respectively. A match of the last part of the curve yields coefficients of 9,700 gpd per foot and 0.0009, respectively. The second stage seems to be the most reliable part of the test for determination of the transmissibility, and in its latter part it is also more clearly suggestive of stream recharge than the others. For the second stage the drawdown versus time since pumping started is shown in figure 29. During the first 12 minutes the drawdown follows the type curve, but then it deviates in the direction of a reduced rate of drawdown. The smaller hydrologic coefficients (5,500 and 0.00016) were computed from the match, this being the period during which the cone of depression was expanding but had not yet been sensibly affected by recharge from Piney Creek. The larger coefficients (9,700 gpd per foot and 0.0009) were obtained by matching the part of the curve that deviates from the type curve. For convenience in computation the abscissa of the type curve is plotted as the reciprocal of u rather than as u. This permits utilization of a time scale expressed in real time units rather than the reciprocal of time.

Stallman (1952) constructed a family of modified type curves based on the image-well theory for two-well systems, the shape of each curve depending on the relative position of the observation well with respect to the pumping and image wells. These curves and the theory on which they rest apply to the Taneytown test to the extent that Piney Creek appears to be a line source of recharge and may be represented hydraulically as a recharge well located a

distance north of Piney Creek equal to the distance the real well is south of it. This hypothetical well recharges at the same rate the pumped well discharges. Thus, it is assumed that the stream represents a line beyond which no drawdown would occur, but it is doubtful that it is 100-percent effective and does not permit spread of the cone of depression beyond it. A match to Stallman's family of curves yields a K value of about 3.4 (fig. 29), this value being the ratio of the distance of the image well from the observation well to the distance of the pumped well from the observation well. The distance from the pumped well to the observation well is  $3.4 \times 170$  feet, or 580 feet. The distance between the image well and the pumped well is then 750 feet. In a simple two-well image system the line source of recharge is halfway between the pumped well and its image, or a computed distance of 375 feet. The actual distance of the pumped well from Piney Creek is 332 feet, a fairly close agreement considering the physical deviations here from requirements of the formulas.

Probably the true transmissibility of the aquifer is on the order of 5,000 gpd per foot. All of the computed storage values are probably smaller than the value that would be measured with continued pumping, owing to gradual drainage of water from the rocks and to contributions of water from Piney Creek.

*Chemical quality.*—Samples of ground water from eight wells in the New Oxford formation were analyzed (Tables 11 and 12). The analyses show that the water is of the calcium magnesium bicarbonate type, similar to the limestone waters of the Frederick Valley area. The water is mostly hard to very hard. Except locally, the iron content is low.

| Constituent                   | No. of samples | Range<br>(ppm, except for pH) |
|-------------------------------|----------------|-------------------------------|
| Dissolved solids              | 7              | 58-306                        |
| Hardness as CaCO <sub>3</sub> | 8              | 18-217                        |
| Total iron (Fe)               | 8              | 0.03-1.3                      |
| Nitrate $(NO_3)$              | 8              | 3.8-26                        |
| Chloride (Cl)                 | 8              | 3.5-16                        |
| pH                            | 8              | 6.0-8.0                       |

The range in important constituents in the water is:

The analysis of well Fr-Fc 1 is atypical of waters from the New Oxford formation. The water is high in nitrate (20 ppm), acidic (pH 6.0), and soft (hardness 58 ppm). As the well is only 27 feet deep, the water may be contaminated.

#### Gettysburg shale

Geology.—The Gettysburg shale lies west of the New Oxford formation in a belt that extends northeastward from the vicinity of Creagerstown, where it is about 3 miles wide, to the Pennsylvania State line, where it is about 8 miles wide. It consists chiefly of westward-dipping beds of red shale and siltstone and some sandstone. Adjacent to the large diabase sills and dikes, the shale and siltstone are baked to hard, brittle purple and blue rock. A limestone conglomerate crops out in a small area at the west edge of the Gettysburg shale along the Triassic border fault.

Drillers describe the Gettysburg shale as "red shale" or "red rock." The thin overburden is described as "dirt" or "shale," the term "shale" being used to connote softness. The four drillers' logs in Table 27 are not typical, a typical log being simply "red rock" or "red shale" for the entire depth of the well. Wells Fr-Ae 9 and Ag 1 penetrated diabase. Well Ae 9, near the outcrop of the westernmost diabase sill, apparently penetrated 52 feet of baked sediments above the diabase. Well Ag 1 apparently penetrated 41 feet of typical red rock, then 18 feet of baked rock, and then diabase.

Water-bearing properties.—Although the water-bearing capacity of the Gettysburg shale is similar to that of the New Oxford formation, it is a less important formation, inasmuch as its area of outcrop is smaller. Few industrial wells and no public-supply wells tap it, and small-capacity wells—1 or 2 gpm—are the most common. The principal well supplies are for domestic and farm use. Except for seeps, springs are rare. The towns of Thurmont and Emmitsburg, in the outcrop area, are supplied with water from sources in Cambrian rocks west of the Triassic belt.

Well yields range from 1 to 80 gpm and average about 10 gpm. About 40 percent of the wells yield less than 5 gpm. The depths of the wells range from 20 to 191 feet and average about 93 feet. The average specific capacity is 0.5 gpm per foot of drawdown and the average yield per foot of hole drilled is 0.13 gpm.

The best well is Fr-Af 11, 2.5 miles southeast of Emmitsburg. It is only 55 feet deep and yielded 80 gpm in a half-hour test with a drawdown of 32 feet. The reason for the high yield is not known for certain, but as the well is only a few hundred feet west of a diabase dike, the Gettysburg shale adjacent to the dike may be fractured more closely than average and, thus, more permeable. As the water level was only 8 feet below the land surface, much of the hole penetrated saturated rock, a situation conducive to greater well yield. Another good well is Fr-Af 4, about half a mile northeast of Emmitsburg on U. S. Route 15. It is 66 feet deep and was pumped at 40 gpm for 1 hour with a drawdown of only 4 feet. This well also is situated a few hundred feet from a large diabase intrusion. Not all wells in the Gettysburg shale furnish adequate supplies for even domestic use. Nine wells, whose depths range from 50 to 164 feet, yield an average of only about  $1\frac{1}{2}$  gpm. Five of these wells are in the so-called "baked" zone, suggesting that the hydrologic conditions in this zone are unfavorable for adequate well supplies.

*Chemical quality.*—Two analyses of water from the Gettysburg shale (Table 12) show the water to be similar to that of the New Oxford, but somewhat harder. The hardness of the two samples was 183 and 280 ppm. The few analyses of ground water from the New Oxford formation and the Gettysburg shale suggest there may be an increase in mineralization and hardness of the ground water from east to west.

#### Intrusive Rocks of Various Ages

#### Serpentine and metagabbro

Geology.—A band of serpentine about half a mile wide crosses the southeast corner of Carroll County. The serpentine is an altered mass of pyroxenite that was intruded between the Peters Creek quartzite and the oligoclase-mica facies of the Wissahickon formation, which crop out on the west and east, respectively. Talc, steatite, and chlorite schists occur at the borders of the serpentine.

Metagabbro, a dark greenish-black rock, occurs as dikes in eastern Carroll County, the thickest ones being in the vicinity of the Liberty Reservoir. An extensive dike of metagabbro enters Carroll County from Baltimore County just east of Finksburg and passes southward through Louisville, Eldersburg, and just west of Sykesville to the South Branch of the Patapsco River. None of the metagabbro dikes are more than 0.1 mile wide.

Water-bearing properties.—These intrusive rocks underlie relatively small sparsely settled portions of Carroll County and are unimportant as waterbearing formations. Only small to moderate yields are obtainable from wells in these rocks. Presumably the softness of the serpentine is detrimental to the preservation of clean, open fractures. Several wells in and near Eldersburg are drilled in metagabbro, but their yields are small. Well Car-Ee 16, for example, about 0.2 mile south of Eldersburg, was drilled to a depth of 45 feet in "hard gray rock." It yielded 3 gpm in a test during which the pumping level dropped to the bottom of the well. The meager available data suggest that the metagabbro is a poor aquifer.

#### Sykesville formation

Geology.—Monzonite of the Sykesville formation is intruded as dikes and as *lit-par-lit* injections into the Peters Creek quartzite in southeastern Carroll County. An irregularly shaped outcrop is in the Sykesville and Eldersburg areas and another occurs along a belt 0.5 to 0.8 mile wide west of and parallel to the Liberty Reservoir. According to Stose and Stose (1946, p. 93) the Sykesville formation is younger than the Peters Creek, which is of early Paleozoic age, and older than the regional folding, which occurred in late Paleozoic time. The typical rock of this formation is a gray to greenish-gray biotite-quartz monzonite having schistose or gneissic structure.

About 30 to 50 feet of soil and weathered rock overlie the fresh monzonite. The lowermost part of the weathered zone consists of residual boulders embedded in partly disintegrated and decomposed rock. Drillers generally refer to the near-surface material as "sand and gravel" or "clay," according to its texture, to the intermediate zone as "boulders," and to the fresh monzonite as "hard rock."

Water-bearing properties.—The Sykesville formation is a moderately important water-bearing unit in southeastern Carroll County, where springs or wells yielding water from it supply farms, rural homes, and commercial establishments in Sykesville and Eldersburg. The Springfield State Hospital, just north of Sykesville, formerly obtained its water supply from deep wells in the Sykesville formation but now uses a surface-water supply from Piney Run.

Wells in the Sykesville generally yield adequate water for domestic uses. The reported yields of 8 wells range from a few gallons per minute to as much as 60 gpm and average 23 gpm. The best wells are unused wells at the Spring-field State Hospital. Wells Car-Ee 13 and Ee 15, about 500 feet deep, reportedly yielded 22 and 60 gpm, and Ee 14, 140 feet deep, yielded 40 gpm. Not all wells in the formation furnish adequate supplies for even domestic use. However, some of the poorest wells are in well-drained hilly localities near the tributaries of the Patapsco River.

#### Pegmatite

*Geology.*—Muscovitic pegmatite dikes, 50 to 150 feet wide and a mile or more long, have intruded the oligoclase-mica facies of the Wissabickon formation, the Cockeysville marble, the Peters Creek quartzite, and the Sykesville formation in southeastern Carroll County. In places the pegmatites are highly quartzose.

Water-bearing properties.—The area underlain by pegmatite is small, and this rock is unimportant as a water-bearing formation. No wells in it were inventoried in Carroll County. In adjacent Howard County the average yield of three wells is 10 gpm and the average depth 124 feet (Dingman and Meyer, 1954, p. 23).

#### Diabase

Geology.—Dikes of gray and black diabase intruded in late Triassic time intersect many of the geologic formations in Carroll and Frederick Counties. Two large sills of diabase, the major portions of which are in Pennsylvania, crop out in northern Frederick County (Plate 3). Generally the dikes form low ridges, particularly where they have intruded limestones in the Frederick Valley and Triassic sandstones and shales. The village of Rocky Ridge is underlain by one. The dike is well exposed in the Western Maryland Railroad cut through the ridge.

Water-bearing properties.—The diabase underlies a relatively small percentage of the area and is not important as a water-bearing rock. The yields of the few wells that have been drilled in it are small. The wells are commonly less than 40 feet deep, as the diabase is relatively unweathered and the fresh rock is extremely hard and difficult to drill. Although the rock is fractured in places, the fractures are tight. It is unlikely that yields in excess of domestic requirements are obtainable from wells in it.

#### Cenozoic Sedimentary Rocks

## Quaternary System

#### Mountain wash (Alluvial cones)

Geology.—Heterogeneous deposits of mountain wash consisting of boulders, pebbles, sand, and silt occur at the mouths of ravines along the east foot of Catoctin Mountain. These deposits were laid down as alluvial cones on the floor of the Frederick Valley in early Pleistocene or late Tertiary time. The largest of these cones is that at the mouths of Hunting and Little Hunting Creeks in the vicinity of Thurmont; other deposits are at the mouths of Fishing Creek, Little Tuscarora Creek, and the North Branch of Owens Creek. Associated with the alluvium is colluvium resulting from the creep of soil down the slopes.

Drillers commonly describe the material of the wash as "sand and gravel" in their well logs but frequently refer also to "boulders." Some wells penetrate only the mountain wash; others continue through it and into the underlying rocks. Well Fr-Bd 15 at Catoctin Furnace penetrated 135 feet of "ironstone boulders, sand and gravel," all of which may be wash, and then penetrated "soapstone," probably the Harpers phyllite. Well Fr-Be 15, just north of Thurmont, penetrated 67 feet of "small stones, soft clay, and gravel" and then "gray mountain rock," apparently also the Harpers phyllite. These thicknesses of wash are unusual; in most places it is not more than 30 feet thick.

Water-bearing properties.—In spite of the detrital origin of the mountain wash and its generally coarse and unconsolidated character, it is only a fair aquifer because it commonly is well drained, lies above the water table, and contains enough clay and silt to make its permeability low.

Three springs and five wells yielding water from the wash were inventoried. Most springs discharge at small to moderate rates. The yields of the recorded wells range from 3 to 5 gpm, and the relatively great drawdown at these small discharge rates suggests that the reported yields approach the maximum obtainable. Wells that produce from the wash deposits range from 20 to 30 feet in depth. Although many wells penetrate the wash, it is frequently cased off and water is obtained from the underlying bedrock. Well Fr-Be 15 near Thurmont was originally developed in the wash, but it was inadequate and was

later deepened to 100 feet, where a supply was obtained from the underlying phyllite. In 1946, when the well was 67 feet deep and ended in the mountain wash, the water level in it was 48 feet below the surface. Thus 19 feet of the wash was saturated. In 1955, after a drought, the water level was 19 feet lower at the contact of the wash with the underlying rock. The wash at that time was essentially dry and the well had to be deepened.

## Terrace deposits and stream alluvium

Geology.—Terrace deposits, probably of Pleistocene age, occur sporadically along the borders of the Potomac and Monocacy Rivers, but at considerably higher elevations than their present channels. The deposits cap low rounded hills and are thin, seldom exceeding 25 feet. They consist of an admixture of gravel and boulders, sand, and silt. They are remnants of flood-plain deposits of the streams formed when their channels were at these elevations.

Most of the major streams are bordered irregularly by Recent flood-plain deposits, but extensive areas underlain by these deposits are associated only with the largest streams, the Potomac and Monocacy Rivers. These deposits are chiefly silt and clay containing some layers of sand and gravel. They were explored with a power auger at a number of places along both major and minor streams to determine their character and suitability for development of groundwater supplies. The results are summarized in Table 23, and four auger-hole logs are given in Table 24. The holes were drilled to refusal, which in most

| Stream                           | Location of flood plain               | Num-<br>ber of<br>auger<br>holes | Range in<br>depth (feet) | General character of material                                                    |
|----------------------------------|---------------------------------------|----------------------------------|--------------------------|----------------------------------------------------------------------------------|
|                                  | Carroll County                        |                                  |                          |                                                                                  |
| South Fork, Linga-<br>nore Creek | 1 mile southeast of Linga-<br>nore    | 3                                | 3 to 4                   | Chiefly thin alternations of blue, gray<br>and brown clay.                       |
| East Branch                      | 1½ miles west of Hampstead            | 2                                | 12 to 16                 | Brown pebbly clay. Log 5, Table 24.                                              |
| Deep Run                         | 1 mile east of Union Mills            | 1                                | 213                      | Clay and silt; some gravel and coarse<br>material.                               |
| Big Pipe Creek                   | 2 miles north of Mayberry             | 6                                | 2 to 10±                 | Clay (redeposited Triassic shale); bed<br>of phyllite pebbles.                   |
| Catoctin Creek                   | 1 mile south of Middletown            | 3                                | 3 to 6                   | Chiefly brown silty and pebbly clay<br>Log 1, Table 24.                          |
| Do                               | 1½ miles south of Middle-<br>town     | 6                                | 3 to 19                  | Chiefly brown clay. Log 2, Table 24.                                             |
| Potomac River                    | Lander Station                        | 4                                | 4 to 18                  | Chiefly brown and gray clay. Log 3<br>Table 24.                                  |
| Do                               | # mile northwest of Point of<br>Rocks | 1                                | 15                       | Chiefly brown silty clay and clay<br>gravelly in lower part. Log 4, Table<br>24. |
| Do                               | 1 mi. south of Licksville             | 1                                | 4                        | Probably undisturbed Triassic roch<br>below thin soil cover.                     |

 TABLE 23
 Summary of Auger-hole Sampling of Flood-plain Deposits

# Carroll and Frederick Counties

## TABLE 24

# Logs of Auger Holes in the Flood-plain Deposits

|                                                     | Material                                                                                                                                                                                                   | Thick-<br>ness<br>(feet) | Depth<br>(feet) |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|
| Frederick County                                    | Clev. silty brown a few small pakklas of suggets and a kits                                                                                                                                                | 2                        | 2               |
| of Middletown along Ca-                             | Clay, sitty, brown; a rew sman peoples of quartz and senist                                                                                                                                                | 3                        | 3               |
| toctin Creek                                        | Pehbles of quartz and schist                                                                                                                                                                               | 2                        | 4               |
| 2. "Taylor No. 1". 1½ miles                         | Clay, brown                                                                                                                                                                                                | 3                        | 3               |
| south of Middletown, along                          | Clay, brown; gravel bed about 1 foot thick near base                                                                                                                                                       | 5                        | 8               |
| Catoctin Creek.                                     | Clay, brown                                                                                                                                                                                                | 5                        | 13              |
|                                                     | Clay, gritty, brown                                                                                                                                                                                        | 4                        | 17              |
|                                                     | No samples; bedrock at 19 ft.                                                                                                                                                                              | 2                        | 19              |
| 3. "Lander No. 1". Lander<br>Station, along Potomac | Silt and clay, yellowish-brown; silt grains chiefly subangular<br>quartz                                                                                                                                   | 1.5                      | 1.5             |
| River.                                              | Silt and fine sand; grains chiefly subangular to subrounded<br>quartz; abundant dark minerals and carbonaceous ma-<br>terial. Approximate grain-size analysis, percent by volume:<br>Coarse sand or larger | 1.5                      | 3.0             |
|                                                     | Fine to medium sand                                                                                                                                                                                        |                          |                 |
|                                                     | Very fine sand, silt, and clay 84                                                                                                                                                                          |                          |                 |
|                                                     | Silt and clay, yellowish-brown, and carbonaceous material                                                                                                                                                  | 2.5                      | 5.5             |
|                                                     | Clay and silt, grayish orange. Approximate grain-size analy-                                                                                                                                               | 2.5                      | 8.0             |
|                                                     | sis, percent by volume:                                                                                                                                                                                    |                          |                 |
|                                                     | Coarse sand or larger 8                                                                                                                                                                                    |                          |                 |
|                                                     | Fine to medium sand 15                                                                                                                                                                                     |                          |                 |
|                                                     | Very fine sand, silt, and clay 77                                                                                                                                                                          |                          | 4.2.0           |
|                                                     | No sample                                                                                                                                                                                                  | 5.0                      | 13.0            |
|                                                     | rounded plates of silvery schist; carbonaceous material.                                                                                                                                                   | 2.0                      | 15.0            |
|                                                     | Conrect cand or larger                                                                                                                                                                                     |                          |                 |
|                                                     | Fine to medium sand                                                                                                                                                                                        |                          |                 |
|                                                     | Very fine cand silt and clay 04                                                                                                                                                                            |                          |                 |
|                                                     | Silt and clay gravish-orange: embedded angular to subangu-                                                                                                                                                 | 2                        | 17              |
|                                                     | lar sand-size quartz grains and rounded schist grains. Ap-                                                                                                                                                 | 4                        | 11              |
|                                                     | Coarse sand or larger 35                                                                                                                                                                                   |                          |                 |
|                                                     | Fine to medium sand 12                                                                                                                                                                                     |                          |                 |
|                                                     | Very fine sand, silt, and clay 53                                                                                                                                                                          |                          |                 |
|                                                     | Silt and sand, quartz, subrounded. Approximate grain-size analysis, percent by volume:                                                                                                                     | 1                        | 18              |
|                                                     | Coarse sand or larger 35                                                                                                                                                                                   |                          |                 |
|                                                     | Fine to medium sand 12                                                                                                                                                                                     |                          |                 |
| A GD Test of Deals Mr. 411                          | Very fine sand, silt, and clay 53                                                                                                                                                                          |                          |                 |
| 4. "Point of Rocks No. 1".                          | Silt, clayey, brown                                                                                                                                                                                        | 1.5                      | 1.5             |
| of Rocks, along Potomac                             | Clay, silty, brown                                                                                                                                                                                         | 5.0                      | 8.0             |
| River.                                              | Clay, lighter brown                                                                                                                                                                                        | 5.0                      | 13.0            |
|                                                     | Clay, as above; small gravel                                                                                                                                                                               | 1.0                      | 14.0            |
|                                                     | Clay, as above; more gravel                                                                                                                                                                                | 1.0                      | 15.0            |
| Carroll County                                      |                                                                                                                                                                                                            |                          |                 |
| 5. "East Branch No. 1". 11/2                        | Clay, brown; pebble gravel                                                                                                                                                                                 | 5                        | 5               |
| mi. west of Hampstead,<br>bank of East Branch.      | Clay, darker brown; pebble gravel                                                                                                                                                                          | 7                        | 12              |
holes was the surface of the bedrock but in a few holes may have been boulders or coarse gravel which the auger bit could not penetrate. The depth of the holes ranged from 3 to 20 feet.

Water-bearing properties.—As the terrace deposits are composed of poorly permeable materials, and are commonly of small areal extent and well drained, they apparently are not water yielding. Several wells penetrate them but continue into and obtain water from the underlying consolidated rocks.

Although the exploratory augering was discouraging, additional prospecting may reveal isolated permeable lenses of sand and gravel in these deposits. Unless localities are found where deposits are thicker and more permeable than any seen so far, it is unlikely they will ever constitute an important aquifer.

#### Future Development of Ground Water

The rocks that underlie Carroll and Frederick Counties, with few exceptions, are water-bearing formations of small storage capacity and low transmissibility from which large ground-water supplies are not available. On the basis of the discharge of an average of about 475,000 gpd of ground water from each square mile of the Piedmont, determined by streamflow analysis, and an area of 1126 square miles, the quantity of ground water theoretically available for use perennially in the two counties is 535 million gallons per day. This is about 80 times the present rate of use. However, even though ground water could be withdrawn for a time at rates greater than the rate of recharge, the total quantity practically available perennially is far less than 535 mgd, because an impractical number of closely spaced wells would be required to approach the theoretical maximum rate of withdrawal.

Existing important ground-water supplies in Carroll and Frederick Counties are chiefly those of municipalities and small industries. Therefore competition for water is restricted to only a few localities at present. The number of small industrial plants having moderate water requirements is increasing, but heavy industry has generally avoided the Piedmont in favor of the Coastal Plain with its abundance of ground water. A major ground-water supply in the Piedmont and mountainous parts of the State can be considered one of 50,000 to 100,000 gpd. Relatively few present users need more than this quantity, and ordinarily several wells are required to obtain it.

Under favorable geohydrologic conditions, particularly where conditions are suitable for ground-water recharge from a perennial stream, considerably larger supplies are available. Major ground-water developments should be preceded in chronological order by:

(1) Surface geologic mapping and/or exploratory drilling of the potential site to outline areas of productive and poorly productive rocks.

(2) Drilling of test wells to determine by means of well-performance tests

proper well construction and local aquifer characteristics; geophysical well surveys are valuable aids.

(3) An aquifer test to determine the hydrologic coefficients, the optimum well spacing, and the relation of well and aquifer productivity to areal geology and topography and to nearby streams.

After a well field is completed and in use, valuable information on the sustained availability of ground water may be obtained by periodic measurement of:

(1) The pumping levels and discharge rates of the pumped wells.

(2) The static levels in nonpumping wells.

(3) Precipitation and the flow of nearby streams.

Ground water eventually will be used for supplemental irrigation in the most favorable areas of Carroll and Frederick Counties. This is especially true in the valleys underlain by marble where supplies in excess of domestic requirements can usually be obtained. It is likely that ground water stored in the limestone aquifers in favorable localities can be withdrawn at rates of a few hundred gallons per minute for the limited periods for which it would be required for supplemental irrigation.

Except for particular uses that require water of a specified chemical quality, the ground water in Carroll and Frederick Counties is usable with little or no treatment. Generally it contains only small to moderate amounts of mineral matter, consisting chiefly of unobjectionable constituents or those easily removed or reduced by treatment.

#### RECORDS OF WELLS AND SPRINGS

Descriptions of the wells and springs in Carroll County are given in Table 25 and in Frederick County in Table 26. The location of the wells is shown on Plates 1 and 2.

The altitude of the land surface at the wells was estimated from topographic maps having a 20-foot contour interval.

"Type of well" refers to the method of construction. The wells that were drilled by the cable-tool percussion or rotary method are described as "drilled," and those that were dug manually or by some form of mechanical digger are described as "dug." A few wells drilled through the bottom of dug wells are described as "dug and drilled."

The well depths are reasonably accurate, except where approximate depths are indicated. Most of the depths were reported by well drillers; some were reported by the well owners; some were measured.

Wherever practical, depths to water level were measured. The depth to water level in many wells was reported by drillers and well owners. Because many wells are not tested for their maximum capacity, many reported yields are less than the maximum rate at which the wells could be pumped. Some yields were measured in connection with the aquifer and well-performance tests.



#### TABLE Records of Wells and

Water level: Reported water levels designated by "a". Pumping equipment: Method of lift: B, bucket; C, cylinder; J, jet; N, none; NI, to be installed; S, suction; T, turbine. Type of power: E, electric motor; II, hand; W, windmill. Use of Water: C, commercial or industrial; D, domestic; F, farming; I, school, institution, or camp; N, none; P, public supply.

| Well<br>num-<br>ber<br>(Car-) | Owner or name                                        | Driller                    | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well     | Depth<br>of well<br>(feet) | Diameter of wel<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position  |
|-------------------------------|------------------------------------------------------|----------------------------|------------------------|-------------------------|---------------------|----------------------------|-----------------------------|----------------------------|-------------------------------|
| Ab 1                          | A. H. Alexander                                      | Le Gore                    | 1947                   | 450                     | Drilled             | 79                         | 6                           | 7.5                        | Upland                        |
| Ab 2<br>Ab 3                  | Richard Leister<br>W. L. Reifsnider                  | Showers<br>II. E. Wantz    | 1951<br>1952           | 510<br>518              | do<br>do            | 46<br>100                  | 6<br>6                      | 10.5<br>19                 | do<br>Hilltop                 |
| Ab 4<br>Ab 5                  | N. L. Ridinger<br>Earl Welty, Jr                     | do<br>do                   | 1948<br>1950           | 510<br>495              | do<br>do            | 125<br>92                  | 6<br>6                      | 8<br>12                    | do<br>Upland                  |
| Ab 6                          | Piney Creek Presbyterian<br>Church                   | C. L. Wantz                | 1948                   | 485                     | do                  | 78                         | 6                           | 4                          | Hilltop                       |
| Ab 7                          | G. F. Knox                                           | do                         | 1948                   | 495                     | do                  | 201                        | 6                           | 10                         | do                            |
| Ac 1<br>Ac 2                  | W. G. Bollinger<br>Mrs. Catherine Martin             | Utermahlen<br>II. E. Wantz | 1950<br>1952           | 455<br>560              | do<br>do            | 45<br>108                  | 6<br>6                      | 11.7                       | Hillside<br>Upland<br>flat    |
| Ac 3                          | Do                                                   | -                          | Old                    | 560                     | Dug                 | 2                          | 48±                         | -                          | do                            |
| Ac 4<br>Ac 5<br>Ac 6          | C. E. Shank<br>Edward Warner<br>Kenneth Frock        | Sterner<br>LeGore<br>do    | 1951<br>1949<br>1949   | 570<br>515<br>515       | Drilled<br>do<br>do | 73<br>88<br>103            | 6<br>6<br>6                 | 17<br>22<br>16.2           | do<br>do<br>do                |
| Ac 7<br>Ac 8<br>Ac 9          | C. E. Mayers<br>A. O. Erb<br>Mr. Parks               | do<br>Reichart<br>—        | 1948<br>1951<br>Old    | 515<br>545<br>550       | do<br>do<br>do      | 80<br>60-70<br>110         | 6<br>6<br>6                 | 21                         | Hilltop<br>Hillside<br>Upland |
| Ac 10                         | Do                                                   | -                          | Old                    | 550                     | Dug                 | 12                         | 48                          | -                          | do                            |
| Ac 11                         | Mrs. Mason                                           | H. E. Wantz                | 1951                   | 550                     | Drilled             | 107                        | 6                           | _                          | do                            |
| Ac 12                         | Guy Dayhoff                                          | LeGore                     | 1949                   | 545                     | do                  | 60                         | 6                           | 10.5                       | do                            |
| Ac 13                         | H. A. Hainsborough                                   | Wantz                      | 1938                   | 455                     | do                  | 67                         | 6                           | 15                         | Valley flat                   |
| Ac 14                         | Jason Hapson                                         | -                          | -                      | 560                     | do                  | 90                         | 6                           |                            | Draw                          |
| Ad 1                          | R. L. Bankert                                        | Utermahlen                 | 1953                   | 840                     | do                  | 44                         | 6                           | 4                          | Hilltop                       |
| Ad 2<br>Ad 3<br>Ad 4<br>Ad 5  | H. L. Harman<br>S. L. Flickinger<br>C. C. Stonesifer | Reichart<br>do<br>do       | 1951<br>1951<br>1951   | 800<br>770<br>760       | do<br>do<br>do      | 95<br>94<br>93             | 6<br>6<br>6                 |                            | do<br>do<br>do                |
| Ad 6                          | Do                                                   |                            |                        | 530                     | Dug                 | 4.1                        | 19                          | 14.1                       | 11111SIGE                     |

#### 25 Springs in Carroll County

| Witten bearing                      | Water level<br>(feet below land surface) |                    |                     | ent               | Yi                       | eld                          | of<br>1g test | apacity<br>/ft.)      | Use         |                                                                                                                                      |
|-------------------------------------|------------------------------------------|--------------------|---------------------|-------------------|--------------------------|------------------------------|---------------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| formation                           | Static                                   | Pump-<br>ing       | Date                | Pumping<br>equipm | Gallons<br>per<br>minute | allons<br>per Date<br>ninute |               | Specific o<br>(g.p.m. | of<br>water | Remarks                                                                                                                              |
| New Oxford                          | 24 <sup>a</sup>                          | 65 <sup>a</sup>    | 10/6/47             | J,E               | 12                       | 10/6/47                      | 4             | 0.29                  | D           | Drilled about 1915 to 68 ft.,<br>with reported yield of 5 gpm.                                                                       |
| do<br>do                            | 11 <sup>a</sup><br>20 <sup>a</sup>       | -                  | 9/25/51<br>6/27/52  | J,E<br>?,E        | 4<br>4(?)                | 9/25/51<br>6/27/53           | _             |                       | D<br>D      | See chemical analysis.<br>Reported bailed dry in 30 min-<br>utes.                                                                    |
| do<br>do                            | 20ª<br>25ª                               | -                  | 2/7/48<br>5/5/50    | J(?),<br>E        | 3.5(?)<br>2.5(?)         | 2/7/48<br>4/5/50             | -             |                       | D<br>D      | Do<br>Do                                                                                                                             |
| do                                  | 40 <sup>a</sup>                          | 50ª                | 3/6/48              | ?,E               | 25                       | 3/6/48                       | .5            | 2.5                   | D           | Main supply reported at 75 feet.                                                                                                     |
| do                                  | 49 <sup>a</sup>                          | -                  | 6/18/48             | —                 | 3(?)                     | 6/18/48                      | -             | -                     | D           | Reported bailed dry in 45 min-<br>utes.                                                                                              |
| do<br>do                            | 40 <sup>a</sup><br>11.5 <sup>a</sup>     | 45(?) <sup>a</sup> | 8/14/50<br>12/24/52 | J,E<br>J,E        | 3<br>4(?)                | 8/14/50<br>12/24/52          |               | -                     | D<br>D      | Adequate supply reported.<br>See well log.                                                                                           |
| do                                  | -                                        |                    | _                   | C,H               | -                        | -                            | -             | -                     | N           | Water reported "hard". Ap-<br>parently was inadequate.                                                                               |
| do                                  | 27 <sup>8</sup>                          | - 1                | 12/7/51             | J,E               | 7                        | 12/7/51                      |               |                       | D           |                                                                                                                                      |
| do                                  | 15.5 <sup>B</sup>                        |                    | 6/9/49              | )                 | 3                        | 6/9/49                       | 2             | -                     | D           |                                                                                                                                      |
| do                                  | 30ª<br>21.78                             | -                  | 9/27/47<br>2/15/55  | J(?),E            | 3                        | 9/27/4<br>6/18/49            | 7 4           | -                     | С           | Drilled to 73 ft. in 1947; 15 ft. of<br>casing; inadequate and<br>"marshy" odor. No improve-<br>ment in yield or quality in<br>1949. |
| do                                  | 20 <sup>n</sup>                          | -                  | 5/20/48             | 3?,E              | 1.5                      | 5/20/4                       | 3 3           | -                     | D           |                                                                                                                                      |
| do                                  | 19 <sup>a</sup>                          |                    | 5/9/51              | J,E               | 7.5                      | 5/9/51                       | -             | - 1                   | D           | 1                                                                                                                                    |
| do                                  | -                                        | -                  |                     | J,E               | -                        | -                            | -             | -                     | D           | Adequate supply reported.                                                                                                            |
| do                                  | 5.8                                      | -                  | 2/15/55             | 5 S,E             | -                        | _                            | -             | -                     | F           | Roof runoff piped to well; water<br>level in well may be higher<br>than water table.                                                 |
| do                                  | 20ª                                      | _                  | 5/25/51             | L ?,E             | 3(?)                     | 5/25/5                       | ı —           | -                     | N           | Reported bailed dry in 25 min-<br>utes.                                                                                              |
| do                                  | $10\pm$                                  | -                  | 4/30/50             | 5 J,E             | 4                        | 7/13/4                       | 9 2           | - III -               | D           |                                                                                                                                      |
| New Oxford (quartz<br>conglomerate) | s —                                      | -                  | -                   | C,E               | . –                      | -                            | -             | -                     | D           |                                                                                                                                      |
| do                                  | -                                        | -                  | -                   | C,E               | -                        | -                            |               | -                     | F           | Cistern supplies home.                                                                                                               |
| Marburg schist                      | 25 <sup>a</sup><br>18.54                 | 44 <sup>n</sup>    | 4/30/53             | 3 J,E             | 4                        | 4/30/5                       | 3.5           | -                     | D           |                                                                                                                                      |
| ljamsville phyllite                 | -                                        |                    |                     | ?,E               |                          |                              | -             | -                     | D           | See well log.                                                                                                                        |
| do                                  |                                          |                    | -                   | ?,E               | 4.5                      | 7/10/5                       | 1 —           |                       | D           |                                                                                                                                      |
| do                                  | -                                        | <u> </u>           |                     | ?,E               | 20                       | 7/7/5                        | 1 —           | _                     | D           |                                                                                                                                      |
| do                                  | 36ª                                      | _                  | 1/4/5               | ) C,E             | 15-20                    | 1/4/5                        | 0             | _                     | D           | water reported slightly hard and rusty.                                                                                              |
| do                                  | 43.2                                     | —                  | 1/10/5.             | 5 N               | -                        |                              | -             |                       | N           | Reported to go dry in summers                                                                                                        |

TABLE 25

| Well<br>num-<br>ber<br>(Car-) | Owner or name              | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>positior |
|-------------------------------|----------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Ad 7                          | John Irvin                 | Utermahlen  | -                      | 620                     | Drilled         | 37                         | 6                            | -                          | Hillside                     |
|                               |                            |             |                        |                         |                 |                            |                              |                            |                              |
| Ad 8                          | Roy Hill                   | Reichart    | 1950                   | 560                     | do              | 131                        | 6                            | 20                         | Valley                       |
| Ad 9                          | R. Scholi                  | Kyker       | _                      | 565                     | do              | 29                         | 6                            | -                          | do                           |
| Ad 10                         | J. C. Cassell, Jr.         | Sterner     | -                      | 580                     | do              | 32                         | 6                            | 25±                        | do                           |
| Ad 11                         | M. C. Utz                  | Reichart    | 1952                   | 760                     | do              | 113                        | 6                            | 15                         | Hilltop                      |
| Ad 12                         | Mose Keffer                | Showers     | 1952                   | 745                     | do              | 90                         | 6                            | 21                         | Hillside                     |
| Ad 13                         | L. H. Haines               | Reichart    | 1948                   | 705                     | do              | 49                         | 6                            | -                          | do                           |
| Ad 14                         | (Unknown)                  | -           | _                      | 630                     | do              | 60                         | 6                            |                            | do                           |
| Ad 15                         | L. H. Haines               | Reichart    | 1950                   | 690                     | do              | 83                         | 6                            |                            | Hilltop                      |
| Ad 16                         | F. N. Farnham              | Utermahlen  | 1949                   | 805                     | do              | 66                         | 6                            |                            | do                           |
| Ad 17                         | Lester Zeigle              | -           | 1940                   | 690                     | do              | . 100±                     | 6                            |                            | do                           |
| Ad 18                         | Robert W. Myers            | Reichart    | 1954                   | 665                     | do              | 85                         | 6                            | 50                         | Upland<br>flat               |
| Ae 1                          | Mountain View Bible School | Sterner     | 1952                   | 1,005                   | do              | 100                        | 6                            | 17.5                       | Draw                         |
| Ae 2                          | Do                         | _           |                        | 1,010                   | Dug             | 46                         | 36                           | _                          | do                           |
| Ae 3                          | Do                         | -           | -                      | 1,000                   | Drilled         | 118                        | 6                            | -                          | do                           |
| <b>\e 4</b>                   | Paul C. Wentz              | _           | -                      | 1,010                   | do              | 65±                        | 6                            | -                          | Hilltop                      |
| le 5                          | Stuart Horvick             | Sterner     | 1953                   | 995                     | do              | 137                        | 6                            | 22.5                       | do                           |
| Ae 6                          | Roland Markle              | do          | 1951                   | 990                     | do              | 78                         | 6                            | 21                         | do                           |
| Ae 7                          | N. C. Krumrine             | Reichart    | 1953                   | 835                     | do              | 80                         | 6                            | -                          | do                           |
| Ae 8                          | V. C. Wolfe                | -           | -                      | 675                     | Dug             | 24                         | 48                           | -                          | Hillside                     |
| Ae 9                          | Do                         | -           | 1947                   | 705                     | Drilled         | 100                        | 6                            | -                          | do                           |
| Ae 10                         | Do                         | _           | _                      | 660                     | Spring          | -                          | _                            | _                          | Valley                       |
| Ae 11                         | B. E. Sterner              | —           |                        | 830                     | do              | -                          | -                            | -                          | Hillside                     |
| Af 1                          | Raymond Wentz              | Sterner     | 1950                   | 965                     | Drilled         | 73                         | 6                            | 14                         | Hilltop                      |
| 1.1.0                         | IN IN THE I                |             |                        |                         |                 |                            |                              |                            |                              |
| AI 2                          | W. E. Hersh                | do          | 1950                   | 840                     | do              | 61                         | 6                            | 26                         | Hillside                     |
| AFA                           | Carroll Shaeffer           | D H Lange   | 1949                   | 845                     | do              | 80                         | 6                            | 79                         | do                           |
| AFS                           | Earmers Cooperative Inc.   | K. H. Leppo | 1948                   | 920                     | 00              | 13                         | 0                            | 10                         | do II                        |
| ¥1. U                         | ranners cooperative, inc.  | 0           | 1957                   | 833                     | do              | 180                        | 0                            | _                          | valley                       |
|                               |                            |             |                        |                         |                 |                            |                              |                            |                              |
|                               |                            |             |                        |                         |                 |                            |                              |                            |                              |

| Water-bearing                               | V<br>(feet be      | Vater lev<br>low land | el<br>surface) | lent              | Yi                       | eld     | ng test                       | apacity<br>/ft.)      | Use         |                                                                                                                                                                                                                                                                                        |
|---------------------------------------------|--------------------|-----------------------|----------------|-------------------|--------------------------|---------|-------------------------------|-----------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                   | Static             | Pump-<br>ing          | Date           | Pumping<br>equipr | Gallons<br>per<br>minute | Date    | Duration<br>pumpin<br>(hours) | Specific (<br>(g.p.m. | ot<br>water | Kemarks                                                                                                                                                                                                                                                                                |
| Marburg schist                              | 14.25              |                       | 1/6/55         | NI                | -                        | _       | -                             | _                     | D           | Bottom of well mucky; may<br>have been drilled deeper than<br>37 ft. Jet pump and electric                                                                                                                                                                                             |
| Silver Run limestone                        | -                  | —                     | -              | J,E               | 1.5                      | 7/6/50  | -                             | _                     | D           | Field test of hardness: 362<br>ppm. Owner reports well was                                                                                                                                                                                                                             |
| do                                          |                    | _                     | =              | J,E               | -                        |         | -                             |                       | D           | Formerly 12 ft. deep and in-<br>adequate. Now adequate.                                                                                                                                                                                                                                |
| Silver Run limestone<br>or Ijamsville phyl- | -                  | _                     | -              | S,E               |                          | -       | -                             | _                     | D           | Adequate supply reported;<br>water soft.                                                                                                                                                                                                                                               |
| Marburg schist                              | _                  | _                     |                |                   |                          |         | _                             |                       | D           | See well log                                                                                                                                                                                                                                                                           |
| do                                          | 27a                | 3.78                  | 4/25/52        | 2 E               | 40                       | 4/25/52 | 3                             | 8.0                   | D           | bee wen log.                                                                                                                                                                                                                                                                           |
| do                                          | 18 <sup>a</sup>    |                       | 1/12/48        | 2.E               | 10                       | 1/12/48 |                               |                       | D.F         | See well log.                                                                                                                                                                                                                                                                          |
| Harpers phyllite                            | _                  |                       |                | LE                | _                        |         | _                             |                       | D.F         |                                                                                                                                                                                                                                                                                        |
| do                                          |                    |                       | _              | J.E               | 15                       | 3/15/50 |                               |                       | D           |                                                                                                                                                                                                                                                                                        |
| Marburg schist                              | 50ª                | _                     | 8/4/49         | J,E               | 8                        | 8/4/49  | 1                             |                       | D           |                                                                                                                                                                                                                                                                                        |
| Harpers phyllite                            | 33-38 <sup>a</sup> | _                     | 11/30/56       | C,E               | - 1                      | _       | - 1                           |                       | D,F         | Good quality reported.                                                                                                                                                                                                                                                                 |
| do                                          |                    | _                     | _              | -                 | -                        | —       | -                             |                       | D           |                                                                                                                                                                                                                                                                                        |
| Marburg schist                              | 18 <sup>8</sup>    |                       | 8/25/52        | T,E               | 15±                      | 8/25/52 | - 1                           | _                     |             |                                                                                                                                                                                                                                                                                        |
|                                             | 36.55              | _                     | 11/16/53       |                   |                          |         |                               |                       |             |                                                                                                                                                                                                                                                                                        |
| do                                          | 36.32              | -                     | 11/16/53       | J,E               | -                        |         | 1 – 1                         |                       | N(?)        |                                                                                                                                                                                                                                                                                        |
| do                                          | 39.40              | _                     | 11/16/53       | N                 |                          | _       |                               | _                     | N           | Jet pump pipes in well; no pump.                                                                                                                                                                                                                                                       |
| do                                          | —                  | —                     | -              | J(?),<br>E        |                          |         | -                             |                       | D           | Adequate yield reported.                                                                                                                                                                                                                                                               |
| do                                          | 72.31              | _                     | 11/16/53       | NI                | 2(?)                     | 10/8/53 | _                             |                       | D           |                                                                                                                                                                                                                                                                                        |
| do                                          | 32ª                | _                     | 3/7/51         |                   | 11                       | 3/7/51  | _                             |                       | D           |                                                                                                                                                                                                                                                                                        |
| do                                          | 20 <sup>8,</sup>   | _                     | 4/13/53        | I.E               | _                        | _       | -                             |                       | D           |                                                                                                                                                                                                                                                                                        |
| do                                          | 18.85              |                       | 1/4/54         | J,E;              | -                        | -       | -                             |                       | D           | Standby well.                                                                                                                                                                                                                                                                          |
| do                                          |                    | -                     | -              | J,E               | 7±                       | _       | 15                            |                       | D,F         | Pump capacity 7 gpm.; operated<br>15 hrs. once with no noticea-                                                                                                                                                                                                                        |
| do                                          | _                  |                       |                | N                 | 6-8                      | 1/4/54  | _                             |                       | N           | Concrete collecting chamber                                                                                                                                                                                                                                                            |
| do                                          | -                  | -                     | -              | N                 | 15-20                    | 1/7/55  | _                             | _                     | D,F         | Water flows by gravity to home<br>and barn. Continuous flow<br>reported.                                                                                                                                                                                                               |
| do                                          | 29 <sup>a</sup>    | -                     | 12/7/50        | J,E               | 6                        | 12/7/50 | 4 – N                         | —                     | D           | Adequate supply reported.<br>Depth of pump jet 65 ft. +.                                                                                                                                                                                                                               |
| do                                          | 29 <sup>8</sup>    | _                     | 5/22/50        |                   | 12                       | 5/22/50 |                               |                       | D           |                                                                                                                                                                                                                                                                                        |
| Wakefield marble(?)                         | 31ª                | _                     | 4/18/49        | · ·               | 7                        | 4/18/49 | _                             |                       | D           | See well log.                                                                                                                                                                                                                                                                          |
| Wissahickon (albite)                        | 35%                |                       | 5/20/48        | J,E               | 10                       | 5/20/48 | 1                             |                       | D           | Adequate supply reported.                                                                                                                                                                                                                                                              |
| Marburg schist                              | -                  |                       |                | C,E               | _                        |         |                               |                       | С           | Inadequate yield reported.<br>Cannery inoperative part of<br>the winter. Well drilled<br>through "slate soapstone."<br>Well casing connects below<br>land surface with a duct from<br>a concrete tank fed by a<br>nearby spring. Water pumped<br>from well is largely spring<br>water. |

|                               |                                     |             |                        |                         |                   |                            |                              | Т                          | ABLE 25                      |
|-------------------------------|-------------------------------------|-------------|------------------------|-------------------------|-------------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Well<br>num-<br>ber<br>(Car-) | Owner or name                       | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well   | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
| Af 6<br>Af 7                  | Farmers Cooocrative, Inc.<br>Do     | Ξ           | 1948±<br>—             | 990<br>910              | Drilled<br>Spring | 300±                       | 8                            | -                          | Hilltop<br>Valley            |
| Af 8                          | Mrs. Wareheim                       | -           | -                      | 800                     | do                | _                          | -                            | -                          | Hillside                     |
| Af 9                          | Town of Manchester                  | mana        | -                      | 900-950                 | do                | _                          | _                            | -                          | Valley and<br>hillside       |
| Af 10                         | Sinclair Hook                       | Sterner     | 1953                   | 710                     | Drilled           | 79                         | б                            | 11                         | Valley                       |
| Af 11                         | M. E. Warner                        | do          | 1952                   | 800                     | do                | 46                         | б                            | 11                         | side<br>Hillside             |
| Af 12<br>Af 13                | George Warner<br>E. W. Dell         | do<br>—     | 1954<br>Old            | 720<br>715              | do<br>Dug         | 59<br>8.7                  | 6<br>48                      | -                          | do<br>Draw                   |
| Af 14<br>Af 15                | Walter Detter<br>L. Fowble          | Sterner     | 1952                   | 840<br>830              | Drilled<br>Dug    | 70<br>20                   | 6                            | 57                         | Hilltop<br>Valley            |
| Af 16                         | Do                                  | -           | -                      | 895                     | Spring            | -                          | -                            |                            | side<br>Draw                 |
| Af 17                         | Melrose Canning Co.                 | -           | 1944                   | 810                     | Drilled           | 125                        | б                            | _                          | Valley                       |
| Af 18                         | Do                                  | _           | 1037                   | 810                     | do                | 125                        | Q                            |                            | do                           |
| Af 19                         | Do                                  | _           | 1930                   | 810                     | do                | 125                        | 8                            | - 1                        | do                           |
| At 20                         | Russell Royer                       | Sterner     | 1953                   | 875                     | do                | 88                         | 6                            | 52.5                       | Hillside                     |
| AI 21<br>Af 22                | W. H. Wey                           | Leppo       | 1953-54                | 1,000                   | do                | 65                         | 6                            | -                          | do                           |
|                               | 100                                 | _           |                        | 980                     | Spring            | -                          |                              | _                          | do                           |
| Af 23                         | Do                                  | -           | -                      | 980                     | do                | -                          | _                            | -                          | do                           |
| Af 24                         | H. J. Stemmer                       | -           | _                      | 880                     | Dug               | 15                         | _                            | -                          | do                           |
| Af 25                         | Do                                  |             |                        | 860                     | Spring            | _                          | _                            | _                          | do                           |
|                               |                                     |             | 1                      |                         |                   |                            |                              |                            |                              |
| Af 26                         | E.W. Dell                           | _           | -                      | 715                     | do                | -                          | -                            | -                          | Valley                       |
| Af 27                         | George Simpers                      | Sterner     | 1955                   | 910                     | Drilled           | 82                         | 6                            | 22                         | Hillton                      |
| Af 28                         | Paul Warner                         | -           | 1935                   | 790                     | do                | 120                        | 6                            |                            | Hillside                     |
| Af 29                         | Do                                  | -           | -                      | 800                     | Spring            | -                          | -                            |                            | do                           |
| Ag 1<br>Ag 2                  | Raymond M. Walker<br>Guy O. Sanders | H. R. Leppo | 1947                   | 730<br>800              | Drilled<br>do     | 55<br>66+                  | 6<br>6                       | 23                         | do<br>Hilltop                |

-Continued

| Water hearing        | Water level<br>(feet below land surface) |              |          |                   | Yield                    |          | of<br>ig test               | apacity<br>/ft.)      | Use         |                                                                                                                                             |
|----------------------|------------------------------------------|--------------|----------|-------------------|--------------------------|----------|-----------------------------|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| formation            | Static                                   | Pump-<br>ing | Date     | Pumping<br>equipm | Gallons<br>per<br>minute | Date     | Duration<br>pumpi<br>(hours | Specific o<br>(g.p.m. | of<br>water | Remarks                                                                                                                                     |
| Marburg schist       | 76.21                                    | - 1          | 11/17/53 | C,E               |                          | -        | _                           | _                     | С           |                                                                                                                                             |
| do                   | -                                        | -            | -        | N                 | .5                       | 11/17/53 |                             | _                     | С           | Continuous flow reported. Part<br>of discharge is directed into<br>well Af 5. Situated at base of<br>steep ridge slope.                     |
| Wissahickon (albite) | -                                        | -            | -        | N                 | 7                        | 5/11/54  | -                           | -                     | D,F         | Two sets of openings in hillside,<br>each with a collecting cham-<br>ber. Water flows by gravity<br>to home and a pond. See                 |
| do                   | -                                        | -            | -        | N                 | -                        | -        | -                           | _                     | Р           | chemical analysis. Tempera-<br>ture measurements, p. 58.<br>Series of springs from which<br>water flows through drain<br>tiles to a cistern |
| do                   | - 1                                      | 5 - I        |          | C,E               | 6.5(?)                   | 9/21/53  | -                           | -                     | D           | See well log.                                                                                                                               |
| Sams Creek meta-     | $10^{\mathrm{a}}$                        | - 1          | 4/17/52  | J,E               | 15(?)                    | 4/17/52  | -                           | —                     | D           | Water reported corrosive.                                                                                                                   |
| do                   | 35.09                                    |              | 4/28/54  | NI                | 8                        | 3/23/54  |                             | _                     | D           | See well log.                                                                                                                               |
| Wakefield marble     | 7.80                                     | -            | 7/20/54  | C,H               | -                        | -        | -                           | -                     | N           | Intermittent discharge. Use<br>spring Af 26 for water supply.                                                                               |
| Wissahickon (albite) | 17 <sup>8</sup>                          | -            | 11/15/52 | J,E               | 9(?)                     | 11/15/52 | -                           |                       | D           |                                                                                                                                             |
| Marburg schist       | 19.3                                     |              | 1/4/55   | S,E               | -                        |          | =                           | -                     | N           | Inadequate; use spring Af 16<br>for water supply.                                                                                           |
| do                   | -                                        | =            | -        | -                 | 7-8                      | 1/4/55   |                             |                       | D           | Good flow in all seasons re-<br>ported. Water flows by gravity<br>to home. Temperature Jan. 4,<br>1955, 50°F.                               |
| Wakefield marble(?)  |                                          | —            | -        | T,E               | -                        | —        | -                           |                       | С           | Pump capacity 100 gpm. Soft<br>water reported.                                                                                              |
| do                   | 11.70                                    | _            | 1/7/55   | T,E               | 120                      | -        | =                           | _                     | С           | Soft water reported.                                                                                                                        |
| do                   | -                                        | —            | -        | T,E               | -                        | —        | -                           | -                     | С           | Hard water reported.                                                                                                                        |
| Marburg schist       | 16 <sup>a</sup>                          |              | 6/15/53  | -,E               | 11                       | 6/15/53  |                             | _                     | D           | Good yield reported                                                                                                                         |
| do<br>do             | _                                        | _            | _        | J,E<br>N          | 3                        | 1/7/55   | _                           | _                     | N           | Concrete collecting chamber.                                                                                                                |
| do                   |                                          | -            |          | N                 |                          | -        | _                           | -                     | N           | Rock-lined collecting chamber.                                                                                                              |
| do                   | -                                        |              | _        | J,E;              | _                        | _        |                             | _                     | D           | Poor yield at times.                                                                                                                        |
| do                   | _                                        | -            | -        | C,E<br>N          | -                        | -        |                             | -                     | D,F         | Nest of 3 springs. Concrete collecting chambers. The one                                                                                    |
| Wakefield marble (?) | _                                        | _            | _        | S,E               | -                        | -        | -                           | _                     | D           | at lowest elevation reported<br>to flow continuously.<br>Concrete collecting chamber.<br>Small discharge, but reported                      |
| Wiesshickon (albita) | 18 <sup>8</sup>                          | _            | 9/27/55  |                   | 10                       | 9/27/55  | _                           |                       | D           | perennar                                                                                                                                    |
| Wakefield marble (?) | 40 <sup>a</sup>                          |              | 11/30/56 | J.E               |                          |          |                             |                       | D           |                                                                                                                                             |
| do                   | -                                        | -            |          |                   | 3.6                      | 11/30/56 |                             | —                     | F           | Gravity flow to barn. Tempera-                                                                                                              |
| Wissahickon (albite) | 32ª                                      |              | 2/14/47  | J,E               | 6                        | 2/14/47  | _                           | _                     | D           | ture Nov. 30, 1956, 56°F.<br>Adequate.                                                                                                      |
| do                   | 50.0                                     | _            | 7/20/54  | J,E               | -                        |          | -                           |                       | D           | Good yield reported. Depth of pump jet 66 ft.                                                                                               |

TABLE 25 casing well Well Diameter of v (inches) Alti-Depth of well (feet) Date num-Topo-Type of well ų Owner or name Driller com-pleted tude graphic position ber Length ( (feet) (Car-) (feet) Ag 3 Henry A. Walker 680 Spring Valley side Ag 4 Mr. Baller 780 do Draw Ba 1 Carmen Delaplane Owings 375 Drilled 124 6 Hillside Ba 2 C. F. Dougherty H. E. Wantz 1953 345 do Valley 67 6 side Ba 3 Do Old 345 Dug 19 do Ralph P. Waybright Ba 4 H. E. Wantz 1946 485 Drilled 260 18 Upland 6 flat Ba 5 Do 485 6 do Ba 6 Cmdr. Luther L. Dilley H. E. Wantz 1953 445 Hilltop do 142 6 43 Ba 7 Do 1953(?) 445 140 6 do Lloyd Wilhide Ba 8 C. L. Wantz 1952 500 do 11.2 70 6 do Bb 1 Mrs. Joseph Elliott Before Dug 31.2 Upland 1900 flat Bb 2 Municipality of Taneytown Valley About 440 Drilled 140 8 1925 Bb 3 Do About 440 do 130 8 do 1925 ВЬ 4 do 440 1.50 8 do Bb 5 Do 1898 440 do 8 Bb 6 Do 1040 460 363 8  $10\pm$ Valley side Bb 7 Do H. E. and C. L. 1946 460 do 244 8 do Wantz Bb 8 Cambridge Rubber Co. Columbia Pump 1948 do 530 23 Upland 8 and Well Co. flat Bb 9 Do do 1948 510 do 300 10-8 78 do ВЬ 10 Do 500 do 200± 8 do Bb 11 Delmar Riffle H. E. Wantz 1950 50.5 do 5 21.3 Hilltop Bb 12 Luther J. Claybaugh C. L. Wantz 1945 520 do 107 58 Upland 8 flat

| Water-bearing        | Water level<br>(feet below land surface) |                  |                   | ent               | Y                        | Yield            |                               | apacity<br>/ft.)       | Use         |                                                                                                                                                                                                      |
|----------------------|------------------------------------------|------------------|-------------------|-------------------|--------------------------|------------------|-------------------------------|------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation            | Static                                   | Pump-<br>ing     | Date              | Pumping<br>equipm | Gallons<br>per<br>minute | Date             | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m., | of<br>water | Remarks                                                                                                                                                                                              |
| Wissahickon (albite) | -                                        |                  | - 1               | N                 | 2                        | 7/20/54          |                               |                        | D,F         |                                                                                                                                                                                                      |
| do                   | -                                        |                  | -                 | Ν                 | 5±                       | 7/20/54          | -                             | _                      | D,F         |                                                                                                                                                                                                      |
| New Oxford<br>do     | 21ª<br>8 <sup>8</sup>                    | 75 <sup>a</sup>  | 12/8/51<br>6/3/53 | C,E<br>J,E        | 12                       | 12/8/51          | .5                            | .2                     | D<br>D      | Depth of pump pipe 110 ft.<br>Driller reported bailed dry in<br>30 minutes. Adequate supply                                                                                                          |
| do                   | -                                        | -                | _                 | N                 | _                        |                  | -                             | -                      | N           | Abandoned because of inade-<br>quate yield in summer of 1953;<br>replaced by well Ba 2                                                                                                               |
| do                   | 25 <sup>a</sup>                          |                  | 9/17/46           | C,E               | -                        | -                |                               | _                      | D,F         | Driller reported bailed dry in 30                                                                                                                                                                    |
| do                   | _                                        |                  | -                 | C,E               | -                        | -                | -                             | -                      | N           | Poor yield reported. Water con-<br>taminated by a nearby buried<br>gasoline tank.                                                                                                                    |
| do                   | 65 <sup>a</sup>                          | -                | 8/10/53           | ?,E               | -                        |                  |                               | -                      | D           | Driller reported bailed dry in 20<br>minutes                                                                                                                                                         |
| do                   |                                          |                  |                   | N                 |                          | - 1              |                               |                        | N           | Inadequate yield: destroyed(?)                                                                                                                                                                       |
| do                   | 23 <sup>8</sup>                          | -                | 10/8/52           | J,E               | 4 (?)                    | 10/8/52          | -                             |                        | D           | Driller reported bailed dry in 20<br>minutes                                                                                                                                                         |
| do                   | 5.61                                     |                  | 7/16/53           | N                 |                          | -                | -                             | -                      | N           | Water-level observation well.                                                                                                                                                                        |
| do                   | 20 <sup>a</sup>                          | -                | 1946              | T,E               |                          |                  |                               |                        | Ρ           | Well no. 1. See chemical analy-<br>sis. In northeast corner of<br>pumping station. Combined<br>yield of wells 1-4 reported to<br>be 300 to 350 gpm; individual<br>yields range from 60 to 110<br>gpm |
| do                   | 20 <sup>a</sup>                          |                  | 1946              | T,E               |                          | -                |                               | -                      | Р           | Well no. 2. In southeast corner                                                                                                                                                                      |
| do                   | 20 <sup>a</sup>                          | -                | 1946              | T,E               | -                        | -                | -                             | _                      | Р           | Well no. 3. See chemical analy-<br>sis. In southwest corner of                                                                                                                                       |
| do                   | 20 <sup>a</sup>                          | —                | 1946              | T,E               | -                        | - 1              | -                             | -                      | Р           | Well no. 4. In northwest corner                                                                                                                                                                      |
| do                   | —                                        | -                |                   | C,E               | -                        | -                | -                             |                        | Р           | Well no. 5. About 200 ft. south-                                                                                                                                                                     |
| do                   | 40 <sup>a</sup>                          | -                | 11/21/47          | T,E               | 50                       | 11/21/47         | 8                             | -                      | Р           | Well no. 6. About 130 ft. south-<br>west of pumping station. See<br>well log in Fig. 28                                                                                                              |
| do                   | 8 <sup>a</sup>                           | 300 <sup>a</sup> | 4/3/48            | T,E               | 30                       | 4/3/48           | 6                             | 0.1                    | С           | Well no. 2. See well log in Fig. 28.                                                                                                                                                                 |
|                      | 67.30                                    | -                | 2/5/52            |                   | 17                       | Fall 51          |                               |                        |             |                                                                                                                                                                                                      |
| do                   | 8ª                                       | 125              | 4/3/48            | C,E               | 25<br>15                 | 4/3/48<br>2/—/52 | 3                             | . 2                    | С           | Well no. 3. See well log in Fig. 28 and chemical analysis.                                                                                                                                           |
| do                   | _                                        |                  | -                 | -                 | 17                       | 2//52            | -                             | _                      | С           | Well no. 1. In boiler room.                                                                                                                                                                          |
| do                   | 26 <sup>a</sup>                          |                  | 12/27/50          | ?,E               | 4(?)                     | 12/27/50         | 0.5                           |                        | D           | Bailed dry in 30 minutes.                                                                                                                                                                            |
| do                   | 26 <sup>a</sup>                          |                  | 10/29/45          | J,E               | 4(?)                     | 10/29/45         | .5                            |                        | D           | Bailed dry in 30 minutes. Orig-<br>inally 85 ft. deep; deepened<br>to improve yield.                                                                                                                 |

| Well<br>num-<br>ber<br>(Car-) | Owner or name                         | Driller                  | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well    | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|-------------------------------|---------------------------------------|--------------------------|------------------------|-------------------------|--------------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Bb 13                         | C. Edgar Hockensmith                  | C. L. Wantz              | 1948                   | 550                     | Drilled            | 156                        | 5 <sup>5</sup> <sub>8</sub>  | 25                      | Hilltop                      |
| Bb 14                         | William F. Airing                     | do                       | 1947                   | 495                     | do                 | 68                         | 6                            | 17                      | Hillside                     |
| Rb 15                         | Do                                    |                          | old                    | 405                     | Dug                | 15-1-                      | 36                           |                         | do                           |
| Bb 16                         | Taneytown Mill                        |                          | old                    | 500                     | Drilled            | 150-160                    | 6(?)                         | _                       | do                           |
| Bb 17                         | William Abra                          | Sterner                  | 1040                   | 425                     | do                 | 87                         | 6                            | 23                      | do                           |
| Bb 18                         | Frederick Mehring Fertilizer<br>Works | H. E. Wantz              | 1947                   | 425                     | do                 | 105                        | 6                            | 11                      | do                           |
| Bb 19                         | Russell Blackston                     | do                       | 1952                   | 460                     | do                 | 95                         | 57                           |                         | Upland<br>flat               |
| Bb 20                         | Middleburg Methodist Church           | Corum                    | 1951                   | 465                     | do                 | 69                         | 6                            | 10                      | do                           |
| Bb 21                         | Cleon S. Wolfe                        | H. E. Wantz              | 1930                   | 485                     | do                 | 94                         | 55                           | 21                      | do                           |
|                               |                                       |                          |                        |                         |                    |                            |                              |                         | e -                          |
| Bb 22                         | Joseph A. Cashun                      | C. L. Wantz              | 1952                   | 520                     | do                 | 148                        | 6                            | 10                      | do                           |
| Bb 23                         | Monroe R. Pfoutz                      | Owings                   | 1948                   | 525                     | do                 | 128                        | 6                            | 13                      | do                           |
| Bb 24                         | Jean W. Lowman                        | C. L. Wantz              | 1947                   | 475                     | do                 | 150                        | 6                            | 11.5                    | do                           |
| Bb 25                         | A. W. Feeser and Co.                  | Witherow                 | 1921                   | 450                     | do                 | 194                        | 6.5                          | _                       | Hillside                     |
| Bb 26                         | Do                                    | H. E. and C. L.<br>Wantz | 1925                   | 450                     | do                 | 125                        | 6                            | _                       | do                           |
| Bb 27                         | Do                                    | _                        | Old                    | 450                     | do                 | 300                        | _                            | _                       | do                           |
| Bb 28                         | Do                                    | _                        | _                      | 450                     | do                 | 300                        | 6(?)                         | _                       | do                           |
| Bb 29                         | Do                                    | _                        | 1935                   | 490                     | do                 | 325                        | 8                            |                         | Hilltop                      |
| Bb 30                         | Do                                    | _                        | 1918                   | 490                     | do                 | 200                        | 8                            | _                       | Draw                         |
| Bb 31                         | Do                                    | _                        | Old                    | 490                     | do                 | 100                        | 6                            |                         | Hilltop                      |
| Bb 32                         | Do                                    | _                        | Old                    | 490                     | do                 | 100                        | 6                            | -                       | Hillside                     |
| Bb 33                         | Municipality of Taneytown             | Kohl Bros.               | 1954                   | 470                     | do                 | 225                        | 10-8                         | 32                      | do<br>Valley flat            |
| DU 34                         | William Sharote                       | do                       | 10.20                  | 510                     | do                 | 80                         | 6                            | 12                      | Hillton                      |
| Bb 36                         | Earl K. Stonesifer                    | do                       | 1949                   | 490                     | Dug and<br>Drilled | 126                        | 6                            |                         | do                           |
| Bb 37                         | Joseph Ashcroft                       | Sterner                  | 1952                   | 510                     | Drilled            | 73                         | 6                            | 14                      | Upland<br>flat               |
| Bc 1                          | Philip L. Rosselle                    | C. L. Wantz              | 1952                   | 580                     | do                 | 100                        | 6                            | 10                      | Hillside                     |
| Bc 2                          | William F. Corbin, Ir.                | Sterner                  | 1950                   | 640                     | do                 | 80                         | 6                            | 16                      | Hilltop                      |
| Bc 3                          | Daniel Boone                          | Owings                   | 1951                   | 645                     | do                 | 93                         | 6                            | 16                      | do                           |
| Bc 4                          | Mrs. Paul Will                        | Utermahlen               | 1948                   | 620                     | do                 | 75                         | 6                            |                         | Hillside                     |

| Water-bearing                       | (feet be               | Vater lev<br>low land | el<br>surface) | ent               | Yi                       | ield     | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                                                                                |
|-------------------------------------|------------------------|-----------------------|----------------|-------------------|--------------------------|----------|-------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                           | Statie                 | Pump-<br>ing          | Date           | Pumping<br>equipm | Gallons<br>per<br>minute | Date     | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                        |
| New Oxford                          | 45 <sup>a</sup>        | -                     | 9/2/48         | C,E               | 6(?)                     | 9/2/48   | .7                            | a                     | D,F         | Bailed dry in 40 minutes. Ade-                                                                                                                 |
| do                                  | 12 <sup>ª</sup>        | -                     | 9/10/47        | J,E               | 5(?)                     | 9/10/47  | .3                            | _                     | D           | Bailed dry in 20 minutes. Ade-                                                                                                                 |
| do                                  | 10.95                  | _                     | 8/6/54         | C,H               | _                        |          | _                             |                       | F           | Poor vield reported.                                                                                                                           |
| do                                  | _                      | _                     | _              | C,E               | _                        |          |                               | _                     | N           | Good yield reported.                                                                                                                           |
| do                                  | 36 <sup>a</sup>        | -                     | 3/24/49        | J,E               | 3(?)                     | 3/24/49  | _                             |                       | D           | , , , , , , , , , , , , , , , , , , ,                                                                                                          |
| do                                  | 45 <sup>a</sup>        |                       | 7/22/47        | C,E               | 2(?)                     | 7/22/47  | .3                            | -                     | D           | Bailed dry in 20 minutes. Ade-                                                                                                                 |
| do                                  | 51 <sup>a</sup>        | -                     | 10/18/52       | ?,E               | 4(?)                     | 10/18/52 | .3                            | _                     | D           | Bailed dry in 20 minutes. Orig-<br>inally 67 ft. deep; drilled to<br>95 ft. to increase supply                                                 |
| do                                  | 30 <sup>a</sup>        | 30 <sup>a</sup>       | 5/15/51        | ?,E               | 10                       | 5/15/51  | .25                           |                       | D           | Test pumped 10 gpm but driller                                                                                                                 |
| do                                  | 12 <sup>a</sup>        |                       | 3/18/50        | J,E               | 3(?)                     | 3/18/50  | .3                            | _                     | D           | Bailed dry in 20 minutes. Driller<br>reported that "rock was very<br>hard and lay on an angle."<br>Tried three other sites before<br>this one. |
| do                                  | 22 <sup>8</sup>        | -                     | 6/16/52        | ?,E               | _                        |          | _                             | _                     | D           | Adequate supply reported.                                                                                                                      |
| do                                  | 15 <sup>a</sup>        | 50 <sup>®</sup>       | 3/20/48        | C,E               | 7                        | 3/20/48  | .25                           | .2                    | D           | 1.2.3                                                                                                                                          |
| do                                  | 76 <sup>a</sup>        | 91 <sup>8</sup>       | 10/18/47       | ?,E               | 15                       | 10/18/47 | .5                            | 1.0                   | D           |                                                                                                                                                |
| do                                  | _                      | _                     | -              | C,E               | 40                       |          |                               | -                     | С           | Cannery; wells pumped June<br>through September. Water<br>zone reported at depth of 188<br>ft.                                                 |
| do                                  | -                      | -                     | -              | J,E               | 4.5                      | _        | -                             | -                     | D           | At residence on cannery prop-<br>erty. Was 100 ft. deep; deep-<br>ened to improve yield.                                                       |
| do                                  | _                      | _                     |                | C,E               |                          |          |                               |                       | С           | Good yield reported.                                                                                                                           |
| do                                  |                        | -                     |                | N                 |                          | - 1      |                               |                       | N           |                                                                                                                                                |
| do                                  | 35.5                   | -                     | 5/1/56         | C,E               | 40                       | -        |                               |                       | С           | Well pumped 24 hrs. per day at times during June-Sept                                                                                          |
| do                                  |                        | -                     |                | C,E               | .30                      | -        |                               |                       | С           | Do                                                                                                                                             |
| do                                  |                        | _                     | _              | C,E               | 10                       | _        |                               | _                     | Ċ           | Seldom used.                                                                                                                                   |
| do                                  | -                      |                       |                | N                 | _                        | _        | -                             | -                     | N           | Covered by concrete floor. Re-<br>ported yield decreased mark-<br>edly when well Bb 29 was put<br>into operation                               |
| do                                  | 36ª                    | 100%                  | 12/20/54       | T,E               | 25                       | 12/20/54 | 1.5                           | .4                    | P           |                                                                                                                                                |
| do                                  | 10 <sup>a</sup>        | 125ª                  | 3/12/47        | C,E               | 3                        | 3/12/47  | .3                            | <.1                   | D           |                                                                                                                                                |
| do                                  | 16.17                  | _                     | 11/28/56       | C,H               | 4.5                      | —        | -                             | _                     | D           |                                                                                                                                                |
| do                                  | 14.5 <sup>a</sup>      | -                     | 6/13/49        | J,E               | -                        | -        | -                             | —                     | D,F         | Depth of dug well 17 ft. No cas-<br>ing in drilled well. Adequate                                                                              |
| do                                  | 6 <sup>в</sup><br>6,12 | _                     | 4/23/53        | J,E               | -                        | -        | -                             | -                     | D           | y                                                                                                                                              |
| New Oxford (quartz<br>conglomerate) | 20 <sup>a</sup>        | -                     | 3/26/52        | J,E               |                          | -        | -                             | _                     | C,D         | Reported bailed dry in 20 min-<br>utes. Supply adequate.                                                                                       |
| Marburg schist                      | 36 <sup>a</sup>        | -                     | 4/28/50        | J,E               | 6±                       | 4/28/50  | -                             | -                     | D           |                                                                                                                                                |
| do                                  | 58ª                    | 75 <sup>a</sup>       | 11/10/51       | C,E               | 12                       | 11/10/51 | .5                            | .7                    | D           | Adequate supply. Depth of pump pipe 75 ft.                                                                                                     |
| do                                  | 40 <sup>a</sup>        | 40 <sup>a</sup>       | 11/15/48       | ?,E               | 8                        | 11/15/48 | 1                             | —                     | D           | Water corrosive to copper pipes<br>in home.                                                                                                    |

| Well<br>num-<br>ber<br>(Car-) | Owner or name           | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well    | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|-------------------------|-------------|------------------------|-------------------------|--------------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Bc 5                          | Robert Lawrence         | Showers     | 1952                   | 470                     | do                 | 98                         | 6                            | 3                          | Valley<br>side               |
| Bc 6                          | G. E. Gonder            | Sterner     | 1950                   | 460                     | do                 | 97                         | 6                            |                            | Hillside                     |
| Bc 7                          | Frank Reinman           | LeGore      | 1948                   | 480                     | do                 | 78                         | 6                            | 8                          | Hilltop                      |
| Bc 8                          | J. E. Baker             | Showers     | 1954                   | 535                     | do                 | 133                        | 6                            | 12                         | Upland                       |
| Bc 9                          | P. Trent and H. Moffett | C. L. Wantz | 1947                   | 560                     | do                 | 110                        | 6                            | 10                         | do                           |
| Bc 10                         | J. E. Baker             | -           | -                      | 535                     | do                 | 43                         | 6                            |                            | do                           |
| Bc 11                         | W. H. Myers             | H. E. Wantz | 1947                   | 495                     | do                 | 142                        | 6                            | 6                          | Hillside                     |
| Bc 12                         | J. C. Corbin            | C. L. Wantz | 1951                   | 545                     | do                 | 81                         | 6                            | $17\frac{1}{2}$            | Hilltop                      |
| Bc 13                         | Mildred Hymiller        | Kyker       | 1954                   | 530                     | do                 | 50                         | 6                            | 14                         | Hillside                     |
| Bc 14                         | C. S. Haines            | C. L. Wantz | 1954                   | 605                     | do                 | 84                         | 6                            | 23                         | Hilltop                      |
| Bc 15                         | Dorsey Rake             | -           | 1930                   | 645                     | Dug and<br>Drilled | 85                         | 48 and<br>6(?)               | -                          | do                           |
| Bd 1                          | Mr. Myers               | Owings      | 1947                   | 645                     | Drilled            | 73                         | 6                            | 56                         | Hillside                     |
| Bd 2                          | Walter Myers            | do          | 1947                   | 620                     | do                 | 90                         | 6                            | 82                         | do                           |
| Bd 3                          | E. S. Baugher           | do          | 1947                   | 710                     | do                 | 115                        | 6                            | 40                         | do                           |
| Bd 4                          | Harvey Stoner           | H. E. Wantz | 1952                   | 665                     | do                 | 63                         | 6                            | 63                         | Hilltop                      |
| Bd 5                          | Richard Little          | do          | 1949                   | 750                     | do                 | 227                        | 6                            | 13                         | do                           |
| Bd 6                          | Kriders Reformed Church | Utermahlen  | 1952                   | 770                     | do                 | 48                         | 6                            | 4                          | do                           |
| Bd 7                          | S. L. Hyde              |             |                        | 770                     | Dug                | 32                         | 42                           | _                          | do                           |
| Bd 8                          | William R. Rickell      | W. Hoffman  | 1948                   | 790                     | Drilled            | 85                         | 6                            | 10                         |                              |
| Bd 9                          | Mr. Hammett             | -           | About<br>1937          | 810                     | do                 | 103                        | 6                            | -                          | do                           |
| Bd 10                         | William C. Bridges      | W. Hoffman  | 1952                   | 785                     | do                 | 100                        | 6                            | 17                         | do                           |
| Bd 11                         | Ralph T. Humbert        | do          | 1952                   | 865                     | do                 | 80                         | 6                            | 8                          | do                           |
| Bd 12                         | John Roser              | Utermahlen  | 1947                   | 660<br>585              | do                 | 60                         | 6                            | -                          | do                           |
| DU 13                         | Do                      |             | 1950                   | 203                     | du                 | 47                         | 0                            | *                          | 40                           |
| Bd 14                         | Do                      |             | Old                    | 560                     | Dug                | 25.3                       |                              | -                          | Hillside                     |
| Bd 15                         | Do                      |             | Old                    | 565                     | do                 | 32.1                       |                              |                            | 00                           |
| Bd 16                         | Do                      |             |                        | 550                     | Spring             | -                          | -                            | ****                       | do                           |
| Bd 17                         | Charles Gist            | W. Hoffman  | 1952                   | 725                     | Drilled            | 135                        | 6                            | 7                          | Hilltop                      |
| Bd 18                         | D. Ray Myers            | Utermahlen  | 1950                   | 600                     | do                 | 32                         | 6                            | 2                          | Valley                       |
| Bd 19                         | C. B. Foutz             | do          | 1952                   | 560                     | do                 | 47                         | 6                            | 4                          | Hilltop                      |
| 13 d 20                       | George Smith            | do          | 1953                   | 185                     | do                 | 80                         | 0                            | 4                          | do                           |

| Water-bearing                       | (feet be                 | Vater lev<br>low land | el<br>surface)     | lent              | Yield                    |          | of<br>ng test                 | apacity<br>/ft.)      | Use         |                                                                                    |
|-------------------------------------|--------------------------|-----------------------|--------------------|-------------------|--------------------------|----------|-------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------|
| formation                           | Static                   | Pump-<br>ing          | Date               | Pumping<br>equipm | Gallons<br>per<br>minute | Date     | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                            |
| New Oxford                          | 12 <sup>a</sup>          | 90 <sup>a</sup>       | 5/31/52            | J,E               | 8                        | 5/31/52  | .5                            | . 1                   | D           |                                                                                    |
| do                                  | 6 <sup>8</sup><br>36.98  |                       | 4/24/50            | J,E               | 3                        | 4/24/50  | -                             | _                     | D           |                                                                                    |
| do                                  | 31 <sup>a</sup>          | 78 <sup>8</sup>       | 11/19/48           | CH                | .75                      | 11/19/48 | 2                             | _                     | D           | Adequate supply reported                                                           |
| do                                  | 12 <sup>n</sup>          | 133 <sup>a</sup>      | 4/8/54             | J,E               | 6                        | 4/8/54   | 1                             | -                     | D           | racquate supply reported.                                                          |
| do                                  | 23.5 <sup>8</sup>        | 110 <sup>a</sup>      | 5/7/47             | J,E               | -                        | weeks    | .5                            |                       | C,D         | Driller reported bailed dry in<br>30 minutes. Adequate supply                      |
| do                                  | -                        | -                     | -                  | N                 | -                        |          | _                             | ñ —                   | N           | reported.<br>Well covered. Poor yield re-<br>ported                                |
| do                                  | 16 <sup>a</sup>          | -                     | 8/20/47            | C,E               | 8                        | 8/20/47  | -                             | -                     | D           | Driller reported bailed dry in 30<br>minutes. See well log.                        |
| do                                  | 25ª                      |                       | 2/5/51             | ?.E               | 4                        | 2/5/51   | _                             |                       | D           | Bailed dry in 20 minutes.                                                          |
| New Oxford (quartz<br>conglomerate) | 4 <sup>8</sup>           | 15 <sup>8</sup>       | 5/14/54            | ?,E               | 25                       | 5/14/54  | 3                             | 2.3                   | D           |                                                                                    |
| do                                  | 32 <sup>8</sup>          |                       | 5/18/54            | J,E               | 5                        | 5/18/54  |                               | _                     | D           | Bailed dry in 20 minutes.                                                          |
| Wakefield marble                    | 58.61                    | -                     | 3/29/55            | J,E               | _                        | -        | -                             | -                     | D           | Dug well, 65 feet deep, went dry<br>in 1930. Deepened to 85 ft.<br>Adequate supply |
| Marburg schist                      | 25 <sup>a</sup>          | 30 <sup>a</sup>       | 10/30/47           | I.E               | 20                       | 10/30/47 |                               | 4                     | D           | Supply reported adequate                                                           |
| do                                  | 30 <sup>a</sup>          | 35 <sup>8</sup>       | 11/6/47            | J,E               | 20                       | 11/6/47  | .5                            | 4                     | D           | Supply reported adequate and                                                       |
| Wakefield marble                    | 45 <sup>a</sup> (?)      | 50 <sup>a</sup> (?)   | 6/16/47            | Τ(?),<br>Ε        | 18                       | 6/16/47  | .5                            | 3.6                   | С           | Restaurant and dairy plant.                                                        |
| Marburg schist                      | 32 <sup>8</sup>          | 36ª                   | 4/11/52            | J.E               | 25                       | 4/11/52  | .5                            | 6.2                   | D           | Depen of pamp for fe.                                                              |
| do                                  | 45 <sup>8</sup>          |                       | 12/24/49           | ?,E               | range                    | -        | -                             | -                     | D           | Driller reported bailed dry in 20 minutes.                                         |
| Sams Creek meta-<br>basalt          | 30 <sup>a</sup><br>29.90 | 48(?)                 | 11/8/52<br>11/1/54 | J,E               | 6                        | 11/8/52  | .5                            | -                     | D           |                                                                                    |
| do                                  | 28.25                    | -                     | 11/1/54            | C,H               |                          |          | -                             |                       | D           | Adequate supply, hard water                                                        |
| Marburg schist                      | 35 <sup>8</sup>          | _                     | 4/24/48            | C,E               | 6.5                      | 4/24/48  | 2                             | _                     | D           | reporten.                                                                          |
| do                                  |                          | -                     |                    | C,E               | 7.5                      | About    | -                             | *                     | D           |                                                                                    |
| do                                  | 50 <sup>a</sup>          | 55ª                   | 9/9/52             | I.E               | 11                       | 9/9/52   | 3                             | 2.2                   | D           |                                                                                    |
| do                                  | 35 <sup>a</sup>          | 40 <sup>3</sup>       | 3/1/52             | _                 | 7                        | 3/1/52   | 2                             | 1.4                   | D           |                                                                                    |
| do                                  | 40 <sup>B</sup> (?)      | 45ª (?)               | 1/18/47            | J,E               | 6                        | 1/18/47  | 1                             | 1.2                   | D           | Adequate supply reported.                                                          |
| do                                  | 1 17 <sup>a</sup>        | _                     | 8/24/50            | J,E               | 15                       | 8/24/50  | 1                             |                       | F           | Do                                                                                 |
|                                     | 32.55                    | -                     | 1/20/55            |                   |                          |          |                               |                       | l           |                                                                                    |
| do                                  | 23.66                    |                       | 1/20/55            | C,E               |                          | -        | - 1                           |                       | N           | Small yield reported.                                                              |
| do                                  | 29.51                    |                       | 1/20/55            | J,E;<br>C.H       | -                        | -        | -                             |                       | D           | Adequate supply reported.                                                          |
| do                                  | -                        |                       | -                  | N                 | 5                        | -        | -                             | —                     | Ν           | Stone collecting chamber; grav-<br>ity flow to milk house.                         |
| do                                  | 40 <sup>n</sup>          | 130 <sup>a</sup>      | 9/25/52            | -                 | 2                        | 9/25/52  | 2                             | .2                    | D           |                                                                                    |
| do                                  | 4 <sup>в</sup>           | 12 <sup>R</sup>       | 10/13/50           | J,E               | 12                       | 10/13/50 | 1                             | 1.5                   | D           |                                                                                    |
| do                                  | 32 <sup>8</sup>          | _                     | 7/26/52            | J,E               | 16                       | 7/26/52  | 1                             |                       | F           | Adequate supply reported.                                                          |
| ijamsville phyllite                 | 20%                      | 30 <sup>n</sup>       | 6/15/53            |                   | 10                       | 6/15/53  | 1                             |                       | D           |                                                                                    |

TABLE 25

casing well Well Diameter of (inches) Depth of well (feet) Alti-Topo-Date Type JO numgraphic Driller Owner or name tude com-Length (feet) her of well pleted (feet) (Car-) 1949 8 92 Draw Bd 21 Willow Farms Dairy do 200 Owings Do 1930 do 136 6 Draw Bd 22 Hillside Bd 23 W. O. Warner Owings 1945 670 do 202 45 Bd 24 Pleasant Valley Canning Co. Millender 1929 580 do 80 6 30 Valley flat Hillton 1947 80 do Be 1 Mr. Snably H. A. Leppo 890 Francis L. Hunter Before 915 Dug and 72(?) 48± and do Be 2 Drilled 1932 R. H. Leppo Drilled Donald Dell 1950 875 80 6 10 do Be 3 St. Johns Church Owings 1950 925 do 258 8---6 10 do Be 4 Hillside R. H. Leppo 1953 890 do 95 20 Mr. Wampler Be 5 Cleveland Bell Utermahlen 1952 680 do 22 6 4 Vallev Be 6 Draw 1945 740 58 49 Be 7 Sam L. Bare Owings do 6 Hillside J. Sterling Garner Before 720 do 48 6 Be 8 1004 710 Spring Valleyside Be 9 Do Upland Be 10 J. H. Englar Utermahlen 1949 Drilled flat Hilltop 6 do 54 6 Francis F. Hening do 1954 700 Be 11 John H. Hull 810 Dug 30 42± Upland Be 12 flat Be 13 Do 1950 790 Drilled 53 6 Draw do 60 52 Be 14 Shaffer Bros. Owings 1953 790 6 do Albert W. Gosnell Hines do 6 Hillton Be 15 1040 815 Hillside Be 16 C. V. Sullivan Reichart 1952 765 do 71.5 6 V. Sullivan 725 Dug 31.4 36 Draw Be 17 725 do 60 do Do Be 18 Hilltop Old 1,020 Drilled 6 Be 19 Mr. Roten 680 Spring Ralph L. Schuchert Be 20 B. F. Shriver Co. \_ 690 do Draw Be 21 do Valley Be 22 Walter R. Wareheime 700 side 680 do Draw Be 23 (Unknown) Drilled 46+ 5# do Utermahlen 1946 Be 24 Richman's Flying Service

| Water-bearing<br>formation       | (feet be                                     | Vater lev<br>low land | vel<br>surface)                | ent               | Y                        | ield                | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                                                                                                                                         |
|----------------------------------|----------------------------------------------|-----------------------|--------------------------------|-------------------|--------------------------|---------------------|-------------------------------|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                        | Static                                       | Pump-<br>ing          | Date                           | Pumping<br>equipm | Gallons<br>per<br>minute | Date                | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                 |
| Silver Run lime-<br>stone        | 25 <sup>a</sup>                              | 80 <sup>ª</sup>       | 5/2/49                         | T,E               | 80                       | 5/2/49              | 5                             | 1.4                   | С           | Pump capacity 100 gpm; oper-<br>ates 8 hrs. per day. Openings<br>in rock at 170 and 190 ft. See<br>well log, p. 118, and chemical<br>analysis. Depth of pump 180<br>ft. |
| do                               |                                              | -                     | -                              | T,E               |                          | -                   |                               | -                     | С           | Pumped 8 hours or more per day.<br>May be filled in to a depth of<br>130 ft. by near-surface slump-<br>ing of well wall. See chemical<br>analysis                       |
| Marburg schist                   | 40 <sup>a</sup>                              | 202 <sup>a</sup>      | 7/26/45                        | C,E               | 15                       | 7/26/45             | .5                            | -                     | D           | Supplies 2 to 3 families. Depth<br>of pump pipe 185 ft. Present<br>yield reported 2 gpm.                                                                                |
| do                               | 6ª                                           | -                     |                                | -                 | 22                       | -                   | -                             |                       | Ν           | Plant idle.                                                                                                                                                             |
| Wissahickon (albite)<br>do       | 40 <sup>a</sup><br>57 <sup>a</sup>           | -                     | 1947<br>10/—/53                | ?,E<br>J,E        |                          | 1947                | 1                             | Ξ                     | D<br>D      | Dug well is 60 ft. deep. Depth<br>of pump jet 60+ ft.                                                                                                                   |
| do<br>do                         | 40 <sup>a</sup><br>108 <sup>a</sup><br>87.99 | 223ª                  | 4/16/50<br>6/12/50<br>10/29/54 | —<br>С,Е          | 20<br>11                 | 6/12/50             | 2<br>1                        | .1                    | D<br>D      | 8 inch diameter to 120 ft. Depth                                                                                                                                        |
| do<br>Sams Creek meta-<br>basalt | 50 <sup>n</sup><br>17 <sup>a</sup>           | -                     | 7/2/53<br>5/1/52               | J,E<br>?,E        | 8<br>16                  | 7/2/53<br>5/1/52    | 1<br>1                        | -                     | D<br>D      | or pump pipe ino it.                                                                                                                                                    |
| Wissahickon (albite)<br>do       | 4ª.                                          | 15 <sup>n</sup>       | 8/21/45                        | C,E<br>N          | 20                       | 8/21/45<br>—        | .5<br>←                       | 1.8<br>               | C<br>N      | Heating oil storage plant.                                                                                                                                              |
| do<br>Marburg schist             | 40 <sup>a</sup>                              | _                     | 4/23/49                        | J,E<br>?,E        | 5<br>24                  | 11/10/54<br>4/23/49 | 1                             |                       | D,F<br>D    | Water reported rusty at times.                                                                                                                                          |
| Wissahickon (albite)<br>do       | 30 <sup>n</sup>                              |                       | 3/27/54                        | <br>J,E;<br>C,H   | 15<br>                   | 3/27/54<br>—        | 1                             |                       | D<br>D,F    | Adequate supply reported.                                                                                                                                               |
| do                               | 33 <sup>®</sup> (?)                          | 34ª(?)                | 9/1/50                         | J,E               | 12                       | 9/1/50              | _                             | 12(?)                 | D           |                                                                                                                                                                         |
| do                               | 20 <sup>a</sup>                              | 25 <sup>a</sup>       | 7/22/53                        | ?,E               | 20                       | 7/22/53             | .5                            | 4                     | F           |                                                                                                                                                                         |
| 40                               | 38.20                                        | 1 = 1                 | 11/10/54                       | J , 15            | 4                        | 10/14/49            | 1                             |                       | D           | Water reported rusty at times.                                                                                                                                          |
| do                               | 36.70                                        |                       | 1/4/55                         | J,E               | -                        | - 1                 | -                             | -                     | D           | Adequate supply. Depth of pump jet 72 ft.                                                                                                                               |
| basalt                           | 30.60                                        |                       | 1/4/55                         | C,H               | -                        | -                   | -                             |                       | N           | Reported inadequate.                                                                                                                                                    |
| do                               | 27.23                                        |                       | 1/4/55                         | C,H               | — N                      | - 1                 | -                             |                       | D           | Adequate supply reported.                                                                                                                                               |
| Wissahickon (albite)             | 29.86                                        |                       | 3/16/55                        | - I'              | -                        |                     | -                             | —                     | D           |                                                                                                                                                                         |
| Sams Creek meta-<br>basalt       | -                                            | wiert                 | -                              | S,E<br>S,E        | _                        | -                   | =1                            | _                     | D<br>D,F    | Adequate supply reported.                                                                                                                                               |
| Wakefield marble                 |                                              | -                     | -                              | C,E               | 3-5                      | 11/12/54            | -                             | -                     | D           | Two springs in same drainage                                                                                                                                            |
| Sams Creek meta-<br>basalt       | -                                            | -                     |                                | S,E               | 1                        | 11/12/54            | —                             | _                     | D,F         | Concrete collecting chamber.                                                                                                                                            |
| do                               | 9 <sup>a</sup>                               | 20 <sup>n</sup>       | 8/26/46                        | J,E               | 8                        | 8/26/46             | 1                             | .7                    | С           | Deepened after original drilling;<br>present depth not known.                                                                                                           |

| Well<br>num-<br>ber<br>(Car-)    | Owner or name                                              | Driller                      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet)      | Type<br>of well           | Depth<br>of well<br>(feet)    | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position          |
|----------------------------------|------------------------------------------------------------|------------------------------|------------------------|------------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|---------------------------------------|
| Be 25<br>Be 26<br>Bf 1           | Mr. Finley<br>Do<br>Town of Hampstead                      |                              | 1936                   | 800<br>800<br>933            | Dug<br>do<br>Drilled      | 25<br>25 <del>上</del><br>400土 | 24<br>36<br>8                | 65±                        | Hilltop<br>do<br>do                   |
| Bf 2                             | Do                                                         | -                            | 1936                   | 890                          | do                        | 165                           | 8                            | _                          | Upland<br>flat                        |
| Bf 3                             | Do                                                         | H. R. Leppo                  | 1941                   | 870                          | do                        | 204                           | -                            | _                          | 11illtop                              |
| Bf 4<br>Bf 5                     | William Hennie<br>L. C. Sarhammer                          | R. H. Leppo<br>Sterner       | 1950<br>1950           | 870<br>1,100                 | do<br>do                  | 132<br>128                    | 6<br>6                       | 20<br>37                   | do<br>do                              |
| 13f 6                            | Town of Manchester                                         | H. R. Leppo                  | 1930's                 | 930                          | do                        | 150                           | 8                            | _                          | Valley                                |
|                                  |                                                            |                              |                        |                              |                           |                               |                              |                            |                                       |
| Bf 7                             | Do                                                         | A. C. Reider                 | 1930's                 | 1,020                        | do                        | 410                           | 8                            | _                          | Hintop                                |
| Bf 8                             | Do                                                         | do                           | 1930's                 | 960                          | do                        | 645                           | 8                            | -                          | Valley                                |
| Bf 9<br>Bf 10                    | Do<br>Do                                                   | do<br>—                      | 1930's                 | 1,000<br>940                 | do<br>Spring              | 310                           | 8                            | -                          | Hilltop<br>Valley<br>side             |
| Bf 11                            | Do                                                         | _                            | _                      | 940                          | do                        | _                             |                              |                            | do                                    |
| Bf 12<br>Bf 13<br>Bf 14<br>Bf 15 | Do<br>Mr. Weldie<br>Mr. Simms<br>Black and Decker Mfg. Co. | R. H. Leppo<br>do<br>Hagmann |                        | 1,000<br>860<br>965<br>841.9 | do<br>Drilled<br>do<br>do |                               | 6<br>6<br>12-8               | 14<br><br>98               | Hillside<br>Hilltop<br>do<br>Hillside |
| Bf 16                            | Do                                                         | do                           | 1951                   | 854                          | do                        | 302                           | 12 and                       | 104                        | do                                    |
|                                  |                                                            |                              |                        |                              |                           |                               | 8                            |                            |                                       |
| Bf 17                            | Do                                                         | do                           | 1951                   | 853                          | do                        | 202                           | 12 and 8                     | 63                         | Valley<br>side                        |
| Bf 18<br>Bf 19<br>Bf 20          | Carl W. Cook<br>Burnell Hare<br>Paul Newdecker             | R. H. Leppo<br>do<br>do      | 1951<br>1953<br>1951   | 835<br>865<br>905            | do<br>do<br>do            | 85<br>75<br>80                | 6<br>5                       | 47<br>8<br>10              | Hilltop<br>Draw<br>Hilltop            |

| Water-bearing        | Water level<br>(feet below land surface) |                   | ent               | Yield             |                          | of<br>ig test     | apacity<br>/ft.)              | Use                   |             |                                                                                                                                                                                               |
|----------------------|------------------------------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation            | Static                                   | Pump-<br>ing      | Date              | Pumping<br>equipm | Gallons<br>per<br>minute | Date              | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                                       |
| Wissahickon (albite) | 19.55                                    | -                 | 3/16/55           | S,E               | Ξ.                       | -                 | -                             | _                     | D           | Dry during winter of 1955.                                                                                                                                                                    |
| do                   | 58.64                                    | _                 | 5/1/53            | N.                | _                        |                   | _                             |                       | r<br>N      | Adequate supply reported.<br>Water-level observation well.<br>Reported yielded 20 gpm. for<br>1 hour, then nothing. Owner's                                                                   |
| do                   | -                                        | -                 | -                 | T,E               | 60(?)                    | 1944              | -                             | -                     | Р           | well no. 1. See well log.<br>See chemical analysis. Tempera-<br>ture Mar. 20, 1954, 54.5°F.<br>Depth of pump 150 ft                                                                           |
| do                   | -                                        |                   | -                 | T,E               | 40                       | 1941              | -                             | -                     | Р           | See chemical analysis. Depth of<br>pump 150 ft.                                                                                                                                               |
| do<br>do<br>do       | 80 <sup>a</sup><br>41 <sup>a</sup>       | _                 | 4/6/50<br>8/24/50 | C,E<br>J,E        | 1<br>5                   | 4/6/50<br>8/24/50 | geod                          | -                     | D<br>D      | Adequate supply. Depth of pump jet 124 ft                                                                                                                                                     |
|                      |                                          | _                 | _                 | J,E               | 3-5                      | -                 |                               |                       | Р           | Diameter may reduce to 6 inches<br>at some depth. Wells Bf 6, 8,<br>and 9 used as auxiliary supply<br>for springs. Water reportedly<br>encountered only at shallow<br>depth in all wells      |
| do                   | -                                        |                   |                   | N                 | 10                       |                   | -                             | -                     | N           | Covered. Not used because of                                                                                                                                                                  |
| do                   | —                                        | -                 |                   | J,E               | 6±                       | 2/10/54           | -                             | _                     | Р           | Diameter may reduce to 6<br>inches at some depth. Water<br>level affected by level of wa-<br>ter in nearby open-bottom<br>cistern                                                             |
| do<br>do             | _                                        |                   | _                 | T,E<br>—          | 25-30                    | _                 | -                             | _                     | P<br>P      | Depth of pump 70 ft.<br>Combined discharge Bf 10 and<br>Bf 11, estimated 10-15 gpm on<br>Feb. 10, 1954. Small discharge<br>in summer and fall. Gravity<br>for to reservoir.                   |
| do                   | _                                        |                   | -                 | -                 | -                        | - /               | -                             |                       | Р           | Small discharge in summer and                                                                                                                                                                 |
| do                   | _                                        | -                 | _                 | _                 | 15                       | 2/10/54           |                               | _                     | Р           | Do                                                                                                                                                                                            |
| do                   | 60 <sup>a</sup>                          | -                 | 3/19/51           | ?,E               | 1.5                      | 3/19/51           | 1                             |                       | D           |                                                                                                                                                                                               |
| do                   | 56.94<br>278                             | 2048              | 5/14/54           | NI                | 17                       | 0/27/51           | -                             |                       | D           |                                                                                                                                                                                               |
| do                   | 21                                       | 294               | 9/21/51           |                   | 15                       | 9/21/51           | _                             | <.1                   | 1           | 0-73 ft.; 8 in. casing 0-98 ft.                                                                                                                                                               |
| do                   | 35*                                      | 205ª              | 8/21/51           | T,E               | 23                       | 8/21/51           | _                             | .1                    | С           | Owner's well no. 2. 12 in. casing<br>0-94 ft.; 8 in. casing 0-104 ft.;<br>grouted between casings. See<br>chemical analysis. Depth of<br>pump 197 ft.                                         |
| do                   | 12 <sup>a</sup>                          | : 93 <sup>8</sup> | 10/22/51          | T,E               | 55                       | 10/22/51          | 13                            | .7                    | С           | Owner's well no. 3. Hole diam-<br>eter 12 in. to bottom; 12 in.<br>casing to 60 ft.; 8 in. casing to<br>63 ft.; grouted between cas-<br>ings. See chemical analysis.<br>Depth of pump 156 ft. |
| do                   | 35ª                                      | _                 | 10/14/51          | J,E               | 4                        | 9/14/51           | 1                             | -                     | D           | Adequate.                                                                                                                                                                                     |
| do                   | 408                                      |                   | 6/4/53            | ?,E               | 15                       | 6/4/53            | 1                             |                       | D           |                                                                                                                                                                                               |
| (10                  | 40"                                      |                   | 4/10/51           | J,E               | 15                       | 4/10/51           | 1                             | _                     | D           | 1                                                                                                                                                                                             |

| Well<br>num-<br>ber<br>(Car-) | Owner or name                        | Driller      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|--------------------------------------|--------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Bf 21                         | Helen Murray                         | H. R. Leppo  | 1951                   | 815                     | do              | 85                         | 55                           | 17                         | Upland                       |
| <b>D6 33</b>                  | John Data                            | D II Lana    | 1050                   | 020                     | 1.              | 0.0                        | - 5                          | 12                         | flat                         |
| Bf 23                         | Allen Armacost                       | Sterner      | 1950                   | 830                     | do              | 80<br>82                   | 5                            | 43<br>38                   | do                           |
| Bf 24                         | Do                                   | R. H. Leppo  | 1948                   | 870                     | do              | 110                        | 6                            | 105                        | do                           |
| Bf 25                         | Vernon E. Mahanna                    | Sterner      | 1952                   | 885                     | do              | 80                         | 6                            | 70}                        | do                           |
| Bf 26                         | Norman Thomas                        | H. R. Leppo  | 1947                   | 825                     | do              | 50                         | 6                            | 11                         | Hillside                     |
| Bf 27                         | Coop. Investigations Ground<br>Water | Harr         | 1954                   | 852                     | do              | 100                        | 6 and 4                      | 60                         | do                           |
| Bf 28                         | Do                                   | do           | 1954                   | 859                     | do              | 97                         | 6 and 4                      | 20                         | do                           |
| Bf 29                         | Black and Decker Mfg. Co.            | do           | 1954                   | 835                     | do              | 125                        | 12 and 8                     | 59.2                       | Valley                       |
| Bf 30                         | Charles Bankert                      | R. H. Leppo  | 1951                   | 845                     | do              | 100                        | 6                            | 23                         | Hilltop                      |
| Df 24                         | Dunnell Deenson                      | 1.           | 1052                   | 870                     | 1.              | 101                        | r 5                          | 00                         | 1.                           |
| DI 31                         | C I Heifer                           | do           | 1952                   | 800                     | 00              | 701                        | 51<br>65                     | 20                         | 0D                           |
| DI 32                         | Claude V Rebert                      | Opringe      | 1932                   | 780                     | do              | 103                        | 58                           | 20                         | do                           |
| Bf 34                         | Hampstead Esso Station               |              | 1952±                  | 850                     | do              | 80-84                      | 6                            |                            | do                           |
| Bf 35                         | Town of Hampstead                    | R. H. Leppo  | 1954                   | 890                     | do              | 200                        | 8 and 6                      | 48                         | Upland<br>flat               |
| Bf 36                         | Do                                   | H. R. Leppo  | 1904±                  | 890                     | do              | 86                         | 8 and 6                      | 47                         | do                           |
| <b>Bf</b> 37                  | Park Hill Camp                       | -            | -                      | 675                     | do              | 28                         | 6                            | 15                         | Valley<br>flat               |
| Bf 38                         | Do                                   | -            |                        | 675                     | do              | 24                         | 6                            |                            | do                           |
| Bf 39                         | C. A. Congdon                        | -            | Old                    | 670                     | Dug             | 25.2                       | 42                           |                            | Valley<br>side               |
| Bf 40                         | William Frederick                    | R. H. Leppo  | 1955                   | 860                     | Drilled         | 122                        | 5                            | 32                         | Hilltop                      |
| Bf 41                         | E. C. Wentz                          | _            |                        | 830                     | Spring          | _                          | _                            | _                          | Hillside                     |
| Bf 42                         | John Singer                          | H. R. Leppo  | 1946                   | 960                     | Drilled         | 65                         | 6                            | 22                         | Hilltop                      |
| Bf 43                         | Ross Blocker                         | Millender    | 1933                   | 990                     | do              | 80                         | 6                            | 45                         | Upland<br>flat               |
| Bf 44                         | Board of Education                   |              | _                      | 990                     | Dug and         | 120                        | _                            |                            | do                           |
| Bf 45                         | Black and Decker Mfg. Co.            | Harr         | 1955                   |                         | Drilled         | 151                        | 12-8-6                       | 72                         | Valley                       |
| Bg 1                          | Faraway Kennels                      | _            | -                      | 745                     | Spring          | -                          |                              | _                          | do                           |
| СЬ 1<br>СЬ 2                  | Elmer Wolfe High School<br>Do        | Owings<br>do | 1953<br>1953           | 440<br>440              | Drilled<br>do   | 575<br>200                 | 12 and<br>11                 | 0<br>35                    | Hilltop<br>do                |

| Water bearing          | W<br>(feet bel      | ater levelow land | el<br>surface)     | ent               | Yi                       | eld               | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                                                                          |
|------------------------|---------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|
| formation              | Static              | Pump-<br>ing      | Date               | Pumping<br>equipm | Gallons<br>per<br>minute | Date              | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                  |
| Wissahickon (albite)   | 40 <sup>a</sup> (?) | 43ª(?)            | 10/2/51            | ?,E               | 4                        | 10/2/51           | -                             | 1.3                   | D           |                                                                                                                                          |
| do                     | 40 <sup>8</sup>     | —                 | 3/4/50             | _                 | 8                        | 3/4/50            | 2                             |                       | D           |                                                                                                                                          |
| do                     | 24 <sup>n</sup>     | _                 | 4/27/52            | NI                | _                        | -                 | _                             |                       | D           |                                                                                                                                          |
|                        | 55.40               | _                 | 4/28/54            |                   |                          |                   |                               |                       |             |                                                                                                                                          |
| do                     | 60 <sup>a</sup>     | -                 | 5/1/54             | J.E               | 10                       | 5/1/48            | 2                             |                       | D           |                                                                                                                                          |
| do                     | 18 <sup>a</sup>     |                   | 5/23/52            | J,E               | 10                       | 5/23/52           | _                             | _                     | D           |                                                                                                                                          |
| do                     | 5 <sup>a</sup>      |                   | 3/-/47             | J,E               | 10                       | 3//47             | 1                             | _                     | D           |                                                                                                                                          |
|                        | 25.25               | _                 | 5/11/54            |                   |                          |                   |                               |                       | 10 H        |                                                                                                                                          |
| do                     | 22.97               | -                 | 8/4/54             | N                 | -                        | _                 | -                             | -                     | Ν           | Test hole. Hole diameter 6 in.;<br>4 in. casing to 60 ft.                                                                                |
|                        | 29.29               | -                 | 1/30/55            |                   |                          |                   |                               |                       |             |                                                                                                                                          |
| do                     | 30.09               | -                 | 8/4/54             | N                 | -                        |                   | _                             | _                     | Ν           | Test hole. Hole diameter 6 in.;                                                                                                          |
| do                     | 36.20<br>8.6        | 45                | 1/30/55<br>8/20/54 | T,E               | 100                      | 8/20-21,<br>1954  | 36                            | 2.7                   | С           | 4 in. casing to 20 ft.<br>Owner's well no. 4. 12 in. casing<br>to 50 ft., 8 in. casing to 59.2<br>ft : grouted between casings           |
| do                     | 508                 | _                 | 3/21/51            | CE                | 10                       | 3/21/51           | 1                             |                       | D           | it., grouted between casings.                                                                                                            |
| du                     | 58.57               | _                 | 5/14/54            | 0,11              | A-7                      | 0/                |                               |                       | ~           |                                                                                                                                          |
| do                     | 60ª                 |                   | 4/16/52            | 2.E               | 1                        | 4/16/52           | 1                             |                       | D           |                                                                                                                                          |
| do                     | 308                 | _                 | 4/5/52             | _                 | 4                        | 4/5/52            | 4                             |                       | D           | 1                                                                                                                                        |
| do                     | 258                 |                   | 11/17/49           | I.E               | 20                       | 11/17/49          | .5                            | _                     | D           |                                                                                                                                          |
| do                     | 27.36               |                   | 2/19/54            | C,E               | -                        | -                 | -                             | -                     | C           | Adequate. See chemical analy-                                                                                                            |
| do                     | 18±                 | 79                | 4/1/54             | T,E               | 60                       | 4/1/54            | 24                            | 1.0                   | P           | 0.01                                                                                                                                     |
| do                     | 15.55               | _                 | 3/30/54            | N                 | _                        | _                 | -                             |                       | N           |                                                                                                                                          |
| Wakefield marble(?)    | 2.39                | _                 | 8/26/54            | S,E               | - 1                      | -                 | -                             | -                     | I           | Poor yield reported. Used for swimming pool.                                                                                             |
| do                     | _                   | _                 | _                  | S,E               |                          |                   | _                             |                       | I           | Do                                                                                                                                       |
| do                     | 23.20               |                   | 11/9/54            | C,E               | -                        | -                 | i – i                         | -                     | D           | Good yield reported.                                                                                                                     |
| Wissahickon (albite)   | 658                 |                   | 3/3/55             | NI                | 4                        | 3/3/55            | 2                             |                       | D           |                                                                                                                                          |
| do                     | _                   | _                 | _                  | _                 | 1                        | 1/4/55            |                               | —                     | D           | Gravity flow to home.                                                                                                                    |
| do                     | 40 <sup>a</sup>     | 65 <sup>8</sup>   | 9/-/46             | J,E               | 6                        | 9//46             | - 1                           | . 2                   | D           |                                                                                                                                          |
| do                     | 47 <sup>a</sup>     | -                 | -                  | -                 | 7.5                      | -                 | -                             |                       | N           | Water reported encountered at<br>68 ft. Use Manchester public                                                                            |
| do                     | _                   | _                 | _                  | N(?)              | _                        | -                 | _                             | -                     | N           | water supply.<br>Manchester school. Use Man-                                                                                             |
| do                     | 11 <sup>a</sup>     | 50 <sup>a</sup>   | 7/9/55             | T,E               | 20                       | 7/9/55            | 24                            | .5                    | I           | 12-in. casing to 54.1 ft.; 8-in.<br>casing to 59.9 ft.; 6-in. casing<br>to 123.5 ft. Grouted between<br>12 and 8-in. casings. 6-in. cas- |
| do                     | -                   | -                 | -                  | S,E               | 1-3                      | 2/11/54           | _                             | -                     | D,C         | ing slotted from 72 to 102 ft.<br>Iron-oxide deposits in collecting<br>chamber. Adequate supply re-<br>ported.                           |
| Wakefield marble<br>do | <br>31.54           |                   | <br>9/10/56        | N<br>N            | 0<br>5                   | 2/10/53<br>4/7/53 | -                             | -                     | N<br>N      | No water reported; destroyed.<br>12 in. casing to 35 feet; 11 in.<br>casing to bottom. Water-level<br>observation well.                  |

| Well<br>num-<br>ber<br>(Car-) | Owner or name                           | Driller         | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well    | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|-------------------------------|-----------------------------------------|-----------------|------------------------|-------------------------|--------------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Cb 3                          | J. Paul Bowman                          | -               |                        | 420                     | Spring             |                            | _                            | -                       | Valley<br>flat               |
| Cb 4                          | Union Bridge Water Co.                  | Downin          | 1903-04                | 400                     | Drilled            | 214                        | 6                            | -                       | Upland                       |
| Cb 5                          | Do                                      | do              | 1903-04                | 400                     | do                 | 50                         | 6                            | -                       | do                           |
| Cb 6                          | Do                                      | do              | 1903-04                | 400                     | do                 | 50                         | 6                            |                         | do                           |
| Cb 7                          | Do                                      | do              | 1903-04                | 400                     | do                 | 464                        | 6                            | _                       | do                           |
| Cb 8                          | Do                                      | Shoemaker       | 1913                   | 400                     | do                 | 170                        | 8 and 6                      | 170                     | do                           |
| Ch 0                          | Do                                      | Downin          | 1003-04                | 400                     | do                 | 2.16                       | 6                            |                         | da                           |
| Cb 10                         | Lehigh Portland Cement Co.              | H. E. and C. L. | 1926                   | 400                     | do                 | 85                         | 6                            |                         | Valley                       |
|                               |                                         | Wantz           |                        |                         |                    |                            |                              |                         | side                         |
| Cb 11                         | Chesapeake and Potomac<br>Telephone Co. | Owings          | 1949                   | 440                     | do                 | 70                         | 6                            | 27                      | Hillside                     |
| Cb 12                         | Henry Carr                              | do              | 1949                   | 445                     | do                 | 164                        | 6                            | 79.5                    | Hilltop                      |
| Cb 13                         | Charles Angell                          | do              | 1950                   | 425                     | do                 | 137                        | 6                            | 48                      | Hillside                     |
| Cb 14                         | Albert Flickinger                       | McCrory         | 1932                   | 440                     | do                 | 117                        | 6                            |                         | Valley<br>flat               |
| Cc 1                          | Lester Dunson                           | Owings          | 1947                   | 525                     | do                 | 70                         | 6                            | 22                      | Hillside                     |
| Cc 2                          | Roger T. Lawrence                       | do ,            | 1947                   | 450                     | do                 | 195                        | 6                            | 39                      | Hilltop                      |
| Cc 3                          | Grayson Shank                           | do              | 1945                   | 465                     | do                 | 225                        | 6                            | 40                      | do                           |
| Cc 4                          | Mr. Haifley                             | do              | 1952                   | 450                     | do                 | 71                         | 6                            | 42.5                    | do                           |
| Cc 5                          | Reuben H. Morningstar                   | do              | 1953                   | 645                     | do                 | 94                         | 6                            | 23                      | Hillside                     |
|                               |                                         |                 |                        |                         |                    |                            |                              |                         |                              |
|                               |                                         |                 |                        |                         |                    |                            |                              |                         |                              |
| Cc 6                          | Do                                      |                 | Old                    | 650                     | Dug                | 14-16                      |                              | -                       | do                           |
| Cc 7                          | Malcolm Dodd                            | Kyker           | 1954                   | 790                     | Drilled            | 77                         | 6                            | 24                      | Hilltop                      |
| UC 8                          | Max Price                               | Sterner         | 1953                   | 015                     | do                 | 70                         | 6                            | 42                      | do                           |
| Cc 9                          | Harold Fritz                            | do              | 1953                   | 620                     | do                 | 58                         | 6                            | 28                      | do                           |
| Cc 10                         | Bodie Smith                             | -               |                        | 475                     | Spring             |                            | 0                            |                         | Valley                       |
| Cc 11                         | R. G. Spoerline                         | Owings          | 1949                   | 540                     | Drilled            | 150                        | 6                            | 36                      | Hilltop                      |
| Cc 12                         | R. W. Malinowski                        |                 |                        | 500                     | Dug                | 26                         | 36                           |                         | Valley                       |
| Cc 13                         | Ralph Yingling                          | Owings          | 1946                   | 430                     | Dug and<br>Drilled | 115                        | 6                            | 4                       | Valley                       |
| Cc 14                         | Edward Derr                             |                 | 1939                   | 585                     | Drilled            | 1,033                      | 6                            |                         | Hilltop                      |
| Cc 15                         | Do                                      | -               | heren                  | 560                     | Spring             |                            | -                            |                         | Drawside                     |
| Cd 1<br>Cd 2                  | L. Simpson<br>Stewart Bell              | Owings<br>do    | 1951<br>1953           | 705<br>675              | Drilled<br>do      | 108<br>65                  | 6<br>6                       | 35                      | Hilltop<br>do                |
|                               |                                         |                 |                        |                         |                    |                            |                              |                         |                              |

| Water bearing                           | V<br>(feet be                      | Vater lev<br>low land              | el<br>surface)    | ent               | Yi                       | eld               | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                               |
|-----------------------------------------|------------------------------------|------------------------------------|-------------------|-------------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------|
| formation                               | Static                             | Pump-<br>ing                       | Date              | Pumping<br>equipm | Gallons<br>per<br>minute | Date              | Duration<br>dumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                       |
| Wakefield marble                        | e                                  | —                                  | _                 | C,E               | 25-50                    | 6/22/55           |                               |                       | I,F,<br>P   | Supplies farm. Elmer Wolfe<br>High School, and about 12                                       |
| do                                      | 12 <sup>a</sup>                    | -                                  | -                 | N                 | 50                       | -                 | -                             |                       | N           | Covered.                                                                                      |
| do                                      | 12 <sup>8</sup>                    | -                                  | -                 | Ν                 | 50                       | -                 | -                             | -                     | N           | Reported water encountered in gravel bed. Covered.                                            |
| do                                      | 12 <sup>a</sup>                    | -                                  | -                 | N                 | 50                       | -                 |                               |                       | N           | Do                                                                                            |
| do                                      | 12 <sup>a</sup>                    | -                                  |                   | N                 | 300+                     | -                 | -                             | _                     | N           | Reported water encountered in solution channel. Covered.                                      |
| do                                      | 30                                 | -                                  | 1956              | S,E               | 400                      | _                 | -                             |                       | Р           | Equipped with 500 gpm suction centrifugal pump.                                               |
| do                                      | 12 <sup>n</sup>                    | _                                  | -                 | N                 | 50                       | -                 |                               |                       | N           | Covered.                                                                                      |
| do                                      | -                                  | -                                  |                   | N                 | 25                       | -                 | -                             | -                     | N           | Probably destroyed.                                                                           |
| do                                      | 15 <sup>a</sup>                    | 50 <sup>a</sup>                    | 1/8/49            | J,E               | 80                       | 1/8/49            | 15                            | 2.3                   | С           | See well log.                                                                                 |
| do                                      | 60 <sup>a</sup>                    | 160 <sup>a</sup>                   | 1/9/49            | C,E               | 15                       | 1/9/49            | .3                            | . 2                   | D           |                                                                                               |
| do                                      | 50 <sup>n</sup>                    | 115 <sup>a</sup>                   | 8/12/50           | J,E               | 12                       | 8/12/50           | .5                            | . 2                   | D           |                                                                                               |
| Ijamsville phyllite                     | 60 <sup>a</sup>                    | _                                  | 9/27/56           | C,E               | -                        |                   |                               | _                     | D           |                                                                                               |
| Libertytown meta-<br>rhyolite           | 25 <sup>a</sup>                    | 65 <sup>a</sup>                    | 4/27/47           | J,E               | 5                        | 4/27/47           | .5                            | .1                    | D           | Depth of pump jet 65 ft.                                                                      |
| Silver Run limestone                    | 55 <sup>®</sup>                    | 180 <sup>8</sup>                   | 4/21/52           | C,E               | 11                       | 4/21/52           | .5                            | .1                    | D           | Water reported encountered at 150 ft.                                                         |
| do                                      | 40 <sup>a</sup>                    | 190 <sup>a</sup>                   | 12/15/45          | C,E               | 2                        | 12/15/45          | .7                            | <.1                   | D           | Depth of pump pipe 190 ft.                                                                    |
| do                                      | 45 <sup>B</sup>                    | 55ª                                | 4/3/52            | ?,E               | 11                       | 4/3/52            | .5                            | 1.1                   | D           |                                                                                               |
| Sams Creek meta-<br>basalt              | 10 <sup>8</sup>                    | 40 <sup>n</sup>                    | 11/20/53          | NI                | 20                       | 11/20/53          | .5                            | .7                    | Ν           | To be put into service later.<br>Opening reported at 93-94 ft.                                |
|                                         | 3.84                               | -                                  | 3/29/55           |                   |                          |                   |                               |                       | -           |                                                                                               |
| do                                      |                                    |                                    |                   | C,E               |                          |                   |                               |                       | D           | Goes dry at times.                                                                            |
| Ijamsville phyllite<br>Sams Creek meta- | 32ª<br>32ª                         | 57*                                | 2/26/53           | J,E<br>J,E        | 15                       | 2/26/53           | 3 —                           | .0                    | D           | See well log.                                                                                 |
| do                                      | 29 <sup>a</sup>                    | _                                  | 3/2/53            | J,E               | 10                       | 3/2/53            | 3 —                           |                       | D           |                                                                                               |
| Wakefield marble                        | -                                  |                                    | -                 | S,E               | 20                       | 2/16/55           | ; —                           |                       | D           |                                                                                               |
| do                                      | 20 <sup>в</sup>                    | 148 <sup>a</sup>                   | 11/5/49           | C,E               | 5                        | 11/5/49           | > 7                           | <.1                   | D,F         | Yielded 100 gpm for 15 min,<br>then decreased to 5 gpm.<br>Depth of pump pipe below 90<br>ft. |
| Sams Creek meta-                        | 18.8                               | -                                  | 2/16/55           | C,H;<br>S.E       | -                        | -                 | -                             | _                     | D           | Adequate supply reported.                                                                     |
| Wakefield marble                        | 20 <sup>a</sup>                    | -                                  | 8/10/46           | C,E               | 20                       | 8/10/40           | 5.5                           | -                     | D           | 25-ft. dug well. Depth of pump                                                                |
| Sams Creek meta-<br>basalt              |                                    | _                                  |                   | N                 | 2                        | 1939              | -                             |                       | N           | Drilled in "blue rock" for town<br>of New Windsor. Destroyed<br>because of poor yield.        |
| do                                      | -                                  | -                                  | -                 | S,E               | -                        |                   | -                             | -                     | D,F         | Numerous small springs.                                                                       |
| do<br>Sams Creek meta-                  | 40 <sup>a</sup><br>20 <sup>a</sup> | 90 <sup>a</sup><br>20 <sup>a</sup> | 3/7/51<br>4/20/53 | J,E<br>J,E        | 7<br>22                  | 3/7/51<br>4/20/53 | L .5<br>3 .5                  | .1                    | D<br>D      | Depth of pump jet 75 ft.<br>Water reported hard. Depth of                                     |
| basalt and Wake-<br>field marble(?)     |                                    |                                    |                   |                   |                          |                   |                               |                       |             | pump jet 50 ft.                                                                               |

| Well<br>num-<br>ber<br>(Car-) | Owner or name                          | Driller        | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|----------------------------------------|----------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Cd 3                          | L. L. Bicker                           | Owings         | 1948                   | 690                     | Drilled         | 80                         | 6                            | 70                         | Valley                       |
| Cc 4                          | R. E. Vingling                         | do             | 1953                   | 675                     | do              | 125                        | 6                            | 115                        | Hillside                     |
| Cd 5                          | Mr. Hahn                               | do             | 1949                   | 650                     | do              | 55                         | 6                            | 37                         | do                           |
| Cd 6                          | Mr. Nusbaum                            | do             | 1950                   | 650                     | do              | 80                         | 6                            | 62                         | do                           |
| Cd 7                          | J. W. Owings                           | do             | 1946                   | 740                     | do              | 70                         | 6                            | 31                         | Hillton                      |
| Cd 8                          | Otts Levin                             | do             | 1947                   | 700                     | do              | 54                         | 6                            | 40                         | Hillside                     |
| Cd 9                          | Mr. Myers                              | do             | 1950                   | 735                     | do              | 76                         | 6                            | 22                         | Hilltop                      |
| Cd 10                         | G. C. Babcock                          | W. Hoffman     | 1953                   | 805                     | do              | 76                         | 6                            | 19                         | do                           |
| Cd 11                         | H. L. Bair                             | Owings         | 1946                   | 710                     | do              | 85                         | 6                            | 20                         | Hillside                     |
| Cd 12                         | Oscar Myers                            | do             | 1946                   | 735                     | do              | 76                         | 6                            | 36                         | do                           |
| Cd 13                         | Paul Johnson                           | do             | 1947                   | 765                     | do              | 57                         | 6                            | 23                         | Hilltop                      |
| Cd 14                         | Crown Central Petroleum<br>Corp.       | W. Hoffman     | 1953                   | 600                     | do              | 55                         | 6                            | 53                         | Valley                       |
| Cd 15                         | Do                                     | do             |                        | 600                     | do              | 21.7                       | 6                            | 0                          | do                           |
| Cd 16                         | Thomas, Bennett, and Hunter,<br>Inc.   | Owings         | 1952                   | 650                     | do              | 169                        | 8                            | 26                         | do                           |
| Cd 17                         | Stone Chapel Church                    | Utermahlen     | 1949                   | 640                     | do              | 45                         | 6                            |                            | do                           |
| Cd 18                         | Babylon Vault Co.                      | Owings         | 1950                   | 495                     | do              | 65                         | 6                            | 11                         | Valley                       |
| Cd 19                         | W. B. Royer                            | Hiner          | 1950                   | 675                     | do              | 88                         | 6                            | 30                         | Hillside                     |
| Cd 20                         | Mr. Beacham                            |                | Old                    | 610                     | Dug             | 65                         | 48                           |                            | do                           |
|                               |                                        |                |                        |                         |                 |                            |                              |                            |                              |
| Cd 21                         | Do                                     |                |                        | 605                     | Spring          |                            |                              | -                          | Draw                         |
| Cd 22                         | S. T. Statler                          | Hiner          | 1040                   | 825                     | Drilled         | 70                         | 6                            |                            | Hillside                     |
| Cd 23                         | John Teeter Quarry                     | Kohl Bros.     | 1954                   | 480                     | do              | 167                        | 6                            | 30                         | do                           |
| Cd 24                         | Uniformed Ranks, Knights of<br>Pythias | W. Hoffman     | 1954                   | 620                     | do              | 50                         | 6                            | 12                         | Valley                       |
| Cd 25                         | Denton Aldridge                        | Utermahlen     | 1949                   | 610                     | do              | 40                         | 6                            |                            | Valley                       |
| Cd 26                         | Crown Central Petroleum<br>Corp.       | Reichart       | 1954                   | 600                     | do              | 94                         | 6                            | 74                         | Valley                       |
| Ce 1                          | Koontz Creamery                        | -              | 1943±                  | 695                     | do              | 72                         | 8                            | -                          | do                           |
| Ce 2                          | Do                                     | Reider and Son | 1947                   | 695                     | do              | 160-166                    | 12                           | -                          | do                           |
|                               |                                        |                | 1955                   |                         |                 | 850                        | 10<br>10<br>6                | 59<br>25<br>182            |                              |
|                               |                                        |                |                        |                         |                 |                            |                              |                            |                              |

| Water-hearing                                            | W<br>(feet be)                         | later lev<br>low land                    | el<br>surface)     | ent               | Yield                    |                 | of<br>Ig test                 | apacity<br>/ft.)      | Use         |                                                                                                                                                                                                                                                              |
|----------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------|-------------------|--------------------------|-----------------|-------------------------------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                                | Static                                 | Pump-<br>ing                             | Date               | Pumping<br>equipm | Gallons<br>per<br>minute | Date            | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                                                                                                      |
| Wakefield marble                                         | 8ª                                     | 75 <sup>a</sup>                          | 6/16/48            | J,E               | 100                      | 6/16/48         | 5                             | 1.5                   | D           | Depth of pump jet 40 ft.                                                                                                                                                                                                                                     |
| do                                                       | 20 <sup>8</sup>                        | 120 <sup>a</sup>                         | 8/21/46            | I.E               | 5                        | 8/21/46         | .5                            | <.1                   | D           | Depth of pump jet 120 ft.                                                                                                                                                                                                                                    |
| do                                                       | 35 <sup>a</sup>                        | 40 <sup>a</sup>                          | 11/14/49           | C,E               | 25                       | 11/14/49        | .5                            | 5.0                   | D           |                                                                                                                                                                                                                                                              |
| do                                                       | 35 <sup>a</sup>                        | 75 <sup>8</sup>                          | 6/27/50            | C.E               | 50                       | 6/27/50         | 8                             | 1.2                   | D           | Depth of pump pipe 60 ft.                                                                                                                                                                                                                                    |
| Wissahickon (albite)                                     | 25 <sup>a</sup>                        | 30 <sup>a</sup>                          | 8/26/46            | LE                | 20                       | 8/26/46         | .5                            | 4.0                   | D           |                                                                                                                                                                                                                                                              |
| do                                                       | 20 <sup>8</sup>                        | 20 <sup>a</sup>                          | 6/21/47            | LE                | 20                       | 6/21/47         | 5                             | _                     | D           | Depth of pump jet 40 ft                                                                                                                                                                                                                                      |
| do                                                       | 35 <sup>n</sup>                        | 56 <sup>a</sup>                          | 8/30/50            | C,H<br>(?)        | 20                       | 8/3/50          | 5                             | .9                    | D           | Depth of pump pipe 60 ft.                                                                                                                                                                                                                                    |
| do                                                       | 35 <sup>8</sup>                        | 35ª                                      | 6/17/53            | NI                | 10                       | 6/17/53         | 2                             |                       | D           |                                                                                                                                                                                                                                                              |
|                                                          | 52.38                                  |                                          | 9/29/53            |                   |                          | ., ., ., .      |                               |                       |             |                                                                                                                                                                                                                                                              |
| do                                                       | 18 <sup>a</sup>                        |                                          | 5/15/46            | L.E               | 20                       | 5/15/46         | .25                           | _                     | D           | Depth of pump jet 50 ft.+                                                                                                                                                                                                                                    |
| do                                                       | 35 <sup>n</sup>                        | 35ª                                      | 12/24/46           | J.E               | 20                       | 12/24/46        | .5                            | _                     | D           | Depth of pump jet 65 ft.                                                                                                                                                                                                                                     |
| do                                                       | 30 <sup>a</sup>                        | 3.5 <sup>a</sup>                         | 5/12/47            | I.E               | 30                       | 5/12/47         | .5                            | 6.0                   | D           | Depth of pump jet 50 ft.                                                                                                                                                                                                                                     |
| Contact-Wakefield<br>marble and Sams<br>Creek metabasalt | 15 <sup>a</sup>                        | 25 <sup>n</sup>                          | 6/28/53            | N                 | 20                       | 6/28/53         | 3                             | 2.0                   | N           | Abandoned and destroyed be-<br>cause of muddy water.                                                                                                                                                                                                         |
| do                                                       | 12.10                                  |                                          | 9/29/53            | N                 | 0                        | 9/—/53          |                               |                       | N           | May have been drilled deeper<br>later. Abandoned and de-<br>stroved.                                                                                                                                                                                         |
| Wakefield marble                                         | 30 <sup>n</sup>                        | $40^{\rm a}$                             | 2/20/53            | T,E               | 100                      | 2/20/53         | 12                            | 10.0                  | С           | See chemical analysis. Depth of<br>pump 100 ft.                                                                                                                                                                                                              |
| Wissahickon (albite)                                     | 30 <sup>a</sup>                        | 30*                                      | 5/17/49            | 2,E               | 16                       | 5/17/49         | 1                             |                       | D           |                                                                                                                                                                                                                                                              |
| Wakefield marble                                         | 20 <sup>a</sup>                        | 40 <sup>a</sup>                          | 4/24/50            | Ċ,E               | 100(?)                   | 4/24/50         | 8                             | 5(?)                  | С           | See chemical analysis. Tempera-<br>ture May 12, 1954, 55°F.                                                                                                                                                                                                  |
| Wissahickon (albite)                                     | 62 <sup>n</sup>                        | -                                        | 11/25/50           | 2,E               | 3                        | 11/25/50        |                               |                       | D           |                                                                                                                                                                                                                                                              |
| Ijamsville phyllite<br>Wakefield marble                  | 15 <sup>n</sup>                        |                                          |                    | N<br>             | <br>20+                  | 2/11/54         |                               | _                     | N<br>D,F    | Poor yield reported, especially<br>during summers. Reported<br>water level is for winter<br>months. Another dug well<br>here also inadequate. Use<br>spring Cd 21 for water supply.<br>Continuous discharge reported.<br>Ram pump. See chemical<br>analysis. |
| Wissahickon (albite)                                     | 36 <sup>8</sup>                        | 43 <sup>a</sup>                          | 1/8/49             | ?,E               | 5                        | 1/8/49          | .5                            | .7                    | D           |                                                                                                                                                                                                                                                              |
| Wakefield marble                                         | 28 <sup>a</sup>                        | 30 <sup>a</sup>                          | 3/23/54            | C,H               | 40                       | 3/23/54         | 2                             | 20                    | С           | Temperature Mar. 10, 1955,<br>54°F. See chemical analysis.<br>Depth of pump pipe 75 ft.                                                                                                                                                                      |
| Wissahickon (albite)                                     | 8 <sup>a</sup>                         | 25 <sup>n</sup>                          | 5/6/54             | ?,E               | 9                        | 5/6/54          | 2                             | .5                    | I           |                                                                                                                                                                                                                                                              |
| do                                                       | 25 <sup>a</sup>                        | 25ª                                      | 9/5/49             | J,E               | 8                        | 9/5/49          | 1                             |                       | D           |                                                                                                                                                                                                                                                              |
| Contact-Wakefield<br>marble and Sams<br>Creek metabasalt | _                                      | _                                        | -                  | J,E               | -                        |                 |                               |                       | С           |                                                                                                                                                                                                                                                              |
| Wakefield marble                                         | _                                      | -                                        | -                  | N                 | 350450                   | -               | -                             |                       | N           | Crooked hole. Dry Sept. 2, 1955.<br>Another well, 10 feet west, 8<br>inches in diameter, is plugged<br>at 29 ft.                                                                                                                                             |
| do                                                       | 32 <sup>B</sup>                        | 40 <sup>n</sup>                          | 12//47             | C,E               | 200                      | 1947            | 10                            | 25                    | N           | Former water-level observation                                                                                                                                                                                                                               |
| Wakefield marble<br>and Sams Creek<br>metabasalt         | 42 <sup>a</sup> (?)<br>85 <sup>a</sup> | 109 <sup>a</sup> (?)<br>250 <sup>a</sup> | 6/12/48<br>9/20/55 | T,E<br>N          | 575<br>7                 | 1948<br>9/20/55 | 72                            | 8.9(?)<br><.1         |             | well. In 1955 casing extended<br>to 182 feet, and well deepened<br>to 850 ft. Yielded only 7 gpm<br>and was destroyed. See well<br>log.                                                                                                                      |

well Length of casing (feet) Well jo Depth of well Topo-graphic position Alti-Diameter o num-Type Owner or name Driller tude comber of well pleted (feet) (feet) (Car-) Ce 3 Koontz Creamery Reider and Son 1047 605 Drilled 10 61 Valley 116 Shriver Packing Co. ·Ce 4 do 1038 do 885± 10-6 Hilltop Shilling Bros., Inc. 1946 Ce 5 Owings 800 do 400 10 do Ce 6 Do 800 do 6 do Ce 7 Do Before 790 do 250 do 1946 Ce 8 Do 785 do 100 8 or 6 do Ce 9 Reese Volunteer Fire Dept. W. Hoffman 1952 810 do 95 б 65 do I. P. Gassman R. H. Leppo 1950 Ce 10 790 do 95 6 75 do Ce 11 Sandy Mount Church Utermahlen 1950 750 do 88 6 do F. L. Vogt, Jr. R. H. Leppo 50 Ce 12 1951 700 do 62 6 do Ce 13 Walter Hoffman W. Hoffman 1953 860 Hillside do 64 6 20 Margaret Murray Utermahlen Ce 14 1053 830 do 66 6 6 Hilltop Ce 15 W. H. Davis Co. Owings 1953 830 do 79 6 34 do Ce 16 G. Merryman 29 Hillside 715 do 6 Ce 17 Mr. Williams Owings 1942 825 do 132 6 18 Hillton Ce 18 M. L. Long 565 do Valley 40 6 Mr. Naill W. Hoffman 1954 Ce 19 755 do 07 Upland 6 84 flat Ce 20 Harvey Beard Edwin Smith 1954 720 do 70 6 60 Hillside 1954 Hilltop Ce 21 Paul Cover Sterner 805 do 112 6 29 Ce 22 Ralph Cover Owings 1953 805 do 265 6 do 10 do Hillside Ce 23 Mr. Magsamen 650 58 б Ce 24 R. L. Long Before 620 Dug 21 60 Valley 1918 side Ce 25 Mr. Rose Reichart 1952 680 Drilled 81 6 Hillside Ce 26 R. L. Long Old 680 Dug 49 48 or 60 do Ce 27 Roger Hollenbaugh Utermahlen 1946 840 Drilled 90 Hilltop 6 R. V. Peterson Ce 28 R. H. Leppo 1952 845 do Hillside 130 6 24 Ridge Drive-In Theatre Draw Ce 29 Kyker 1954 860 do 94 6 46

W. Hoffman

1949

880

do

60

6 57

Ce 30

H. F. Green

TABLE 25

Upland

flat

| Water-bearing                                                                                  | (feet be                                            | Vater lev<br>low land                   | el<br>surface) | ent               | Yi                            | eld               | of<br>1g test                                                                                                                                                                                                   | apacity<br>/ft.)      | Use         |                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|----------------|-------------------|-------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                                                                      | Static                                              | Pump-<br>ing                            | Date           | Pumping<br>equipm | Gallons<br>per Date<br>minute |                   | Duration<br>pumpin<br>(hours)                                                                                                                                                                                   | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                      |
| Wakefield marble<br>Sams Creek meta-<br>basalt, Wakefield<br>marble and/or<br>Wissahickon (al- | 24 <sup>a</sup><br>42 <sup>a</sup> (?)              | 29 <sup>a</sup><br>109 <sup>a</sup> (?) | 8/—/47         | C,E<br>T,E        | 200<br>540<br>500             | 1947<br>1948<br>— | 10<br>72<br>—                                                                                                                                                                                                   | 40<br>8.9(?)          | C           | 40 II.P., 500 gpm. pump. See<br>well log.<br>Operated during summer and<br>early fall only. Pumps inter-<br>mittently after operating a few<br>hours. Ten-inch hole to about |
| bite<br>Wissahickon (albite)                                                                   | ) 40 <sup>a</sup> 150 <sup>a</sup> 5/6/46 T,E 40 5/ |                                         | 5/6/46         | 4                 | .4                            | С                 | 150 ft. Depth of pump 150 ft.<br>40 gpm yield measured when<br>300 ft. deep; additional water<br>reported encountered in 300-<br>400 ft. interval. Yields only 6<br>gpm at present, but may be<br>pump trouble. |                       |             |                                                                                                                                                                              |
| do<br>do                                                                                       | 63.91                                               | -                                       | 10/27/54       | C,E<br>C,E        | -                             | -                 | _                                                                                                                                                                                                               | _                     | C,D<br>C    | Supplies office and a residence.<br>Reported to supply most of the<br>water for cannery. Depth of                                                                            |
| do                                                                                             | -                                                   | _                                       | -              | C,E               | -                             | -                 | -                                                                                                                                                                                                               | _                     | С           | Supplies cooling water for can-<br>nery. Water is returned to the<br>well                                                                                                    |
| do                                                                                             | 50 <sup>a</sup>                                     | 55ª                                     | 6/11/52        | C,E               | 8+                            | 6/11/52           | 2                                                                                                                                                                                                               | 1.6+                  | D           |                                                                                                                                                                              |
|                                                                                                | 65.45                                               |                                         | 10/25/54       | C,E               |                               |                   |                                                                                                                                                                                                                 |                       |             |                                                                                                                                                                              |
| do                                                                                             | 50%                                                 | 4110                                    | 10/28/50       | C,E               | 5                             | 10/28/50          | 2                                                                                                                                                                                                               | _                     | D           |                                                                                                                                                                              |
| do                                                                                             | 508                                                 | 17-                                     | 10/11/51       | —, E              | 15                            | 10/11/51          | 1                                                                                                                                                                                                               | _                     | D<br>D      |                                                                                                                                                                              |
| do                                                                                             | 1.18                                                | 258                                     | 1/1/51         | J,L<br>IE         | 10                            | 4/1/53            | 2                                                                                                                                                                                                               | 1.0                   | D           |                                                                                                                                                                              |
| do                                                                                             | 208                                                 | 208                                     | 8/24/53        | 2 E               | 12                            | 8/21/53           | 1                                                                                                                                                                                                               | 1.0                   | D           |                                                                                                                                                                              |
| do                                                                                             | 408                                                 | 458                                     | 1953           | C.E               | 22                            | 1953              |                                                                                                                                                                                                                 | 4.4                   | C           | Depth of pump pipe 65 ft                                                                                                                                                     |
| do                                                                                             | 6.21                                                |                                         | 10/26/54       | C.H               | _                             |                   | _                                                                                                                                                                                                               |                       | D           | webui or bamb bibe oo rei                                                                                                                                                    |
| do                                                                                             | 75 <sup>a</sup>                                     | 110 <sup>a</sup>                        | 9/20/47        | C,E               | 5                             | 9/20/47           | .5                                                                                                                                                                                                              | .1                    | D           |                                                                                                                                                                              |
| do                                                                                             | 2-6 <sup>a</sup>                                    |                                         | _              | J,E               |                               | -                 |                                                                                                                                                                                                                 | _                     | C,D         | Encountered rock at 36 ft. Water<br>level reported to fluctuate be-<br>tween 2 and 6 ft. below land<br>surface.                                                              |
| do                                                                                             | 45 <sup>a</sup>                                     | 95 <sup>n</sup>                         | 4/13/54        | ?,E               | 3                             | 4/13/54           | 2                                                                                                                                                                                                               | <.1                   | D           |                                                                                                                                                                              |
| Sams Creek meta-<br>basalt                                                                     | 40 <sup>a</sup>                                     | 50 <sup>a</sup>                         | 8/21/54        | J,E               | -                             | —                 | -                                                                                                                                                                                                               |                       | D           | Depth of pump jet 57 ft.                                                                                                                                                     |
| Wissahickon (albite)                                                                           | 41 <sup>a</sup>                                     | —                                       | 5/6/54         | J(?),<br>E        | 2                             | 5/6/54            | - 1                                                                                                                                                                                                             | -                     | D           |                                                                                                                                                                              |
| do                                                                                             | 40 <sup>a</sup>                                     | 260 <sup>a</sup>                        | 6/2/53         | J,E               | 11                            | 6/2/53            | .75                                                                                                                                                                                                             | <.1                   | D           | Driller estimates constant yield<br>of 5 gpm.                                                                                                                                |
| do                                                                                             | -                                                   |                                         | -              | C(?),<br>E        | -                             | -                 | -                                                                                                                                                                                                               |                       | D           |                                                                                                                                                                              |
| do                                                                                             | 18-27                                               |                                         | 10/29/54       | N                 | -                             | -                 |                                                                                                                                                                                                                 |                       | N           | Reported adequate, but not<br>used because water is hard.                                                                                                                    |
| do                                                                                             | -                                                   |                                         |                | C,H               |                               | -                 |                                                                                                                                                                                                                 |                       | D           |                                                                                                                                                                              |
| do                                                                                             | 46.30                                               |                                         | 10/29/54       | N                 |                               | -                 | ~                                                                                                                                                                                                               | —                     | Ν           | Formerly used by a tannery.                                                                                                                                                  |
| do                                                                                             | 60 <sup>8</sup>                                     | 60 <sup>a</sup>                         | 7/5/46         | J(?),E            | 12                            | 7/5/46            | 1                                                                                                                                                                                                               |                       | D           |                                                                                                                                                                              |
| do                                                                                             | 100*                                                |                                         | 12/9/52        | C,E               | 1                             | 12/9/52           | 1                                                                                                                                                                                                               | -                     | D           |                                                                                                                                                                              |
| da                                                                                             | 01.10                                               | 258                                     | 11/5/54        |                   | 20                            | 4/25/54           |                                                                                                                                                                                                                 |                       | C           |                                                                                                                                                                              |
| do                                                                                             | 35"<br>20 <sup>8</sup>                              | 408                                     | 4/20/04        | CE                | 5                             | 4/20/54           | 4                                                                                                                                                                                                               | 2                     | D           |                                                                                                                                                                              |
| 40                                                                                             | 20                                                  | 10                                      | 11 11 11       |                   | 5                             | **! */ *>         |                                                                                                                                                                                                                 | 4 44                  |             |                                                                                                                                                                              |

TABLE 25 r of well f casing Alti-Date Depth Topo-Tw

| Well<br>num-<br>ber<br>(Car-) | Owner or name                           | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well    | Depth<br>of well<br>(feet) | Diameter of v<br>(inches) | Length of cas<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|-----------------------------------------|-------------|------------------------|-------------------------|--------------------|----------------------------|---------------------------|-------------------------|------------------------------|
| Ce 31                         | C. H. Gist                              | Owings      | 1947                   | 880                     | Drilled            | 48                         | 6                         | 12                      | Upland                       |
| Ce.32                         | W. H. Herbert                           | do          | 1051                   | 885                     | do                 | 125                        | 6                         | 26                      | Hillton                      |
| Ce 33                         | G. W. Bullock                           | do          | 1954                   | 875                     | do                 | 106                        | 6                         | 55%                     | Hillside                     |
| Ce 34                         | C. W. Saylor                            | do          | 1946                   | 825                     | do                 | 125                        | 6                         | 25                      | Hilltop                      |
| Ce 35                         | Carroll Owings                          | do          | 1946                   | 860                     | do                 | 90                         | 6                         | 20                      | do                           |
| Ce 36                         | Mr. Frick                               | -           | Old                    | 870                     | Dug                | 67                         | 48                        |                         | do                           |
| Ce 37                         | G. B. Price                             | W. Hoffman  | 1953                   | 725                     | Drilled            | 72                         | 6                         | 70                      | Upland<br>flat               |
| Ce 38                         | Carl Hoff                               |             | _                      | 725                     | do                 | 67.5                       | 6                         |                         | Valley                       |
| Ce 39                         | J. T. Forney                            |             | Before<br>1939         | 810                     | Dug and<br>Drilled | 60                         | 48 and 6                  |                         | Hillside                     |
|                               |                                         |             |                        |                         |                    |                            |                           |                         |                              |
| Ce 40                         | Koontz Creamery                         |             | -                      | 695                     | Drilled            | 325±                       | 12, 10,<br>and 8          | 300                     | Valley                       |
| Ce 41                         | Do                                      | _           | -                      | 695                     | do                 | 320                        | 8                         | 89                      | do                           |
| Ce 42                         | Do                                      | _           | _                      | 695                     | do                 | 822                        | 8                         | 8                       | do                           |
|                               |                                         |             |                        |                         |                    |                            |                           |                         |                              |
| Ce 43                         | Do                                      | -           | -                      | 695                     | do                 | 75-120                     | -                         | _                       | do                           |
|                               |                                         |             |                        |                         |                    |                            |                           |                         |                              |
| Ce 44                         | Albaugh and Babylon Grocery<br>Co.      | Owings      | 1951                   | 720                     | do                 | 255                        | 6                         | 255                     | Hillside                     |
| Ce 45                         | Dutterer's Nursery                      | do          | 1946                   | 725                     | do                 | 140                        | 8                         | 90                      | do                           |
|                               |                                         |             |                        |                         |                    |                            |                           |                         |                              |
| Ce 46                         | George Bollinger                        |             | -                      | 730                     | Spring             |                            | —                         | -                       | Valley                       |
| Ce 47                         | Robert L. Long                          | _           | ) L                    | 630                     | do                 | -                          | _                         | -                       | do                           |
| Ce 48                         | Mr. Long<br>William F. Myers & Sons     | Owings      | 1046                   | 620<br>750              | do<br>Drilled      | 200                        |                           | 92                      | do<br>Hillside               |
| UU 77                         | Translit I. Majero o Odio               | C HINBS     | 4.740                  | 100                     | 2711104            | 200                        | 0                         | 2 M                     | ********12                   |
| Cf 1<br>Cf 2                  | Congoleum-Nairn, Inc.<br>Norman Barrick | R. H. Leppo | 1948<br>Old            | 605<br>490              | do<br>Dug          | 68<br>20                   | 6<br>48                   | 35                      | do<br>Valley                 |

| Water-bearing                                        | (feet be                                              | Vater lev<br>low land                                  | el<br>surface)              | ent                           | Y                        | ield                        | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                                                                                                                                     |
|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|-----------------------------|-------------------------------|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                            | Static                                                | Pump-<br>ing                                           | Date                        | Pumping<br>equipm             | Gallons<br>per<br>minute | Date                        | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                             |
| Wissahickon (albite)                                 | 15 <sup>a</sup>                                       | 15 <sup>a</sup>                                        | 7/10/47                     | J,E                           | 20                       | 7/10/47                     | .5                            | -                     | D           | Depth of pump jet 40 ft.                                                                                                                                            |
| do<br>do<br>do                                       | 75 <sup>n</sup><br>45 <sup>n</sup><br>45 <sup>a</sup> | 75 <sup>a</sup><br>50 <sup>a</sup><br>100 <sup>a</sup> | 6/11/51<br>7/6/54<br>1/7/46 | J(?),E<br>?,E<br>?,E          | 10<br>5<br>15            | 6/11/51<br>7/6/54<br>1/7/46 | .5                            | 1.0                   | D<br>D<br>D |                                                                                                                                                                     |
| do<br>do                                             | 4.5<br>65.25<br>35 <sup>a</sup>                       | 60 <sup>n</sup>                                        | 9/3/40 11/9/54 9/24/53      | J,E;<br>J,E;<br>C,H<br>I(?).E |                          | 9/2/40                      | - 25                          | 1.0                   | D<br>D      | Yield reported decreases greatly<br>during dry spells.                                                                                                              |
|                                                      | 00                                                    | 00                                                     | )/ <u>61/00</u>             | 10,17,10                      | 5                        | 9/ 24/ 33                   | 2                             | • 4                   | 17          |                                                                                                                                                                     |
| do<br>do                                             | 9.29<br>24 <sup>8</sup>                               | _                                                      | 11/9/54<br>—                | J,E<br>J,E                    |                          | -                           | -                             |                       | D,F<br>D    | Adequate; reported will dis-<br>charge about 100 gallons be-<br>fore yield begins to decrease.<br>Dug well to rock at 30 ft.<br>Drilled through bottom to 60<br>ft. |
| Sams Creek meta-<br>basalt and Wake-<br>field marble |                                                       | -                                                      | -                           | N                             | 0                        | -                           | -                             |                       | N           | Blue muck reported for entire depth.                                                                                                                                |
| do                                                   |                                                       | -                                                      | -                           | N                             | 45                       | -                           | -                             | drave.                | N           | Covered by cement walk but not filled in                                                                                                                            |
| do                                                   | _                                                     | -                                                      | _                           | N                             | 8                        | -                           |                               |                       | N           | Covered by creamery concrete<br>floor but may not be filled.<br>Mostly white material (mar-<br>hle) encountered; some blue<br>(volcanic schist).                    |
| do                                                   | -                                                     | _                                                      | _                           | N                             | _                        | -                           |                               | _                     | N           | This record for 5 or 6 wells<br>drilled north of creamery. No<br>good aquifer encountered;<br>mostly muck or stiff, brown<br>clay. Destroyed.                       |
| Wissahickon (albite)                                 | 60 <sup>a</sup><br>62.34                              | 230ª                                                   | 6/6/51<br>1/4/56            | C,E                           | 6                        | 6/6/51                      | 8                             | <.1                   | D,F         | Reported backfilled with cement<br>to 237-240 feet. Sounding<br>weight stopped at 215 ft.<br>Casing perforated from 80-100<br>ft. See well log                      |
| do                                                   | _                                                     | _                                                      |                             | T,E                           | 300±                     | —                           | _                             | =                     | C,F         | Reported "3-inch stream" of<br>water was pumped for 7 hours<br>with a decline of water level<br>to 50 ft. "Shale and blue slate"<br>encountered                     |
| do                                                   | -                                                     | -                                                      |                             | N                             | . 5                      | 11/9/54                     | -                             | -                     | D           | Supplies home and fish and duck<br>pond. Continuous flow re-<br>ported. Concrete collecting<br>chamber                                                              |
| do                                                   | -                                                     | -                                                      |                             | S,E                           | 10                       | 10/29/54                    | -                             | -                     | D           | Iron deposit in collecting cham-<br>ber; reported clogs plumbing.                                                                                                   |
| do                                                   |                                                       |                                                        | -                           | S,E                           | 5±                       | 10/25/54                    |                               | _                     | D           | Adequate.                                                                                                                                                           |
| and Sams Creek<br>metabasalt                         | 55**                                                  | 100 <sup>a</sup>                                       | 1/21/46                     | T,E                           | 150                      | 1/21/46                     | 6                             | 3.3                   | С           | Meat packing plant. Depth of<br>pump 140 ft. See well log.                                                                                                          |
| Wissahickon (albite)<br>do                           | 30ª<br>—                                              | Ξ                                                      | 7/9/48                      | J,E<br>J,E                    | 35                       | 7/9/48                      | 6                             | _                     | D<br>D      | Club house.<br>Adequate supply reported.                                                                                                                            |

| Well<br>num-<br>ber<br>(Car-) | Owner or name              | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|----------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Cf 3                          | Redmen's Hall              | Kyker       | 1954                   | 480                     | Drilled         | 42                         | 6                            | 18.5                       | Valley                       |
| Cf 4                          | Kenneth Long               | W. Hoffman  | 1954                   | 630                     | do              | 40                         | 6                            | 14                         | do                           |
| Cf 5                          | Henry Miller               | Kyker       | 1954                   | 665                     | do              | 78                         | 6                            | 34                         | Hilltop                      |
| Cf 6                          | Paul Welsh                 | R. H. Leppo | 1950                   | 745                     | do              | 68                         | б                            | 65                         | Upland<br>flat               |
| Cf 7                          | Raymond Buckman            |             | Before<br>1900         | 730                     | do              | -                          | 6                            | 1.00                       | Draw                         |
| Cf 8                          | Do                         | H. R. Leppo | 1946                   | 730                     | do              | 30                         | 6                            | 23                         | do                           |
| Cf 9                          | Claude Armacost            | R. H. Leppo | 1951                   | 590                     | do              | 80                         | 6                            | 10                         | Hilltop                      |
| Cf 10                         | Dr. M. E. Shamer           | do          | 1952                   | 700                     | do              | 90                         | 6                            | 25                         | Hillside                     |
| Cf 11                         | Congoleum-Nairn, Inc.      | H. R. Leppo | 1945                   | 430                     | do              | 200-215                    | 6                            | 12(?)                      | Valley                       |
|                               |                            |             |                        |                         |                 |                            |                              |                            |                              |
| Cf 12                         | Do                         | do          | 1945                   | 450                     | do              | 244                        | 6                            | 78                         | do                           |
| Cf 13                         | Do                         | do          | 1946                   | 515                     | do              | 145                        | б                            | 20                         | Hillside                     |
| Cf 14                         | Do                         | do          | 1946                   | 430                     | do              | 325                        | 6                            | 17                         | Valley                       |
| Cf 15                         | Dr. M. E. Shamer           | -           | -                      | 790                     | Spring          | -                          | —                            | -                          | Draw                         |
|                               |                            |             |                        |                         |                 |                            |                              |                            |                              |
| Cf 16                         | Wesley Chapel              | Millender   | 1933                   | 710                     | Drilled         | 72                         | 6                            | 33                         | Hillside                     |
|                               |                            |             |                        |                         |                 | 00 F                       |                              |                            |                              |
| Dc 1                          | B. F. Shriver Co.          | Reichart    | 1953                   | 710                     | do              | 99.5                       | 6                            | -                          | do                           |
| Dc 2                          | W. E. Wright               | D. Brown    | 1951                   | 825                     | Drilled         | 80                         | 0                            | -                          | 0D                           |
| Dc 3<br>Dc 4                  | Preston Wright             | W. Hoffman  | 1948                   | 805                     | Drilled         | 62                         | 6                            | 46                         | Upland                       |
| Dc 5                          | Mr. Lovell                 | -           | -                      | 835                     | _               | 110                        | 6                            |                            | Hilltop                      |
| Dc 6                          | Moore's Service Station    | -           | 1947                   | 805                     | Dug and         | 48                         | 48 and 6                     | -                          | Upland                       |
| Dc 7                          | Albert A. Franklin         | Thompson    | 1955                   | 840                     | Drilled         | 149                        | 55                           | 23                         | Hilltop                      |
| Dc 8                          | Do                         | Easterday   | 1956                   | 840                     | do              | 80                         | 6                            | 22                         | do                           |
| Dd 1                          | Winfield Elementary School |             | 1938±                  | 855                     | do              | 189 or<br>300              | 6                            | -                          | Hillside                     |
| Dd 2                          | Do                         | -           | 1935土                  | 865                     | do              | 143 or<br>180+:            | 6                            | -                          | Hilltop                      |
| Dd 3                          | E. A. Barnes               | Owings      | 1949                   | 850                     | do              | 335                        | 6                            | -                          | Hillside                     |
| Dd 4                          | Do                         | E. Brown    | 1953                   | 850                     | do              | 103                        | 6                            | -                          | do                           |
| Dd 5                          | Do                         | -           | -                      | 850                     | do              | 75                         | 6                            | -                          | do                           |
| Dd 6                          | Harry Guy                  | Owings      | 1946                   | 725                     | do              | 42                         | 6                            | 36                         | Valley                       |
| Dd 7                          | R. C. Heinz                | R. H. Leppo | 1948                   | 745                     | do              | 100                        | 6                            | 80                         | Hilltop                      |
| Dd 8                          | R. Kontz                   | Utermahlen  | 1951                   | 730                     | do              | 56                         | 6                            | -                          | Hillside                     |
| Dd 9                          | Zion Methodist Church      | Hiner       | 1950                   | 790                     | do              | 205                        | 6                            | 20                         | Hilltop                      |
|                               |                            |             |                        |                         |                 |                            |                              |                            |                              |

| Water-bearing<br>formation  | Water level<br>(fect below land surface) |                  |                | ent               | Yield                    |           | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                                                                                                                      |  |
|-----------------------------|------------------------------------------|------------------|----------------|-------------------|--------------------------|-----------|-------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                             | Static                                   | Pump-<br>ing     | Date           | Pumping<br>equipm | Gallons<br>per<br>minute | Date      | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                              |  |
| Wissahickon (albite)        | 8 <sup>a</sup>                           | 8 <sup>a</sup>   | 9/7/54         | J(?),E            | 15-20                    | 9/7/54    | 3                             | _                     | D           |                                                                                                                                                      |  |
| do                          | 11 <sup>a</sup>                          | 22 <sup>a</sup>  | 5/27/54        | СН                | 0                        | 5/27/54   | 1                             | 8                     | D           |                                                                                                                                                      |  |
| do                          | 25 <sup>8</sup>                          | 70ª              | 5/26/54        | 2.E               | 8                        | 5/26/54   | 3.5                           | .0                    | D           |                                                                                                                                                      |  |
| do                          | 40 <sup>a</sup>                          | 120 <sup>a</sup> | 1/27/50        | ?,E               | 8                        | 1/27/50   | 1                             |                       | D           |                                                                                                                                                      |  |
| do                          | -                                        | -                | -              | C,E               | -                        | -         | -                             |                       | D,F         | Good supply reported.                                                                                                                                |  |
| do                          | $10\pm^{a}$                              | 30ª              | 8//46          | C.E               | 10                       | 8//46     | _                             | .5+                   | D           |                                                                                                                                                      |  |
| do                          | 30 <sup>a</sup>                          | _                | 7/9/51         | C.E               | 8                        | 7/9/51    | 2                             |                       | D           |                                                                                                                                                      |  |
| do                          | 60 <sup>n</sup>                          |                  | 2/16/52        | J,E               | 8                        | 2/16/52   | 2                             | _                     | D           |                                                                                                                                                      |  |
|                             | 35.25                                    | -                | 11/8/54        |                   |                          |           |                               |                       |             |                                                                                                                                                      |  |
| Peters Creek quartz-<br>ite | 9.5 <sup>ª</sup>                         | _                | 7/—/45         | J,E               | 85-100                   | 7/—/45    | 3-12                          | P-18                  | С           | Rock at 10 ft.(?). Temperature<br>measured Aug. 1945, 54°F.<br>Used for drinking and air<br>conditioning. See well log.<br>Depth of pump jet 100 ft. |  |
| Wissahickon (albite)        | 3.5 <sup>8</sup>                         | 244 <sup>a</sup> | 11//4          | 5N                | 12                       | 11//45    | 12                            |                       | , N         | Heaving sand reported above 78                                                                                                                       |  |
| do                          | 44.5 <sup>a</sup>                        | 145              | 3/-/46         | V                 | 35                       | 3/_/16    | 12                            | _                     | N           | 11.                                                                                                                                                  |  |
|                             | 48.28                                    |                  | 3/17/55        | 11                | 00                       | 0/ / 10   | 14                            |                       | 1           |                                                                                                                                                      |  |
| Peters Creek quartz-        | $10^{a}$                                 | 325 <sup>a</sup> | 8//46          | N                 | 15                       | 8//46     |                               |                       | N           |                                                                                                                                                      |  |
| ite                         | 4.25                                     |                  | 3/17/55        |                   |                          |           |                               |                       |             |                                                                                                                                                      |  |
| Wissahickon (albite)        |                                          |                  | -              | N                 | 2                        | 11/8/54   | -                             |                       | F           | Spring at head of draw. Gravity<br>flow to rock-lined collecting<br>basin.                                                                           |  |
| do                          | 50 <sup>a</sup><br>30.95                 | 52 <sup>a</sup>  | Old<br>11/9/54 | C,E               | 9.5                      | Old       |                               | 4.7                   | D           |                                                                                                                                                      |  |
| do                          | 208                                      |                  | 1/2/53         | TE                |                          | _         | _                             |                       | D           | See well log                                                                                                                                         |  |
| Marburg schist              | 50(?) <sup>a</sup>                       |                  | 11/12/         | 51                | 5                        | 11/12/5   | 1 25                          |                       | D           | occ well log.                                                                                                                                        |  |
| do                          | 3.30                                     | _                | 8/30/55        | C,E               |                          |           | _                             |                       | D           | Adequate supply reported.                                                                                                                            |  |
| do                          | 22 <sup>a</sup>                          | 22ª              | 7/13/48        | ?,E               | 18                       | 7/13/48   | 2                             |                       | D           | ·····                                                                                                                                                |  |
| do                          | 80± <sup>a</sup>                         | _                | 2/—/55         | _                 | -                        | _         |                               | _                     | D           | Water level usually about 50 ft.                                                                                                                     |  |
| do                          | -                                        |                  | - 1            | C,E               | -                        | -         |                               |                       | С           | Dug well 28 ft.                                                                                                                                      |  |
| do                          | 90 <sup>a</sup>                          | 151 <sup>a</sup> | 8/19/55        | N                 | .5                       | 8/19/55   | .5                            | _                     | N           | Inadequate.                                                                                                                                          |  |
| 4.                          | 88.16                                    |                  | 8/24/56        | 2.1               | 4.0                      | 0.124.124 |                               |                       | -           |                                                                                                                                                      |  |
| do                          | 35"                                      | 50*              | 8/31/30        | C.E               | 10                       | 8/31/50   | 1                             | .7                    | 1           | See chemical analysis                                                                                                                                |  |
| do                          | 58.16                                    | -                | 9/16/53        | C.N               | _                        |           |                               |                       | N           | Not used because of poor vield                                                                                                                       |  |
|                             |                                          |                  | 1 1            | - ,               |                          |           |                               |                       |             | Water-level observation well.                                                                                                                        |  |
| do                          | 60 <sup>a</sup>                          | 335 <sup>a</sup> | 1/12/49        | N                 | -                        | _         |                               |                       | N           | Practically a dry hole. De-<br>stroyed.                                                                                                              |  |
| 00                          | 40%                                      | _                | 9/1/53         | C,E               | 12±                      | 9/1/53    |                               | —                     | D           |                                                                                                                                                      |  |
| do                          | 128                                      | 158              | 11/10/16       | LE                | 20                       | 11/10/44  |                               | 7.0                   | D           | Adequate supply reported.                                                                                                                            |  |
| Wissahickon (albite)        | 60 <sup>B</sup>                          | 10               | 7/10/48        | J,12<br>I(?) E    | 15                       | 7/10/48   | .3                            | / . U                 | D           |                                                                                                                                                      |  |
| do                          | 40 <sup>a</sup>                          |                  | 6/17/51        | C.H               | 6                        | 6/17/51   | 1                             |                       | D           |                                                                                                                                                      |  |
| do                          | 62 <sup>a</sup>                          | —                | 12/23/50       | J,E               | 1                        | 12/23/50  |                               | _                     | D           | Two dry holes were drilled here<br>before this well. Pumps air<br>with water; inadequate.                                                            |  |

| Well<br>num-<br>ber<br>(Car-) | Owner or name                  | Driller                    | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | 95 99 Diameter of well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|--------------------------------|----------------------------|------------------------|-------------------------|-----------------|----------------------------|---------------------------------|----------------------------|------------------------------|
| Dd 10<br>Dd 11                | William Muller<br>Joseph Abell | Ξ                          | Old<br>Before          | 780<br>745              | Dug<br>do       | 51<br>65–75                |                                 | -                          | Hilltop<br>Hillside          |
| Dd 12                         | D. W. Caples                   | -                          | do                     | 700                     | do              | 22-23                      | 42                              | _                          | Valley<br>side               |
| Dd 13<br>Dd 14                | Mr. Yohn<br>Raymond Gist       | D. Brown                   | Old<br>1956            | 775<br>770              | Drilled<br>do   | 85<br>103.                 | 6<br>6                          | 36                         | Hillside<br>Draw             |
| Dd 15                         | George V. Kelly                | Owings                     | 1955                   | 820                     | do              | 78                         | 6                               | 60                         | Hilltop                      |
| Dd 16                         | William Boone                  | do                         | 1955                   | 830                     | do              | 102                        | 6                               | 24                         | do                           |
| <b>D</b> d 17                 | Charles R. Beck                | _                          | -                      | 660                     | Dug             | 47                         | U =                             |                            | Hillside                     |
| Dd 18                         | F. L. Goldeisen                | Frounfelter                | 1956                   | 825                     | Drilled         | 65                         | 6                               | 24                         | Hilltop                      |
| Dd 19                         | Paul Flickinger                | Hoffman                    | 1951                   | 600                     | do              | 70                         | 58                              | 12                         | Hillside                     |
| Dd 20                         | Albert K. Belt                 | S. Smith                   | 1931                   | 740                     | do              | 52                         | 6                               |                            | do                           |
| De 1                          | Eldersburg School              | Owings                     | 1954                   | 620                     | do              | 180                        | 6 or 8                          | -                          | do                           |
| De 2                          | Robert Rill                    | H. R. Leppo                | 1947                   | 640                     | do              | 132                        | 6                               | 107                        | Upland<br>flat               |
| De 3                          | Calvary Methodist Church       | J. B. Edmondson            | 1948                   | 625                     | do              | 40                         | 58                              | _                          | Hilltop                      |
| De 4                          | Gamber School                  | Owings                     | 1947 and<br>1948       | 630                     | do              | 161                        | 6                               | 102                        | Hillside                     |
|                               |                                |                            |                        |                         |                 |                            |                                 |                            |                              |
| De 5                          | James N. Stansfield            | R. H. Leppo                | 1952                   | 705                     | do              | 95                         | 55                              | 92                         | Hilltop                      |
| De 6                          | Frank Colbeck                  | J. B. Edmondson            | 1950                   | 590                     | do              | 50                         | 58                              | -                          | do                           |
| De 7                          | Mr. Christ                     | -                          |                        | 560                     | do              | 90                         | 6                               | - 1                        | do                           |
| De 8                          | Raymond S. Gorsuch             | Owings                     | 1946                   | 630                     | do              | 68                         | 6                               | 43                         | do                           |
| De 9                          | Do                             | _                          | Old                    | 630                     | Dug             | 50                         | 48                              | -                          | do                           |
| De 10                         | Do                             | _                          | -                      | 635                     | Spring          | _                          | -                               | -                          | Draw                         |
| De 11                         | James D. Clise                 | Hiner                      | 1950                   | 790                     | Drilled         | 100                        | 6                               | 32                         | Hilltop                      |
| De 12                         | Do                             | Stern and Froun-<br>felter | 1955                   | 790                     | do              | 76                         | 8                               | 12                         | do                           |
| De 13                         | Do                             | Frounfelter                | 1955                   | 790                     | do              | 144                        | 8 and 6                         | 4.7                        | do                           |
|                               |                                | 4                          |                        |                         | 1               | 1                          | 1                               | 1                          | h                            |

| Water-bearing<br>formation  | Water level<br>(feet below land surface) |                  |                   | tent              | Yield                    |          | t of<br>ig test               | apacity<br>/ft.)      | Use         |                                                                                                                                                                                                                                             |  |  |  |  |
|-----------------------------|------------------------------------------|------------------|-------------------|-------------------|--------------------------|----------|-------------------------------|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                             | Static                                   | Pump-<br>ing     | Date              | Pumping<br>equipm | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                                                                                     |  |  |  |  |
| Wissahickon (albite)<br>do  | 59.2<br>50.60                            | -                | 2/9/55<br>2/9/55  | C,E<br>C,H        | -                        | -        | -                             | -                     | D<br>D      | Yields practically no water.<br>Adequate supply. Water re-                                                                                                                                                                                  |  |  |  |  |
| do                          | 18.71                                    | -                | 2/9/55            | C,H               | -                        | _        |                               | -                     | D           | Soft material encountered for<br>entire depth. Adequate sup-<br>ply. Depth of pump pipe<br>21 ± ft                                                                                                                                          |  |  |  |  |
| do                          | 67-                                      | _                | 7/16/54           | IE                |                          | _        |                               | _                     | n           | Filled with sediment to 75 ft                                                                                                                                                                                                               |  |  |  |  |
| do                          | 608                                      | 808              | 1/20/54           | 1.12              | 6                        | 4/20/56  | 5                             | 2                     | D           | rined with sedment to 75 It.                                                                                                                                                                                                                |  |  |  |  |
| 00                          | 47 67                                    | - 00             | 8/24/56           | J,12              | 0                        | 4/20/30  |                               | . 3                   | D           |                                                                                                                                                                                                                                             |  |  |  |  |
| do                          | 35ª                                      | 70ª              | 7/9/55            | J,E               | 6                        | 7/9/55   | .5                            | .1                    | D           | A well drilled 75 ft. away to a<br>depth of 240 ft. yielded no<br>water. Depth of pump jet 70<br>ft.                                                                                                                                        |  |  |  |  |
| do                          | 40 <sup>a</sup>                          | 80 <sup>a</sup>  | 4/28/55           | J,E               | 17                       | 4/28/55  | 5                             | .4                    | D           | 2 gpm obtained at 50 ft. 15 gpm<br>at 80-102 ft.                                                                                                                                                                                            |  |  |  |  |
| do                          | 41.11                                    | -                | 11/5/56           | C,E               |                          |          | -                             | _                     | F           | Water-level observation well.                                                                                                                                                                                                               |  |  |  |  |
| do                          | 40 <sup>n</sup>                          |                  | 12/1/56           | Nl                | 15                       | 12/1/56  | 2                             | _                     | D           |                                                                                                                                                                                                                                             |  |  |  |  |
| do                          | 30 <sup>a</sup>                          | 60 <sup>a</sup>  | 6/18/51           | J,E               | 6                        | 6/18/51  | 2                             | .2                    | D           |                                                                                                                                                                                                                                             |  |  |  |  |
| do                          | 22 <sup>a</sup>                          |                  | -                 | C,E               | 5                        |          | -                             | _                     | D,F         |                                                                                                                                                                                                                                             |  |  |  |  |
| Peters Creek quartz-<br>ite | 35 <sup>a</sup> 110 <sup>a</sup>         |                  | 2/26/54           | T,E               | 19                       | 2/26/54  | 0.5                           | 0.3                   | I           | See well log and chemica<br>analysis. Depth of pump 166<br>ft.                                                                                                                                                                              |  |  |  |  |
| Wissahickon (albite)        | 25ª                                      | -                | 4/12/47           | J,E               | 15                       | 4/12/47  | 1                             |                       | D           | A 60                                                                                                                                                                                                                                        |  |  |  |  |
| do                          | 5ª(?)                                    | $10^{a}(?)$      | 10/27/48          | _                 | 20                       | 10/27/48 | 2                             | 4                     | D           |                                                                                                                                                                                                                                             |  |  |  |  |
| do                          | 30 <sup>a</sup>                          | 40 <sup>a</sup>  | 9/6/47            | C,E               | 25                       | 9/6/47   | .5                            | 2.5                   | I           | Temperature Mar. 9, 1955:                                                                                                                                                                                                                   |  |  |  |  |
|                             | 25 <sup>8</sup>                          | 150 <sup>a</sup> | 9/23/48           |                   | 13                       | 9/23/48  | 8                             | .1                    |             | 55°F. Originally drilled to 125<br>ft.; lower 60 ft. of casing per-<br>forated; sandy water. Deep-<br>ened in 1948 to 161 ft., un-<br>perforated casing installed;<br>water clear but yield less.<br>See well log and chemical<br>analysis. |  |  |  |  |
| do                          | 50ª                                      |                  | 6/2/52            | J,E               | 12                       | 6/2/52   | 2                             |                       | D           |                                                                                                                                                                                                                                             |  |  |  |  |
| Peters Creek quartz-        | 57.05                                    | _                | 10/8/54           | J,E               | 10                       | 5/11/50  | 1                             | 1(?)                  | D           |                                                                                                                                                                                                                                             |  |  |  |  |
| Wissahickon (albite)        | _                                        | _                | _                 | ľЕ                |                          |          | _                             | _                     | D           | Adequate                                                                                                                                                                                                                                    |  |  |  |  |
| do                          | 358                                      | 54 <sup>8</sup>  | 1/1/46            | CH                | 20                       | 1/1/46   | 5                             | 1                     | Ď           | Mucquate                                                                                                                                                                                                                                    |  |  |  |  |
| do                          |                                          | _                |                   | N                 |                          |          |                               | -                     | N           | Inadequate: destroyed                                                                                                                                                                                                                       |  |  |  |  |
| do                          | _                                        | _                | _                 | N                 | _                        | _        | _                             |                       | N           | Collecting chamber lined with                                                                                                                                                                                                               |  |  |  |  |
|                             |                                          |                  |                   |                   |                          |          |                               |                       | <u> </u>    | fieldstone. Small discharge.                                                                                                                                                                                                                |  |  |  |  |
| do                          | 27≞                                      | -                | 8/26/50           | N                 | 2                        | 8/26/50  | -                             | -                     | N           | Originally drilled to 335 ft.; no<br>water below 100 ft.; back-<br>filled to 100 ft                                                                                                                                                         |  |  |  |  |
| do                          |                                          | —                | _                 | J,E               | .3                       | 3/16/55  | -                             | _                     | D           | Originally 6 in. diameter. Re-<br>drilled to 8 in. diameter but no<br>increase in yield (20 gal. per<br>hour). See chemical analysis.                                                                                                       |  |  |  |  |
| do                          | 32.09<br>23.80                           | Ξ                | 2/8/55<br>3/16/55 | N                 | See Re-<br>marks         | 2//55    | -                             | -                     | N           | Yield of 30 gal. per day re-<br>ported. Diameter 6 in. below<br>16 ft.                                                                                                                                                                      |  |  |  |  |

TABLE 25

| Well<br>num-<br>ber<br>(Car-) | Owner or name                       | Driller                | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well    | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|-------------------------------|-------------------------------------|------------------------|------------------------|-------------------------|--------------------|----------------------------|------------------------------|-------------------------|------------------------------|
| De 14<br>De 15                | Robert C. Shipley<br>Charles Mitten | Kyker<br>R. H. Leppo   | 1955<br>1947           | 715<br>645              | Drilled<br>do      | 84<br>78                   | 6<br>6                       | 19(?)                   | Draw<br>Upland               |
| De 16                         | Mr. Babel                           | —                      | Old                    | 660                     | Dug and<br>drilled | 72                         | 48 and 6                     | -                       | Hilltop                      |
| De 17                         | Do                                  | -                      |                        | 660                     | Drilled            | 52                         | 6                            |                         | do                           |
| Df 1                          | Raymond Green                       | E. Smith               | 1954                   | 580                     | do                 | 60                         | 6                            | 18                      | do                           |
| Df 2                          | Robert Wiley                        | W. Hoffman             | 1954                   | 510                     | do                 | 50                         | 58                           | 9                       | do                           |
| Df 3                          | Donald Roten                        | R. H. Leppo            | 1951                   | 555                     | do                 | 60                         | 55                           | 48                      | do                           |
| Df 4                          | Robert Roten                        | do                     | 1949                   | 570                     | do                 | 68                         | 6                            | 12                      | do                           |
| Df 5                          | Howard E. Bonner                    | Utermahlen             | 1952                   | 600                     | do                 | 79                         | 6                            | 20                      | do                           |
| Df 6                          | Baltimore Bureau of Water<br>Supply |                        | —                      | 390                     | do                 | 89                         | 6                            | 40±                     | Valley<br>side               |
| Df 7                          | Do                                  | -                      | -                      | 420                     | Spring             |                            | -                            | _                       | do                           |
| Df 8                          | Do                                  | John W. Edmond-<br>son | 1941                   | 340                     | Drilled            | 156                        | 8                            | -                       | Valley<br>side               |
| Ec 1                          | William Rigler                      | Easterday              | 1951                   | 790                     | do                 | 105                        | 6                            | -                       | Hilltop                      |
| Ec 2                          | John Lettieri                       | do                     | 1951                   | 780                     | do                 | 68                         | 6                            |                         | Hillside                     |
| Ec 3                          | Harry E. Reaver                     | D. Brown               | 1951                   | 740                     | do                 | 55                         | 6                            | 10                      | do                           |
| Ec 4                          | E. T. Loque                         | Easterday              | 1951                   | 760                     | do                 | 93                         | 6                            | -                       | Hilltop                      |
| Ec 5                          | Charles Iones                       | E. Brown               | 1952                   | 815                     | do                 | 9.5                        | 6                            | 24                      | do                           |
| Ec 6                          | Henry C. Krantz                     |                        | Old                    | 645                     | do                 | 59                         | 6                            |                         | Hillside                     |
| Ec 7                          | Do                                  | Frounfelter            | 1955                   | 650                     | do                 | 70                         | 6                            | 31                      | do                           |
| Ec 8                          | Gordon H. Davis                     | Easterday              | 1955                   | 570                     | do                 | 129                        | 6                            | 10                      | do                           |
| Ec 9                          | Watersville Methodist Church        | E. Brown               | 1955                   | 580                     | do                 | 41                         | 6                            | 30                      | Valley<br>side               |
| Ec 10                         | E. F. Hartmann                      | -                      | _                      | 570                     | Spring             |                            | -                            | _                       | do                           |
| Ec 11                         | A. J. Marock                        |                        | 1940                   | 735                     | Drilled            | 71                         | 6                            | 25                      | Hilltop                      |
| Ec 12                         | Leroy Welsh                         |                        | 1940                   | 725                     | do                 | 110                        | 6                            | 20                      | Hillside                     |
| Ed 1                          | Killian-Colbert Canning Co.         | _                      | _                      | 440                     | do                 | 100±                       | б                            | 20                      | Valley<br>side               |
| ELO                           | D.                                  |                        |                        |                         |                    | 400 .                      |                              | 10                      |                              |
| Ed Z                          | Do                                  | _                      |                        | 400                     | do                 | 100土                       | 0                            | 30                      | do                           |
| Ed 3                          | Do                                  | <u></u>                | 1922                   | 430                     | do                 | 75                         | 6                            | -                       | do                           |
| Ed 4                          | Do                                  | Ault                   | 1949                   | 430                     | do                 | 176-179                    | 6                            | 8                       | do                           |
| Ed 5                          | Russell Gosnell                     | E. Brown               | 1953                   | 805                     | do                 | 76                         | 6                            | 24                      | lHilltop                     |
| Ed 6                          | Clarence Conaways                   | D. Brown               | 1956                   | 750                     | do                 | 80                         | 6                            | 22                      | Upland                       |
| Ed 7                          | Edward H. Blanker                   | Trumpower              | 1956                   | 650                     | do                 | 80                         | 6                            | 40                      | Hillside                     |

| Water-bearing<br>formation  | Water level<br>(feet below land surface) |                 |          | lent              | Yield                    |                   | i of<br>ng test               | apacity<br>/ft.)      | Use    |                                                                                                  |  |  |
|-----------------------------|------------------------------------------|-----------------|----------|-------------------|--------------------------|-------------------|-------------------------------|-----------------------|--------|--------------------------------------------------------------------------------------------------|--|--|
|                             | Static                                   | Pump-<br>ing    | Date     | Pumping<br>equipm | Gallons<br>per<br>minute | Date              | Duration<br>pumpir<br>(hours) | Specific (<br>(g.p.m. | water  | Remarks                                                                                          |  |  |
| Wissahickon (albite)<br>do  |                                          | -               | -        | J,E<br>C,E        | 3<br>6                   | 6/24/54<br>8/5/47 | 3<br>1                        | .15                   | D<br>D |                                                                                                  |  |  |
| do                          | _                                        |                 | -        | J,E;<br>C,H       |                          | -                 |                               | -                     | D      | Dug well to 42 feet; drilled<br>through bottom to 72 ft. Dug<br>well was inadequate and          |  |  |
| do                          | $31\pm$                                  |                 | 3/9/55   | C,E               | _                        | -                 | -                             |                       | D      | Depth reported 92 ft., measured<br>52 ft. Well may be destroyed.                                 |  |  |
| do                          | 20 <sup>8</sup>                          | 30 <sup>8</sup> | 8/-/54   | NI                | 10                       | 8//54             | -                             | 1                     | D      |                                                                                                  |  |  |
|                             | 47.00                                    | -               | 11/14/54 |                   |                          |                   |                               |                       | -      |                                                                                                  |  |  |
| Peters Creek quartz-        | 20 <sup>a</sup>                          | -               | 6/21/54  | J,E               | 7                        | 6/21/54           | 1.5                           | -                     | D      |                                                                                                  |  |  |
| ite                         | 25.30                                    | -               | 10/14/54 | TE                | 15                       | 7/6/51            | 2                             | _                     | D      |                                                                                                  |  |  |
| do                          | 288                                      |                 | 3/24/40  | J,E               | 15                       | 3/21/10           | 1                             |                       | C      | Filling station.                                                                                 |  |  |
| Wissahickon (albite)        | 40a                                      |                 | 6/14/52  | J , L .           | 10                       | 6/14/52           | 1                             | _                     | D      | T TITLE SEALON.                                                                                  |  |  |
| Peters Creek quartz-        | 21.37                                    | _ 1             | 10/18/54 | N                 |                          |                   | _                             |                       | N      | Abandoned home; now flooded                                                                      |  |  |
| ite                         |                                          |                 |          |                   |                          |                   |                               |                       |        | by Patapsco Reservoir.                                                                           |  |  |
| Sykesville                  | -                                        | -               | -        | N                 | .2                       | 10/18/54          | -                             |                       | N      | Now flooded by Patapsco Reser-<br>voir. Temperature Oct. 19,                                     |  |  |
| Peters Creek quartz-<br>ite | -                                        | -               | -        | N                 | 12                       | -                 | -                             | -                     | N      | Site of a woolen mill inundated<br>by Patapsco Reservoir.                                        |  |  |
| Manhung achiat              | 208                                      | 658             | 3/1/51   | _                 | 6                        | 3/1/51            | 5                             | .17                   | D      | See well log.                                                                                    |  |  |
| Marburg schist              | 228                                      | 05              | 1/30/51  | TE                | 2                        | 1/30/51           |                               |                       | D      | 500 Hon 105.                                                                                     |  |  |
| do                          | 358                                      |                 | 5/28/51  |                   | 3                        | 5/28/51           | .5                            | _                     | D      | 1                                                                                                |  |  |
| Sams Creek meta-<br>basalt  | 25ª                                      | 93ª             | 7/25/51  | J,E               | 2                        | 7/25/51           | -                             | <.1                   | D      |                                                                                                  |  |  |
| Marburg schist              | 55ª                                      | 88 <sup>8</sup> | 4/21/55  | ?,E               | 5                        | 4/21/55           | 1                             | .1                    | D      |                                                                                                  |  |  |
| do                          | 35.09                                    | -               | 8/24/56  | C,E               |                          |                   | -                             | _                     | D      |                                                                                                  |  |  |
| do                          | 39 <sup>8</sup>                          | 50 <sup>a</sup> | 8/20/55  | J,E               | 22                       | 8/20/55           | -                             | 2.0                   | F      |                                                                                                  |  |  |
| Wissahickon (albite)        | 48 <sup>a</sup>                          | 129ª            | 10/21/55 | J,E               | 3                        | 10/21/33          |                               | _                     | D      |                                                                                                  |  |  |
| Marburg schist              |                                          | _               | _        | J, E              | 3.3                      | 3/-/33            | _                             | _                     | D      |                                                                                                  |  |  |
| do                          |                                          | _               | -        | S.E               | 3                        | 4/5/55            |                               | - 1                   | D      | Continuous flow reported.                                                                        |  |  |
| Wissahickon (albite)        | 35ª                                      | _               | 11/29/56 | C,E               | _                        | -                 | -                             |                       | D      | Adequate supply.                                                                                 |  |  |
| do                          | 40.71                                    |                 | 11/29/56 | C,E               | -                        | -                 | -                             | -                     | D,F    |                                                                                                  |  |  |
| Peters Creek quartz-<br>ite | -                                        | -               | -        | C,E               | 35                       | -                 | -                             | -                     | D      | Reported to pump water for 4<br>hrs., then pumps air. Cannery<br>idle. Well supplies a few homes |  |  |
| do                          | -                                        | _               | -        | T,E               | 20                       | _                 | -                             | -                     | N      | Reported to pump air after                                                                       |  |  |
| do                          | -                                        | -               | -        | N                 | _                        | -                 | -                             |                       | N      | Formerly equipped with 30 gpm<br>pump. Failed during 1930<br>drought. Plugged with debris.       |  |  |
| do                          | 8 <sup>a</sup>                           | 85 <sup>a</sup> | 7/—/49   | C,E               | 5.3                      | 7//49             | 10                            | <.1                   | N      | Reported water-bearing zones:<br>76 ft., 105 ft., 151 ft.                                        |  |  |
| Wissahickon (albite)        | 45ª                                      | 63ª             | 5/7/53   | J,E               | 5                        | 5/7/53            | .5                            | .3                    | D      |                                                                                                  |  |  |
|                             | 37.17                                    | -               | 9/16/53  | 3                 |                          |                   |                               |                       |        |                                                                                                  |  |  |
| do                          | 50ª                                      | 60ª             | 8/15/56  | NI                | 6                        | 8/15/56           | .5                            | . 6                   | D      |                                                                                                  |  |  |
| do                          | 45 <sup>a</sup>                          | 48 <sup>a</sup> | 4/17/56  | J,E               | 20                       | 4/17/56           | -                             | 6.7                   | D      |                                                                                                  |  |  |

### TABLE 25

| Well<br>num-<br>ber<br>(Car-) | Owner or name                        | Driller                      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|-------------------------------|--------------------------------------|------------------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Ed 8                          | Robert H. Mercer, Jr.                | E. Brown                     | 1956                   | 625                     | Drilled         | 72                         | 6                            | 28                         | Valley                       |
| Ed 9                          | W. A. Cosley                         |                              | Old                    | 750                     | do              | 82                         | _                            | _                          | Hillside                     |
| Ed 10                         | Herbert Kessler                      | All Md. Pump and<br>Well Co. | 1956                   | 590                     | do              | 64                         | 58                           | 11.5                       | do                           |
| Ed 11                         | George Learmouth                     | Easterday                    | 1953                   | 835                     | do              | 107                        | 6                            | 0                          | Upland<br>flat               |
| Ed 12                         | John W. Duvall                       | do                           | 1952                   | 770                     | do              | 65                         | 6                            | 10.5                       | Hilltop                      |
| Ed 13                         | Ralph L. Pickett                     | D. Brown                     | 1955                   | 745                     | do              | 73                         | 6                            | 18                         | Upland<br>flat               |
| Ed 14                         | Noah Hatfield                        | S. Smith                     | 1928                   | 600                     | do              | 70                         | 6                            | - 1                        | Hillside                     |
| Ed 15                         | Do                                   | -                            | -                      | 600                     | Dug             | 45                         | 36                           |                            | do                           |
| Ed 16                         | Do                                   |                              | —                      | 570                     | Spring          | -                          | -                            |                            | Valley<br>flat               |
| Ee 1                          | Howard County Farmers<br>Coop., Inc. | E. Brown                     | 1947                   | 450                     | Drilled         | 90                         | 6                            | 38                         | 1Hillside                    |
| Ee 2                          | State Roads Commission               |                              | _                      | 390                     | do              | 97.8                       | 6                            | _                          | Valley                       |
| Ee 3                          | Mrs. Mullinix                        | Owings                       | 1947                   | 635                     | do              | 65                         | 6                            | 31                         | Hilltop                      |
| Ee 4                          | Do                                   | do                           | 1950                   | 635                     | do              | 100+                       | 6                            | -                          | do                           |
| Ee 5                          | Gilbert Gardner                      | Williams                     | 1950                   | 645                     | do              | 67                         | 5.5                          | 51                         | do                           |
| Ee 6                          | Harry Devries                        | Owings                       | 1950                   | 645                     | do              | 100                        | 6                            | 234                        | do                           |
| Ee 7                          | William S. Widerman                  | Williams                     | 1951                   | 500                     | do              | 32                         | 6                            | 14                         | Valley                       |
| E. S                          | Flored A. Conservation               | E Datas                      | 1074                   |                         |                 |                            |                              |                            | side                         |
| Ee 9                          | Do                                   | L. Brown                     | 1951<br>—              | 525                     | do              | 50<br>60±                  | 6                            | 24                         | Hillside<br>do               |
| Ee 10                         | J. F. Gassaway                       | Edmondson(?)                 | -                      | 590                     | do              | 45                         | 6                            | -                          | Draw                         |
| Ee 11                         | C. W. Adams                          | -                            |                        | 590                     | Spring          | -                          | -                            |                            | Valley<br>side               |
| Ee 12                         | William H. Frankton                  | Williams                     | 1949                   | 620                     | Drilled         | 60                         | 55                           | 41                         | Upland<br>flat               |
| Ee 13                         | Springfield State Hospital           | Schultz                      | 1911-15                | 490                     | do              | 500-505                    | 8–6                          |                            | Hillside                     |
|                               |                                      |                              |                        |                         |                 |                            |                              |                            |                              |
| Ee 14                         | Do                                   | O'Donovan                    | 1897                   | 490                     | do              | 140                        |                              |                            | _                            |
| Ee 15                         | Do                                   | Schultz                      | 1911-15                | 490                     | do              | 507-550                    | 8-6                          |                            | Hillside                     |
| Ee 16                         | William T. Fleming                   | Easterday                    | 1952                   | 575                     | do              | 45                         | 6                            | 11                         | Valley<br>side               |
| Ee 17                         | I. R. Zeltman                        | -                            | —                      | 510                     | Dug             | 24土                        |                              | -                          | Hillside                     |
| Ec 18                         | Do                                   |                              |                        | 560                     | Drilled         | 02                         | 6                            | _                          | Hillton                      |
| Ee 19                         | W. W. Schwartz                       |                              | _                      | 630                     | do              | 2<br>20 ±                  |                              |                            | Hillside                     |
| Ee 20                         | Flohrville Methodist Church          | _                            | _                      | 600                     | do              | 32                         | 6                            | _                          | Hillton                      |
| Ee 21                         | A. R. Rhuebottom                     | D. Brown                     | 1956                   | 620                     | do              | 71                         | 6                            | 15                         | do                           |
|                               |                                      |                              |                        |                         |                 |                            |                              |                            |                              |
| Water-bearing                 | (feet be        | Vater lev<br>low land | el<br>surface)      | ent               | Yi                       | eld        | of<br>ig test                 | apacity<br>(t.)       | Use         |                                                                                                                                      |
|-------------------------------|-----------------|-----------------------|---------------------|-------------------|--------------------------|------------|-------------------------------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| formation                     | Static          | Pump-<br>ing          | Date                | Pumping<br>equipm | Gallons<br>per<br>minute | Date       | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                              |
| Wissahickon (albite)          | 60 <sup>a</sup> | 80 <sup>a</sup>       | 3/10/56             | J,E               | 10                       | 3/10/56    | 1                             | .5                    | D           |                                                                                                                                      |
| do                            | 37 53           |                       | 8/24/56             | СН                |                          | _          |                               | _                     | N           | Reported inadequate                                                                                                                  |
| do                            | 30 <sup>a</sup> |                       | 5/5/36              | J,E               | 25                       | 5/5/56     | 2                             | -                     | D           | reported marequate.                                                                                                                  |
| do                            | 30 <sup>a</sup> | 107 <sup>a</sup>      | 11/14/53            | J,E               | 5                        | 11/14/53   | -                             | <.1                   | D           |                                                                                                                                      |
| La                            | 268             | 403                   | 6/10/50             | T E               | 7                        | ( 100 /= 0 |                               | 2                     | D           |                                                                                                                                      |
| do                            | 201             | 48"<br>608            | 0/19/52             | J,E<br>T F        | 1                        | 0/19/52    |                               | . 3                   | D           |                                                                                                                                      |
| do                            | 40              | 00                    | 10/ 51/ 55          | 1.1.1             | -1                       | 10/51/55   |                               | • 4                   |             |                                                                                                                                      |
| do                            | 354             | -                     | _                   | C,E               | 8                        |            | -                             | -                     | F           | Water reported at 40 ft.                                                                                                             |
| do                            | 43.00           | -                     | H/29/56             | N                 | n.e. 19                  |            | -                             | -                     | N           | Inadequate supply.                                                                                                                   |
| do                            |                 | _                     | -                   | S,E               | _                        | -          | -                             |                       | D           | Adequate. Concrete-ring col-                                                                                                         |
| Sykesville                    | 10 <sup>a</sup> | 32ª                   | 3/14/47             | J,E               | 25                       | 3/14/47    | 10                            | 1.1                   | С           | Used chiefly for refrigerator<br>compressors. Pump capacity<br>25 gpm.                                                               |
| do                            | 14.82           |                       | 4/29/55             | J,E               |                          | -          | -                             | _                     | D           | Garage.                                                                                                                              |
| Peters Creek quartz-<br>ite   | 30 <sup>n</sup> | 35ª                   | 8/7/47              | J,E               | 22                       | 8/7/47     | . 5                           | 4.4                   | D           | Became inadequate in 1950;<br>well Ee 4 drilled as supple-<br>mentary supply. Depth of<br>pump jet 55 ft                             |
| do                            | —               | below<br>63           | 10/19/54            | J,E               | -                        | —          | -                             | -                     | D           | Pump operating when water<br>level measured.                                                                                         |
| do                            | 30 <sup>a</sup> | 45 <sup>a</sup>       | 7/27/50             | ?,E               | 2                        | 7/27/50    | 5                             | .14                   | D           |                                                                                                                                      |
| do                            | 45ª             | 50 <sup>a</sup>       | 3/24/50             | J.E               | 20                       | 3/24/50    | .5                            | 4                     | D           | See log.                                                                                                                             |
| do                            | 20 <sup>a</sup> | 24 <sup>a</sup>       | 5/2/51              | J,E               | . 8                      | 5/2/51     |                               | 2                     | D           |                                                                                                                                      |
| Sykogyille                    | 228             |                       | 5/8/51              | I F               | 6                        | = /0 /=1   |                               |                       | D           | Then treatment with                                                                                                                  |
| do                            | 13.08           | -                     | 10/20/54            | J,E<br>J,E        | _                        |            | -                             | -                     | D,F         | Supplies tenant home and harns tronstreatment unit                                                                                   |
| Wissahickon (albite)          | —               | - ,                   | -                   | C,H               | -                        | -          | -                             | -                     | D           | Reported adequate, good qual-<br>ity.                                                                                                |
| Peters Creek quartz-<br>ite   |                 |                       | -                   | S,E               | _                        | -          | -                             | -                     | D,F         | Supplies two homes and cattle.                                                                                                       |
| Sykesville or serpen-<br>tine | 25ª             | 40 <sup>n</sup>       | 9/20/49             | J,E               | 4                        | 9/20/49    | 5                             | .3                    | D           |                                                                                                                                      |
| S <b>y</b> kesville           | 16土             | _                     | 3/23/55             | -                 | 22.5-50                  | -          | -                             | -                     | N           | Airlift pump. Combined capac-<br>ity of Ee 13 and Ee 15 esti-<br>mated 100,000 gallons per day<br>by power-plant superintend-<br>ent |
| do                            | 40 <sup>8</sup> | _                     | _                   | N                 | 40                       | _          |                               |                       | N           | Exact location unknown.                                                                                                              |
| do                            | $17^{a}$        |                       | _                   |                   | 22.5-60                  | -          | _                             |                       | N           | Airlift pump.                                                                                                                        |
| metagabbro                    | 10 <sup>a</sup> | 45 <sup>a</sup>       | 3/25/52             | J,E               | 3                        | 3/25/52    | -                             | -                     | D           | Adequate.                                                                                                                            |
|                               |                 |                       | 10/10/20            | ¥ 33              |                          |            |                               |                       |             |                                                                                                                                      |
| Peters Creek quartz-<br>ite   | 13.31<br>21.37  | _                     | 10/19/54<br>11/5/56 | J,£<br>—          | -                        | -          | -                             |                       | D           |                                                                                                                                      |
| do                            | 56.50           |                       | 11/5/56             | N                 | -                        | -          | -                             |                       | N           |                                                                                                                                      |
| Wissahickon (albite)          | -               | -                     | _                   | C,E               |                          | -          | -                             | _                     | D           |                                                                                                                                      |
| Sykesville                    | 23.26           |                       | 11/29/56            | C,H               | -                        |            | -                             | _                     | D           | Water-level observation well.                                                                                                        |
| ite                           | 40 <sup>n</sup> | 50ª                   | 9/20/56             | J,E               | 6                        | 9/20/56    | 2                             | .6                    | D           |                                                                                                                                      |

TABLE 25

| Well<br>num-<br>ber<br>(Car-)           | Owner or name                                                                         | Driller                                  | Date<br>com-<br>pleted                         | Alti-<br>tude<br>(feet)         | Type<br>of well                       | Depth<br>of well<br>(feet) | Diameter of well<br>(inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|-----------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Ee 22                                   | A. R. Rhuebottom                                                                      | _                                        | -                                              | 580                             | Drilled                               | 66                         | 6                            |                         | Hillside                     |
| Ee 23<br>Ee 24<br>Ee 25<br>Ef 1<br>Ef 2 | Prentis W. VanSant<br>Carlton Poff<br>Herman Manahan<br>Wilbur Trott<br>Mr. Shervette | Driver<br>Thompson<br>Easterday<br>—     | 1956<br>1956<br>1954<br>Before<br>1940<br>1940 | 625<br>625<br>555<br>520<br>515 | do<br>do<br>Dug<br>Dug and<br>drilled | 71<br>80<br>75<br>25<br>56 | 6<br>6<br>48<br>48-6         | 46<br>22<br>40          | do<br>Hilltop<br>do<br>do    |
| Ef 3                                    | Mr. Q'Donnell                                                                         |                                          | Refore                                         | 516                             | Drilled                               | 75.1                       | 6                            |                         | do                           |
|                                         | Dati O Domini                                                                         |                                          | 1940                                           | 510                             | Dimed                                 | 101                        | U                            |                         | du                           |
| Ef 4                                    | Mr. Erb(?)                                                                            | -                                        | 1950-51                                        | 515                             | do                                    | 30-40                      | 6                            | -                       | do                           |
| EI 5                                    | Mr. Irott                                                                             | -                                        |                                                | 515                             | Dug                                   |                            | 48                           | -                       | do                           |
| Ef 7                                    | Edward F. Wilson                                                                      | Williams                                 | 1949                                           | 505                             | do                                    | 65                         | 6                            | 48                      | do                           |
| Ef 8<br>Ef 9<br>Ef 10                   | Mose Kaphrin<br>J. P. Clark<br>John M. Schmidt                                        | do<br>J. B. Edmondson<br>J. R. Edmondson | 1951<br>1948<br>1951                           | 535<br>560<br>565               | do<br>do<br>do                        | 84<br>75<br>82             | 6<br>5<br>6                  | 56<br>                  | do<br>do<br>do               |
| Ef 11<br>Ef 12                          | John W. Williams<br>Do                                                                | Williams<br>do                           | 1950<br>1954                                   | 595<br>540                      | do<br>do                              | 164<br>46                  | 6                            | 46                      | do<br>Draw                   |
| Ef 13<br>Ef 14                          | Patapsco State Park<br>Do                                                             | Tawney<br>Shultz                         | 1956                                           | 450<br>460                      | do<br>do                              | 178<br>95                  | 6                            | 57                      | Hillside<br>do               |

#### -Continued

| Water-bearing<br>formation  | Water level<br>(feet below land surfac |                  | el<br>surface) | lent    | Yi                       | eld     | of<br>1g test                 | apacity<br>/ft.)      | Use         |                                                                                                                                                                                                                                                  |
|-----------------------------|----------------------------------------|------------------|----------------|---------|--------------------------|---------|-------------------------------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                   | Static                                 | Pump-<br>ing     | Date           | Pumping | Gallons<br>per<br>minute | Date    | Duration<br>pumpir<br>(hours) | Specific o<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                                                                                          |
| Peters Creek quartz-<br>ite | 43.29                                  | -                | 11/29/56       | C,H     | -                        | -       | -                             | -                     | D           | Water-level observation well<br>1956-57.                                                                                                                                                                                                         |
| do                          | 41 <sup>a</sup>                        | 66 <sup>a</sup>  | 5/28/56        | J,E     | 5                        | 5/28/56 | .5                            | . 2                   | D           |                                                                                                                                                                                                                                                  |
| do                          | 52ª                                    | 60 <sup>a</sup>  | 5/5/56         | J,E     | 12                       | 5/5/56  | 2                             | 1.5                   | D           |                                                                                                                                                                                                                                                  |
| Sykesville                  | 42 <sup>8</sup>                        | 50 <sup>a</sup>  | 7/3/54         | J,E     | 8                        | 7/3/54  | -                             | 1.0                   | D           |                                                                                                                                                                                                                                                  |
| do                          | 24.65                                  | -                | 11/9/53        | S,E     | -                        | —       | -                             |                       | D           | Inadequate at times. Depth of pump pipe 24.8 ft.                                                                                                                                                                                                 |
| do                          | 21.65                                  | in an            | 11/9/53        | J,E     | -                        | _       | -                             | -                     | D,C         | Dug well 21.5 ft. deep with<br>water level at 21.0 ft.; drilled<br>through bottom to depth of<br>56 ft. Water level in drilled<br>well measured while recover-<br>ing after pumping. Dug well<br>yield inadequate. Depth of<br>pump jet 23.5 ft. |
| do                          | 30.54                                  | -                | 11/9/53        | J,E     |                          | -       |                               |                       | D           | Adequate supply reported.                                                                                                                                                                                                                        |
| do                          | _                                      |                  |                | J,E     | _                        |         | -0                            |                       | D           | Do                                                                                                                                                                                                                                               |
| do                          |                                        |                  | -              | 2,E     | - 1                      | -       | - 1                           |                       | D           | Do                                                                                                                                                                                                                                               |
| do                          | - 1                                    |                  |                | J,E     | -                        | -       | - 1                           |                       | D           | Do                                                                                                                                                                                                                                               |
| Peters Creek quartz-<br>ite | 38ª                                    | 43 <sup>4</sup>  | 9/5/49         | C,E     | 10+                      | 9/5/49  | 4                             | 2+                    | D           | Greenish color of water re-<br>ported; corrected by treat-<br>ment unit.                                                                                                                                                                         |
| do                          | 59 <sup>a</sup>                        | 73 <sup>a</sup>  | 4/17/51        | ?,E     | 4                        | 4/17/51 | 3                             | . 3                   | D           |                                                                                                                                                                                                                                                  |
| Sykesville                  | 35 <sup>a</sup>                        | $40^{a}$         | 4/26/48        | _       | 30                       | 4/26/48 | 1                             | 6                     | D           |                                                                                                                                                                                                                                                  |
| do                          | 35 <sup>8</sup>                        |                  | 6/1/51         | J,E     | 10                       | 6/1/51  | 1                             |                       | D           |                                                                                                                                                                                                                                                  |
| Peters Creek quartz-<br>ite | 78 <sup>a</sup>                        | 85 <sup>n</sup>  | 1/14/50        | J,E     | 5                        | 1/14/50 | 4                             | .7                    | D           | Sec well log.                                                                                                                                                                                                                                    |
| do                          | -                                      |                  | —              | NI      | -                        | —       | -                             |                       | D           | Incomplete; poor yield; to be<br>drilled deeper.                                                                                                                                                                                                 |
| Baltimore gneiss            | 58ª                                    | 145 <sup>a</sup> | 2/24/56        | J,E     | 4                        | 2/24/56 | 8                             | <.1                   | D           | arrive contrary                                                                                                                                                                                                                                  |
| do                          | - 1                                    | _                | _              | J,E     | 12                       | _       | _                             | _                     | D           | To be destroyed.                                                                                                                                                                                                                                 |

# TABLE

Records of Wells and

Water level: Reported water levels designated by "a". Pumping equipment: Method of lift: B, bucket; C, cylinder; J, jet; N, none; NI, to be installed; S, suction; T, turbine. Type of power: E, electric motor; H, hand; W, windmill; G, gasoline engine. Use of water: C, commercial or industrial; D, domestic; F, farming; I, school, institution, or camp; N, none; P, public supply.

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|------------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Ad 1                         | Frederick County Roads Comm. |             | -                      | 1,140±                  | Spring          | _                          | -                            |                            | Hillside                     |
| Ad 2                         | Richard M. Fox               | Funt        | 1954                   | 1,240                   | Drilled         | 36                         | 51                           | 35                         | Draw                         |
| A J 2                        | Vaughan W. Waynant           | Rock        | 1950                   | 1.050                   | do              | 130                        | 51                           | 33                         | Hillside                     |
| Ad 4                         | James Weamirt                | Keyser      | 1951                   | 1,130                   | do              | 86                         | 6                            | 45                         | Valley<br>side               |
| Ad 5                         | Alvin Anderson               | Funt        | 1954                   | 1,050                   | do              | 50                         | 5불                           | 16                         | do                           |
| Ad 6                         | Theodore F. Forest           | do          | 1954                   | 1,050                   | do              | 47                         | 6                            | 13                         | do                           |
| Ad 7                         | Donald Manahan               | do          | 1952                   | 1,240                   | do              | 62                         | 6                            | 32                         | do                           |
| Ad 8                         | Walter Benchoff              | do          | 1952                   | 1,240                   | do              | 4.5                        | 6                            | 35.5                       | do                           |
| Ad 9                         | Robert E. Overcash           | do          | 1952                   | 1,140                   | do              | 45                         | 6                            | 20                         | Valley                       |
| Ad 10                        | Edwin Delauter               | do          | 1952                   | 880                     | do              | 60                         | 5 🕈                          | 45                         | do                           |
| Ad 11                        | Victor Cullen State Hospital | -           | _                      | 1,350                   | Spring          | _                          | _                            |                            | Hillside                     |
| Ad 12                        | Do                           | _           | 1914                   | 1,110                   | Drilled         | 200+                       | 6                            | -                          | do                           |
| Ad 13                        | Do                           |             | 1914                   | 1,110                   | do              | $185 \pm$                  | 6                            |                            | do                           |
| Ad 14                        | Do                           | -           | 1923                   | 1,110                   | do              | $185\pm$                   | 6                            |                            | do                           |
| Ad 15                        | Glenn Fox                    | Funt        | 1954                   | 990                     | do              | 35                         | 58                           | 11                         | do                           |
| Ad 16                        | Raymond H. Kipe              | do          | 1955                   | 1,080                   | do              | 55                         | 51                           | 37                         | do                           |
| Ad 17                        | Melvin Rowe                  | do          | 1955                   | 1,190                   | do              | 56                         | 5흫                           | 46                         | do                           |
| Ad 18                        | Samuel F. Royer, Sr          | do          | 1955                   | 795                     | do              | 38                         | 6                            | 22                         | do                           |
| Ad 19                        | Henson Harbaugh              | do          | 1956                   | 880                     | do              | 60                         | 6                            | 34                         | do                           |
| Ad 20                        | Floyd E. Brown               | do          | 1956                   | 1,560                   | do              | 70                         | 51                           | 21                         | do                           |
| Ad 21                        | Glenn R. Bumbaugh            | do          | 1956                   | 1,585                   | do              | 45                         | 58                           | 40.5                       | do                           |
| Ae 1                         | Edward L. Myers              | H. E. Wantz | 1946                   | 570                     | do              | 179                        | 51                           | 75                         | do                           |
| Ae 2                         | C. H. Grable                 |             | -                      | 515                     | Spring          |                            |                              | -                          | Valley                       |
| Ae 3                         | Austin I. Knott              | H. E. Wantz | 1950                   | 610                     | Drilled         | 53                         | 5                            | 32.8                       | Hilltop                      |
| Ae 4                         | Mrs. Toye                    | Owings      | 1949                   | 710                     | do              | 125                        | 6                            | 125(?)                     | do                           |
| Ae 5                         | Henery T. Zurgable           | C. L. Wantz | 1946                   | 445                     | do              | 100                        | 6                            | 6                          | Hilltop                      |
| Ae 6                         | Mr. Richards                 | -           | Before<br>1915         | 680                     | Drilled         | 60-65                      | 6(?)                         | -                          | Hillside                     |
| Ae 7                         | L. A. Herring                | _           | Old                    | 545                     | Dug             | 27                         | 48                           | -                          | Hilltop                      |
| Ae 8                         | Mr. Tellis                   |             | 1945-47                | 540                     | Drilled         | 40                         | 6                            |                            | Hillside                     |
| Ae 9                         | George D. Florence           | H. E. Wantz | 1949                   | 540                     | do              | 75                         | 8                            | 10                         | Hilltop                      |
| Ae 10                        | Edward Meadows               | Cromwell    | 1955                   | 500                     | do              | 150                        | 5 🕈                          | 31                         | Hillside                     |
| Ae 11                        | Do                           | _           | -                      | 500                     | do              | 100                        | 6                            | -                          | do                           |

## 26 Springs in Frederick County

| Water-bearing                             | Wa<br>belo               | ter level<br>w land s | (feet<br>urface) | equip-          | Yi                       | eld         | of<br>ng test                 | apacity<br>/ft.)      | Use         |                                                            |
|-------------------------------------------|--------------------------|-----------------------|------------------|-----------------|--------------------------|-------------|-------------------------------|-----------------------|-------------|------------------------------------------------------------|
| formation                                 | Static                   | Pump-<br>ing          | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date        | Duration<br>pumpin<br>(hours) | Specific (<br>(g.p.m. | ot<br>water | Remarks                                                    |
| aporhyolite                               | -                        |                       | -                | N               | 1.0                      | 8/12/54     | -                             | -                     | D           | Temperature May 31, 1956, 49°F.                            |
| Catoctin metabasalt                       | 15 <sup>a</sup>          | 25 <sup>a</sup>       | 3/12/49          | C,E             | 10                       | 3/12/49     |                               | 1.0                   | D           | See chemical analysis. Adequate                            |
| do                                        | 70 <sup>n</sup>          | 110 <sup>a</sup>      | 7/31/50          | I.E             | 2.5                      | 7/31/50     | 0.3                           | <.1                   | D           | 0-1-15                                                     |
| do                                        | 35 <sup>8</sup>          | 50 <sup>a</sup>       | 1/5/51           | J,E             | 5                        | 1/5/51      | . 5                           | .3                    | D           |                                                            |
| do                                        | 15 <sup>a</sup>          | 408                   | 6/7/54           | _               | 10                       | 6/6/54      | 2                             | . 4                   | D           |                                                            |
| do                                        | 128                      | 308                   | 3/8/54           | _               | 5                        | 3/8/54      | 1                             | 2                     | Ď           | See well log                                               |
| do                                        | 58                       | 258                   | 3/7/52           | ΙE              | 10                       | 3/7/52      | 2                             |                       | Ď           | occ wen log.                                               |
| do                                        | 108                      | 158                   | 7/3/52           | J ,             | 10                       | 7/2/52      | 1                             | 2.0                   | D           |                                                            |
| do                                        | 108                      | 308                   | 7/10/52          |                 | 6                        | 7/10/52     | 1                             | 2.0                   | D           | See well log                                               |
| do                                        | 308                      | 508                   | 10/1/52          | IF              | 1 17                     | 10/1/52     | 1                             |                       | D           | See well log.                                              |
| Contact-aporhyolite<br>and Catoctin meta- | _                        | _                     |                  | N               | 40-80                    | 6/12/56     | -                             |                       | I           | "Bowman Spring."                                           |
| Catastin matchesalt                       | c.8.                     | 1758                  | 6/112/50         | TC              | 20                       | c la a la c |                               |                       |             |                                                            |
| Catoctin metabasart                       | 3                        | 115                   | 0/13/30          | 1,0             | 30                       | 0/13/30     |                               | - 1                   | l.          |                                                            |
| do                                        | 5"                       |                       | 0/13/30          | I,E             | 30                       | 0/13/50     |                               |                       | L           |                                                            |
| do                                        | 3.0                      |                       | 0/13/30          | 1,6             | 30                       | 0/13/50     | _                             |                       | 1           |                                                            |
| do                                        | 15"                      | 284                   | 3/25/54          | J,E             | 8                        | 3/25/54     | 1                             | .4                    | D           |                                                            |
| do                                        | 16 <sup>n</sup>          | 40%                   | 3/7/55           | J,E             | 8                        | 3/7/55      | 2                             | .3                    | D           |                                                            |
| aporhyolite                               | 20 <sup>n</sup>          | 35 <sup>a</sup>       | 11/11/55         | J,E             | 12                       | 11/11/55    | 1                             | .8                    | D           |                                                            |
| Catoctin metabasalt                       | 20 <sup>a</sup>          | 31 <sup>a</sup>       | 2/18/55          | J,E             | 8                        | 2/18/55     | 2                             | . 7                   | D           | See well log.                                              |
| do                                        | 20 <sup>8</sup>          | 50 <sup>a</sup>       | 6/16/56          | -               | 10                       | 6/16/56     | 2                             | .3                    | D           |                                                            |
| do                                        | 18 <sup>a</sup>          | 45ª                   | 8/8/56           | J,E             | 15                       | 8/8/56      | 2                             | 6.0                   | D           |                                                            |
| do                                        | 18 <sup>8</sup>          | 36 <sup>a</sup>       | 11/23/56         | J,E             | 10                       | 11/23/56    | 1                             | . 55                  | D           |                                                            |
| Frederick limestone                       | 16 <sup>n</sup>          | -                     | 9/27/46          | ?,E             | 5(?)                     | 9/27/46     | .3                            | -                     | D           | Reported bailed dry in 20 min-                             |
| Alluvial cones                            | -                        |                       | -                | N               | -                        | -           |                               | -                     | D           | Perennial flow reported. Rock-<br>lined collecting chamber |
| Frederick limestone(?)                    | 25ª                      | _                     | 8/4/50           | 2.E             | 10(?)                    | 8/4/50      | .1                            | _                     | D           |                                                            |
| Loudoun                                   | 40 <sup>8</sup>          | 100 <sup>a</sup>      | 4/2/49           | J,E             | 20                       |             | .5                            | 0.3                   | D           | Water reported "rusty." See                                |
| Gettysburg shale                          | 21 <sup>n</sup>          |                       | 10/7/46          | J,E             | 7(?)                     | 10/7/46     | .3                            | -                     | C,D         | Reported bailed dry in 20 min-                             |
| Catoetin metabasalt                       |                          | -                     | ~                | -               | -                        | _           | -                             |                       | -           | Irony water reported.                                      |
| diabase                                   | 23.75                    | _                     | 9/13/55          | J,E             | _                        | _           | _                             | _                     | D           | Barely adequate.                                           |
| do                                        | 19.23                    | -                     | 9/13/55          | C,H;<br>IF      | -                        | -           | -                             | -                     | D           | Adequate supply.                                           |
| Gettysburg shale<br>(baked zone)          | 20 <sup>a</sup>          | -                     | 7/12/49          | J(?),<br>E      | 1.5(?)                   | 7/12/49     | .3                            |                       | D           | Reported bailed dry in 20 min-<br>utes. See well log.      |
| Gettysburg shale                          | 37 <sup>a</sup><br>19.50 | 94 <sup>a</sup>       | 7/11/55          | NI              | 10                       | 7/11/55     | 2                             | . 1                   | F           |                                                            |
| do                                        | 22.62                    | -                     | 9/13/55          | J,E             | -                        |             | -                             | -                     | D,F         | Small yield reported.                                      |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                              | Driller             | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well           | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|--------------------------------------------|---------------------|------------------------|-------------------------|---------------------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Ae 12<br>Ae 13<br>Ae 14      | Edward Meadows<br>Do<br>Dr. R. T. Marshall | Easterday           | —<br>Old<br>1952       | 500<br>500<br>550       | Drilled<br>Dug<br>Drilled | 77<br>34<br>164            | 6<br>6                       | <br><br>77                 | Hillside<br>do<br>do         |
| Ae 15                        | R. B. Derlinger                            |                     | _                      | 780                     | Spring                    | _                          | -                            | -                          | do                           |
| A. 16                        | Harry Masser                               | Funt                | 1051                   | 1.010                   | Drilled                   | 50                         | 55                           | 16                         | do                           |
| Ae 17                        | Howard Late                                | do                  | 1950                   | 950                     | do                        | 87                         | 6                            | 85                         | do                           |
| Ae 18                        | Do                                         | _                   |                        | 970                     | Spring                    |                            | _                            | _                          | do                           |
| Ae 19                        | Mr. Mesner                                 | —                   | -                      | 670                     | do                        | -                          |                              | -                          | Valley                       |
| Ae 20                        | Gurmon Working                             | Funt                | 1955                   | 1,100                   | Drilled                   | 35                         | 6                            | 19                         | Hillside                     |
| Ae 21                        | Franklin Brauner                           | Kohl Bros.          | 1954                   | 500                     | do                        | 42                         | 55                           | 32                         | Valley                       |
| Ae 22                        | William Brauner                            | do                  | 1954                   | 515                     | do                        | 65                         | 55                           | 42                         | Hillside                     |
| Ae 23                        | Charles Long                               | Harris              | 1954                   | 515                     | do                        | 74                         | 58                           | 23                         | do                           |
| Ae 24                        | Joseph Ash                                 | H.E. and C.L. Wantz | 1945                   | 450                     | do                        | 83                         | 6                            | 10                         | Hilltop                      |
| Ae 25                        | Mr. Rial                                   | _                   | -                      | 505                     | Spring                    | -                          | -                            | -                          | Hillside                     |
| Ae 26                        | Clarence Wivell                            | C. L. Wantz         | 1954                   | 450                     | Drilled                   | 99                         | 58                           | 151                        | do                           |
| Ae 27                        | James M. Condon                            | Funt                | 1953                   | 520                     | do                        | 40                         | 58                           | 38                         | do                           |
| Ae 28                        | Mt. St. Marys College                      | -                   | Old                    | 650                     | do                        | 850                        | 6                            |                            | do                           |
| Ae 29                        | Do                                         | _                   | Old                    | 630                     | do                        | 240                        |                              | -                          | do                           |
| Ae 30                        | Do                                         | -                   |                        | 760                     | Spring                    | -                          | -                            | -                          | đo                           |
| Ae 31                        | Emmitsburg Water Co.                       |                     | Old                    | 670                     | Drilled                   | 161                        | 8                            | 20±                        | Valley                       |
|                              |                                            |                     |                        |                         |                           |                            |                              |                            |                              |
| Ae 32                        | Do                                         | _                   | _                      | 800                     | do                        | 47                         | 6                            | 20±                        | Hillside                     |
| Ae 33                        | Do                                         | -                   | Old                    | 710                     | do                        | 58                         | 6                            | 20±                        | Valley                       |
| Ae 34                        | Do                                         |                     | 1936                   | 780                     | do                        | 98                         | 6                            | 20+                        | Hillside                     |
| Ae 35                        | Lawrence J. Ott                            | Keyser              | 1951                   | 620                     | do                        | 23                         | 6                            | 23                         | do                           |
| Ae 36                        | Joseph Young                               | _                   | -                      | 710                     | Spring                    | -                          | -                            | -                          | Valley<br>side               |
| Af 1                         | Toms Creek Methodist Church                | H. E. Wantz         | 1950(?)                | 430                     | Drilled                   | 46                         | 5-\$                         | 41.5                       | Hillside                     |
| Af 2                         | Frank Valentine                            | do                  | 1950                   | 44.5                    | do                        | 50                         | 5\$                          | 41.8                       | Hillton                      |
| Af 3                         | Dennis C. Simmons                          | C. L. Wantz         | 1950                   | 420                     | do                        | 103                        | 55                           | 32                         | Hillside                     |
| Af 4                         | G. Arthur Starner                          | Fair                | 1949                   | 460                     | do                        | 66                         | 6                            | 6                          | Hilltop                      |
| 45 -                         | M                                          |                     | 1055                   | 4.17                    | 1.                        | 125                        |                              | 4.4                        |                              |
| AI 5                         | Tohn W. Hickman                            | do                  | 1955                   | 445                     | do                        | 135                        | 6                            | 22                         | do                           |
| NI 0                         | jond W. Hickman                            | αo                  | 1921                   | 490                     | đo                        | 16                         | 0                            | 23                         | (0)                          |
| Af 7                         | Carl Frock, Jr.                            | do                  | 1953                   | 490                     | do                        | 145                        | 6                            | 11                         | do                           |
| Af 8                         | William F. Routzahan                       | Showers             | 1952                   | 420                     | ob                        | 100                        | 6                            | 7                          | Hillside                     |

| Water-hearing                                | Wabelo           | ter leve<br>w land s | l (feet<br>surface) | equip-          | Y                        | ield              | of<br>1g test                 | apacity<br>/ft.)      | Use         |                                                                                               |
|----------------------------------------------|------------------|----------------------|---------------------|-----------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------|
| formation                                    | Static           | Pump-<br>ing         | Date                | Pumping<br>ment | Gallons<br>per<br>minute | Date              | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                       |
| Gettysburg shale                             | 23.3             | _                    | 9/13/55             | N               | -                        |                   | _                             |                       | N           | Small yield reported.                                                                         |
| do                                           | 23.20            |                      | 9/13/55             | C,W             | -                        |                   | (1 - 1)                       | -                     | N           |                                                                                               |
| do<br>Catoctin metabasalt                    | 11.              | 164 <sup>a</sup>     | 5/8/52              | J,E<br>—        | 1<br>15                  | 5/8/52<br>5/31/56 | -                             | <.1                   | D<br>N      | Barely adequate.<br>Improved with collecting cham-<br>ber. Temperature May 31,<br>1956, 54°F. |
| Loudoun                                      | 10 <sup>a</sup>  | 40 <sup>a</sup>      | 3/27/54             | J,E             | 6                        | 3/27/54           | 1                             | . 2                   | D           |                                                                                               |
| Catoctin metabasalt                          | 52ª              | 57ª                  | 8/8/50              | J,E             | 20                       | 8/8/50            | 1                             | 4(?)                  | D           |                                                                                               |
|                                              | 25.51            |                      | 6/13/56             |                 |                          |                   |                               |                       |             |                                                                                               |
| do                                           | 47               |                      |                     | N               | 2-4                      | 6/13/56           | _                             |                       | N           | Rock-lined spring pit.                                                                        |
| Loudoun                                      | -                |                      | -                   | C,?             | 10                       | 6/13/56           |                               | _                     |             | Rock-lined spring pit. Tempera-<br>ture June 13, 1956, 58°F.                                  |
| Catoctin metabasalt                          | 12 <sup>a</sup>  | 328                  | 2/15/55             | J,E             | 10                       | -                 | 1                             | .5                    | D           |                                                                                               |
| Gettysburg shale<br>(baked zone)             | 10 <sup>a</sup>  | 12.5ª                | 2/18/54             | J,15            | 4                        | 2/18/54           | 1                             | 1.8                   | D           | Water reported hard.                                                                          |
| do                                           | 11 <sup>n</sup>  | 14 <sup>a</sup>      | 2/28/54             | J,E             | 3                        | 2/28/54           | 1                             | 1.0                   | D           | Do                                                                                            |
| do                                           | 20*              | 60 <sup>n</sup>      | 12/11/54            | J,E             |                          |                   | - 1                           |                       | D           |                                                                                               |
| Gettysburg shale                             | 30 *             |                      | 11/11/45            | C,E             | 15                       | 10/19/45          | _                             |                       | D           |                                                                                               |
| Harpers phythte                              |                  |                      |                     |                 | 5                        | 0/15/51           |                               | _                     | 2           | Temperature June 15, 1956,<br>62°F.                                                           |
| Gettysburg shale                             | 21.5"            |                      | 6/9/54              | J,E             | _                        |                   | .5                            |                       | D           | Bailed dry in 30 minutes.                                                                     |
| (baked zone)                                 | 10"              | 344                  | 8/3/53              | J,E             | 8                        | 8/3/53            | 2                             | . 3                   | D           |                                                                                               |
| Weverton quartzite                           | 10 <sup>8</sup>  |                      |                     | T,E             | 80                       | -                 | -                             | -                     | I           | Standby well. Crooked hole.                                                                   |
| Weverton quartzite or<br>Frederick limestone | 20 <sup>34</sup> | _                    | -                   | C,E             | -                        | -                 | -                             | —                     | Ĩ.          | Standby well.                                                                                 |
| Weverton quartzite                           |                  | _                    |                     | _               | 27                       | 9/21/56           | -                             |                       | I           | Main supply. Temperature Sept.<br>21, 1956, 57°F. Gravity flow<br>to recervoir                |
| Catoctin metabasalt                          | 4.5ª<br>.70      | 12 <sup>a</sup>      | 1956<br>11/9/56     | C,E             | 160                      | 1956              | 24+                           | 7.5                   | N           | Standby well. Main supply is<br>spring- and stream-fed sur-<br>face reservoir.                |
| do                                           | 6.02             | _                    | 11/13/56            | N               | - 1                      | _                 |                               | _                     | N           |                                                                                               |
| do                                           | -                |                      |                     | C,E             | 10                       |                   | _                             |                       | N           | Standby well. Reported yield 15,000 gpd during dry periods.                                   |
| do                                           | 7.16             |                      | 11/13/56            | C,E             | -                        | -                 | _                             | _                     | N           | Standby well.                                                                                 |
| Loudoun or Harpers                           | 15 <sup>n</sup>  | 23ª                  | 11/29/51            | J,E             | 3                        | 11/29/51          | .5                            | . 3                   | D           |                                                                                               |
| phyllite                                     | 16.52            |                      | 11/29/51            |                 |                          |                   |                               |                       |             |                                                                                               |
| Loudoun                                      | -                |                      | _                   | N               | -1                       | 11/14/56          | -                             | _                     | D           | Supplies two homes; gravity<br>flow. Temperature Nov. 14,<br>1056 56°F                        |
| Gettysburg shale                             | 12 <sup>a</sup>  | —                    | 7/3/50              | J,E             | 15                       | 7/3/50            | .6                            |                       | I           | Reported bailed dry in 40 min-                                                                |
| do                                           | 25ª              | _                    | 8/26/50             | J.E             | .5                       | 8/26/50           |                               |                       | D           | web3.                                                                                         |
| do                                           | 15 <sup>8</sup>  | _                    | 9/4/50              | J.E             | 20(?)                    | 9/4/50            | .5                            |                       | D.F         | See well log.                                                                                 |
| do                                           | 6.8              |                      | 4/4/55              | J,E             | 40                       | 8/21/55           | 1                             |                       | D           | Adequate supply. Water re-<br>ported hard. See chemical                                       |
| do                                           | 27ª              | 1.30 <sup>®</sup>    | 2/9/55              | 3.5             | 3                        | 2/9/55            | 1                             | < 1                   | D           | und1y313.                                                                                     |
| Gettysburg shale<br>(baked zone?)            | 40 <sup>a</sup>  | 81ª                  | 9/10/51             |                 | 1                        | 9/10/51           | .25                           | <.1                   | D           |                                                                                               |
| do                                           | 23 <sup>a</sup>  | 140 <sup>a</sup>     | 9/12/53             | C.H             | 9                        | 9/12/53           | 2                             | <.1                   | D           |                                                                                               |
| Gettysburg shale                             | 15 <sup>a</sup>  | 75%                  | 6/6/52              | 2.E             | 30                       | 6/6/52            | 1                             | .5                    | D           |                                                                                               |
|                                              |                  |                      | , .,                | ,               |                          | .,.,.             |                               |                       |             |                                                                                               |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name      | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|--------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Af 9                         | Milton G. Springer | C. L. Wantz | 1945                   | 415                     | Drilled         | 67                         | 6                            | ?                          | Upland                       |
| Af 10                        | William H. Wivell  | do          | 1951                   | 445                     | do              | 91                         | 58                           | 29.5                       | Hillton                      |
| Af 11                        | Charles Copenhaver | Showers     | 1952                   | 450                     | do              | 55                         | 6                            | 6.5                        | Hillside                     |
| Af 12                        | Roland L. Frock    | Fair        | 1054                   | 445                     | do              | 08                         | 6                            | 0                          | do                           |
| AF 13                        | Paul C. Glass      | Miller      | 1056                   | 400                     | do              | 109                        | 5.8                          | 16                         | Hillton                      |
| Af 14                        | Scott McNair, Jr.  | H. E. Wantz | 1950                   | 430                     | do              | 72                         | 55                           | 8                          | Hillside                     |
| A 6 15                       | U S McNair         | da          | 1052                   | 450                     | do              | 114                        | c é                          | 8                          | do                           |
| AT 10                        | Donis D. Condone   | Tota        | 1955                   | 400                     | do              | 70                         | 28                           | 10                         | do                           |
| AT 10                        | Regis R. Sanders   | Fair        | 1955                   | 427                     | do              | 10                         | 0                            | 10                         | do                           |
| Af 17                        | Do                 | arvel       | Old                    | 425                     | Dug             | 63                         | 36                           | -                          | do                           |
| Af 18                        | Robert E. Hampson  | C. L. Wantz | 1950                   | 425                     | Drilled         | 120                        | 5                            | 6.5                        | do                           |
| Af 19                        | Ralph Baumgardner  | H. E. Wantz | 1954                   | 390                     | do              | 123                        | 6                            | 6                          | do                           |
| Af 20                        | Do                 | -           | _                      | 390                     | do              | 110                        | 6                            | -                          | do                           |
| Ag 1                         | J. M. Brooks       | Sterner     | 1950                   | 395                     | do              | 62                         | 6                            | 12                         | Hilltop                      |
| Ag 2                         | Peter L. Shockley  | Fair        | 1949                   | 445                     | do              | 135                        | 6                            | 13.5                       | Upland                       |
| Ag 3                         | Do                 | _           | -                      | 445                     | do              | 100±                       | 6                            |                            | do                           |
| Bc 1                         | Floyd Spade        | Harley      | 1951                   | 1,130                   | do              | 44                         | 6                            | 9                          | Hillside                     |
| Bc 2                         | Richard Spangler   | do          | 1951                   | 1,110                   | do              | 59.5                       | 6                            | 33                         | do                           |
| Bc 3                         | Paul Kline, Jr.    | do          | 1951                   | 1,260                   | do              | 33                         | 6                            | 12                         | do                           |
| Bc 4                         | Charles Leatberman | Holtzman    | 1947                   | 1,105                   | do              | 47                         | 5                            | 12                         | do                           |
| Bc 5                         | Richard Spangler   | Rock        | 1950                   | 1,110                   | do              | 22                         | 6(?)                         | 0                          | do                           |
| Bc 6                         | Floyd Spade        | Cowan       | 1954                   | 1,120                   | do              | 95                         | 5                            | 33                         | do                           |
| Bc 7                         | James A. Bear      | do          | 1955                   | 1,160                   | do              | 90                         | 6                            | 26                         | do                           |
| Bc 8                         | Abe Grossnickle    | E. R. Smith | 1955                   | 1,320                   | do              | 68                         | 5                            | 23                         | Hilltop                      |
| Bc 9                         | Kenneth Frushour   | do          | 1956                   | 1,320                   | do              | 42                         | 5#                           | 20                         | do                           |
| Bc 10                        | Evans Brown        | Harley      | 1951                   | 1,600                   | do              | 54                         | 6                            | 45                         | Valley                       |
| Bc 11                        | O'Day Toms         | do          | 1951                   | 1,580                   | do              | 40                         | 6                            | 25                         | do                           |
| Bc 12                        | Hunter McAfee      | Martin      | 1954                   | 1.620                   | do              | 56                         | 6                            | 46                         | Hillside                     |
| Bc 13                        | Roseann McAfee     | E. R. Smith | 1955                   | 1.670                   | do              | 48                         | 5                            | 36                         | do                           |
| Bc 14                        | Cyrus Early        | Fogel       | Old                    | 1,455                   | do              | 80                         | 5 -                          | 13                         | Hilltop                      |
| Bc 15                        | Paul Delauter      | Funt        | 1956                   | 1,680                   | do              | 32                         | 6                            | 20                         | Hillside                     |
| Bc 16                        | Albert L. Pryor    |             | 1940                   | 1,310                   | do              | 69                         | 6                            | -                          | do                           |
| Bd 1                         | Town of Thurmont   | -           | 1929-30                | 630                     | do              | 200-400                    | 6                            | _                          | Valley                       |
| Bd 2                         | Do                 | -           | 1929-30                | 640                     | do              | 500                        | 6                            | 22(?)                      | do                           |

| Water hearing                     | Wa<br>belo      | iter level<br>w land s | (feet<br>urface) | equip-          | Yi                       | eld      | ng test                       | capacity<br>./ft.)    | Use         |                                                                                       |
|-----------------------------------|-----------------|------------------------|------------------|-----------------|--------------------------|----------|-------------------------------|-----------------------|-------------|---------------------------------------------------------------------------------------|
| formation                         | Static          | Pump-<br>ing           | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpir<br>(hours) | Specific (<br>(g.p.m. | of<br>water | Remarks                                                                               |
| Gettysburg shale                  | 7ª.             |                        | 10/21/45         | ?,E             | 3                        | 10/24/45 | .5                            | -                     | n           | Bailed dry in 25 minutes.                                                             |
| do                                | 20.8            | _                      | 5/9/51           | _               | 5(2)                     | 5/9/51   | .5                            | _                     | D           | Bailed dry in 30 mieutes.                                                             |
| do                                | 8a.             | 40 <sup>B</sup>        | 5/28/52          | L.E             | 80                       | 5/28/52  | 5                             | 3.5                   | D.F         |                                                                                       |
| do                                | 118             | 75a                    | 6/9/54           | IE              | 8                        | 6/0/51   | 5                             | 1 1                   | D           | Poor yield in summer                                                                  |
| do                                | 218             | 758                    | 1/12/56          | TE              | 7                        | 1/12/56  | 2                             | 1 4                   | F           | r oor yreld in summer                                                                 |
| Cattuchurg chalo                  | 17 58           | 2.5                    | 1/12/50          | ј,ц<br>т.Е      | 15                       | 1/12/50  | 2                             | 117                   | DE          |                                                                                       |
| (baked sone?)                     | 11.0            |                        | 1/20/30          |                 | 10                       | 3/20/50  | .5                            |                       | 2,1         |                                                                                       |
| Cattuchurg shalo                  | 28 58           |                        | 12/8/53          | Ċ ?             |                          |          | 3                             |                       | DF          | Bailed dry in 20 minutes                                                              |
| Gettysburg shale<br>(baked zone?) | 40 <sup>a</sup> | 65 <sup>a</sup>        | 4/28/55          | J,E             | 7                        | 4/28/55  | 1                             | . 3                   | F           | Bancu dry in 20 minutes.                                                              |
| do                                | 35 <sup>8</sup> | _                      | 6/21/56          | C,E             | ±5                       | 6/21/56  |                               |                       | D           | Poor supply some summers.                                                             |
| Gettysburg sbale                  | 16 <sup>a</sup> | _                      | 8/10/50          | C,E             | -                        |          | .3                            |                       | D           | Bailed dry in 20 minutes.                                                             |
| do                                | 60 <sup>a</sup> | -                      | 11/17/54         | J,E             | .5(?)                    | 11/17/54 | -                             | —                     | F           | Reported bailed dry in 20 min-                                                        |
|                                   | 57.73           | _                      | 10/24/56         |                 |                          |          |                               |                       |             | utes. See well log.                                                                   |
| do                                | 60 <sup>a</sup> | -                      | -                | C,E             |                          | -        | -                             | -                     | D           |                                                                                       |
| do                                | 18 <sup>8</sup> | _                      | 6/6/50           | C.H             | 1                        | -        |                               | _                     | D           | See well log.                                                                         |
|                                   | 25.30           |                        | 3/20/51          | - /             |                          |          |                               |                       |             |                                                                                       |
| do                                | 40 <sup>a</sup> | 85 <sup>a</sup>        | 7/29/49          | C,E             | 12                       | 7/29/49  | 1.5                           | 27                    | D           | Adequatc supply.                                                                      |
| do                                | 22.70           | -                      | 9/12/55          | C,W             | -                        | -        | —                             | -                     | F           | Water discharged into cistern.<br>Well pumped just before<br>water-level measurement. |
| aporhyolite                       | 17 <sup>a</sup> | 31 <sup>a</sup>        | 4/30/51          | J,E             | 3                        | 4/30/51  | -                             | . 2                   | N           | Inadequate. Three essentially<br>dry holes drilled prior to this<br>one.              |
| do                                | 21 <sup>a</sup> | 21 <sup>a</sup>        | 4/20/51          | LE              | 20                       | 4/20/51  | _                             | -                     | D           | See chemical analysis.                                                                |
| do                                | 2.38            | 289                    | 10/4/51          | I.E             | 2.5                      | 10/4/51  | _                             | .5                    | D           |                                                                                       |
| do                                | 288             | 30 <sup>n</sup>        | 2/25/47          | CE              | 5                        | 2/25/47  | 1                             | .4                    | D           |                                                                                       |
| do                                | _               | _                      |                  | N               | _                        |          | -                             |                       | N           | Filled in; driller could not pene-                                                    |
| da                                | 718             | 0.58                   | 0/15/54          | TE              | 8-10                     | 0/15/54  | _                             | 4.5                   | n           |                                                                                       |
| do                                | 738             | 008                    | 5/30/55          |                 | 4 5                      | 5/30/55  | 2                             | 27                    | n           | Reamed and grouted to 18 ft                                                           |
| do                                | 228             | 408                    | 12/26/55         | NT              | 2                        | 12/26/55 | 1                             | 11                    | n           | Reamed and grouted to 18 ft                                                           |
| 00                                | 21 16           | TU                     | 1/26/54          | 114             | -                        | 12/20/00 | A                             |                       |             | See well log                                                                          |
| da                                | 21.10           | 208                    | 12/12/50         | TE              | 10                       | 12/12/55 | 1                             | 1 22                  | D           | See wen log.                                                                          |
| uo                                | 25 06           | 50                     | 1/26/56          | J, L            | 10                       | 12/12/00 | 1                             | 1.54                  | U           |                                                                                       |
| do                                | 30.5ª           | 30.5ª                  | 9/26/51          | J,E             | 30                       | 9/26/51  | 1                             | -                     | D           |                                                                                       |
| do                                | 2.18            | 2.18                   | 0/28/51          | TE              | 30                       | 0/28/51  | 1                             |                       | D           | See well log                                                                          |
| do                                | 228             | 27                     | 11/10/54         | J,D             | 20                       | 11/10/54 | 6                             | _                     | D           | ore were tog.                                                                         |
| do                                | 3.18            | 408                    | 7/73/54          | TF              | 6                        | 7/23/59  | 1                             | 1.0                   | 'n          | See well log                                                                          |
| de                                | 218             | 40                     | 014              | CE              | 8.10                     | 1/20/00  | 1                             | 1.0                   | DE          | Dec well log.                                                                         |
| 00                                | 25 40           | -                      | 0/14/5/          | تكرب            | 8-10                     | _        |                               |                       | 1,1         |                                                                                       |
| Contraction models and b          | 05.49           | 208                    | 9/14/30          | NTT             | 15                       | 11/2/54  | 2                             | 1.2                   | D           |                                                                                       |
| Catoctin metabasalt               | 8"              | 20**                   | 11/2/30          | 1.11            | 15                       | 11/2/30  | 2                             | 1.2                   | D           |                                                                                       |
| metaandesite                      | 1.07 27.61      | _                      | 11/6/50          | C,E             | -                        | -        | -                             | -                     | D,F         |                                                                                       |
| Harpers phyllite                  | 13.61           | _                      | 10/1/40          | N               | _                        | _        | -                             | _                     | N           | Water-level observation well                                                          |
| do                                | 20.35           | _                      | 10/1/4           | C,E             | _                        | _        | -                             |                       | P           | Obstruction at 34 ft.<br>Augments spring supply.                                      |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name               | Driller                      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|-----------------------------|------------------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Bd 3                         | Catoctin Mountain Park      | -                            | _                      | 1,386                   | Spring          |                            |                              |                            | Hillside                     |
| Bd 4                         | Do                          | _                            | -                      | 1,400                   | do              | _                          | _                            | _                          | do                           |
| Bd 5                         | Do                          | -                            | 1936(?)                | 1,648                   | Drilled         | 40.5                       | -                            |                            | do                           |
| Bd 6                         | Do                          | Columbia Pump &<br>Well Co.  | 1955                   | 1,750                   | do              | 230                        | 8                            | 57                         | Hilltop                      |
| Bd 7                         | Do                          | E. R. Smith and Kohl<br>Bros | 1956                   | 1,140                   | do              | 180                        | 6                            | $45\pm$                    | Valley                       |
| Bd 8                         | Do                          | Kohl Bros.                   | 1956                   | 1,160                   | do              | 126                        | 6                            | 30                         | do                           |
| Bd 9                         | Clyde Kendall               | C. Kendall                   | 1953-54                | 820                     | Dug             | 30                         | 36                           |                            | Hillside                     |
|                              |                             |                              |                        |                         |                 |                            |                              |                            |                              |
| Bd 10                        | Wade Reed                   |                              |                        | 600                     | Contern         |                            |                              |                            | 1.                           |
| Bd 11                        | Melvin Huvett               | Harley                       | 1050                   | 600                     | Drilled         | 13                         | 6                            | 16                         | do                           |
| Bd 12                        | George P. Skates, Jr.       | Rock                         | 1950                   | 1,460                   | do              | 65                         | 58                           | 43                         | Valley                       |
| Bd 13                        | Alice Wetzel                | -                            | Old                    | 860                     | Dug             | 39                         | 36                           | -                          | do                           |
| Bd 14                        | Ernest Delphey              | Keyser                       | 1952                   | 500                     | Drilled         | 44                         | 5 \$                         | 39                         | Hillside                     |
| Bd 15                        | Catoctin Furnace School     | Cromwell                     | 1949                   | 535                     | do              | 163                        | 6                            | 150                        | Upland<br>flat               |
| Bd 16                        | Lorraine G. Harne           | Green                        | 1946                   | 500                     | do              | 40                         | 6                            | 10                         | Hillside                     |
| Bd 17                        | A. Lampsi                   | Cromwell                     | 1955                   | 525                     | do              | 47                         | 58                           | 20                         | do                           |
| Bd 18                        | George Miller               | do                           | 1955                   | 500                     | do              | 50                         | 5 \$                         | 43                         | do                           |
| Bd 19                        | Robert Devilbiss            | Harley                       | 1952                   | 450                     | do              | 38                         | 6                            | 22                         | do                           |
| Bd 20                        | Paul Sweeney                | Corum                        | 1949                   | 480                     | do              | 48                         | 5 - 5                        | 33                         | do                           |
| Bd 21                        | W. R. Kelly                 | Holtzman                     | 1946                   | 540                     | do              | 77                         | 5-5                          | 36                         | do                           |
| Bd 22                        | George M. Eichelberger, Jr. | Keyser                       | 1949                   | 580                     | do              | 52                         | 58                           | 36                         | do                           |
| Bd 23                        | Do                          | do                           | 1949                   | 580                     | do              | 52                         | 5.5                          | 36                         | do                           |
| Bd 24                        | Do                          | do                           | 1950                   | 565                     | do              | 114                        | 6                            | 8                          | do                           |
| Bd 25                        | Arnold Hurley               | Harley                       | 1951                   | 1,510                   | do              | 27                         | 6                            | 22                         | do                           |
| <b>Bd</b> 26                 | State of Maryland           | -                            | -                      | 950                     | Spring          | -                          | 6                            | -                          | do                           |
| Bd 27                        | Catoctin Mountain Park      | Kohl Bros.                   | 1956                   | 1,860                   | Drilled         | 144                        | 6                            | 11                         | Hilltop                      |
| <b>Bd</b> 28                 | Town of Thurmont            | -                            | 1929-30                | _                       | do              | 1,000                      |                              |                            | Valley                       |
| <b>B</b> d 29                | Do                          |                              | -                      | 540                     | do              | 400                        | 8 or 10                      | -                          | do                           |
| Be 1                         | Do                          | -                            | abou t<br>1936         | 510                     | do              | 192                        | 8-6                          | 73                         | Upland<br>flat               |
| Be 2                         | U. S. Army                  | U. S. Army                   | 1955                   | 455                     | do              | 112                        | 7                            | 19.4                       | Valley<br>side               |

| Water-bearing                              | Wa<br>belo             | iter level<br>w land s | l (feet<br>aurface) | equip-          | Y                        | ield                        | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                                                                                                                                     |
|--------------------------------------------|------------------------|------------------------|---------------------|-----------------|--------------------------|-----------------------------|-------------------------------|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                  | Static                 | Pump-<br>ing           | Date                | Pumping<br>ment | Gallons<br>per<br>minute | Date                        | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                             |
| aporhyolite                                | -                      | _                      | _                   | C,E             | 46<br>10.5<br>14         | 7/—/53<br>11/1/53<br>8/—/54 | -                             |                       | I           | Concrete spring pit. System in-<br>cludes 3 small springs in addi-<br>tion to Bd 3 and Bd 4. Yield<br>is for all 5 springs. Perennial<br>down See charging applying |
| do                                         | -                      | -                      | -                   | -               | 3±                       | 11/3/53                     | -                             |                       | I           | Concrete spring pit. See chemi-<br>cal analysis. Yield for Bd 4                                                                                                     |
| dø                                         | 20.0ª                  |                        | 8/—/54              | C,E             | 7.5-10<br>4.5            | 7/—/54<br>11/—/53           | -                             | —                     | I           | Supplies storage area and ga-<br>rages. Depth of pump pipe<br>39 ft.                                                                                                |
| aporhyolite and/or<br>Catoctin metabasalt  | 12 <sup>a</sup>        | 36-40 <sup>a</sup>     | 6/7/55              | T,E             | 25                       | 6/7/55                      | 24                            | $1\pm$                | I           | Depth of pump 200 ft.                                                                                                                                               |
| Catoctin metabasalt                        | . 87                   | 165                    | 4/17/56             | N               | 4.5                      | 4/17/56                     | 24                            | <.1                   | Ν           |                                                                                                                                                                     |
| do                                         | Flow-<br>ing           | 107                    | 6/21/56             | T,E             | 12-15                    | 6/21/56                     | -                             | .1+                   | I           | Temperature June 22, 1956, 51°F                                                                                                                                     |
| Weverton qu <b>ar</b> tzite                | 13.91                  | -                      | 5/11/56             | C,H             | -                        | -                           | -                             | format.               | D           | Large residual boulders em-<br>bedded in decomposed rocks<br>all the way. See chemical anal-<br>ysis.                                                               |
| Alluvial cones                             | - 8                    | 248                    | -                   | ?,E             | 4.5                      | 7/17/56                     |                               |                       | D           | Temperature July 17, 1956, 57°F.                                                                                                                                    |
| aporhyolite                                | 25 <sup>B</sup>        | 34 a<br>30 a           | 3/11/50<br>8/8/50   | J,E<br>J,E      | 15                       | 3/11/50<br>8/8/50           | 1<br>1.5                      | <.1<br>3.0            | D<br>D      |                                                                                                                                                                     |
| Catoctin metabasalt                        | 11.97                  | _                      | 6/13/56             | C,H             |                          | -                           | _                             | _                     | D           | Perennial supply.                                                                                                                                                   |
| Frederick limestone                        | 15 <sup>8</sup>        | 30 <sup>a</sup>        | 7/22/52             | -               | 10                       | 7/22/52                     | 1                             | 0.7                   | D           |                                                                                                                                                                     |
| Harpers phyllite                           | 6 <sup>a</sup>         | 163ª                   | 1/6/49              | ?,E             | 4                        | 1/6/49                      | 1                             | <.1                   | I           | See well log.                                                                                                                                                       |
| Frederick limestone                        | 18 <sup>a</sup>        |                        | 9/30/46             |                 | 6                        | 9/30/46                     | 1.5                           |                       | D           |                                                                                                                                                                     |
| do                                         | 15 <sup>a</sup>        | -                      | 2/16/55             | J,E             | 15                       | 2/16/55                     | 1.5                           |                       | D           | Drilled through bottom of old<br>dug well 22 ft. deep. Cased<br>from 19-39 ft.                                                                                      |
| do                                         | 15 <sup>a</sup>        | 18 <sup>a</sup>        | 2/18/55             | J,E             | 10                       | 2/18/55                     | 1                             | 3.3                   | D           |                                                                                                                                                                     |
| Frederick limestone or<br>Harpers phyllite | 23 <sup>a</sup>        | 28 <sup>8</sup>        | 7/3/52              | J,E             | 10                       | 7/3/52                      | -                             | 2.0                   | D           |                                                                                                                                                                     |
| Frederick limestone(?)                     | 16 <sup>8</sup>        | _                      | 10/18/49            | J,E             | 10                       | 10/18/49                    | .5                            | _                     | D           |                                                                                                                                                                     |
| Frederick limestone or<br>Harpers phyllite | 22-<br>20 <sup>a</sup> | 30 <sup>a</sup>        | 8/12/49             | С,Е<br>J,E      | 10+                      | 8/12/49                     | 1                             | -                     | C           | Restaurant.                                                                                                                                                         |
| do                                         | 25 <sup>a</sup>        | 30 <sup>a</sup>        | 8/—/49              | J,E             | 5                        | 8/—/49                      | .5                            | 1.0                   | D           |                                                                                                                                                                     |
| Frederick limestone(?)                     | 50 <sup>n</sup>        | 100 <sup>a</sup>       | 11/13/50            | J,E             | 2                        | 11/13/50                    | .5                            | <.1                   | D           |                                                                                                                                                                     |
| do                                         | 10 <sup>~</sup>        | -                      | 9/1/51              | C,E<br>N        | 8                        | 9/1/51<br>11/9/56           | 1                             | _                     | D<br>P      | See well log.<br>Public roadside spring. Temper-<br>ature Nov. 9, 1956, 54°F                                                                                        |
| do                                         | 10 <sup>8</sup>        | 126                    | 11/20/56            | _               | 7                        | 11/20/56                    | 24                            | <.1                   | I           |                                                                                                                                                                     |
| Weverton quartzite                         | -                      | - 1                    | - 1                 | N               | 20                       | 1929-30                     | -                             | -                     | N           |                                                                                                                                                                     |
| Harpers phyllite                           | -                      | _                      | _                   | T,E             | _                        | -                           | -                             |                       | Р           | Hardness 50 ppm reported.                                                                                                                                           |
| Frederick limestone                        | 10 <sup>a</sup>        | -                      | 8/—/54              | T,E             | 150                      | 8/—/54                      |                               | -                     | Р           | At ice plant. Pumps 10-15 hours<br>daily during canning season.<br>Hardness 150 ppm reported.                                                                       |
| Harpers phyllite                           | 6±                     | _                      | 6/16/55             | N               | <1(?)                    | 6/16/55                     | -                             | -                     | N           | See well log.                                                                                                                                                       |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-)              | Owner or name                                                                                | Driller                                                | Date<br>com-<br>pleted               | Alti-<br>tude<br>(feet)         | Type<br>of well            | Depth<br>of well<br>(feet)    | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position                       |
|-------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|---------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|----------------------------------------------------|
| Be 3                                      | U. S. Army                                                                                   | U. S. Army                                             | 1955                                 | 450                             | Drilled                    | 151                           | 8-7                          | 51.2                       | Valley<br>side                                     |
| Be 4                                      | Mr. Trepening                                                                                | -                                                      | -                                    | 420                             | Spring                     | -                             | -                            | -                          | Valley<br>flat                                     |
| Be 5<br>Be 6                              | Do<br>Merhle Grable                                                                          | —<br>Funt                                              | 1952                                 | 420<br>518                      | do<br>Drilled              | 60                            | 58                           | 58                         | do<br>Hilltop                                      |
| Be 7                                      | Robert Ogle                                                                                  | Keyser                                                 | 1951                                 | 402                             | do                         | 136                           | -                            | -                          | do                                                 |
| Be 8<br>Be 9<br>Be 10<br>Be 11<br>Be 12   | Hillside Turkey Farm<br>David Sayler<br>Mary E. Famous<br>Mr. Portner<br>Mrs. Florence Dietz | C. L. Wantz<br>Keyser<br>H. E. Wantz<br>Corum<br>Kyker | 1946<br>1950<br>1946<br>1952<br>1954 | 415<br>352<br>340<br>405<br>500 | do<br>do<br>do<br>do<br>do | 191<br>126<br>87<br>113<br>45 | 5<br>6<br>6<br>6<br>6        | 52<br>6<br>8<br>6<br>41    | Hillside<br>do<br>Hilltop<br>Draw<br>Hill-<br>side |
| Be 13<br>Be 14                            | Andrew Derwart<br>Cbarles F. Myers                                                           | Shaff<br>H. E. Wantz                                   | 1955<br>1954                         | 580<br>620                      | do<br>do                   | 109<br>117                    | 5 15<br>5                    | 30<br>90                   | do<br>do                                           |
| Be 15                                     | Mrs. Charles F. Sharer                                                                       | C. L. Wantz                                            | 1946                                 | 540                             | do                         | 100.5                         | 58                           | 64                         | Upland                                             |
| Be 16                                     | Charles F. Forest                                                                            | Keyser                                                 | 1951                                 | 570                             | do                         | 45                            | 58                           | 24                         | fiat<br>Valley                                     |
| Be 17                                     | Lee D. Portner                                                                               | Harris                                                 | 1953                                 | 545                             | do                         | 33                            | 58                           | 27                         | Hill-                                              |
| Be 18<br>Be 19<br>Be 20<br>Be 21          | Clifford Stull<br>Charles Smith<br>Do<br>Victor Christ                                       | Harley<br>Keyser<br>Funt<br>Miller                     | 1953<br>1952<br>1955<br>1956         | 620<br>650<br>750<br>450        | do<br>do<br>do<br>do       | 99.5<br>71<br>50<br>75        | 5 5 5 5                      | 12<br>69<br>50<br>11       | Hilltop<br>do<br>Hillside<br>Upland<br>flat        |
| Be 22<br>Be 23<br>Be 24                   | Raymond Keepers<br>Do<br>Harold M. Wildasin                                                  | LeGore<br>C. L. Wantz                                  | 1910±<br>Old<br>1951                 | 475<br>475<br>490               | do<br>Dug<br>Drilled       | 65<br>22<br>130               | 55<br>36<br>6                | 21<br><br>26               | Hilltop<br>do<br>Upland                            |
| Be 25<br>Be 26<br>Be 27<br>Be 28<br>Be 29 | Richard E. Waynant<br>Leslie Sovocool<br>Clifford Blair<br>Eugene Wood<br>Harry L. Sharer    | do<br>H. E. Wantz<br>Harley<br>do<br>C. L. Wantz       | 1946<br>1946<br>1953<br>1952<br>1946 | 490<br>440<br>480<br>480<br>490 | do<br>do<br>do<br>do<br>do | 62<br>94<br>107<br>100<br>82  | 6<br>6<br>5<br>6<br>6        | 24<br>9<br>12<br>12<br>74  | nat<br>do<br>do<br>do<br>do<br>lHillside           |
| Be 30                                     | Farmers Supply and Service                                                                   | do                                                     | 1946                                 | 450                             | do                         | 88                            | 6                            | 2                          | Upland                                             |
| Be 31                                     | Graceham Post Office                                                                         | -                                                      | Old                                  | 440                             | do                         | 160                           | 6                            | -                          | Hillside                                           |
| Be 32<br>Be 33                            | Mr. Homerick<br>Ralph E. Kass                                                                | _                                                      | Old<br>1938                          | 455<br>445                      | Dug<br>Drilled             | 24<br>81                      | 30<br>6                      | -                          | Valley<br>Upland<br>flat                           |
| Be 34                                     | J. E. Cornet                                                                                 | —                                                      | Old                                  | 390                             | do                         | 100                           | 6                            | -                          | Hillside                                           |
| Bf 1                                      | Robert G. Fitez                                                                              | C. L. Wantz                                            | 1951                                 | 430                             | do                         | 103                           | 6                            | 7.6                        | do                                                 |

| Water-bearing                            | Wa<br>belo        | iter level<br>w land s | (feet<br>urface)    | equip-          | Yield                    |          | of<br>1g test                 | apacity<br>/ft.)      | Use         |                                                                                                        |
|------------------------------------------|-------------------|------------------------|---------------------|-----------------|--------------------------|----------|-------------------------------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|
| formation                                | Static            | Pump-<br>ing           | Date                | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                |
| Frederick limestone                      | 0±                | 44.4                   | 6/14/55             | N               | 155                      | 6/13/55  | 24                            | 3.4                   | N           | See well log and chemical analy-<br>sis. Temperature June 13,                                          |
| Gettysburg shale                         | -                 | _                      |                     | N               | -                        | -        | -                             | —                     | F(?)        | Temperature June 23, 1955, 52.5°F.                                                                     |
| do                                       | - 1               | _                      |                     | -               |                          | -        | - 1                           | —                     |             |                                                                                                        |
| Frederick limestone(?)                   | 12 <sup>a</sup>   | 50 <sup>a</sup>        | 9/26/52             | C,H             | 5                        | 9/26/52  | 1                             | .1                    | D           | Water reported "a little rusty".<br>See well log.                                                      |
| Gettysburg shale                         | 50 <sup>a</sup>   | 100 <sup>a</sup>       | 2/2/51              | J,E             | 5                        | 2/2/51   | 1                             | .1                    | D           | Originally 85 feet deep and in-<br>adequate.                                                           |
| do                                       | 21 <sup>n</sup>   | 42 <sup>8</sup>        | 11/7/46             | -               | 20                       | 11/7/46  | 2.5                           | . 9                   | D,F         | Adequate.                                                                                              |
| do                                       | 50ª               | 90 <sup>a</sup>        | 9/24/50             | -               | 6                        | 9/24/50  | 1                             | .15                   | D           |                                                                                                        |
| New Oxford                               | 20 <sup>a</sup>   | -                      | 2/11/46             | ?,E             | 6(?)                     | 2/11/46  | 1.5                           | —                     | F           |                                                                                                        |
| Gettysburg shale                         | 288               |                        | 11/6/52             | C,H             | 8                        | 11/6/52  | .5                            | —                     | D           | See chemical analysis.                                                                                 |
| Frederick limestone                      | 10**              | 32 <sup>n</sup>        | 9/13/54             | J,E             | 10                       | 9/13/54  | 2                             | .4                    | D           |                                                                                                        |
| Harpers phyllite                         | 10 <sup>8,</sup>  | 20 <sup>a</sup>        | 6/20/55             | J.E             | 10                       | 6/20/55  | 1                             | 1.0                   | D           |                                                                                                        |
| do                                       | 18 <sup>a</sup>   | —                      | 2/25/54             | J,E             | 5                        | 2/25/54  | .33                           | _                     | D           | Reported bailed dry in 20 min-<br>utes. Principal supply at<br>depth of 95 or 96 feet. See<br>well log |
| do                                       | 48 <sup>a</sup>   | 69 <sup>a</sup>        | 10/14/46            | C,E             | 25                       | 1/1/55   | .5                            | 1.2                   | D,F         | Originally 67 feet deep. See well                                                                      |
| -le                                      | 108               | 248                    | 1/1/55              | τE              |                          | 10/10/21 |                               | 17                    | D           | log.                                                                                                   |
| 0D                                       | 10                | 34.                    | 10/10/51            | J,E             | 4                        | 10/10/51 | 1                             | .10                   | D           |                                                                                                        |
| Frederick limestone<br>or alluvial cones | 15 <sup>a</sup>   | 25 <sup>8</sup>        | 8/27/53             | J,E             | 4                        | 8/27/53  | 1                             | .4                    | D           |                                                                                                        |
| Harpers phyllite                         | 33 <sup>®</sup>   | 39 <sup>a</sup>        | 2/28/53             | I.E             | 15                       | 2/28/53  | 1.5                           | 2.5                   | D           |                                                                                                        |
| Loudoun                                  | 20 <sup>8</sup>   | 30 <sup>8</sup>        | 8/20/52             | J.E             | 1 20                     | 8/20/52  | 2                             | 2.0                   | D           |                                                                                                        |
| do                                       | 15 <sup>B</sup>   | 42 <sup>®</sup>        | 4/6/55              | C,E             | 6                        | 4/6/55   | 1                             | . 2                   | ĉ           | Sawmill supply.                                                                                        |
| Gettysburg shale                         | 12 <sup>n</sup>   | 16 <sup>n</sup>        | 5/12/56             | С,Н             | —                        | -        | -                             | —                     | D           | Grouted to 21 ft.                                                                                      |
|                                          | 12,96             |                        | 6/15/56             |                 |                          |          |                               |                       |             |                                                                                                        |
| do                                       | 18 <sup>a</sup>   | 40 <sup>a</sup>        | 11/14/55            | C,E             | 20                       | 11/14/55 | .5                            | .8                    | D           |                                                                                                        |
| do                                       | 18.13             | —                      | 6/15/56             | N               |                          | - 1      |                               |                       | N           |                                                                                                        |
| do                                       | 36.5ª             | —                      | 10/1/51             | J,E             | 2                        | 10/1/51  | . 5                           | —                     | D           |                                                                                                        |
| do                                       | 18 <sup>a</sup>   | _                      | 12/7/46             | I.E             | n — 1                    |          | _                             |                       | D           |                                                                                                        |
| do                                       | 21 <sup>a</sup>   | _                      | 11/18/46            |                 | 2.25(?)                  | 11/18/46 | .3                            | _                     | D           |                                                                                                        |
| do                                       | 15 <sup>a</sup>   | 100 <sup>a</sup>       | 7/15/53             | L.E             | 4                        | 7/15/53  | _                             | <.1                   | D           |                                                                                                        |
| do                                       | 318               | 90 <sup>8</sup>        | 7/16/52             | J,E             | 3                        | 7/16/52  | - 1                           | <.1                   | D           |                                                                                                        |
| New Oxford (lime-                        | 18 <sup>th</sup>  |                        | 12/23/46            | J.E             | 6                        | 12/23/46 | .5                            | _                     | D           |                                                                                                        |
| stone conglomerate)                      |                   |                        |                     |                 |                          |          |                               |                       |             |                                                                                                        |
| Gettysburg shale                         | 16.5 <sup>8</sup> | 88 <sup>a</sup>        | 11/26/46<br>5/16/56 | J,E             | 4(?)                     | 11/26/46 | - 1                           | —                     | N           | Reported bailed dry in 20 min-                                                                         |
| do                                       |                   | _                      |                     | C.E             |                          |          |                               | _                     | D           | Adequate.                                                                                              |
| do                                       | 6.4               | _                      | 5/4/56              | C.11            | _                        |          |                               |                       | N           |                                                                                                        |
| do                                       | 47.85             | -                      | 10/24/56            | C,E             | —                        |          | -                             | _                     | D,F         |                                                                                                        |
| do                                       | 70 <sup>a</sup>   |                        | -                   | J,E             | _                        | -        | -                             | _                     | D           |                                                                                                        |
| do                                       | -                 | —                      | . – 1               | J,E             | 3.5                      | 4/10/51  | .33                           |                       | D           | Driller reported bailed dry in<br>20 minutes. Adequate supply.                                         |

#### TABLE 26

| (Fr-)        | Owner or name          | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inche | Length of cas<br>(feet) | Topo-<br>graphic<br>position |
|--------------|------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|----------------------------|-------------------------|------------------------------|
| Bf 2         | Roland E. Shaver       | H. E. Wantz | 1951                   | 460                     | Drilled         | 110                        | 6                          | 6                       | Hillside                     |
| Bf 3         | Maurice H. Moser       | do          | 1947                   | 420                     | do              | 132                        | 6                          | 4                       | Hilltop                      |
| Bf 4         | Howard Welty           | do          | 1946                   | 430                     | do              | 82                         |                            | 0                       | Hillside                     |
| Bf 5         | Church of the Brethren | Corum       | 1952                   | 415                     | do              | 68                         | 6                          | 12                      | Hilltop                      |
| Rf 6         | Ralph Baker            | Showers     | 1955                   | 400                     | do              | -                          | 6                          | _                       | Hillside                     |
| Rf 7         | Raymond Anders         | H. E. Wantz | 1955                   | 420                     | do              | 87                         | 51                         | 17.3                    | Draw                         |
| Bf 8         | Baxter C. Dougherty    | C. L. Wantz | 1949                   | 440                     | do              | 217                        | 5#                         | 9.5                     | Hillside                     |
| Bf 9         | John Kass              | Corum       | 1952                   | 445                     | do              | 92                         | 6                          | 12                      | Upland<br>flat               |
| Rf 10        | Adolph F. Brooks       | Utermahlen  | 1951                   | 385                     | do              | 72                         | 6                          | 10                      | Hillside                     |
| Bf 11        | Mt. Tabor Park         | —           |                        | 425                     | do              | 46                         | 6                          | -                       | Upland<br>flat               |
| Bf 12        | Catherine Valentine    |             |                        | 380                     | Dug             | 31±                        | 48                         |                         | Valley<br>flat               |
| Bf 13        | Do                     | _           | _                      | 380                     | do              | 21                         | 48                         |                         | do                           |
| Bf 14        | Western Maryland R. R. | -           | Old                    | 405                     | Drilled         | 80                         | 4 or 6                     | _                       | do                           |
| Bf 15        | Mr. Pasternak          | —           | Old                    | 410                     | Dug             | 22                         | 60                         | -                       | do                           |
| Bf 16        | Castle Farms           | H. E. Wantz | 1949                   | 330                     | Drilled         | 165                        | 6                          | 8                       | Valley<br>side               |
| Rf 17        | Do                     | _           | Old                    | 340                     | do              | 48                         | 6                          | _                       | do                           |
| Rf 18        | Do                     | _           | Old                    | 330                     | do              | 53                         | 6                          | -                       | do                           |
| Bf 19        | Claude W. De Barry     | C. L. Wantz | 1952                   | 405                     | do              | 201                        | 6                          | 8                       | Hilltop                      |
| Bf 20        | Do                     | do          | Old                    | 405                     | do              | 39                         | 6                          |                         | do                           |
| Bg 1         | Mr. Garber             | Harris      | 1954                   | 460                     | do              | 70                         | 5                          | <b>2</b> 6              | Hillside                     |
|              |                        |             |                        |                         |                 |                            |                            |                         |                              |
| Cb 1         | C. R. Bowman           | French      | 1954                   | 1,270                   | do              | 116                        | 5%                         | 33                      | do                           |
| Ch 2         | Echo Lake Camp         | Kevser      | 1954                   | 1,000                   | do              | 154.8                      | 6                          | 0                       | do                           |
| Cb 3         | Do                     | do          | 1955                   | 950                     | do              | 70                         | 5                          | 28                      | do                           |
| Cb 4         | Do                     |             | -                      | 915                     | Spring          | _                          | _                          |                         | do                           |
| Ch 5         | Willard Snook          | I. Hoffman  | 1950                   | 1,000                   | Drilled         | 50                         | 5                          | 20                      | do                           |
| Cb 6         | A. W. Goodwin          | Holtzman    | 1947                   | 980                     | do              | 88                         | 5                          | 21                      | do                           |
| Cb 7         | Town of Myersville     | -           | -                      | 1,160∃                  | E Springs       | -                          | -                          |                         | do                           |
| Cc 1         | Lauren Wolf            | E. R. Smith | 1955                   | 1,030                   | Drilled         | 89                         | 5§                         | 23.2                    | do                           |
| 0.0          | D IIII I               | Harley      | 1024                   | 0.00                    | -Le             | 42                         | 6                          | 21                      | da                           |
| Cc 2<br>Cc 3 | Asa P. Stottlemyer     | Cowan       | 1955                   | 1,030                   | do              | 92                         | 5<br>5<br>1<br>5           | 7                       | Valley                       |
| Cc.4         | H L Leatherman         |             | blo                    | 1.070                   | do              | 53                         | 6                          | _                       | Hillton                      |
| Cc 5         | C F Grossnickle        | _           | Old                    | 780                     | Dug             | 23                         | 48                         | -                       | do                           |
| CcA          | Do                     | -           |                        | 790                     | Spring          | -                          | _                          |                         | Hillside                     |
| Cc 7         | Grayson Cline          | Keyser      | 1952                   | 1,205                   | Drilled         | 23                         | 5#                         | 23                      | do                           |
| Cc 8         | Mr. Flook              | _           | Old                    | 685                     | Dug             | 136                        | 36                         | -                       | Hilltop                      |
| Cco          | Lawrence Lewis         | -           | -                      | 890                     | Spring          | -                          | _                          | -                       | Hillside                     |

| Water-bearing                       | Wa<br>belov       | iter level<br>w land s | l (feet<br>urface) | equip-          | Yi                       | eld      | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                   |
|-------------------------------------|-------------------|------------------------|--------------------|-----------------|--------------------------|----------|-------------------------------|-----------------------|-------------|-----------------------------------------------------------------------------------|
| formation                           | Static            | Pump-<br>ing           | Date               | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpir<br>(hours) | Specific o<br>(g.p.m. | of<br>water | Remarks                                                                           |
| Gettysburg shale                    | 39 <sup>a</sup>   |                        | 8/28/51            | J,E             | 1+                       | 8/28/51  | .25                           | _                     | D           | Bailed dry in 15 minutes. Ade-                                                    |
| do                                  | 41 <sup>a</sup>   | do                     | 9/3/47             | J,E             | 2                        | 9/3/47   | .33                           | —                     | D           | Bailed dry in 20 minutes. Ade-<br>quate. Stains fixtures slightly                 |
| New Oxford                          | 30 <sup>8</sup>   | -                      | 7/13/46            | J., 15          | 5.5                      | 7/13/46  | .5                            | -                     | D           | Adequate. See chemical analy-                                                     |
| New Oxford (baked                   | l 21 <sup>8</sup> | 40 <sup>a</sup>        | 5/5/52             | C,E             | 10                       | 5/15/52  | 1                             | .5                    | D           |                                                                                   |
| zone)                               | 45.22             |                        | 10/11/55           |                 |                          |          |                               |                       |             |                                                                                   |
| New Oxford                          | 18.87             | -                      | 10/12/55           | NI              | -                        |          | _                             |                       | D           |                                                                                   |
| do                                  | 16 <sup>a</sup>   |                        | 7/27/55            | C.H             | 6                        | 7/27/55  | . 5                           | _                     | Ð           | Bailed dry in 30 minutes.                                                         |
| do                                  | 37 <sup>a</sup>   | 172ª                   | 5/27/49            |                 | 12                       | 5/27/49  | 1.5                           |                       | -           |                                                                                   |
| do                                  | 23 <sup>8</sup>   |                        | 6/4/52             | J,E             | 8                        | 6/4/52   | .5                            |                       | D           |                                                                                   |
| do                                  | 12 <sup>8</sup>   | 70 <sup>a</sup>        | 6/28/51            | LE              | 3                        | 6/28/51  | .5                            | < 1                   | D           |                                                                                   |
| do                                  | 15.55             | -                      | 5/t7/56            | С,Н;            |                          | -        |                               |                       | D           | Picnic grounds.                                                                   |
| do                                  | .6±               | - 1                    | 5/18/56            | J,E<br>N        | -                        | ·        | -                             |                       | N           |                                                                                   |
| 1.                                  | 1 20              |                        | FIDELEC            | AT.             |                          |          |                               |                       | N.          |                                                                                   |
| do                                  | 1.38              |                        | 5/24/56            | N               |                          |          |                               | -                     | IN          |                                                                                   |
| do                                  | 5.5               |                        | 5/17/50            | C.H             |                          | -        | -                             |                       | D           |                                                                                   |
| do                                  | 7.20              |                        | 5/17/56            | ),E;<br>С Н     | _                        | _        | -                             | _                     | D           |                                                                                   |
| do                                  | 19 <sup>a</sup>   | 115 <sup>a</sup>       | 12/6/49            | J,E             | 15                       | 12/6/49  | 1                             | .15                   | С           | Dairy plant.                                                                      |
| do                                  | 27.73             | _                      | _                  | C.W             | - 1                      |          |                               |                       | С           | Adequate for dairy barn.                                                          |
| do                                  | 30 <sup>8</sup>   | !                      | _                  | C.E             |                          | _        | _                             | _                     | D           |                                                                                   |
| do                                  | 3 <sup>a</sup>    | -                      | 1/31/52            | J,E             | 3.5(?)                   | 1/31/52  | -                             |                       | F           | Bailed dry in 30 minutes. See                                                     |
| đo                                  | 15 <sup>a</sup>   | _                      | _                  | C,E             | _                        |          |                               |                       | D           | well log.<br>Adequate.                                                            |
| New Oxford (quart.<br>conglomerate) | z 28 <sup>a</sup> | 58ª                    | 5/21/54            | -               | _                        | -        | -                             | -                     | D           |                                                                                   |
| Contact-aporhyolite                 | 60 <sup>n</sup>   | 90 <sup>a</sup>        | 9/11/54            | J,E             | 5                        | 9/11/54  | 6                             | .16                   | С           | Gift shop and service station.                                                    |
| Catoctin metabasalt                 | 50 <sup>a</sup>   | 155 <sup>a</sup>       | 9/5/54             | N               | 2                        | 9/5/54   |                               | <.1                   | 1           | Inadequate supply.                                                                |
| do                                  | 358               |                        | 4/25/56            | I.E             | 20                       | 4/25/56  | _                             |                       | 1           |                                                                                   |
| aporhyolite                         | _                 |                        | -                  | N               | $15\pm$                  | 4/25/56  |                               |                       | 1           | Continuous flow reported.                                                         |
| Catoctin metabasalt                 | 358               | 50 <sup>a</sup>        | 5/-/50             | N               | 1                        | 5//50    | .5                            | <.1                   | N           | Reported contaminated.                                                            |
| do                                  | 30 <sup>8</sup>   |                        | 8/7/47             | J.E             | -4                       | 8/7/56   | 1                             | _                     | D           | Sec well log.                                                                     |
| aporhyolite                         | -                 | -                      | -                  | _               | 22+                      | -        |                               |                       | Ρ           | Seven developed springs. Grav-<br>ity flow to reservoir. See<br>chemical analysis |
| Catoctin metabasalt                 | 20 <sup>a</sup>   | $70^{\mathrm{a}}$      | 4/16/55            | ?,E             | 2                        | 4/16/55  | 2                             | <.1                   | D           | Reamed and grouted to 18 ft.                                                      |
| rhvolite tuff                       | 15 <sup>8</sup>   | 158                    | 11/21/51           |                 | 10                       | 11/21/51 | _                             |                       | D           | over neur rog.                                                                    |
| Catoctin metabasalt                 | 10 <sup>a</sup>   | 89 <sup>a</sup>        | 4/26/56            | C,H             | 6                        | 5/30/56  | 2                             | <.1                   | N           |                                                                                   |
| do                                  | 3 <sup>a</sup>    | _                      | 4/26/56            | C,E             | 12                       | 4/26/56  | _                             | _                     | D           | Perennial supply.                                                                 |
| do                                  | 18 <sup>a</sup>   | _                      | 4/26/56            | C,H             | _                        | _        |                               |                       | N           | Rock-lined.                                                                       |
| do                                  |                   | U -                    | -                  | S,E             | 6                        | 4/26/56  |                               |                       | D.F         | Discharges to pond.                                                               |
| aporhyolite                         | 10 <sup>a</sup>   | 10 <sup>a</sup>        | 8/29/52            | J.E             | 20                       | 8/29/52  | .5                            | _                     | D           | 0.0.1.1.                                                                          |
| Catoctin metabasalt                 | 25 <sup>a</sup>   |                        |                    | N               | _                        |          |                               | _                     | N           |                                                                                   |
| aporhyolite                         | -                 | -                      | -                  | ?,E             | 3                        | 1956     | -                             |                       | D           |                                                                                   |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name      | Driller            | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|--------------------|--------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Cc 10                        | Albert G. Harshman | Cowan              | 1955                   | 650                     | Drilled         | 40                         | 5불                           | 35                         | Hillside                     |
| Cc 11                        | W. E. Moser        | do                 | 1955                   | 1,105                   | do              | 125                        | 58                           | 36                         | do                           |
| Cc 12                        | Claude Stottlemyer | Harley             | 1955                   | 1,125                   | do              | 74                         | 5불                           | 30                         | do                           |
| Cc 13                        | Charles Fawley     | Shaff              | 1956                   | 810                     | do              | 25                         | 58                           | -                          | do                           |
| Cc 14                        | Roger Moser        | Bittle             | Old                    | 695                     | do              | 41                         | 6                            | irere il                   | do                           |
| Cc 15                        | George R. Marker   |                    | Old                    | 870                     | Dug and drilled | 56                         | 36-6                         | -                          | do                           |
| Cc 16                        | Merle P. Kline     | _                  | Old                    | 1,285                   | Dug             | 23                         | 48                           | -                          | do                           |
| Cc 17                        | Roy L. Easterday   | —                  | -                      | 920                     | do              | 29                         | 36                           | -                          | Valley<br>side               |
| Cc 18                        | Do                 | Easterday          | 1948                   | 920                     | Drilled         | 57                         | 6                            |                            | do                           |
| Cc 19                        | Enogene Baker      | _                  | Old                    | 1,140                   | Dug             | 29                         | 48                           | -                          | Hillside                     |
| Cd 1                         | Resley Stull, Jr.  | Keyser             | 1950                   | 440                     | Drilled         | 85                         | 6                            | 22                         | Hilltop                      |
| Cd 2                         | Chester Weltry     | do                 | 1951                   | 530                     | do              | 38                         | 55                           | 25                         | Hillside                     |
| Cd 3                         | Catoctin Church    | Cromwell           | 1955                   | 470                     | do              | 61.5                       | 58                           | 60                         | do                           |
| Cd 4                         | Vernon T. Bear     | Shaff              | 1948                   | 440                     | do              | 78.5                       | 6                            | 22                         | Upland<br>flat               |
| Cd 5                         | Marion Stull       | Keyser             | 1954                   | 440                     | do              | 82                         | 58                           | 14                         | do                           |
| Cd 6                         | Do                 | _                  | -                      | 440                     | Dug             | 24                         | -                            |                            | do                           |
| Cd 7                         | Frank Harper       | Harris             | 1953                   | 405                     | Drilled         | 62                         | 5홓                           | 42                         | Hillside                     |
| Cd 8                         | Charles E. Heffner | Keyser             | 1952                   | 470                     | do              | 48                         | 58                           | 46                         | Upland<br>flat               |
| Cd 9                         | Howard Fisher      | do                 | 1951                   | 465                     | do              | 64                         | 6                            | 60                         | do                           |
| Cd 10                        | Ellis C. Rice      | Harley             | 1950                   | 530                     | do              | 41                         | 5욯                           | 29                         | do                           |
| Cd 11                        | Richard Gladhill   | Harris             | 1955                   | 530                     | do              | 34                         | 5 🕏                          | 33                         | do                           |
| Cd 12                        | Marion W. Rice     | Harley             | 1951                   | 550                     | do              | 23                         | 6                            | 24                         | Hillside                     |
| Cd 13                        | Lewis S. Rice      | Keyser             | 1950                   | 580                     | do              | 21                         | 6                            | 21                         | Upland<br>flat               |
| Cd 14                        | Robert L. Keyser   | do                 | 1953                   | 550                     | do              | 21                         | 6                            | 21                         | do                           |
| Cd 15                        | Alvie Rice         | do                 | 1951                   | 550                     | do              | 15                         | 58                           | 15                         | do                           |
| Cd 16                        | Catoctin Church    |                    | _                      | 470                     | Spring          | -                          |                              | -                          | Hillside                     |
| Cd 17                        | Harry Martin       | Harley<br>D. Brown | 1953                   | 415                     | Drilled         | 63                         | 58                           | 23                         | Upland                       |
| Cd 18                        | Stanley 5. barnes  | D. prown           | 1954                   | 415                     | αo              | 44                         | 0(1)                         | 23                         | flat                         |
| Cd 19                        | William Reuner     | Keyser             | 1956                   | 460                     | do              | 105                        | 55                           | 11                         | do                           |
| Ce 1                         | Mr. Wise           | -                  | Old                    | 350                     | Dug             | 20±                        | -                            |                            | Hillside                     |
| Ce 2                         | Do                 | _                  |                        | 340                     | Spring          |                            | -                            | -                          | Valley                       |
| Ce 3                         | Mr. McDevitt       | —                  | 1949-50                | 320                     | Drilled         | 60                         | б                            | -                          | Hillside                     |
| Ce 4                         | Do                 | -                  | Old                    | 340                     | do              | 100                        | 6                            | _                          | do                           |
| Ce 5                         | Mr. Baker          | Keyser             | 1953                   | 375                     | do              | 150                        | 0                            | 15                         | Hilltop                      |
| Ce 6                         | Edward Oden        | do                 | 1953                   | 330                     | do              | 264                        | 0                            | 25                         | flat                         |
| C . 7                        | Nelson Summers     | -                  | Old                    | 310                     | Dug             | 29                         | 42                           |                            | do                           |

| Water-bearing                             | Wa<br>below       | ter level<br>v land si | (feet<br>urface) | equip-          | Yi                       | eld       | t of<br>1g test               | Apacity (ft.)        | Use         |                                                                                                               |
|-------------------------------------------|-------------------|------------------------|------------------|-----------------|--------------------------|-----------|-------------------------------|----------------------|-------------|---------------------------------------------------------------------------------------------------------------|
| formation                                 | Static            | Pump-<br>ing           | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date      | Duration<br>pumpin<br>(hours) | Specific (<br>(g.p.m | of<br>water | Remarks                                                                                                       |
| Catoctin metabasalt                       | 19 <sup>a</sup>   | 31 <sup>a</sup>        | 9/28/55          | C,E             | 10                       | 9/28/55   | 2                             | .8                   | D           |                                                                                                               |
| do                                        | 95 <sup>a</sup>   | 125 <sup>a</sup>       | 6/14/55          | J,E             | 16                       | 6/14/55   | . 5                           | . 5                  | D,F         |                                                                                                               |
| aporhyolite                               | 6ª.               | 20 <sup>a</sup>        | 6/30/55          | ?,E             | 15                       | 6/30/55   | -                             | 1.1                  | D           |                                                                                                               |
| Catoctin metabasalt                       | 20 <sup>n</sup>   | 25 <sup>a</sup>        | 3/27/56          | J,E             | 5                        | 3/27/56   | 2                             | 1.0                  | D           |                                                                                                               |
| do                                        | 25 <sup>a</sup>   | -                      | -                | J,E             | -                        |           |                               |                      | D           | Adequate.                                                                                                     |
| do                                        | 23ª               | _                      |                  | C,Ł             | _                        | _         |                               |                      | D           | well 24 ft. deep. Adequate.                                                                                   |
| do                                        | 18.87             |                        | 9/27/56          | C,H             |                          | -         | -                             | -                    | D           | Adequate.                                                                                                     |
| aporhyolite                               | 20 <sup>8</sup>   | _                      |                  | C,E             | _                        | -         |                               | —                    | D           |                                                                                                               |
| do                                        | 32.34             |                        | 9/27/56          | J,E             |                          |           | -                             |                      | F           | Adequate.                                                                                                     |
| do                                        | 23.80             | _                      | 10/25/56         | C,H             | -                        |           | -                             | _                    | D           |                                                                                                               |
| New Oxford                                | 17ª               | 42 <sup>a</sup>        | 12/23/50         | J,E             | 3                        | 12/23/50  | 1                             | .1                   | D           |                                                                                                               |
| Hannana phullita                          | 18.55             | 278                    | 5/4/30           | IF              | 2                        | 6/25/51   | 1                             | 2                    | n           |                                                                                                               |
| New Oxford or Gettys-                     | · 15 <sup>a</sup> | 30 <sup>a</sup>        | 7/21/55          | NI              | -                        |           |                               |                      | D           | Parish house.                                                                                                 |
| New Oxford                                | 4 <sup>8</sup>    | 15 <sup>8</sup>        | 11/28/48         | -               | 8                        | 11/28/48  | 6                             | 1.4                  | D           |                                                                                                               |
| do                                        | 40 <sup>a</sup>   | 60 <sup>a</sup>        | 8/27/54          | J,E             | 6                        | 8/27/54   | 1                             | .3                   | D           |                                                                                                               |
| do                                        | 11.23             | _                      | 6/12/56          | N               | - 1                      | _         | -                             |                      | N           |                                                                                                               |
| do                                        | 25ª               | 50 <sup>a</sup>        | 12/23/53         | J,E             | 6                        | 12/23/53  | i                             | . 2                  | D           |                                                                                                               |
| do                                        | 13 <sup>a</sup>   | 15 <sup>a</sup>        | 5/1/52           | -               | 10                       | 5/1/52    | 1.5                           | 5.2                  | D           |                                                                                                               |
| do                                        | 35ª               | 50 <sup>a</sup>        | 1/16/51          | I.E             | 4                        | 1/16/51   | 1                             | .3                   | D           |                                                                                                               |
| do                                        | 25 <sup>a</sup>   | _                      | 3/31/50          | J,E             | 12                       | 3/31/50   | i,                            |                      | D           |                                                                                                               |
| do                                        | 88                | 22 <sup>8</sup>        | 10/1/55          | J,E             | 8                        | 10/1/55   |                               | .6                   | D           |                                                                                                               |
| Contact-Harpers phyl-<br>lite and Loudoun | - 15 <sup>a</sup> | -                      | 12/11/51         | J,E             | 5                        | 12/11/51  | -                             |                      | D,C         | General store and residence.                                                                                  |
| Alluvial cones(?)                         | 10 <sup>a</sup>   | 21 <sup>a</sup>        | 11/5/50          | C,E             | 3                        | 11/5/50   | .5                            | .27                  | D           |                                                                                                               |
| do                                        | 10 <sup>a</sup>   |                        | 4/20/53          | J,E             | 4                        | 4/20/53   | .5                            | -                    | D           |                                                                                                               |
| do                                        | 7 <sup>n</sup>    | 12ª                    | 10/25/51         | -               | 4                        | 10/25/51  | .8                            | 1                    | D           | The second second second                                                                                      |
| Alluvial cones                            | 28                | 8                      | 5 /00 /00        | N               | _                        | E /00 /52 |                               |                      | D           | See well log                                                                                                  |
| New Oxford                                | 25ª               | - 555                  | 4/23/54          | J,E<br>J,E      | 5                        | 4/23/54   | .5                            | .1                   | D           | See well log.                                                                                                 |
| Frederick limestone                       | 20 <sup>a</sup>   | 90 <sup>8</sup>        | 8/30/56          | J,E             | 5                        | 8/30/56   | 1                             | <.1                  | D           |                                                                                                               |
|                                           | 11.62             |                        | 12/13/56         |                 |                          |           |                               |                      |             |                                                                                                               |
| New Oxford                                | 9.05              | -                      | 9/7/5            | 1C,H            | -                        | -         | _                             | _                    | F           | Seldom used.                                                                                                  |
| do                                        |                   | _                      |                  | J.E             | - 5                      | _         | _                             | -                    | D,F         | Continuous discharge reported.                                                                                |
| oD                                        | -                 | _                      | _                | S,E             | _                        |           |                               | _                    | D<br>F      | Good yield reported                                                                                           |
| do                                        | 208               | 508                    | 7/15/53          | 1,15            | 10                       | 7/15/53   | 1                             | 5                    | D           | Good yield reported.                                                                                          |
| Grove limestone                           | 20 <sup>a</sup>   | 100 <sup>a</sup>       | 3/3/53           | C,E             | 2                        | 3/3/53    | 1                             | <.1                  | D           | Inadequate at times. Tempera-<br>ture Dec. 20, 1955, 46°F.                                                    |
| Frederick limestone                       | 23.12             | -                      | 1/18/56          | J,E;<br>C,H     | I                        |           |                               | -                    | N           | Depth of pump pipe 60 ft. ±.<br>Yield adequate. Temperature<br>May 9, 1956, 52°F. See chemi-<br>cal analysis. |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name           | Driller                       | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|-------------------------|-------------------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Ce 8                         | Nelson Summers          | Keyser                        | 1956                   | 310                     | Drilled         | 275                        | 550                          | 20                         | Upland<br>flat               |
|                              |                         |                               |                        |                         |                 |                            |                              |                            |                              |
| Ce 9                         | Raymond Reeder          | Cromwell                      | 1955                   | 405                     | do              | 115                        | 6                            | _                          | do                           |
| Ce 10                        | William Anders          | Keyser                        | 1954                   | 440                     | do              | 113                        | 6                            | 23.5                       | do                           |
| Ce 11                        | Dalton E. Leary         | Harris                        | 1954                   | 320                     | do              | 105                        | 5.5                          | 20.0                       | Hillton                      |
| Ce 12                        | Henry L. Davis          | Green                         | 1952                   | 430                     | do              | 1.38                       | 6                            | 15                         | Unland                       |
|                              |                         |                               |                        |                         | 40              |                            | 0                            | 10                         | flat                         |
| Ce 13                        | C. O. West              | Shirley                       | 1954                   | 375                     | do              | 126                        | 6                            | 12                         | Hillside                     |
| Ce 14                        | Eugene Whitmore         | Keyser                        | 1953                   | 350                     | do              | 152                        | 6                            | 27                         | Hipland                      |
|                              |                         |                               |                        |                         |                 |                            | Ŭ                            | ~ 1                        | flat                         |
| Ce 15                        | Do                      |                               | 1940                   | 350                     | do              | 147                        | 6                            | _                          | do                           |
| Ce 16                        | Sam Whitmore            | Kline                         | 1930 ±                 | 355                     | do              | 44                         | 6                            |                            | do                           |
| Ce 17                        | Charles Cutsail         | Corum                         | 1952                   | 430                     | do              | 89                         | 6                            | 35                         | do                           |
|                              |                         |                               |                        |                         |                 |                            |                              |                            |                              |
| Cf 1                         | Town of Woodsboro       | Columbia Pump and<br>Well Co. | 1952                   | 380                     | do              | 200                        | 10-8                         | 35                         | do                           |
| Cf 2                         | John Rice               | Corum                         | 1951                   | 610                     | do              | 52+                        | 6                            | 10                         | Hillside                     |
| Cf 3                         | Raymond O. Butt         | Keyser                        | 1952                   | 395                     | do              | 102                        | 51                           | 1.3                        | do                           |
| Cf 4                         | James Horner            | Corum                         | 1952                   | 500                     | do              | 53                         | 6                            | 10                         | Hilltop                      |
| Cf. z                        | Ma Staugue              |                               |                        | 1.8.0                   |                 |                            |                              |                            |                              |
| CEG                          | Paul II Main            |                               | _                      | 420                     | Spring          |                            |                              | _                          | Hillside                     |
| CIU                          | i aut 11. Walli         |                               |                        | 400                     | do              | -                          | P8                           | -                          | Valley                       |
| 01.2                         | Educad II Disease       | 17                            |                        |                         |                 |                            |                              |                            |                              |
| CIT                          | Lawara n. rierce        | Keyser                        | 1953                   | 380                     | Drilled         | 95                         | 6                            | 10.5                       | Hillside                     |
| Cf 8                         | Mrs. Louise Kline       | Cromwell                      | 1954                   | 360                     | do              | 50                         | 6                            | 20                         | do                           |
| Cf 9                         | Florence Flanigan       | do                            | 1955                   | 440                     | do              | 97                         |                              |                            | do                           |
| CE 10                        | De                      | Cromwell and Keyrer           | 1055                   | 410                     | 1               |                            |                              |                            | 1                            |
| CI IU                        | 100                     | Cromwell and Keyser           | 1955                   | 440                     | do              | 115                        | 8                            | 80                         | do                           |
|                              |                         |                               |                        |                         |                 |                            |                              |                            |                              |
| Cf 11                        | Do                      | -                             | Old                    | 450                     | Dug             | 35                         | 36                           |                            | do                           |
| Cf 12                        | Stuart Widner           | Utermablen                    | 1053                   | 500                     | Drilled         | 50                         | 6                            | 0                          | Uillian                      |
| Cf 13                        | Mr. Dorcus              |                               | Old                    | 380                     | Dug             | 20                         |                              | 0                          | Hillaida                     |
| Cf 14                        | Do                      |                               |                        | 380                     | Drilled         | 178                        | 6                            |                            | do                           |
| Cf 15                        | Do                      | _                             |                        | 380                     | do              | 05                         | 6                            |                            | do                           |
| Cf 16                        | Millard Crum            | Cromwell                      | 1955                   | 370                     | do              | 60                         | 5                            | 21                         | Lillton                      |
| Cf 17                        | Russell M. Mathews, Jr. | Owings                        | 1955                   | 550                     | do              | 66                         | 6                            | 19                         | Hilloida                     |
| Cf 18                        | Ernest C. Colbert       | Cromwell                      | 1940                   | 600                     | do              | 96                         | 8                            | 10                         | Hillton                      |
| Cf 19                        | Do                      |                               | 4/17                   | 600                     | Dug             | 40-1                       | 36                           | 10                         | do                           |
| Cf 20                        | James Misner            | Harris                        | 1953                   | 385                     | Drilled         | 29                         | 58                           | 26                         | Hillside                     |
| Cf 21                        | 21 Gregg Strine —       |                               |                        | 390                     | do              | 65                         | 6                            | _                          | Upland                       |
|                              |                         |                               |                        |                         |                 |                            |                              |                            | fla                          |

| Water-bearing<br>formation                                                      | Wa<br>below                        | ter level<br>v land si | (feet<br>urface)  | equip-          | Yi                       | eld               | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                                                                                          |
|---------------------------------------------------------------------------------|------------------------------------|------------------------|-------------------|-----------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                                                       | Static                             | Pump-<br>ing           | Date              | Pumping<br>ment | Gallons<br>per<br>minute | Date              | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                  |
| Frederick limestone                                                             | 16 <sup>a</sup><br>14 <sup>a</sup> | <br>16.5 <sup>a</sup>  | 2/6/56<br>3/15/56 | T,E             | 80<br>10                 | 2/6/56<br>3/15/56 | 2<br>8                        | 4.0                   | D,F         | Test in Feb. made with air com-<br>pressor; test in Mar. made<br>with submersible. See chemi-<br>cal analysis. Depth of pump<br>218 ft.                  |
| New Oxford                                                                      | 5ª                                 | 68                     | 12/13/55          | -               | 9                        | 12/13/55          | 2                             | 9.0                   | D           | Orginally 85 ft. deep.                                                                                                                                   |
| do                                                                              | 6 <sup>a</sup>                     | 28 <sup>a</sup>        | 12/7/54           | C,E             | 10                       | 12/7/54           | 5                             | .4                    | D           |                                                                                                                                                          |
| do                                                                              | 45 <sup>a</sup>                    | 83 <sup>a</sup>        | 9/24/54           | J,E             |                          | -                 | -                             |                       | D           |                                                                                                                                                          |
| do                                                                              | 50 <sup>a</sup>                    | 90 <sup>8</sup>        | 6/16/52           | J,E             | 10                       | 6/16/52           | 1                             | . 25                  | D,F         |                                                                                                                                                          |
| do                                                                              | 30.8                               | 408                    | 10/29/54          | TE              | 30                       | 10/29/54          | 4                             | 3.0                   | D           |                                                                                                                                                          |
| do                                                                              | 30 a                               | 75 <sup>a</sup>        | 8/4/53            | I.E             | 4                        | 8/4/53            | .5                            | .1                    | D.F         |                                                                                                                                                          |
|                                                                                 |                                    |                        | -/ -/             | 51-             |                          | - / - /           |                               |                       | - /-        |                                                                                                                                                          |
| do                                                                              | 27.45                              | -                      | 7/18/56           | J,E             | 6                        |                   |                               |                       | D           |                                                                                                                                                          |
| do                                                                              | 15 <sup>a</sup>                    |                        |                   | C,E             |                          | U - J             |                               | -                     | F           | Cistern supplies home.                                                                                                                                   |
| do                                                                              | 40 <sup>a</sup>                    | -                      | -                 | J,E             |                          | -                 | -                             | _                     | D           |                                                                                                                                                          |
| Grove limestone                                                                 | 3 <sup>a</sup>                     | 45 <sup>a</sup>        | 6/20/52           | T,E             | 110-150                  | 6/—/52            | 64                            | 3.8±                  | Р           | See well log and chemical analy-                                                                                                                         |
| Ijamsville phyllite                                                             | 25 <sup>a</sup>                    | -                      | 7/7/51            | J,E             | 10                       | 7/7/51            | 1                             | -                     | D           | Deepened by Green; present<br>depth not known.                                                                                                           |
| do                                                                              | 30ª                                | 102ª                   | 5/14/52           | J,E             | 2                        | 5/14/52           | 1                             |                       | D,F         |                                                                                                                                                          |
| do                                                                              | 28 <sup>a</sup>                    | 40 <sup>a</sup>        | 8/12/52           | C,H             | 15                       | 8/12/52           | .5                            | 1.2                   | D           |                                                                                                                                                          |
|                                                                                 | 23.50                              |                        | 10/4/55           | C F             |                          |                   |                               |                       | D           | A.1                                                                                                                                                      |
| Antietam quartzite<br>Contact-Antietam<br>quartzite and Free<br>arisk limostane |                                    |                        | _                 | S,E<br>S,E      | _                        | _                 |                               |                       | D           | Adequate and reliable.<br>Adequate.                                                                                                                      |
| Frederick limestone                                                             | 208                                | 25 <sup>8</sup>        | 6/14/53           | LE              | 20                       | 6/14/53           | 1                             | 4                     | D.C         | Adequate for 3 families and                                                                                                                              |
| I Ituetter intestone                                                            | 11.90                              | _                      | 10/4/55           | J,E             | 20                       | 0/ 11/ 00         |                               |                       | 2,0         | service station. Water sof-<br>tener used.                                                                                                               |
| do                                                                              | 20 <sup>a</sup>                    | -                      | 1/6/54            | N               | 30                       | 1/6/54            | 2                             |                       | N           | Destroyed. Gasoline contami-<br>nated.                                                                                                                   |
| Grove limestone                                                                 | -                                  |                        |                   | N               |                          | -                 |                               | -                     | N           | Destroyed. Crooked hole; could<br>not install casing.                                                                                                    |
| do                                                                              | 12 <sup>a</sup>                    | 46 <sup>n</sup>        | 7/1/55            | J,E             | 9                        | 7/1/55            | 1                             | . 27                  | F           | Orginally 91 ft. deep with 55 ft.<br>of casing. Reamed to 8 in.<br>and deepened to 115 ft. by<br>Keyser to correct sanding con-<br>dition. See well log. |
| do                                                                              | 22.53                              | -                      | 10/7/55           | Ј,Е;<br>С,Н     |                          | -                 |                               |                       | D,F         |                                                                                                                                                          |
| New Oxford                                                                      | 40 <sup>a</sup>                    | -                      | 9/25/53           | J,E             | 1                        | 9/25/53           | 3.2                           | -                     | D           |                                                                                                                                                          |
| Frederick limestone                                                             | 8.5                                |                        | 10/12/55          | Ν               | -                        | -                 | -                             | -                     | N           |                                                                                                                                                          |
| do                                                                              | -                                  | -                      | -                 | J,E             | -                        |                   | -                             |                       | D,F         | Good yield reported.                                                                                                                                     |
| do                                                                              | 108                                | 248                    | 4/20/55           | C,N             | ~                        | 4/20/53           |                               |                       | D           |                                                                                                                                                          |
| 0D<br>Yimmauilla phullita                                                       | 58                                 | 528                    | 3/21/59           | TE              | 8                        | 3/21/5            | 5 5                           | .9                    | D           | Depth of nump jet 55 ft                                                                                                                                  |
| do                                                                              | 348                                | 76ª                    | 7/16/40           | C.H             | 6                        | 7/16/40           | )                             | .1                    | D           | Irony taste reported.                                                                                                                                    |
| do                                                                              | 34.45                              |                        | 10/12/55          | B,H             | _                        |                   |                               |                       | N           | Low yield at times.                                                                                                                                      |
| Frederick limestone                                                             | 18ª                                | 22ª                    | 9/8/53            | J(?),           | 6                        | 9/8/5             | 3 —                           | 1.5                   | D           | See chemical analysis.                                                                                                                                   |
|                                                                                 | 24.2                               |                        | 10/12/55          | E               |                          |                   |                               |                       |             |                                                                                                                                                          |
| do                                                                              | -                                  | -                      | -                 | C,H             | -                        | -                 | =                             | -                     | D           | Adequate.                                                                                                                                                |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                     | Driller                      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|-----------------------------------|------------------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Cf 22<br>Cf 23               | Charles Stup<br>Mrs. Effie Strine | Corum<br>do                  | 1949<br>1950           | 430<br>350              | Drilled<br>do   | 82<br>58                   | 58<br>6                      | 12<br>8                 | Draw<br>Hilltop              |
| Cf 24                        | Carmen L. Fiogle                  | H. E. Wantz                  | 1953                   | 510                     | do              | 123                        | 6                            | 17.5                    | do                           |
| Cf 25                        | Mr. Lookingbill                   | -                            |                        | 460                     | do              | _                          | 6                            | _                       | do                           |
| Cf 26                        | N. L. Stitly                      | Harris                       | 1954                   | 480                     | do              | 103                        | 5番                           | 28                      | do                           |
| Cf 27                        | C. J. Martin                      | do                           | 1954                   | 480                     | do              | 64                         | 58                           | 8                       | Hillside                     |
| Cf 28                        | Russell W. Martin                 | Corum                        | 1951                   | 530                     | do              | 80                         | 6                            | 15                      | do                           |
| Cf 29                        | Harry Gruber                      | All Md. Pump and<br>Well Co. | 1956                   | 380                     | do              | 47                         | 5 8                          | 14                      | Upland<br>flat               |
| Cf 30                        | Woodsboro Savings Bank            | Kevser                       | 1953                   | 325                     | do              | 88                         | 6                            | 11.5                    | do                           |
| Cf 31                        | Mr. Fillers                       | -                            | -                      | 355                     | Spring          | -                          |                              | -                       | Hillside                     |
| Cf 32                        | Do                                | _                            | Old                    | 360                     | Drilled         | -                          | 6                            | -                       | Upland                       |
| Cf 33                        | David L. Nash                     | LeGore                       | 1955                   | 590                     | do              | 110                        | 6                            | 31                      | Hillside                     |
| Cf 34                        | Albert Gonner                     | _                            |                        | 550                     | Spring          |                            |                              | _                       | do                           |
| Cf 35                        | Glenn Holt                        | _                            | 1954                   | 520                     | Drilled         | 98                         | 6                            | 13                      | Upland                       |
| Cg 1                         | A. B. Potts                       |                              | Old                    | 586                     | Dug             | 43                         | 36                           | -                       | do                           |
| Cg 2                         | Jesse N. Nicodemus                | Greene                       | 1949                   | 605                     | Drilled         | 71                         | 6                            | 11                      | do                           |
| Cg 3                         | Russell Frowfelter                | E. Brown                     | 1955                   | 595                     | do              | 100                        | 6                            | 36                      | do                           |
| Cg 4                         | Carville T. Grabill               | Hiner                        | 1948                   | 605                     | do              | 100                        | 6                            | -                       | do                           |
| Cg 5                         | Bernard Keefer                    | Corum                        | 1952                   | 410                     | do              | 81                         | 58                           | 21                      | Hillside                     |
| Cg 6                         | Thomas Keeney                     | do                           | 1953                   | 600                     | do              | 58                         | 58                           | 21                      | Upland                       |
| Cg 7                         | Earl F. Keefer                    | C. L. Wantz                  | 1948                   | 430                     | do              | 98                         | 6                            | 8                       | Hillside                     |
| Cg 8                         | John W. Baker                     | H. E. Wantz                  | 1951                   | 610                     | do              | 70                         | 58                           | 17.6                    | do                           |
| Cg 9                         | Earl F. Keefer                    | Cromwell                     | 1953                   | 440                     | do              | 95+                        | 6                            |                         | do                           |
| Cg 10                        | Do                                | Showers                      | 1955                   | 470                     | do              | 120                        | 6                            | 17                      | do                           |
| Cg 11                        | Elmer Sager                       | Wantz                        | 1931                   | 500                     | do              | 349                        | 6                            |                         | do                           |
| Cg 12                        | Paul Fogle                        | do                           | 1931                   | 470                     | do              | 64                         | 6                            | -                       | Valley                       |
| Cg 13                        | James Hoy                         |                              | Old                    | 550                     | do              | 149                        | 6                            | -                       | Hillside                     |
| Cg 14                        | Stephen V. Knott                  | E. Brown                     | 1949                   | 550                     | do              | 64                         | 6                            | _                       | Hilltop                      |
| Cg 15                        | Do                                | -                            | -                      | 550                     | Dug             | 19                         | 36                           |                         | do                           |
| Ch 1                         | Charles J. Fogle                  | -                            | Before<br>1935         | 725                     | Drilled         | 46                         | 6                            | -                       | 11illside                    |
| Db 1                         | R. H. Hinds                       | Harley                       | 1951                   | 620                     | do              | 49                         | 6                            | 14.5                    | Hilltop                      |
| Db 2                         | Do                                | _                            | _                      | 600                     | Dug             | 30                         | 36                           |                         | Hillside                     |
| Db 3                         | Do                                | —                            | -                      | 600                     | Spring          | _                          | _                            | _                       | do                           |

| Water-bearing<br>formation                                 | Wa<br>belov      | ter level.<br>w land s | (feet<br>urface) | equip-          | Yi                       | eld               | of<br>ig test                 | apacity<br>./ft.)     | Use         |                                                             |
|------------------------------------------------------------|------------------|------------------------|------------------|-----------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|-------------------------------------------------------------|
| formation                                                  | Static           | Pump-<br>ing           | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date              | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                     |
| Frederick limestone<br>New Oxford (quartz<br>conglomerate) | 19 <sup>a</sup>  |                        | 5/7/49           | С,Н<br>С,Н      | 7<br>10                  | 5/7/49<br>12/7/50 | 1                             | -                     | D<br>D      |                                                             |
| Antietam quartzite                                         | 27 <sup>a</sup>  | - 1                    | 5/2/53           | ?,E             | .5                       | 5/2/53            | . 2                           | —                     | D           | Bailed dry in 10 minutes. See well log                      |
| New Oxford                                                 | _                |                        |                  | J,E             | -                        | _                 | _                             |                       | D           | wen iog.                                                    |
| do                                                         | 30 <sup>8</sup>  | 70 <sup>8</sup>        | 8/2/54           | 15              | _                        |                   |                               | _                     | D           |                                                             |
| New Oxford (quartz<br>conglomerate)                        | 12 <sup>a</sup>  | 52 <sup>a</sup>        | 8/17/54          | J,E             | -                        | -                 | 201                           | -                     | D           | Adequate.                                                   |
| do                                                         | 30 <sup>a</sup>  | 60 <sup>n</sup>        | 3/12/51          | J,E             | 15                       | 3/12/51           | . 5                           | . 5                   | D           |                                                             |
| Frederick limestone                                        | 20 <sup>a</sup>  | -                      | 1956             | NI              | 25                       | 1956              | 2                             | -                     | D           |                                                             |
| do                                                         | 20 <sup>a</sup>  | 25 <sup>n</sup>        | 6/5/53           |                 | 20                       | 6/5/53            | 1                             | 4.0                   | N           |                                                             |
| Grove limestone                                            | -                | -                      | -                | N               | 100-200                  | 10/5/55           | -                             | -                     | Ν           | Discharges from cavern-like opening in hillside.            |
| do                                                         |                  | - /                    | -                | J,E             | -                        |                   | -                             | -                     | D           | Adequate.                                                   |
| Ijamsville phyllite                                        | 53 <sup>a</sup>  | 90 <sup>8</sup>        | 1/13/55          | J.E             | 10                       | 1/13/55           | 2                             | . 27                  | D           | See well log.                                               |
| do                                                         |                  | _                      |                  | N               | 10                       | 10/26/56          | -                             | _                     | N           | Temperature Oct. 26, 1956, 58°F.                            |
| Antietam quartzite                                         | -                | —                      | -                | J,E             |                          | —                 | -                             | -                     | D           |                                                             |
| Ijamsville phyllite                                        | 37.46            | —                      | 6/28/46          | J,E;            | 7                        | 1946              |                               |                       | D           | Water-level observation well.                               |
| da                                                         | 38.94            |                        | 9/10/50          | C,H             |                          |                   |                               |                       |             | See chemical analysis.                                      |
| do                                                         | 27.4             |                        | 8/1/49           | J,E             |                          |                   |                               |                       | D           |                                                             |
| do                                                         | 268              | _                      | 4/21/00          | J,E             | 0                        | 4/21/35           | - , i                         |                       | D           |                                                             |
| New Oxford                                                 | 228              | 608                    | 2/5/50           | J,E<br>T U      | 10                       | 12/18/48          | .5                            |                       | D           |                                                             |
| Ijamsville phyllite                                        | 24 <sup>a</sup>  | 39 <sup>n</sup>        | 5/4/53           | عرار<br>—       | 12                       | 5/4/53            | -                             | . 4                   | D           |                                                             |
| New Oxford                                                 | 10 <sup>a</sup>  | _                      | 2/21/48          | J,E             | 1.75                     | 2/21/48           | . 3                           | -                     | F           | Reported bailed dry in 20 min-                              |
| New Oxford (quartz                                         | 28 <sup>a</sup>  | —                      | 11/19/51         | J,E             |                          | -                 | _                             | -                     | D           | utes.                                                       |
| New Oxford                                                 | 318              | 86 <sup>8</sup>        | 12/24/53         | LE              | 7                        | 12/24/53          | _                             | 1.0                   | D           |                                                             |
| do                                                         | 50 <sup>a</sup>  | 90 <sup>a</sup>        | 6/16/52          | LE              | 10                       | 6/16/52           | _                             | .25                   | D           |                                                             |
| Wakefield marble                                           |                  |                        |                  | C.E             | 8                        | _                 | _                             |                       | D.F         | Water reported hard.                                        |
| do                                                         |                  |                        |                  | C,E             | 25                       | —                 |                               | -                     | D,F         | Well drilled at site of dry spring.                         |
| Sams Creek metaba-<br>salt                                 | 70±              | -                      | 9/27/56          | C,E             |                          | —                 |                               | -                     | D,F         | Adequate.                                                   |
| Ijamsville phyllite                                        | 20 <sup>18</sup> |                        | 1                | C,E             | _                        | _                 | _                             |                       | F           |                                                             |
| do                                                         | 16.76            | —                      | 11/14/56         | C,E             | -                        |                   | -                             | —                     | D           |                                                             |
| do                                                         | -                | -                      | -                | J,E             | -                        | -                 | _                             | —                     | D           | Adequate. See chemical analy-<br>sis.                       |
| Catoctin metabasalt                                        | 6 <sup>a</sup>   | =                      | 4/14/51          | J,E             | 35                       | 4/14/51           | -                             | -                     | F           | Inadequate at times. Turkey<br>farm. Owner reports well may |
| do                                                         | 2ª               |                        | 4/1/55           | J,E             | -                        | -                 |                               | —                     | F           | Good yield reported. Supple-<br>ments supply from Db 1. See |
| do                                                         | -                | _                      |                  | -               | 15                       | 4/1/55            | -                             |                       | N           | Continuous discharge reported.                              |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name               | Driller        | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|-----------------------------|----------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Db 4<br>Db 5                 | Elmer Smith<br>Harlen Haupt | Holtzman<br>do | 1949<br>1948           | 1,280<br>1,330          | Drilled<br>do   | 70<br>69.5                 | 5 sym                        | 21<br>51                   | Hillside<br>do               |
| Dc 1                         | H. J. Mock                  | Corum          | 1950                   | 850                     | do              | 50                         | 55                           | 7                          | do                           |
| Dc 2                         | Gladhill Furniture Co.      | E. Brown       | _                      | 570                     | do              | 104                        | 6                            | P                          | do                           |
| Dc 3                         | Oscar Myers                 | Smith          | 1955                   | 600                     | do              | 58                         | 51                           | 35.5                       | do                           |
| Dc 4                         | Fred A. Leonard             | Keyser         | 1953                   | 1,080                   | do              | 112                        | 6                            | 14                         | Hilltop                      |
| Dc 5                         | E. C. Tullis                | do             | 1953                   | 1,060                   | do              | 113                        | 6                            | 15                         | do                           |
| Dc 6                         | G. F. Crouse                | do             | 1953                   | 1,000                   | do              | 130                        | 6                            | 13                         | Hillside                     |
| Dc 7                         | Wilbur Gladhill             | do             | 1952                   | 700                     | do              | 66                         | 55                           | 45                         | do                           |
| Dc 8                         | Guy Gladhill                | do             | 1950                   | 620                     | do              | 20                         | 57                           | 21                         | do                           |
| Dc 9                         | Paul A. Routzahn            | Smith          | 1955                   | 625                     | do              | 93                         | 58                           | 8                          | Upland                       |
| Dc 10                        | Howard Marker               | Shaff          | 1950                   | 560                     | do              | 129                        | 58                           | 56                         | flat<br>Hillside             |
| -                            | A                           | 1-             | 1072                   | 500                     | 4               | 50                         | z 5                          | 50                         | TElline                      |
| Dc 11                        | Austin Marker               | 0.0            | 1955                   | 580                     | 40              | 60                         | 58                           | 50                         | Wallow                       |
| Dc 12                        | Park A. Beachley            | Keyser         | 1955                   | 500                     | do              | 60                         | 6                            | 12                         | Hillside                     |
| Dc 13                        | Rudy's Motel                | Harley         | 1952                   | 300                     | do              | 45                         | 5¥                           | 21                         | do                           |
| DC 14                        | FTAIK Shellel               | du             | 1950                   | 400                     | 40              | 15                         | 58                           | ~ 1                        | 00                           |
| Dc 15                        | Ruthland Boyer              | Keyser         | 1951                   | 465                     | do              | 103                        | 55                           | 38                         | do                           |
| Dc 16                        | Town of Middletown          | Shaff          | 1955                   | 645                     | do              | 130                        | 8                            |                            | Upland<br>flat               |
| Dc 17                        | J. B. Sampsell              | do             | 1951                   | 615                     | do              | 67                         | 5 🕈                          | -                          | Hillside                     |
| Dc 18                        | Do                          | Sampsell       | 1947                   | 615                     | do              | 55                         | 6                            | 55                         | do                           |
| Dc 10                        | W P Bireley                 | Keyser         | 1951                   | 600                     | do              | 117                        | 6                            | 17                         | Hilltop                      |
| Dc 20                        | Mr. Thayer                  |                | Old                    | 415                     | do              | 40                         | 36                           |                            | Valley                       |
| Dc 21                        | Do                          |                | _                      | 480                     | Spring          | _                          |                              | -                          | Hillside                     |
| Do 22                        | Franklin Rudzek             |                | _                      | 620                     | do              | -                          |                              |                            | do                           |
| Dc 23                        | Mrs. Thelma Black           | _              | Old                    | 460                     | Dug             | 19                         | 36                           | -                          | do                           |
| Dc 24                        | E E Holter                  |                | _                      | 570                     | Spring          | _                          | _                            |                            | do                           |
| Dc 25                        | Dr. William Sweet           | _              |                        | 1.050                   | Drilled         | 178                        | 55                           |                            | Hillton                      |
| Dc 26                        | Di. William Sweet           | Keyser         | 1950                   | 080                     | do              | 95                         | 54                           | 10                         | Hillside                     |
| Dc 27                        | Braddock Heights Water Co.  | E. Brown       | Before<br>1942         | 830±                    | = do            | 100                        | -                            | -                          | do                           |
| Dc 28                        | Damon Blinkenstaff          |                | 1940                   | 680                     | do              | 76                         | 6                            | -                          | do                           |
| Dc 29                        | William Willis              | _              |                        | 685                     | Spring          | -                          | -                            | -                          | do                           |
| Dc 30                        | I Wilbur House              | Keyser         | 1956                   | 785                     | Drilled         | 2.30                       | 6                            |                            | Hillton                      |
| Dc 31                        | South Mountain Creamery     | Kohl Bros.     | 1925                   | 470                     | do              | 375                        | 6                            | -                          | Hillside                     |
| Dd 1                         | Fort Detrick                | _              | About<br>1943          | 325                     | do              | ?                          | ?                            | -                          | Upland<br>flat               |
| Dd 2                         | Do                          | -              | About<br>1943          | 350                     | do              | ?                          | 8                            | -                          | do                           |

| Water-bearing<br>formation                              | Wa<br>belov                        | ter level<br>w land s | (feet<br>urface)     | equip-          | Yi                       | eld                  | of<br>1g test                 | apacity<br>./ft.)    | Use    |                                                          |
|---------------------------------------------------------|------------------------------------|-----------------------|----------------------|-----------------|--------------------------|----------------------|-------------------------------|----------------------|--------|----------------------------------------------------------|
| formation                                               | Static                             | Pump-<br>ing          | Date                 | Pumping<br>ment | Gallons<br>per<br>minute | Date                 | Duration<br>pumpir<br>(hours) | Specific (<br>(g.p.m | water  | Kemarks                                                  |
| Catoctin metabasalt<br>do                               | 39 <sup>a</sup><br>39 <sup>a</sup> | 58ª<br>59ª            | 10/25/49<br>10/18/48 | C,H<br>C,H      | 6<br>5                   | 10/25/49<br>10/18/48 | 1<br>1                        | 0.3                  | D<br>D | See well log.                                            |
| do                                                      | 14 <sup>8</sup><br>50 <sup>8</sup> |                       | 10/17/55             | J,E             | 8                        | 6/16/50              | .75                           | -                    | D      |                                                          |
| granodiorite and<br>granite gneiss                      | 44 <sup>a</sup>                    | 49 <sup>a</sup>       | 8/29/55              |                 | 10                       | 8/29/55              | 1                             | 2.0                  | D      | Grouted to 17 ft.                                        |
| Catoctin metabasalt                                     | 20 <sup>a</sup>                    | 110 <sup>a</sup>      | 5/12/52              | J.E             | 3                        | 5/12/52              | 1                             | <.1                  | D      |                                                          |
| do                                                      | 158                                | 3.58                  | 4/16/53              | LE              | 8                        | 4/16/53              | 2.5                           | .4                   | D      |                                                          |
| do                                                      | 30 <sup>8</sup>                    | 125 <sup>8</sup>      | 4/4/53               | C.E             | 2                        | 4/4/53               | 1                             | <.1                  | D      | See chemical analysis.                                   |
| Catoctin metabasalt or<br>rhvolite tuff                 | 15 <sup>a</sup>                    | 25ª                   | 2/8/52               | J,E             | 10                       | 2/8/52               | 1                             | 1.0                  | D      |                                                          |
| Catoctin metabasalt                                     | 58                                 | 12 <sup>a</sup>       | 8/14/50              | C.H             | 3                        | 8/14/50              | .5                            | .4                   | D      |                                                          |
| do                                                      | ,33ª                               | _                     | 7/15/55              | J,E             | 10                       | 7/15/55              | 1                             | -                    | D      | See well log.                                            |
| granodiorite and<br>granite gneiss                      | 35ª                                | -                     | 7/1/50               | J,E             | 10                       | 7/1/50               | 4                             |                      | D      |                                                          |
| do                                                      | 10 <sup>a</sup>                    | _                     | 3/31/53              | J.E             | 5                        | 3/31/53              | 1                             |                      | D      |                                                          |
| do                                                      | 30 <sup>14</sup>                   | 35 <sup>8</sup>       | 2/14/55              | J,E             | 8                        | 2/14/55              | 2                             | 1.6                  | D      |                                                          |
| Catoctin metabasalt                                     | 14 <sup>a</sup>                    | 60 <sup>a</sup>       | 9/3/52               | J,E             | 10                       | 9/3/52               |                               | . 2                  | С      | See well log.                                            |
| Catoctin metabasalt or                                  | 6 <sup>a</sup>                     | -                     | 4/22/50              | J,E             | 10                       | 4/22/50              | -                             | _                    | D      |                                                          |
| Catoctin metabasalt                                     | 30 <sup>8</sup>                    | 508                   | 11/21/51             |                 | 10                       | 11/21/51             | 2                             | . 5                  | D      |                                                          |
| do do                                                   | 308                                | 60ª                   | 4/30/55              | TE              | 30                       | 4/30/55              | 1                             | 1.0                  | P      | See chemical analysis. Tempera-                          |
| do                                                      | 35 20                              |                       | 10/18/55             | 1,12            | 00                       | -1/00/00             |                               | 1.0                  |        | ture May 9, 1956, 52°F                                   |
| do                                                      | 38ª                                | 45 <sup>a</sup>       | 11/3/51              | C,H             | 5                        | 11/3/51              | 1.5                           | .7                   | N      | cure Mary 7, 1988, 52 1.                                 |
| 1.                                                      | 15 60                              | _                     | 10/10/33             | TE              |                          |                      |                               |                      | D      | See well log                                             |
| L laum                                                  | 208                                | 508                   | E/20/54              | J,L<br>T F      | 6                        | E /20 /51            | 1                             | 2                    | D      | See wen log.                                             |
| granodiorite and gran-                                  | 7.65                               |                       | 10/20/55             | LE:             | _                        |                      | I                             |                      | D      |                                                          |
| ite gneiss                                              |                                    |                       |                      | CH              |                          |                      |                               |                      |        |                                                          |
| do                                                      | -                                  | -                     | -                    | N               | 4                        | <b>10/2</b> 0/55     | i. —                          | -                    | D      | Temperature Oct. 20, 1955, 56°F;<br>Dec. 20, 1955, 46°F. |
| Catoctin metabasalt                                     | -                                  |                       |                      | N               | 3                        | 10/21/55             |                               |                      | D      | Supplies 4 homes.                                        |
| granodiorite and gran-<br>ite gneiss                    | 9.88                               | -                     | 10/21/55             | N               | -                        | -                    |                               | -                    | N      |                                                          |
| Catoctin metabasalt                                     | _                                  | _                     | -                    | I.E             | 2                        | 10/21/55             |                               | _                    | D,F    |                                                          |
| do                                                      | 68.18                              | _                     | 10/17/55             | C.H             |                          |                      | _                             | - 1                  | N      | Water-level observation well.                            |
| do                                                      | 45 <sup>a</sup>                    | 90 <sup>a</sup>       | 7/12/50              | I.E             | 1                        | 7/12/50              | .5                            | <.1                  | D      |                                                          |
| Loudoun or Catoctin<br>metabasalt                       | 50 <sup>8</sup>                    | -                     | -                    | N(?)            | 25                       | -                    | 1-110                         |                      | Ν      | Exact location unknown. May be destroyed.                |
| Catoctin metabasalt                                     | 20 <sup>a</sup>                    |                       | 1940                 | J,E             |                          | _                    |                               |                      | D      | Depth of pump jet 68 ft.                                 |
| do                                                      | -                                  | -                     | _                    | Ν               | 5                        | 8/15/56              | - i                           |                      | D      | Temperature Aug. 15, 1956,<br>58°F.                      |
| do                                                      | _                                  | 1 H I                 | _                    | NI              | _                        | _                    | _                             |                      | D      |                                                          |
| do                                                      | 60 <sup>a</sup>                    |                       | _                    | C,E             | 30                       |                      | -                             |                      | N      |                                                          |
| Contact-Frederick                                       | _                                  |                       | _                    | T,E             | 75                       | -                    | -                             |                      | I      |                                                          |
| limestone and New<br>Oxford (limestone<br>conglomerate) | 0                                  |                       |                      |                 |                          |                      |                               |                      |        |                                                          |
| Frederick limestone                                     | -                                  | -                     | -                    | Ν               | -                        | -                    | -                             | -                    | N      | Poor yield reported.                                     |
|                                                         |                                    |                       | 1                    |                 | 1                        |                      |                               |                      | 1      |                                                          |

of casing Diameter of well (inches) Well Date Alti-Depth Topo num-Туре Driller Owner or name of well (feet) comgraphic ber Length (feet) of well pleted (feet) (Fr.) Dd 3 Fort Detrick Keyser 1952 Drilled 140 6 45 Hillside Dd 4 Do About 320 800-Upland 1943 flat City of Frederick Dd 5 1844 510 do 996 Hillside Dd 6 1844 Do 560 1,140 do Dd 7 William Lantz Shaff 1950 600 do 153.5 do Dd 8 Do do 1952 7.30 do 100 8 do Dd 9 Mr. McCavett Easterday 1956 500 do 209 do Braddock Heights Water Co. Dd 10 Cullen 690 do 510 8 8 Valley Dd 11 Do 690 Spring Dd 12 960 do Valley side Dd 13 Do Cromwell 1954 Drilled 85 42 Valley Claude H. Dutrow Keyser 1954 480 do 85 Hillside 6 Harley Dd 15 L. B. Pennington 1949 480 do 124 0 do Dd 16 Walter L. Andrews Hilltop Keyser 510 do 88 William D. Mathews do 1951 530 do 122 9 do Dd 18 Harvey Whipp Harley 680 do 88 Dd 19 Do Dug do Robert F. Penn Dd 20 Harley 1950 790 Drilled 85 do 6 Dd 21 Leonard M. Thompson 1952 Keyser 680 do 105 6 18 do Charles Korrell Dd 22 Harley 1953 do 28 Hilltop Graeon Korrell Dd 23 do 1953 580 do 90 5 🕈 do Harvey Blank Harris Dd 24 1954 do 80 13 do Dd 25 Lester Shaffer Harley 450 do 0.3 51 23 Hillside Dd 26 M. E. Rhoderick Shaff 1953 400 70 do 6 60 Upland flat Dd 27 Austin Kemp Before 74 Hillside 400 do 1930 Milton Blank Dd 28 Harris 1955 do 80 17 do Hermann B. Brust, Jr. Dd 29 Keyser 1950 750 do Dd 30 M. Lloyd Blank Harley 1949 do 70 30 do Dd 31 John M. Etzler Keyser 1952 690 104 12 Hilltop Dd 32 Norman Dutrow Harris 1953 580 108 5 do Paul O. Jones 1955 450 58 do Dd 33 Keyser do Dd 34 Spencer Brittain do 1956 430 do 86 do Dd 35 Walter A. Martz do 1949 380 do 14 do Dd 36 Do Old 360 do 67(?)Hillside Dd 37 Do Keyser 1952 390 do 90 6 15 Hilltop John Wiley Spring Valley

340

Drilled

34

6

1951

do

do

Valley

side

0

190

Dd 39

Dd 40

Do

Zion Reformed Chruch

| Water-bearing<br>formation                                | Wa<br>belo                         | ter level<br>w land s               | l (fect<br>urface) | din Y           |                          | ield              | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                                                                                                                           |
|-----------------------------------------------------------|------------------------------------|-------------------------------------|--------------------|-----------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                                 | Static                             | Pump-<br>ing                        | Date               | Pumping<br>ment | Gallons<br>per<br>minute | Date              | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                   |
| New Oxford                                                | 30 <sup>a</sup>                    | -                                   | 9/12/52            | T,E             | 65                       | 9/12/52           | 3                             | -                     | I           | See well log.                                                                                                                                             |
| Frederick limestone                                       | 34.02                              | _                                   | 9/25/53            | 1,E<br>N        |                          | -                 | -                             |                       | N           | Destroyed.                                                                                                                                                |
| Harpers phyllite                                          | 3.61                               |                                     | 11/9/56            | N               | 70                       | -                 |                               | -                     | N           | Airlift pump pipes in well.                                                                                                                               |
| Loudoun                                                   | 53 <sup>n</sup>                    | 73 <sup>8</sup>                     | 10/9/50            |                 | 5                        | 10/9/50           | 2                             | 0.25                  | D           | Do                                                                                                                                                        |
| do<br>Harpers phyllite and/<br>or Antietam quartz-<br>ite | 40 <sup>a</sup><br>39 <sup>a</sup> | 94 <sup>a</sup><br>209 <sup>a</sup> | 3/10/52<br>5/2/56  | J,E<br>NI       | 2<br>3                   | 3/10/52<br>5/1/56 | 3                             | <.1                   | N<br>D      | Formerly a restaurant.<br>Small amount of water at 70 and<br>170 ft. Blasting at these<br>depths improved supply. Two<br>dry holes, 232 and 100 ft. deep, |
| Catoctin metabasalt                                       | 15 <sup>a</sup>                    |                                     |                    | C,E             | 10                       | _                 |                               |                       | Р           | drilled previously.<br>Principal supply obtained at 200                                                                                                   |
| do                                                        | -                                  |                                     | _                  | N               | _                        | _                 | _                             | _                     | Р           | tt. Supplements springs.<br>Two springs piped to nearby<br>reservoir. Springs Dd 11 and                                                                   |
| do                                                        |                                    |                                     |                    | Ν               |                          | -                 | 2                             | -                     | Р           | Gravity flow to reservoir.                                                                                                                                |
| do                                                        | 5 <sup>8</sup>                     | 112                                 | 7/24/54            | C.E             | 50                       | 7/24/54           | 1.2                           | 8.3                   | р           | Supplements spring supply                                                                                                                                 |
| Harpers phyllite                                          | 30 <sup>8</sup>                    | 60 <sup>n</sup>                     | 6/3/54             | J,E             | 10                       | 6/3/54            | 2                             | .3                    | D           | Sallhemenes shring salihiti                                                                                                                               |
| Antietam quartzite                                        | 6 <sup>n</sup>                     | 110 <sup>a</sup>                    | 2/4/49             | ?,E             | 3                        | 2/4/49            | _                             | <.1                   | D           |                                                                                                                                                           |
| Harpers phyllite                                          | 35 <sup>B</sup>                    | 70 <sup>n</sup>                     | 3/10/51            | J,E             | 3                        | 3/10/51           | 1                             | . 1                   | D           |                                                                                                                                                           |
| do                                                        | 20 <sup>a</sup>                    | 40 <sup>n</sup>                     | 8/22/51            | J,E             | 2.5                      | 8/22/51           | 1                             | .12                   | D           |                                                                                                                                                           |
| Loudoun                                                   | 48 <sup>a</sup>                    | 77 <sup>a</sup>                     | 7/24/51            | J,E             | 2.5                      | 7/24/51           |                               | <.1                   | D           |                                                                                                                                                           |
|                                                           | 49.10                              | _                                   | 6/15/56            |                 |                          |                   |                               |                       |             |                                                                                                                                                           |
| do                                                        | 45.49                              |                                     | 6/15/56            | N               |                          |                   |                               |                       | N           |                                                                                                                                                           |
| do                                                        | 36 <sup>a</sup>                    | 81 <sup>a</sup>                     | 2/18/50            |                 | 3.5                      | 2/18/50           |                               | <1.1                  | D           |                                                                                                                                                           |
| do                                                        | 20 <sup>a</sup>                    | 100%                                | 10/15/52           | J,E             | 1                        | 10/15/52          | 0.5                           | <.1                   | D           | Adequate.                                                                                                                                                 |
| Harpers phyllite                                          | 30 <sup>a</sup>                    | 50 <sup>®</sup>                     | 6/3/53             | J,E             | 15                       | 6/3/53            |                               | .8                    | D           |                                                                                                                                                           |
| do                                                        | 25 <sup>в</sup>                    | 80 <sup>a</sup>                     | 1/14/53            | J.E             | 3                        | 1/14/53           |                               | <.1                   | Ð           |                                                                                                                                                           |
| do                                                        | 35 <sup>8</sup>                    | 70%                                 | 4/26/54            | ?.E             | 5                        | 4/26/54           |                               | .14                   | D           |                                                                                                                                                           |
| New Oxford                                                | 23 <sup>8</sup>                    | 76 <sup>8</sup>                     | 10/16/53           | J.E             | 12                       | 10/16/53          | _                             | .2                    | D           |                                                                                                                                                           |
| do                                                        | -                                  | -                                   | -                  | J,E             | 3                        | 12/2/53           | 4                             | _                     | D           |                                                                                                                                                           |
| do                                                        | 54 <sup>a</sup>                    | —                                   | 1930               | J,E             | -                        | _                 | —                             | _                     | D           |                                                                                                                                                           |
| Harpers phyllite                                          | _                                  |                                     |                    | ?,E             | _                        | -                 |                               |                       | D           |                                                                                                                                                           |
| Loudoun                                                   | 30 <sup>a</sup>                    | 45ª                                 | 10/20/50           | J,E             | 6                        | 10/20/50          | 1                             | . 4                   | D           | See well log.                                                                                                                                             |
| Harpers phyllite                                          | 35 <sup>8</sup>                    | 55 <sup>a</sup>                     | 3/18/49            | ?,E             | 6                        | 3/18/49           |                               | . 3                   | D           |                                                                                                                                                           |
| Loudoun                                                   | 30 <sup>a</sup>                    | 104 <sup>8</sup>                    | 5/2/52             | J,E             | 2                        | 5/2/52            | 1                             | -                     | D           |                                                                                                                                                           |
| Harpers phyllite                                          | 30 <sup>a</sup>                    | 80 <sup>n</sup>                     | 5/2/53             | ?,E             |                          | ]                 |                               |                       | D           |                                                                                                                                                           |
| New Oxford                                                | 32 <sup>a</sup>                    | 48 <sup>n</sup>                     | 4/28/55            | J,E             | 9                        | 4/28/55           | 1                             | . 56                  | D           |                                                                                                                                                           |
| do                                                        |                                    |                                     | —                  | J,E             |                          |                   |                               | -                     | D           | Adequate.                                                                                                                                                 |
| do                                                        | 25 <sup>a</sup>                    | 80 <sup>n</sup>                     | 12/6/49            | J,E             | 6                        | 12/6/49           | 1                             | .11                   | D,F         |                                                                                                                                                           |
| do                                                        | 24.96                              | _                                   | 6/6/56             | J,E             |                          |                   |                               | -                     | D           | Adequate.                                                                                                                                                 |
| do                                                        | 10 <sup>a</sup>                    | 86 <sup>a</sup>                     | 4/12/52            | ?,E             | 5                        | 4/12/52           | 1                             | <.1                   | D           |                                                                                                                                                           |
| do                                                        | -                                  |                                     | -                  | N               | 5-10                     | 6/11/56           |                               |                       | D,F         | Discharge ceased during 1930<br>drought. West spring.                                                                                                     |
| do                                                        | -                                  |                                     |                    | Ν               | 5-10                     | 6/11/56           |                               | _                     | F           | Continuous discharge. East spring.                                                                                                                        |
| do                                                        | 2ª                                 | 30 <sup>®</sup>                     | 9/6/51             | J,E             | 3                        | 9/6/51            | 1                             | .1                    | D           | Drilled at site of dried up spring.                                                                                                                       |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                                           | Driller                    | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|---------------------------------------------------------|----------------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Dd 41<br>Dd 42               | Herbert G. Tyeryar<br>Mr. Stup                          | Keyser                     | 1951<br>Before<br>1900 | 400<br>380              | Drilled<br>do   | 69<br>18-20                | 5§<br>36                     | 33                         | Hillside<br>Valley           |
| Dd 43                        | Howard Zimmerman                                        | Keyser                     | 1954                   | 450                     | do              | 25                         | 5%                           | 25                         | Upland                       |
| Dd 44                        | Brosius Homes Corp.                                     | do                         | 1955                   | 490                     | do              | 214                        | 6                            | 100                        | Hillside                     |
| Dd 45                        | Benjamin J. Wilson                                      | Harley                     | 1952                   | 340                     | do              | 81                         | 6                            | 75                         | Hilltop                      |
| Dd 46                        | Ruben Stockman                                          | do                         | 1951                   | 430                     | do              | 65                         | 6                            | 24                         | Hillside                     |
| Dd 47                        | Robert H. Layman                                        | do                         | 1952                   | 640                     | do              | 160                        | 6                            | 22                         | Hilltop                      |
| Dd 48                        | Silas D. Kuhn                                           | Keyser                     | 1952                   | 600                     | do              | 135                        | 58                           | 16                         | do                           |
| Dd 49                        | Joseph L. Lebherz                                       | do                         | 1950                   | 650                     | do              | 128                        | 58                           | 20                         | do                           |
| Dd 50                        | Thomas Shepley                                          | Harley                     | 1953                   | 480                     | do              | 75                         | 5 g B                        | 15                         | do<br>Hilleide               |
| Dd 51                        | Harp Gilbert                                            | do                         | 1955                   | 400                     | do              | 100                        | 58                           | 11                         | do                           |
| Dd 52                        | Harry Ramshurg                                          | Harley                     | 1955                   | 640                     | do              | 36                         | 5.5                          | 20                         | do                           |
| Dd 54                        | C B Schmitt                                             | do                         | 1951                   | 1 000                   | do              | 60                         | 6                            | 36                         | do                           |
| Dd 55                        | Do                                                      | _                          | _                      | 1,000                   | do              | 27                         | 48                           |                            | do                           |
| Dd 56                        | Do                                                      | Keyser                     | 1952                   | 1,020                   | do .            | 80                         | 500                          | 33                         | do                           |
| Dd 57<br>Dd 58<br>Dd 59      | J. R. Yingling<br>Dr. M. L. Lerner<br>Rose's Restaurant | Harley<br>Harris<br>Keyser | 1953<br>1954<br>1954   | 990<br>1,130<br>380     | do<br>do<br>do  | 84<br>74<br>125            | 6<br>5 5<br>5 5              | 50<br>67<br>15.5           | do<br>do<br>do               |
| D-1-60                       | Cale W. Cash                                            | da                         | 1052                   | 200                     | do              | 20                         | 6                            | 22                         | do                           |
| Dd 60                        | Luchur's Trailer Court                                  | Corum                      | 1933                   | 370                     | do              | 41                         | 6                            | 32                         | do                           |
| Dd 62                        | Do                                                      | Keyser                     | 1953                   | 380                     | do              | 92                         | 6                            | 54                         | do                           |
| Dd 63                        | Masser's Motel                                          | do                         | 1955                   | 410                     | do              | 214                        | 8                            | 28                         | Upland<br>flat               |
| Dd 64                        | Do                                                      | do                         | 1951                   | 410                     | do              | 163                        | _                            | - I                        | do                           |
| Dd 65                        | Resley Stull, Jr.                                       | Harley                     | 1956                   | 420                     | do              | 56                         | 58                           | 22                         | do                           |
| Dd 66                        | Mrs. Anna J. Harnwell                                   | Keyser                     | 1953                   | 325                     | do              | 92                         | 6                            | 9                          | Hillside                     |
| Dd 67                        | Dan-Dee Restaurant                                      | Cromwell                   | 1948                   | 930                     | do              | 30                         | 5                            | 30                         | do                           |
| Dd 68                        | Dan-Dee Motel                                           | Harley                     | 1952                   | 945                     | do              | 76                         | 58                           | 23                         | do                           |
| Dd 69                        | Monocacy Broadcasting Co.                               | Cromwell                   | -                      | 1,710                   | do              | 95-100                     | 6(?)                         | -                          | Hilltop                      |
| Dd 70                        | Charles Mc. Smith, Jr.                                  | Keyser                     | 1952                   | 500                     | do              | 96                         | 58                           | 39                         | Hillside                     |
| Dd 71                        | Do                                                      | Cromwell                   | Before<br>1952         | 500                     | do              | 90±                        | 6                            | -                          | do                           |
| Dd 72                        | Do                                                      |                            | Old                    | 500                     | Dug             | 40.7                       | 48                           | -                          | do                           |
| Dd 73                        | Alton J. Toms                                           | Keyser                     | 1952                   | 600                     | Drilled         | 140                        | 6                            | 14                         | do                           |
| Dd 74<br>Dd 75               | C. Arnold Duvall<br>State of Maryland                   | _                          |                        | 660<br>780              | do<br>Spring    | 21.1                       | 6                            | =                          | Valley<br>Hillside           |
|                              |                                                         |                            |                        |                         |                 |                            |                              |                            |                              |

| Water hearing            | Water level (feet<br>below land surface) |                  |          | equip-          | Yield                    |          | of<br>g rest                  | apacity<br>/ft.)       | Use         |                                                                                                                                            |
|--------------------------|------------------------------------------|------------------|----------|-----------------|--------------------------|----------|-------------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| formation                | Static                                   | Pump-<br>ing     | Date     | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific ci<br>(g.p.m. | of<br>water | Remarks                                                                                                                                    |
| New Oxtord<br>do         | 20 <sup>a</sup>                          | 50 <sup>a</sup>  | 9/1/51   | J,E<br>C,H      | 4                        | 9/1/51   | .5                            | . 13                   | D<br>D      | Adequate.                                                                                                                                  |
| Alluvial cones           | 10 <sup>a</sup>                          | 23 <sup>B</sup>  | 9/2/54   | ?,E             | 4                        | 9/2/54   | 1                             | .3                     | D           |                                                                                                                                            |
| Harpers phyllite         | 25 <sup>n</sup>                          | 50 <sup>a</sup>  | 5/4/55   | T,E             | 50                       | 5/4/55   | 23                            | 2.0                    | Р           | Supplies about 10 homes in sub-<br>division. Depth of pump 150                                                                             |
| New Oxford               | 60 <sup>a</sup>                          | _                | 5/17/52  | 2 E             | 15                       | 5/17/52  |                               |                        | D           | 11.                                                                                                                                        |
| Tomstown (lolomite(?)    | 208                                      | 108              | 11/26/51 | 515<br>C U      | 10                       | 0/11/04  |                               | 1.0                    | D           |                                                                                                                                            |
| Tomstown doronnee(:)     | 0 47                                     | 40               | 6/15/56  | 5,15            | 10                       | 11/20/51 |                               | 1.0                    | D           |                                                                                                                                            |
| Harpers phyllite         | 1.38                                     | 1508             | 6/21/52  | CE              | 2                        | 6/21/52  |                               | 1                      | 0           | Paraly adamsta Car well law                                                                                                                |
| do                       | 258                                      | 1308             | 1/17/52  | IF              | 5                        | 1/17/52  | 5                             | - 1                    |             | barely adequate, see well log.                                                                                                             |
| do                       | 50 <sup>8</sup>                          | 120ª             | 9/28/50  | CE              | 2.5                      | 0/28/50  | 1                             | 2.1                    | D           | Inst adocuate                                                                                                                              |
| Antietam quartzite       | 338                                      | 65%              | 5/30/53  |                 | 8                        | 5/30/53  | -                             | .25                    | Đ           | Just adequate.                                                                                                                             |
| do                       | 30 <sup>a</sup>                          | 65 <sup>a</sup>  | 7/27/53  | L.E             | 4                        | 7/27/53  | _                             | .1                     | D           | See well log                                                                                                                               |
| Harpers phyllite         | 10 <sup>8</sup>                          | 50 <sup>a</sup>  | 9/16/53  | LE              | 5                        | 9/16/53  | 1                             | .1                     | D           | See well log.                                                                                                                              |
| do                       | 9 <sup>a</sup>                           | 30ª              | 1/22/55  | J.E             | 5                        | 1/22/53  | _                             | .24                    | D           |                                                                                                                                            |
| Loudoun                  | 20 <sup>a</sup>                          |                  | 9/12/51  | J,E             | 15                       | 9/12/51  |                               | 1.000                  | D           |                                                                                                                                            |
| do                       | 13.51                                    |                  | 9/5/56   | C,H             |                          | -        |                               | _                      | N           | Inadequate yield at times.                                                                                                                 |
| do                       | 25ª                                      | 30*              | 2/27/52  | J,E             | 3                        | 2/27/52  | 1                             | . 1                    | N           | Drilled to 55 ft. by Keyser;<br>Deepened by Harley because<br>of muddy water. May have in-<br>creased casing length. Water<br>still muddy. |
| do                       | 22*                                      | 25ª              | 3/11/53  | J,E             | - 3                      | 3/11/53  | -                             | <.1                    | D           |                                                                                                                                            |
| do<br>Name Outeral (line | 48*                                      | 56ª              | 12/29/54 |                 |                          |          | -                             |                        | D           | See well log.                                                                                                                              |
| stone conglomerate)      | 30"                                      | 70**             | 5/14/54  | J,Ŀ             | 10                       | 5/14/54  | 1                             |                        | С           |                                                                                                                                            |
| do                       | 15 <sup>n</sup>                          | 20ª              | 7/24/53  | J,E             | 20                       | 7/24/53  | 1                             | 4.0                    | C           |                                                                                                                                            |
| do                       | 17 <sup>a</sup>                          | 19 <sup>8</sup>  | 11/3/49  | T,E             | 15                       | 11/3/49  | 1                             | 7.5                    | D           |                                                                                                                                            |
| do                       |                                          | _                | _        | T,E             |                          |          | _                             | _                      | D           |                                                                                                                                            |
| Frederick limestone      | 10 <sup>n</sup>                          | 180 <sup>a</sup> | 9/30/55  | J,E             | 10                       | 9/30/55  | 1                             | <.1                    | C           |                                                                                                                                            |
| do                       |                                          |                  |          | J.E             |                          | _        |                               |                        | С           | Reported not as good as Dd 63.                                                                                                             |
| New Oxford               | 8 <sup>n</sup>                           | 22 <sup>a</sup>  | 3/9/56   | J,E             | 10                       | 3/9/56   | -                             | .7                     | D           | See chemical analysis. Tempera-                                                                                                            |
| New Oxford (lime-        | 10 <sup>a</sup>                          | —                | 9/9/53   | J,E             | 25                       | 9/9/53   | 2                             |                        | D           | tute may 4, 1900, 55 1.                                                                                                                    |
| Catoctin metabasalt      | -                                        | -                |          | J,E             | _                        | -        | -                             | -                      | С           | Reported flowing Mar. 1948;<br>water level below land sur-<br>face Sept. 1956                                                              |
| do                       | 17 <sup>a</sup>                          |                  | 11/5/52  | J.E             | 12                       | 11/5/52  |                               |                        | С           | Teste Soliti theory                                                                                                                        |
| Loudoun                  | $45-50^{\mathrm{a}}$                     |                  | - 1      | ?,E             | 6-7                      | -        |                               |                        | D           | See well log.                                                                                                                              |
| Harpers phyllite         | 10 <sup>8</sup>                          | 80 <sup>a</sup>  | 8/12/52  | J,E             | 2                        | 8/12/52  | .5                            | <.1                    | D           | ~                                                                                                                                          |
|                          | 20.98                                    |                  | 11/8/56  |                 |                          |          |                               |                        |             |                                                                                                                                            |
| do                       |                                          | -                | - 1      | N               |                          |          | -                             | _                      | Ν           | Crooked hole; caved while drill-                                                                                                           |
| do                       | 5.45                                     | —                | 11/8/56  | N               |                          | _        | _                             | _                      | N           | Was inadequate at times.                                                                                                                   |
| do                       | 20 <sup>a</sup>                          | 120 <sup>8</sup> | 8/26/52  | C,E             | 1.5                      | 8/26/52  | 1                             | <.1                    | D           | the second second                                                                                                                          |
| Weverton quartzite       | 8.51                                     | 8.76             | 11/8/56  | C,H             | 4.4                      | 11/8/56  | .4                            | 17.6                   | N           |                                                                                                                                            |
| do                       | -                                        | -                | -        | N               | 20                       | 11/8/56  | _                             | -                      | Р           | "Spout Spring." Roadside pub-<br>lic spring. Temperature Nov.<br>8, 1956, 53°F.                                                            |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                  | Driller      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|--------------------------------|--------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Dd 76<br>Dd 77               | J. Ruskin Loy<br>E. A. Heywood | Keyser<br>do | 1952<br>1952           | 620<br>515              | Drilled<br>do   | 105<br>73                  | 6<br>5 <del>5</del>          | 9<br>18                 | Hilltop<br>do                |
| Dd 78                        | Gambrill State Park            | -            |                        | 1,400                   | Spring          | -                          | A Sale of                    | -                       | Hillside                     |
| De 1                         | Fort Detrick                   | Keyser       | 1953                   | 340                     | Drilled         | 87                         | 6                            | 18                      | Upland                       |
| De 2                         | Do                             |              |                        | 340                     | Spring          | -                          | -                            | -                       | Valley                       |
| De 3                         | Charles W. Brunner             | Shaff        | 1952                   | 485                     | Drilled         | 41(?)                      | 55                           |                         | Hilltop                      |
| De 4                         | Edward Hoffman                 | Corum        | 1952                   | 390                     | do              | 97                         | 6                            | 14                      | Hillside                     |
| De 5                         | Harry Finneyfrock              | Harris       | 1953                   | 445                     | do              | 40                         | 6                            | 34                      | Hilltop                      |
| De 6                         | Guy E. Buckey                  | Harley       | 1954                   | 310                     | do              | 40                         | 5                            | 28                      | Upland<br>flat               |
| De 7                         | Frank N. Stauffer              | Shirley      | 1954                   | 310                     | do              | 123                        | 58                           | 51                      | do                           |
| De 8                         | Do                             |              | Old                    | 310                     | Dug             | 15                         | 36 or 48                     |                         | do                           |
| De 9                         | Charles Routzan                | Shirley      | 1954                   | 320                     | Drilled         | 65                         | 6                            | 59                      | I1i1lside                    |
| De 10                        | Harry S. Rippeon               | Harley       | 1952                   | 320                     | do              | 111                        | 58                           | 17.9                    | do                           |
| De 11                        | Ralph L. Zimmerman             | Corum        | 1949                   | 290                     | do              | 83                         | 6                            | 6                       | Upland<br>flat               |
| De 12                        | Nevin W. Staley                | Keyser       | 1954                   | 310                     | do              | 84                         | 6                            | 23                      | do                           |
| De 13                        | Sanitary Products Corp.        | Owings       | 1951                   | 300                     | do              | 70                         | 12                           | 21                      | do                           |
| De 14                        | J. R. McLaren                  | E. Brown     | Before<br>1942         | 320                     | do              | 400                        | 6                            | 70                      | do                           |
|                              |                                |              |                        |                         | 1               |                            |                              |                         | ł                            |
| De 15                        | Guy E. Buckey                  | Shirley      | 1954                   | 310                     | do              | 71                         | 6                            | 45                      | do                           |
|                              | *1.5 1.456.4571.4.             | Coursell     | 1055                   | 205                     | 2               | 55                         | c 5                          | 10                      | Hillaida                     |
| De 16                        | Edward W. Wachter              | Cromwell     | 1955                   | 323                     | do              | 33                         | 28                           | 10                      | ritustae                     |
| De 17                        | Nicholas I. Ritter             | Keyser       | 1951                   | 280                     | do              | 43                         | 5景                           | 21                      | do                           |
| De 18                        | James Dunn                     | Harris       | 1954                   | 385                     | do              | 79                         | 5                            | 23                      | Hilltop                      |
| De 19                        | Perry Beckley                  | -            | Old                    | 290                     | do              | 18                         | -                            | —                       | Draw                         |
| De 20                        | Beckley's Motel                | Cromwell     | 1955                   | 300                     | do              | 37                         | 58                           | 30                      | Hillside                     |
| De 21                        | Robert C. Schultz, III         | Keyser       | 1949                   | 300                     | do              | 22                         | 55                           | 4.5                     | Hilltop                      |
| De 22                        | Do                             | do           | 1955                   | 300                     | do              | 100±                       | -                            |                         | do                           |
| De 23                        | Claude C. Clemson              | -            | Before<br>1926         | 275                     | do              | 104                        | 6                            | -                       | do                           |
| De 24                        | Do                             | -            | Old                    | 275                     | Dug             | 35                         | 48                           | -                       | do                           |
| De 25                        | Do                             | Keyser       | 1952                   | 280                     | Drilled         | 100                        | 5#                           | 14.5                    | do                           |
| De 26                        | James W. Carmack               | Harley       | 1956                   | 320                     | do              | 70                         | 6                            | 19                      | Hillside                     |
| De 27                        | Ebert Ice Cream Co.            | E. Brown     | 1930                   | 290                     | do              | 200                        | 8                            | 0                       | Upland<br>flat               |
| De 28                        | Do                             | Grove        | 1930                   | 305                     | do              | 735                        | 8                            | —                       | Hillside                     |
|                              |                                |              |                        |                         |                 |                            |                              |                         |                              |
|                              |                                |              |                        |                         |                 |                            |                              |                         |                              |
|                              | 1                              |              | I.                     |                         | L               | 1                          | 1                            |                         | 1                            |

| Water bearing          | Wa<br>below                        | ter level<br>w land su             | (feet<br>rface)   | equip-          | Yi                       | eld               | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                                                                                                                                                  |
|------------------------|------------------------------------|------------------------------------|-------------------|-----------------|--------------------------|-------------------|-------------------------------|-----------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation              | Static                             | Pump-<br>ing                       | Date              | Pumping<br>ment | Gallons<br>per<br>minute | Date              | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                          |
| Harpers phyllite<br>do | 30 <sup>8</sup><br>20 <sup>8</sup> | 40 <sup>a</sup><br>30 <sup>a</sup> | 9/27/52<br>2/8/52 | J,E<br>J,E      | 20<br>6                  | 9/27/52<br>2/8/52 | 1 1                           | 2.0                   | D<br>D      | See chemical analysis. Tempera-                                                                                                                                                  |
| Weverton quartzite     | —                                  | _                                  |                   | C,E             | _                        | -                 |                               | _                     | Р           | "Bootjack Spring."                                                                                                                                                               |
| Frederick limestone    | 20 <sup>a</sup>                    | 25 <sup>a</sup>                    | 4/24/53           | J,E             | 25                       | 4/24/53           | 3                             | 5.0                   | D           | See chemical analysis.                                                                                                                                                           |
| do                     | 6.01                               |                                    | 9/24/53           | S,E             | 40                       | _                 | -                             |                       | F           | Water ponded downstream for<br>irrigation use. See chemical                                                                                                                      |
| Ijamsville phyllite    | 20 <sup>a</sup> (?)<br>39.77       | 23ª(?)                             | 10/1/52           | J,E             | 5                        | 10/1/52           | 1                             | 2.5                   | D           | analysis.                                                                                                                                                                        |
| Antietam quartzite     |                                    | -                                  | _                 | -               | 10                       | 6/9/52            | 1                             | 2.0(?)                | D           |                                                                                                                                                                                  |
| do                     | 15 <sup>8</sup>                    | _                                  | 6/26/53           |                 | 10                       | 6/26/53           | -                             | _                     | D           |                                                                                                                                                                                  |
| Frederick limestone    | 25*                                | -                                  | 1/15/54           | N               | 10                       | 1/15/54           | -                             | _                     | N           | Destroyed because of muddy<br>water, low yield.                                                                                                                                  |
| Grove limestone        | 30 <sup>a,</sup>                   | _                                  | 9/7/54            | J,E             | 45                       | 9/7/54            | 6                             |                       | D,F         |                                                                                                                                                                                  |
| do                     | -                                  | -                                  |                   | C,H             | -                        | -                 | -                             | -                     | Ν           | Inadequate.                                                                                                                                                                      |
| do                     | 32 <sup>B</sup>                    | 40 <sup>a</sup>                    | 8/11/54           | J,E             | 22                       | 8/11/54           | 1.5                           | 2.75                  | D           | See well log.                                                                                                                                                                    |
| do                     | 30"                                | 100*                               | 4/23/52           | J,E             | 2.5                      | 4/23/52           |                               | <.1                   | D           |                                                                                                                                                                                  |
| 00                     | 10                                 | _                                  | 0/23/49           | C,E             | 10                       | 0/20/49           | .0                            |                       |             |                                                                                                                                                                                  |
| Frederick limestone    | 30 <sup>a</sup>                    | 30 <sup>a</sup>                    | 2/2/54            | ?,E             | 15                       | 2/2/54            | 1                             |                       | D           |                                                                                                                                                                                  |
| Grove limestone<br>do  | 15 <sup>a</sup>                    | -                                  | 11/29/51<br>—     | N               | 100<br>50                | 11/29/51          | 12                            | _                     | N<br>N      | Plant closed. See well log.<br>Main supply at 70 ft. Reported<br>supply diminished with depth<br>so well was plugged at 70 ft.<br>Reported water temperature                     |
| Frederick limestone    | 48 <sup>n</sup>                    | -                                  | 8/25/54           | J,E             | 30                       | 8/25/54           | 3                             | -                     | D           | 62°F.<br>Orginally 25 ft. of casing; well<br>filled with mud; corrected by<br>increasing casing to 45 ft. See<br>chemical analysis.                                              |
| do                     | 5 <sup>a</sup>                     | 5.3ª                               | 1/12/55           | S,E;<br>C.H     | 13                       | 1/12/55           | 1                             | 43                    | D           | Temperature May 4, 1956, 53°F.<br>See chemical analysis.                                                                                                                         |
| do                     | 15 <sup>a</sup>                    | 20 <sup>8</sup>                    | 7/5/51            | ?,E             | 10                       | 7/5/51            | 1.5                           | 2.0                   | D           |                                                                                                                                                                                  |
| New Oxford             | 30 <sup>n</sup>                    | 65 <sup>8</sup>                    | 10/9/54           | J,E             | -                        | -                 | 1 - 0                         | -                     | D           | Adequate.                                                                                                                                                                        |
| Frederick limestone    | 13.55                              |                                    | 6/11/56           | S,E             | -                        |                   |                               |                       | D           |                                                                                                                                                                                  |
| do                     | 25 <sup>a</sup> (7)<br>10a         | 25.5*(?)                           | 8/5/40            | S,E             | 10                       | 1/19/55           | 2 5                           | 20                    | N           | Reported went dry and was de-                                                                                                                                                    |
| 00                     | 10                                 |                                    | 0/0/49            | 1.4             | 10                       | 0/0/45            |                               |                       |             | stroved.                                                                                                                                                                         |
| do                     |                                    | _                                  | _                 | J,E             | _                        | _                 | -                             | _                     | D           | Adequate.                                                                                                                                                                        |
| do                     | -                                  |                                    | -                 | C,H             |                          | -                 | -                             | -                     | D           | Do                                                                                                                                                                               |
| do                     | 17 22                              |                                    | 6/7/56            | CH              |                          |                   |                               |                       | N           |                                                                                                                                                                                  |
| do                     | 30ª                                | _                                  | 1/29/52           | 2.E             | 20                       | 1/29/52           | 1                             |                       | C           | Kitty's Produce.                                                                                                                                                                 |
| do                     | 208                                | 60 <sup>a</sup>                    | 5/1/56            | I.E             | 6                        | 5/1/56            | 5 —                           | .1                    | D           | See well log.                                                                                                                                                                    |
| do                     | 28ª                                | -                                  | —                 | N               | 80                       | _                 | -                             |                       | N           | Principal supply at 60 ft. Cov-                                                                                                                                                  |
| do                     | 41.50                              | _                                  | 8/29/56           | J,E             | 30                       | -                 | _                             | -                     | С           | ered by floor of main building.<br>Restaurant and dairy plant. Lo-<br>cated behind plant. Hardness<br>222 ppm reported. Reported 5<br>gpm at 60 ft. and main yield<br>at 300 ft. |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                 | Driller      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well    | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|-------------------------------|--------------|------------------------|-------------------------|--------------------|----------------------------|------------------------------|----------------------------|------------------------------|
| l)e 29                       | Ebert Ice Cream Co.           | Ebert        | 1930                   | 290                     | Drilled            | 30                         | 8                            |                            | Valley                       |
| De 30                        | Do                            | do           | 1930                   | 300                     | do                 | 235                        | 8                            | _                          | Hillside                     |
| De 31                        | Do                            | do           | 1930                   | 300                     | do                 | 350                        | _                            | _                          | do                           |
| De 32                        | Do                            | do           | 1924                   | 310                     | do                 | 310                        | 8                            | -                          | Upland                       |
| De 33                        | Harold E. Roderick            | Fagel        | 1931                   | 325                     | do                 | 72                         | 6                            | -                          | Valley                       |
| De 34                        | Do                            | Keyser       | 1956                   | 325                     | do                 | 330                        | 6                            | 26                         | do                           |
| De 35                        | Glade Valley Milling Co.      | P. Brown     | 1906                   | 300                     | do                 | $100\pm$                   | 6                            | 20                         | do                           |
| De 36                        | John L. Eaves                 | Fogel        | 1932                   | 300                     | Dug and<br>drilled | 169                        | 36-6(?)                      |                            | do                           |
| De 37                        | Charles D. Burrier            | Shirley      | 1954                   | 320                     | Drilled            | 96                         | 6                            | 26                         | Hillside                     |
| De 38                        | W. J. Hahn                    | -            | Before<br>1944         | 305                     | do<br>,            | 63                         | 6                            | #*****                     | Hilltop                      |
| De 39                        | Do                            |              | _                      | 305                     | do                 | 155                        | 6                            | -                          | Hillside                     |
| 1)e 40                       | Do                            | Keyser       | 1954                   | 305                     | do                 | 105                        | 6                            | 52.5                       | do                           |
| De 41                        | J. C. Hall                    | Grove        | 1929                   | 290                     | do                 | 90                         | 6                            |                            | Upland<br>Hat                |
| Dil                          | Samuel Summers                |              | _                      | 395                     | Dug                | 24±                        | 36                           |                            | Valley                       |
| Df 2                         | George Stevenson, Jr.         | Harley       | 1954                   | 560                     | Drilled            | 86                         | 58                           | 2.3                        | Hilltop                      |
| Df 3                         | Arthur Rippeon                | Harris       | 1953                   | 520                     | do                 | 70                         | 6                            | 10                         | do                           |
| Df 4                         | Do                            |              | 1929                   | 520                     | do                 | 89                         | 6                            | 8                          | Hillside                     |
| Df 5                         | Mr. Crum                      | _            |                        | 535                     | Dug                | 18                         | 42                           |                            | Draw                         |
| Df 6                         | Paul Beard                    | -            |                        | 450                     | Spring             | -                          | -                            | -                          | Hillside                     |
| Df 7                         | Mr. Smith                     | Cromwell     | 1956                   | 540                     | Dug and<br>drilled | $100\pm$                   | 48-6                         |                            | Hilltop                      |
| Df 8                         | Granison L. Eader             | Easterday    | 1954                   | 520                     | Drilled            | 73                         | 6(2)                         |                            | do                           |
| DE 9                         | E. I. Shoemaker               | Harris       | 1954                   | 535                     | do                 | 81                         | 5.5                          | 20                         | Hillside                     |
| Df 10                        | William T. Delauter           | Corum        | 1950                   | 465                     | do                 | 100                        | 6                            | 8                          | Hilltop                      |
| Df 11                        | E. P. Summers                 |              | -                      | 460                     | Spring             | -                          | -                            | _                          | Draw                         |
| Df 12                        | C. W. Boyer                   | Harley       | 1952                   | 490                     | Drilled            | 56.5                       | 6                            | 13                         | Hilltop                      |
| Df 13                        | Ethan P. Summers              | Harris       | 1953                   | 525                     | do                 | 74                         | 6                            | 19                         | do                           |
| D£ 14                        | Richard K Stitley             | Keyser       | 1050                   | 500                     | do                 | 123                        | 5.5                          | 21                         | 11illside                    |
| Df 15                        | Libertytown Elementary School |              | 1941                   | 580                     | do                 | 95-109                     | 6                            |                            | Hilltop                      |
| Df 16                        | Do                            | —            | 1927                   | 580                     | do                 | 180                        | 6                            | -                          | do                           |
| Df 17                        | Mr. Edwards                   | $\leftarrow$ | —                      | 320                     | Dug                | $30\pm$                    | -                            | -                          | Hillside                     |
| Df 18                        | L. Grosswein(?)               | -            | -                      | 470                     | do                 | 11                         | 48                           |                            | Hilltop                      |
|                              |                               |              |                        |                         |                    |                            |                              |                            |                              |

| Water-bearing                             | Wa<br>belov      | ter level<br>w land su | (feet<br>urface)  | equip-          | Y                        | eld      | t of<br>ig test               | apacity<br>./ft.)     | Use         |                                                                                    |
|-------------------------------------------|------------------|------------------------|-------------------|-----------------|--------------------------|----------|-------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------|
| formation                                 | Static           | Pump-<br>ing           | Date              | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpir<br>(hours) | Specific o<br>(g.p.m. | of<br>water | Remarks                                                                            |
| Frederick limestone                       | 1 to 2ª          | 6.93                   | Old<br>8/29/56    | S,E             | 30                       |          | -                             | _                     | С           | In pasture behind plant.                                                           |
| do                                        | 20 <sup>a</sup>  | _                      | -                 | N               | 30                       | -        | _                             |                       | N           | Behind plant; covered. Re-<br>ported some water at 30 ft.;<br>main yield at 200 ft |
| do                                        |                  | _                      | _                 | N               | 30                       |          |                               | _                     | N           | Behind plant: covered.                                                             |
| do                                        | -                | _                      | -                 | N               | 50                       | -        | -                             | -                     | N           | Site occupied by Haller's Gro-<br>cery.                                            |
| Grove limestone                           | 27.14            |                        |                   | C,E             | 10                       | -        | -                             | _                     | F           | Reported main yield at 68 ft.                                                      |
| do                                        | 25 <sup>a</sup>  | 30 <sup>8</sup>        | 2/5/56            | T,E             | 100                      | 2/5/56   | 2                             | 20.0                  | D,F         |                                                                                    |
| do                                        | $10\pm^{a}$      | —                      | -                 | T,E             | 60                       | _        |                               | -                     | N           | Reported very hard.                                                                |
| Frederick limestone                       | 36.70            | —                      | 8/31/56           | J,E             | 15                       | -        | -                             | -                     | D,F         | Dug well 59 ft. deep. Tempera-<br>ture Aug. 31, 1956, 52°F.                        |
| Grove limestone                           | 27 <sup>8</sup>  | 70 <sup>a</sup>        | 7/22/54           | J,E             | 22                       | 7/22/54  | 1                             | . 5                   | D           |                                                                                    |
| do                                        | 40.91            | _                      | 9/17/56           | J,E             |                          | -        | -                             |                       | D           | Adequate.                                                                          |
| do                                        | 100 <sup>n</sup> |                        | -                 | N               | _                        | -        | _                             | _                     | N           | Inadequate; filled in.                                                             |
| do                                        | 50 <sup>a</sup>  | 60 <sup>a</sup>        | 9/6/54            | J,E             | 10                       | 9/6/54   |                               | 1.0                   | F           |                                                                                    |
| do                                        | 35ª              | _                      |                   | C,E             | 7                        | -        |                               | -                     | D,F         |                                                                                    |
| Tiamsville phyllite                       | 198              | _                      | 1954              | S.E             |                          |          | _                             | _                     | D.F         | Adequate.                                                                          |
| Libertytown metarhy-                      | 20 <sup>8</sup>  | 45ª                    | 4/23/54           | J,E             | 15                       | 4/23/54  | -                             | .6                    | D           | See chemical analysis.                                                             |
| Ijamsville phyllite                       | 32 <sup>n</sup>  | 60 <sup>a</sup>        | 6/16/53           | J.E             | _                        | _        | _                             |                       | D.F         |                                                                                    |
| do                                        | $47\pm$          |                        | 12/23/55          | N               | _                        | _        | _                             | _                     | N           | Poor yield reported.                                                               |
| do                                        | _                |                        | _                 | C,H             | -                        |          | _                             | _                     | D           | Good yield reported.                                                               |
| do                                        | -                |                        | -                 | N               | _                        | -        | -                             |                       | F           | Continuous flow reported. Tem-<br>perature Dec. 23, 1955, 53°F.                    |
| do                                        | 32.18            | _                      | 1/13/56           | Ј,Е;<br>С,Н     | -                        | -        | -                             | _                     | D           | Drilled through bottom of dug<br>well, which is 5 ft. deep and<br>inadequate       |
| do                                        | 26 <sup>a</sup>  | 7.3 <sup>8</sup>       | 4/17/54           | I.E             | 5                        | 4/17/54  |                               | .1                    | D           | madequator                                                                         |
| do                                        | 40 <sup>a</sup>  | 75ª                    | 4/13/54           | _               | 5                        | 4/13/54  | _                             | .1                    | D           |                                                                                    |
| Contact-Ijamsville<br>phyllite and Antie- | 40 <sup>a</sup>  | wardt                  | 11/16/50          | J,E             | 10                       | 11/16/50 | .25                           | _                     | Ĉ           | Restaurant and service station.                                                    |
| tam quartzite<br>Ijamsville phyllite      | -                | -                      | -                 | S,E             | 15                       | 12/24/54 | _                             | _                     | D,F         | Discharge small at times, but<br>never ceases. Temperature                         |
|                                           | 1.00             |                        | 1 10 100          | 0.**            |                          | 1 10 100 |                               |                       |             | Dec. 14, 1955, 57°F.                                                               |
| do<br>Libertytown metarhy-                | 10ª<br>30ª       | 49ª<br>50ª             | 6/2/52<br>6/26/53 | J,E             | 6                        | 6/2/52   | -                             | .2                    | D           | Adequate.                                                                          |
| Tiamsville phyllite                       | 408              | 1108                   | 7/22/50           | IF              | 2                        | 7/22/50  | T                             | < 1                   | D           |                                                                                    |
| Libertytown metarhy-                      |                  |                        | -                 | J,E             | -                        |          |                               |                       | I           | Good yield reported. See chemi-                                                    |
| do                                        | -                | -                      | -                 | N               | -                        | -        | -                             | -                     | Ν           | Probably destroyed, location                                                       |
| Frederick limestone                       | -                |                        | -                 | J,E             | -                        | -        | -                             | -                     | D           | Adequate. Depth of pump jet                                                        |
| Libertytown metarhy-<br>olite             | 10±              | -                      | 5/20/56           | S,H             | -                        | -        | -                             | -                     | N           | 60 It.                                                                             |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                                                     | Driller                     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well              | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|-------------------------------------------------------------------|-----------------------------|------------------------|-------------------------|------------------------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Df 19                        | William T. Delauter                                               | Greene                      | 1945                   | 465                     | Drilled                      | 120+                       | 55                           | -                          | Hilltop                      |
| Dg 1<br>Dg 2                 | Roy Schneider<br>Orville E. Smith                                 |                             | -                      | 590<br>500              | Spring<br>Dug and<br>drilled | <br>90±                    | 486                          | -                          | Draw<br>do                   |
| Dg 3                         | Harvey Rippeon                                                    | -                           | Old                    | 415                     | Dug                          | 9                          | _                            | -                          | Valley                       |
| Dg 4<br>Dg 5<br>Dg 6         | Mr. Etzler<br>Norman C. Smith<br>Paul O. Fritz                    |                             | 1942(?)<br><br>1938    | 620<br>430<br>485       | Drilled<br>Dug<br>Drilled    | 94<br>36<br>65             | 6<br>36<br>6                 | 10                         | Hilltop<br>Draw<br>Hilltop   |
| Dg 7                         | Mr. Hitchcock                                                     | Utermahlen                  | 1953                   | 500                     | do                           | 42                         | 6                            | 20                         | Hillside                     |
| Dg 8                         | Otto Gerts                                                        | Harley                      | 1950                   | 510                     | do                           | 62                         | 6                            | 23                         | do                           |
| Dg 9<br>Dg 10                | F. Loraine Simpson<br>Arthur Gray, tenant                         | Corum                       | 1949                   | 505<br>485              | do<br>do                     | 57<br>47                   | 6                            | 12<br>—                    | Hilltop<br>Valley            |
| Dg 11                        | Clyde M. Bohn                                                     | -                           |                        | 515                     | Springs                      |                            | _                            | -                          | Draw                         |
| Dg 12<br>Dg 13<br>Dg 14      | Weldon Hill<br>Unionville Methodist Church<br>Clifton P. Dudderar | E. Brown<br>D. Brown        | Old<br>1949<br>1952    | 580<br>460<br>550       | Dug<br>Drilled<br>do         | 19.4<br>90<br>71           | 36<br>6<br>6                 | 50<br>42                   | Hilltop<br>do<br>Draw        |
| Dg 15                        | Francis Staley                                                    | Keyser                      | 1953                   | 490                     | do                           | 90                         | 6                            | 22                         | Valley                       |
| Dg 16                        | Miss Cora Sappington                                              | -                           | Old                    | 455                     | Dug                          | 27                         | —                            | -                          | Hillside                     |
| Dg 17<br>Dg 18<br>Dg 19      | Mr. Nicodemus<br>C. Pryor<br>Earl Disney                          | Fogel                       | Old                    | 445<br>450<br>430       | Drilled<br>do<br>do          | 75–80<br>45<br>186         | 6<br>5 <u>5</u> 8            | <br>24                     | Hilltop<br>do<br>do          |
| Dh 1<br>Dh 2                 | Mr. Rippin<br>Oscar Clifford                                      | _                           |                        | 685<br>550              | do<br>Spring                 | 60                         | 6                            | -                          | Hillside<br>Draw             |
| Dh 3<br>Dh 4                 | Mr. Beacbley<br>H. W. Cantwell                                    | —<br>Hoffman                | 1953±<br>1955          | 550<br>645              | Drilled<br>do                | 110<br>70                  | 6                            | 16                         | Hilltop<br>Hillside          |
| Dh 5                         | Do                                                                | -                           |                        | 645                     | Dug                          | 33.6                       | 36                           | _                          | do                           |
| Ea 1                         | James G. Webber                                                   | Keyser                      | 1951                   | 520                     | Drilled                      | 69                         | 58                           | 20                         | Hillside                     |
| Ea 2                         | William Cooper                                                    | Myers                       | 1947                   | 505                     | do                           | 43(?)                      | 6                            | 33                         | do                           |
| Eb 1<br>Eb 2<br>Eb 3         | George Wolfe<br>Charles D. Beachley<br>D. M. Guyton               | Shaff<br>Keyser<br>F. Corum | 1953<br>1951<br>1953   | 545<br>500<br>520       | do<br>do<br>do               | 76<br>62<br>72             | 58<br>58<br>5                | 62<br>24                   | do<br>do<br>Hilltop          |

#### -Continued

| $ \frac{1}{10000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{1000000} \frac{1}{100000000} \frac{1}{1000000000000} \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Water-hearing                                              | Wabelow             | ter level<br>w land s | (feet)<br>urface) | equip-          | Yi                       | ield     | of<br>g test                  | apacity<br>/ft.)      | Use                      |                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|-----------------------|-------------------|-----------------|--------------------------|----------|-------------------------------|-----------------------|--------------------------|----------------------------------------------------------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation                                                  | Static              | Pump-<br>ing          | Date              | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water              | Remarks                                                                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact-Ijamsville<br>phyllite and Antie-<br>tam quartzite | 30 <sup>a</sup>     | _                     | 7/1/45            | N               | .5                       | 7/1/45   | _                             |                       | N                        | Inadequate.                                                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marburg schist                                             | _                   | _                     |                   |                 |                          | -        |                               |                       | D,F                      | Perennial supply.                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ljamsville phyllite                                        | -                   |                       |                   | C,E             |                          | _        |                               | -                     | D,F                      | Drilled through bottom of 16 ft.                                                             |
| $ \begin{array}{l l} \mbox{line phyllite} & 83,20 & & 8/30/85 C, E & & & & D \\ \mbox{Wakefield marble} & 13^8 & & 98/58 C, E & & & & D \\ \mbox{Jine wakefield marble} & 13^8 & & 1053 & J, E & 15 & 1053 & & & D \\ \mbox{Jine wakefield marble} & 34^8 & & 1053 & J, E & 15 & 1053 & & & D \\ \mbox{Jine wakefield marble} & 34^8 & & 1053 & J, E & 15 & 1053 & & & D \\ \mbox{Jine wakefield marble} & 34^8 & & 1053 & J, E & 15 & 1053 & & & D \\ \mbox{Jine wakefield marble} & & & & D & 0 \\ \mbox{Jine wakefield marble} & & & & & D & 0 \\ \mbox{Jine wakefield marble} & & & & & D & 0 \\ \mbox{Jine wakefield marble} & & & & C.E & 50 & 8/29/55 & & & D, F & Upper spring not perenaial low expring perinaial. Concrete collecting chambers. \\ \mbox{Jine wakefield marble} & & & & C.E & 50 & 8/29/55 & & & D & D \\ \mbox{Jine wakefield marble} & & & & C.E & 50 & 8/29/52 & .5 & & D & D \\ \mbox{Jine wakefield marble} & & & & C.E & 50 & 8/29/52 & .5 & & D & D \\ \mbox{Jine will phyllite} & & & & C.E & 50 & 8/29/52 & .5 & & D & D \\ \mbox{Jine wakefield marble} & & & & & D & D \\ \mbox{Jine wakefield marble} & & & & & D & D \\ \mbox{Jine wakefield marble} & & & & & D & D \\ \mbox{Jine wakefield marble} & & & & & D & D \\ \mbox{Jine wakefield marble} & & & & & & D \\ \mbox{Jine wakefield marble} & & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} & & & & & D \\ \mbox{Jine wakefield marble} &$                                                                                                                                                                                                                                                                                                                       | Sams Creek metaba-<br>salt                                 | 1.0                 |                       | 9/8/55            | J,E             | -                        | -        | -                             | -                     | D,C                      | Residence and general store.                                                                 |
| Wakefield marble<br>oitte       13 <sup>8</sup> -       -       J, E       -       -       -       -       -       -       -       D, F       Macquate.         Jamsville phyllite       34 <sup>8</sup> -       1953       J, E       15       1953       -       -       D       Willing<br>Adequate.       Macquate.         do       25 <sup>8</sup> 52 <sup>8</sup> 1/30/50       C(2),<br>E       6       1/30/50       -       0.2       D       See well log.         do       20 <sup>8</sup> -       8/29/55       C, H       -       -       -       D       Adequate.         Wakefield marble<br>Jjamsville phyllite       -       -       -       C, E       50       8/29/55       -       -       D       D       Adequate.         do       11.40       -       8/29/55       C, H       1       -       -       D       D       D       D       Crete collecting chambers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ijamsville phyllite                                        | 83.20               |                       | 8/30/55           | C,E             |                          |          |                               |                       | D                        | Good yield reported.                                                                         |
| Liberytown metarby-<br>inte office office of the set of | Wakefield marble                                           | 18 <sup>a</sup>     |                       | - U               | J,E             | _                        |          | _                             |                       | D,F                      | Adequate.                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Libertytown metarhy-<br>olite                              | 13.65               |                       | 9/8,/55           | C,E             | -                        |          | -                             | _                     | D                        | 1)0                                                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ijamsville phyllite                                        | 34 <sup>a</sup>     | —                     | 1953              | J,E             | 15                       | 1953     | —                             |                       | D                        | "Bluish and greenish" material<br>encountered; easy drilling.                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | do                                                         | 25 <sup>n</sup>     | 52ª                   | 1/30/50           | C(?),<br>E      | 6                        | 1/30/50  | _                             | 0.2                   | D                        | Adequate.<br>See well log.                                                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | do                                                         | 20 <sup>a</sup>     | _                     | 8/2/49            | C.H             | 12                       | 8/2/49   | 1                             | _                     | F                        |                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ijamsville phyllite or                                     | 6.83                | —                     | 8/29/55           | C,H             | _                        | _        | A                             | _                     | D                        | Adequate.                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ijamsville phyllite                                        | -                   | -                     | _                 | C.E             | 50                       | 8/29/55  |                               | -                     | $\mathbf{D}, \mathbf{F}$ | Upper spring not perennial,<br>lower spring perennial. Con-                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                     |                       |                   |                 |                          |          |                               |                       |                          | crete collecting chambers.                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | do                                                         | 11.40               |                       | 8/29/55           | B,H             |                          | —        |                               |                       | D                        | Dry during 1930 drought.                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ([0                                                        | 40ª                 | 75%                   | 5/6,49            | 2,15            | 10                       | 5/6/49   | 1                             | . 3                   | 10                       | See well log.                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wakefield marble                                           | 3.5."               |                       | +/23/52           | 1,15            | 3                        | 4/25/52  | . 5                           | _                     | D                        |                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ijamsville phyllite                                        | 30 <sup>a</sup>     | 46 <sup>a</sup>       | 1/8/53            | -               | 15                       | 1/8/53   | 1                             | . 9                   | D                        |                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sams Creek metaba-<br>salt                                 | 22.50               | —                     | 10/16/55          | S,E             | -                        | -        | -                             |                       | D                        |                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | do                                                         | - 1                 | —                     |                   |                 |                          |          | _                             | _                     | D                        | Adequate.                                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | do                                                         |                     | <u> </u>              |                   | C,H             | -                        | -        | - 1                           |                       | D                        | Do                                                                                           |
| Marburg schist<br>Ijamsville phyllite       -       -       J,E       -       -       -       -       Integration of the second seco                                                                                                      | do                                                         | 30 <sup>a</sup>     |                       | _                 | N               |                          |          |                               |                       | N                        | Well covered. Hard water re-<br>ported. Upper part drilled<br>through limestone reported     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marburg schist                                             | . – 1               | _                     |                   | J.E             | _                        | _        | _                             |                       | _                        | Inadequate at times.                                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ijamsville phyllite                                        |                     | -                     | -                 | -               | 15-20                    | 8/30/55  | -                             | —                     | Ð                        | Gravity flow to residence. Con-<br>tinuous flow.                                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | do                                                         |                     | _                     | _                 | C,E             |                          | -        | _                             |                       | D                        |                                                                                              |
| do       26.98 $8/29/55$ N         N       Inadequate at times.         granodiorite and gran-<br>ite gneiss<br>do $25^n$ $50^n$ $11/25/51$ $S, E$ $3$ $11/25/51$ $1$ $.12$ $D, F$ do $12^n$ $30^n$ $2/11/53$ $J, E$ $8$ $2/11/53$ $2$ $.44$ $D$ do $35^n$ $50^n$ $1/25/51$ $J, E$ $8$ $2/11/53$ $2$ $.44$ $D$ do $35^n$ $50^n$ $1/25/51$ $J, E$ $3$ $1/25/51$ $1$ $.2$ $D$ $30^n$ $6/12/53$ $J, E$ $6$ $6/12/53$ $1$ $.3$ $D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | do                                                         | 30 <sup>a</sup>     | _                     | 8/28/55           | J,E             | - /                      | _        | —                             | _                     | D,C                      | Residence and grocery. Water<br>cloudy due to brown clayey<br>particles; may increase casing |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | do                                                         | 26.98               | -                     | 8/29/55           | N               |                          | _        | _                             |                       | N                        | to correct this.<br>Inadequate at times.                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite and gran-<br>ite gneiss                       | 25 <sup>a</sup>     | 50 <sup>a</sup>       | 11/25/51          | S,E             | 3                        | 11/25/51 | 1                             | .12                   | D,F                      |                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | do                                                         | 23 <sup>a</sup> (?) |                       | 5/30/47           | J,E             | 2.5                      | 5/30/47  | 1                             |                       | D                        |                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | do                                                         | 12 <sup>a</sup>     | 30 <sup>a</sup>       | 2/11/52           | LE              | 8                        | 2/11/53  | 2                             | 4.4                   | D                        |                                                                                              |
| do $40^{a}$ $60^{a}$ $6/12/53$ J,E $6$ $6/12/53$ 1 .3 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | do                                                         | 35%                 | 50 <sup>a</sup>       | 1/25/51           | LE              | 3                        | 1/25/51  | 1                             | . 2                   | D                        |                                                                                              |
| 33.75 - 10/18/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | do                                                         | 408                 | 60 <sup>a</sup>       | 6/12/53           | J.E             | 6                        | 6/12/53  | 1                             | .3                    | D                        |                                                                                              |
| 10/10/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | 33.75               | _                     | 10/18/55          | - 1             | ~                        | -,,      |                               | .0                    | ~                        |                                                                                              |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name        | Driller  | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|----------------------|----------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Eb 4                         | Robert Arnold        | Ambrose  | 1954                   | 530                     | Drilled         | 108                        | 6                            | 22                      | Hilltop                      |
| Eb 5                         | Thomas Arnold        | Shaff    | 1949                   | 525                     | do              | 100                        | 55                           | 22                      | do                           |
| ЕЬ б                         | Robert Staley        | do       | 1954                   | 585                     | do              | 100                        | 58                           | 20                      | Upland                       |
| ЕЬ 7                         | Do                   | -        | Old                    | 560                     | Dug             | 23.9                       | 96                           | -                       | Hillside                     |
| EL 8                         | Do                   | Shaff    | 1949                   | 560                     | Drilled         | 201.6                      | 58                           | 24                      | do                           |
| Eb 9                         | T. West Claggett     | Harley   | 1950                   | 490                     | do              | 75                         | 6                            | 23                      | do                           |
| ЕЬ 10                        | Do                   | Cromwell | 1954                   | 465                     | do              | 100                        | 6                            | 20                      | do                           |
| Eb 11                        | Samuel Crane         | Shaff    | 1949                   | 550                     | do              | 70                         | 5#                           | 26                      | Upland                       |
| Eb 12                        | Pleasant View Church | do       | 1949                   | 525                     | do              | 80                         | 6                            | 30                      | Hilltop                      |
| Eb 13                        | T. E. Conner         | Conner   | 1941                   | 565                     | Dug             | 27.8                       | 48                           | -                       | Upland<br>flat               |
| Eb 14                        | Charles Deck         | Corum    | 1949                   | 465                     | Drilled         | 85                         | 58                           | 12                      | Hillside                     |
| Fb 15                        | Frank Kefauver       | Shaff    | 1952                   | 575                     | do              | 65                         | 5                            | 12                      | do                           |
| ЕЬ 16                        | Maurice Guyton       | do       | 1952                   | 540                     | do              | 64                         | 5불                           | 18                      | do                           |
| Eb 17                        | Robert Greenwood     | Holtzman | 1947                   | 525                     | do              | 77                         | 55                           | 15                      | Hilltop                      |
| Eb 19                        | Hawaiian Club        | Shaff    | 1054                   | 520                     | do              | 00                         | 5.8                          | 22                      | do                           |
| Eb 18<br>Eb 19               | Emory Hargett        | Corum    | 1951                   | 465                     | do              | 54                         | 6                            | 12                      | Hillside                     |
| Fb 20                        | Robert Coates        | Shaff    | 1953                   | 520                     | do              | 56                         | 5 5                          | -                       | do                           |
| Eb 21                        | Do                   | do       | 1952                   | 520                     | do              | 50                         | 5                            | _                       | Hilltop                      |
| Eb 22                        | J. E. Morrison       |          | 1937                   | 545                     | do              | 55                         | 6                            | -                       | Upland                       |
| ЕЬ 23                        | Do                   | —        |                        | 720                     | Spring          | -                          | -                            | _                       | Hillside                     |
| Eb 24                        | William E. Fauble    | _        | 1935                   | 505                     | Dug             | 39                         | 36                           | -                       | do                           |
| Eb 25                        | Col. James M. McHugh | -        | Old                    | 555                     | Drilled         | 108                        | 6                            | -                       | Upland<br>flat               |
| Eb 26                        | Do                   |          | -                      | 520                     | Spring          | -                          | -                            | -                       | Draw                         |
| ЕЬ 27                        | Mr. Everett          | _        | Old                    | 550                     | Dug             | 37                         | 36                           | -                       | Upland<br>flat               |
| Eb 28                        | Gathland State Park  | -        | do                     | 1,020                   | Drilled         | 53.5                       | 6                            | -                       | Hilltop                      |
| Ec 1                         | Rev. J. W. Bowlus    | Shaff    | 1949                   | 465                     | do              | 100                        | 58                           | -                       | Hillside                     |
| Ec.2                         | C. E. Ahalt          | _        | _                      | 385                     | Spring          |                            | _                            |                         | do                           |
| Ec 3                         | Do                   |          | 1951                   | 370                     | Drilled         | 75                         | 6                            | -                       | Hilltop                      |
| Ec 4                         | Charles Diehle       | -        | -                      | 600                     | Spring          | -                          | _                            |                         | Hillside                     |
| Ec 5                         | Henry Killar         | Shaff    | 1954                   | 490                     | Drilled         | 110                        | 5 8                          | 35                      | Upland<br>flat               |
| Ec 6                         | Lee's Diner          | Smith    | 1955                   | 595                     | do              | 165                        | 5                            | 165                     | Hilltop                      |
| Ec 7                         | Emery Baker          | Corum    | 1949                   | 510                     | do              | 58                         | 6                            | 14                      | Upland<br>flat               |

| Water bearing                        | Wa<br>belov              | ter level<br>w land si | (feet<br>urface)           | equip-          |                          | eld             | of<br>g test                  | apacity<br>/ft.)      | Use         |                                                   |
|--------------------------------------|--------------------------|------------------------|----------------------------|-----------------|--------------------------|-----------------|-------------------------------|-----------------------|-------------|---------------------------------------------------|
| formation                            | Static                   | Pump-<br>ing           | Date                       | Pumping<br>ment | Gallons<br>per<br>minute | Date            | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                           |
| granodiorite and gran-<br>ite gneiss | 50 <sup>a</sup>          | 78 <sup>a</sup>        | 12/13/54                   | N               | 30                       | 12/13/54        | 2                             | 2.4                   | N           | See well log.                                     |
| do                                   | 30 <sup>a</sup><br>25.70 | 60 <sup>n</sup>        | <b>12/1/49</b><br>10/18/55 | J,E             | 10                       | 12/1/49         | 6                             | .33                   | D           |                                                   |
| Catoctin metabasalt                  | 8 <sup>B</sup>           | 12 <sup>n</sup>        | 6/14/54                    | J,E             | 20                       | 6/14/54         | 10                            | 5.0                   | D           |                                                   |
| do                                   | 7.54                     | -                      | 12/22/55                   | Ν               | 5<br>38(?)               | 1955<br>1/27/56 | 8<br>3.4                      | 2.0<br>3.1(?)         | N           |                                                   |
| do                                   | 6.64                     | _                      | 12/22/55                   | N               | 7(?)                     | 1955            | 8                             | _                     | N           |                                                   |
| granodiorite and gran-<br>ite gneiss | 8 <sup>n</sup>           | 60 <sup>a</sup>        | 9/1/50                     | J.E             | 9                        | 9/1/50          | -                             | .17                   | F           | See well log.                                     |
| do                                   | 14.6 <sup>a</sup>        | 85 <sup>a</sup>        | 8/5/54                     | J,E             | 7                        | 8/5/54          | 1                             | .1                    | D,F         | Originally 76 ft. deep and inade-                 |
| do                                   | 30 <sup>a</sup>          | 40 <sup>a</sup>        | 11/25/49                   | J,E             | 4                        | 11/25/49        | 5                             | .40                   | D           | guarer                                            |
| da                                   | 158                      | 108                    | 10/11/40                   | I D             | =                        | 10/11/40        | 1                             | 1.7                   | D           |                                                   |
| Catoctin metabasalt                  | 4,83                     |                        | 12/22/52                   | B,H             | -                        |                 |                               |                       | D           | Site of a dry spring.                             |
| granodiorite and gran-<br>ite gneiss | 22ª                      | -                      | 6/17/49                    | J,E             | 10                       | 6/17/49         | 1                             | _                     | D           | 1 <sup>°</sup> C                                  |
| Catoctin metabasalt                  | 35 <sup>a</sup>          | 50 <sup>a</sup>        | 12/18/52                   | J.E             | 8                        | 12/18/52        | 4                             | . 53                  | D           |                                                   |
| granodiorite and gran-               | 25 <sup>a</sup>          | _                      | 9/12/52                    | J.E             | 10                       | 9/12/52         | 6                             | -                     | D           |                                                   |
| ite gneiss                           |                          |                        |                            |                 |                          |                 |                               |                       |             |                                                   |
| do                                   | 42 <sup>n</sup>          | 68 <sup>n</sup>        | 3/17/47                    | J,E             | 5                        | 3/17/47         | 1                             | . 19                  | D           | Owner reports pumps dry in<br>one-half hour.      |
| do                                   | 30 <sup>a</sup>          | _                      | 5/27/54                    | J.E             | 20                       | 5/27/54         | 1                             | 1                     | C           | Tavern and motel.                                 |
| do                                   | 25 <sup>R</sup>          |                        | 11/20/51                   | C,H             | 8                        | 11/20/51        | . 5                           |                       | D           |                                                   |
|                                      | 37.87                    | _                      | 12/14/55                   | .,              |                          |                 |                               |                       | -           |                                                   |
| do                                   | 10 <sup>a</sup>          | 40 <sup>a</sup>        | 1/14/53                    | J,E             | 3                        | 1/14/53         | 4                             | .1                    | C           | Service station.                                  |
| do                                   | 12 <sup>a</sup>          | 18 <sup>8</sup>        | 11/10/52                   | I.E             | 6                        | 11/10/52        | 4                             | 1.0                   | Ċ           |                                                   |
| do                                   | 16.76                    |                        | 8/27/56                    | C,E             | 4                        | —               | -                             | -                     | D,F         |                                                   |
| do                                   | —                        | -                      | -                          | —               | 4.6                      | 8/27/56         | -                             | —                     | D           | Temperature Aug. 27, 1956,<br>56°F.               |
| do                                   | 31 <sup>a</sup>          |                        | 5/15/56                    | C.E             | _                        | _               | _                             | _                     | D           | Adequate.                                         |
| do                                   | 40 <sup>a</sup> ±        | -                      | -                          | J,E             | 7                        | -               |                               | -                     | D           | Blue-green stain on fixtures.                     |
| do                                   | -                        | -                      |                            | Ň               | 2                        | 9/21/56         | -                             |                       | N           | Intermittent. Temperature Sep.<br>21, 1956, 53°F. |
| do                                   | 8.61                     | -                      | 9/21/56                    | C,II            | -                        | -               | -                             | -                     | N           |                                                   |
| Weverton quartzite                   | 38.70                    |                        | 7/19/56                    | C,II            | -                        | _               | -                             | —                     | I           |                                                   |
| granodiorite and gran-<br>ite gneiss | 10 <sup>a</sup>          | 40 <sup>n</sup>        | 10/2/49                    | J,E             | 2                        | 10/2/49         | 6                             | <.1                   | D           |                                                   |
| do                                   | —                        |                        | -                          | N               | 2                        | 10/21/55        | —                             | —                     | F           |                                                   |
| do                                   | 40 <sup>1</sup>          | -                      | -                          | J,E             | 5                        | 11//51          |                               | —                     | D           |                                                   |
| Catoctin metabasalt                  |                          | -                      |                            | N               | 3                        | 10/21/55        | - 1                           |                       | D           |                                                   |
| granodiorite and gran-               | 8ª                       | 12 <sup>n</sup>        | 12/6/54                    | J,E             | 10                       | 12/14/54        | 6                             | 2.5                   | D           |                                                   |
| ite gneiss                           | 31.71                    | -                      | 12/14/55                   |                 |                          |                 |                               |                       |             |                                                   |
| Harpers phyllite                     | 85 <sup>n</sup>          | $n \rightarrow 1$      | 7 / 5 / 55                 | J,E             | 10                       | 7/5/55          | 5                             | —                     | С           | See well log.                                     |
| granodiorite and gran-<br>ite gneiss | 25 <sup>a</sup>          | —                      | 11/9/49                    | J,E             | 15                       | 11/9/49         | .5                            | -                     | D           |                                                   |

#### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name             | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|---------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Ec 8                         | Harry R. Baker            | Keyser      | 1952                   | 350                     | Drilled         | 70                         | 5                            | 29.5                    | Valley                       |
| Ec 9                         | I. Calvin Rice            | do          | 1949                   | 575                     | do              | 71                         | 58                           | 22                      | Upland<br>flat               |
| Ec 10                        | John S. Bowlus            | Harley      | 1953                   | 460                     | do              | 131                        | 55                           | 23                      | Hillside                     |
| Ec 11                        | Doris Corum               | A. L. Smith | 1955                   | 575                     | do              | 62                         | 5 1                          | 40                      | Upland                       |
| Ec 12                        | Edward Weedon             | Corum       | 1951                   | 420                     | do              | 58                         | 6                            | 0                       | Hillside                     |
| Ec 13                        | Howard Weedon             | do          | 1951                   | 4.50                    | do              | 60                         | 6                            | 10                      | do                           |
| Ec 14                        | Harry Summers             | Shaff       | 1949                   | 555                     | do              | 72                         | 58                           | 12                      | Upland                       |
| Ec 15                        | Paul B. Stockman          | Harley      | 1950                   | 4.50                    | do              | 83                         | 6                            | 24                      | Hillside                     |
| Ec 16                        | H. D. Lakin               | do          | 1955                   | 440                     | do              | 76                         | 5.8                          | 23                      | do                           |
| Ec 17                        | Hillside Motel            | do          | 1951                   | 595                     | do              | 86                         | 6                            | 72                      | Hilltop                      |
| Ed 1                         | Joseph Himes              | -           | About<br>1929          | 400                     | do              | 70                         | 6                            | -                       | Hillside                     |
| Ed 2                         | Do                        | -           | 1930                   | 420                     | do              | 604–615                    | 8–6                          |                         | do                           |
| Ed 3                         | Do                        | _           |                        | 410                     | Spring          | _                          |                              | _                       | Draw                         |
| Ed 4                         | Do                        |             |                        | 40.5                    | do              |                            |                              | _                       | do                           |
| Ed 5                         | Harry L. Whittington      | Harris      | 1955                   | 525                     | Drilled         | 0.3                        | 5.5                          | 21                      | Hillton                      |
| Ed 6                         | Lawrence Frye             | Easterday   | 1955                   | 280                     | do              | 81                         | 6                            | 43                      | Upland                       |
| Ed 7                         | Lacy Degrange             | D. Brown    | 1948                   | 290                     | do              | 67                         | 6                            | 33                      | do                           |
| Ed 8                         | Andrew Younkins           | Cromwell    | 1955                   | 310                     | do              | 48                         | 5\$                          | 30                      | do                           |
| Ed 9                         | Roger Etzler              | Smith       | 1955                   | 300                     | do              | 115                        | 6                            | 2.5                     | do                           |
| Ed 10                        | Mary Dixon                | D. Brown    | 1956                   | 280                     | do              | 72                         | 6                            | 33                      | do                           |
| Ed 11                        | Miss Annie Rogers         | -           | _                      | 295                     | do              | 40.8                       | 5 🔮                          | -                       | dø                           |
| Ed 12                        | Harriet E. Bell           | Keyser      | 1952                   | 290                     | do              | 146                        | 6                            | 27                      | do                           |
| Ed 13                        | J. W. Gaver               | _           | Before                 | 415                     | do              | 92                         | 6                            |                         | do                           |
| Ed 14                        | Lester Zimmerman          |             | Old                    | 385                     | Dug             | 22.1                       | 36                           | -                       | Hilltop                      |
| Ed 15                        | Howard D. Zimmerman       | Keyser      | 1952                   | 490                     | Drilled         | 76                         | 5.8                          | 71                      | do                           |
| Ed 16                        | Bowyer B. Font, Jr.       | do          | 1952                   | 410                     | do              | 82                         | 5                            | 15                      | do                           |
| Ed 17                        | Family Drive-In Theatre   | Corum       | 1952                   | 390                     | do              | 68                         | 58                           | 12                      | Upland                       |
| Ed 18                        | Mr. Cookley               | Keyser      | 1954                   | 430                     | do              | 136                        | 6                            | 15-17                   | do                           |
| Ed 19                        | Fred Smith                | _           | Old                    | 450                     | do              | 65                         | 6                            | -                       | do                           |
| Ed 20                        | Monocacy Broadcasting Co. | Keyser      | 1950                   | 440                     | do              | 76                         | 58                           | 22                      | Hilltop                      |
| Ed 21                        | Rose Tourist Court        | do          | 1953                   | 405                     | do              | 93                         | 5                            | 25                      | Hillside                     |
|                              |                           |             |                        |                         |                 |                            |                              |                         |                              |
| Water-bearing                             | Wa<br>belo        | ter level<br>w land s | (feet<br>urface) | equip-          | Yì                       | eld      | a of<br>ng test              | rapacity<br>./ft.) | Use   | Demoka                                                                          |
|-------------------------------------------|-------------------|-----------------------|------------------|-----------------|--------------------------|----------|------------------------------|--------------------|-------|---------------------------------------------------------------------------------|
| formation                                 | Static            | Pump-<br>ing          | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duratior<br>pumpin<br>(hours | Specific<br>(g.p.m | water | Kemarks                                                                         |
| granodiorite and gran-                    | 10 <sup>a</sup>   | 15 <sup>a</sup>       | 6/8/52           | J,E             | 20                       | 6/8/52   | 1                            | 4.0                | Ð     |                                                                                 |
| ite gneiss                                | 12.19             |                       | 12/15/55         | TE              | 2                        | 7/13/30  | 5                            | 1                  | n     |                                                                                 |
| do                                        | 38.16             | - 35-                 | 12/14/55         | J, E            | 3                        | 1/13/49  |                              | • 1                | 10    |                                                                                 |
| do                                        | 30 <sup>8</sup>   | 110 <sup>a</sup>      | 7/8/53           | J,E             | 2                        | 7/8/53   | _                            | <.1                | F     | See well log.                                                                   |
| Catoctin metabasalt                       | 41 <sup>a</sup>   | -                     | 6/3/55           | J,E             | 10                       | 6/3/55   | .5                           | _                  | D     | Do                                                                              |
| Antietam quartzite                        | 258               | 40 <sup>a</sup>       | 7/9/51           | I.E             | 15                       | 7/9/51   | 1                            | 1.0                | D,F   |                                                                                 |
| do                                        | 45 <sup>n</sup>   | 60 <sup>a</sup>       | 7/6/51           | J.E             | 15                       | 7/6/51   | 1                            |                    | D,F   | Do                                                                              |
| Catoctin metabasalt                       | 25 <sup>8</sup>   | 35 <sup>8</sup>       | 3/14/49          | S,G             | 5                        | 3/14/49  | 4                            | . 2                | C     |                                                                                 |
| granodiorite and gran-<br>ite gneiss      | 30 <sup>a</sup>   |                       | 9/21/50          | J,E             | 6                        | 9/21/50  |                              | . 2                | D     |                                                                                 |
| Catoctin metabasalt                       | 30 <sup>a</sup>   | 67 <sup>8</sup>       | 7/8/55           | J,E             | 14                       | 7/8/55   | _                            | . 38               | D     |                                                                                 |
| Harpers phyllite                          | 33 <sup>8</sup>   | 74 <sup>8</sup>       | 8/24/51          | J,E             | 4                        | 8/24/51  |                              | .1                 | С     |                                                                                 |
| New Oxford or lime-<br>stone conglomerate | 19.78             | -                     | 11/9/54          | N               | -                        | -        | -                            |                    | N     |                                                                                 |
| Contact(?)-New Ox-<br>ford and Frederick  | -                 | -                     | -                | T,E             | 150                      | -        | 30                           |                    | D,F   | Supplies 2 homes and barns.                                                     |
| limestone                                 |                   |                       |                  |                 |                          | 11/0/01  |                              |                    | 12    | Tetownittent                                                                    |
| New Oxford                                | -                 | -                     |                  | N               | 0                        | 11/9/54  | _                            |                    | F     | Intermittent.                                                                   |
| do                                        | _                 | _                     | _                | N<br>T V        | 0                        | 11/9/34  | _                            |                    | D     | 100                                                                             |
| Harpers phyllite                          | 288               | 308                   | 2/27/55          | J,E<br>IE       | 10                       | 2/27/55  |                              | .9                 | D     | See well log.                                                                   |
| Frederick minestone                       | 20                | 0.9                   | 2/21/00          | J, 1            | 10                       | 2/21/00  |                              |                    | Ĩ     |                                                                                 |
| do                                        |                   | -                     | -                | C,E             | 3                        | 11/21/48 | .5                           | _                  | D,F   | Noticeable decrease in yield in summer.                                         |
| do                                        | 20 <sup>a</sup>   | 21ª                   | 2/21/55          | J,E             | 15                       | 2/21/55  | 1                            | 15                 | D     | See well log.                                                                   |
| do                                        | 25 <sup>a</sup>   | 50 <sup>a</sup>       | 12/10/55         | J,E             | 15                       | 12/10/55 | . 25                         | .6                 | F     | _                                                                               |
| do                                        | 50 <sup>a</sup>   | -                     | 12/3/48          | C,H             | 3                        | 12/3/48  |                              | . 5                | D     |                                                                                 |
| do                                        | 5.29              |                       | 3/22/50          | C,H             | -                        | -        | _                            | -                  | N     | Drilled through bottom of dug<br>well 8.4 ft. deep.                             |
| do                                        | 30 <sup>a</sup>   | 140 <sup>a</sup>      | 11/22/52         |                 | 2                        | 11/22/52 | 1                            | <.1                | D     |                                                                                 |
|                                           | 33.04             |                       | 8/17/56          | O D             | 1.0                      |          |                              |                    | D     |                                                                                 |
| New Oxford (lime-                         | - 42ª             | -                     | 11/-/53          | C,E             | 10                       | _        |                              |                    | D     |                                                                                 |
| Frederick limestone                       | 12.70             | -                     | 5/9/56           | C,H             |                          | -        | -                            | -                  | D     | Temperature May 9, 1956,<br>50°F. See chemical analysis.                        |
| Antietam quartzite                        | 36ª               | -                     | 5/23/52          | 2 J.E           | 8                        | 5/23/52  | 2 1                          | -                  | D     |                                                                                 |
| New Oxford                                | 15 <sup>a</sup>   | 20 <sup>a</sup>       | 3/3/52           | J,E;            | 10                       | 3/3/52   | 1                            | . 2                | D     |                                                                                 |
| do                                        | 15 <sup>a</sup>   | 50 <sup>a</sup>       | 10/13/52         | 2?,E            | 10                       | 10/13/52 | 1                            | .3                 | С     |                                                                                 |
| do                                        | -                 | -                     | -                | J,E             | -                        | _        | -                            | _                  | D     | Field test: hardness 112 ppm,<br>chloride 10 ppm.                               |
| New Oxford (lime<br>stone conglomerate    | . 7.09<br>)       | -                     | 7/2/50           | 5J,E            | 7                        | _        | -                            | -                  | D     | Originally 40 ft. deep. Deepened<br>by Harley to improve sani-<br>tary quality. |
| New Oxford                                | 35 <sup>a</sup>   | 50 <sup>a</sup>       | 4/30/50          | J,E             | 3                        | 4/30/50  | ) 1                          | . 2                | С     | Field test: hardness 98 ppm,<br>chloride 11 ppm.                                |
| New Oxford (lime                          | - 10 <sup>n</sup> | 25ª                   | 3/10/5           | J,E             | 10                       | 3/10/53  | 3 1                          | .7                 | С     | Adequate. Originally 75 ft. deep                                                |
| stone congiomerate                        | 23.41             |                       | 3/10/5           | 3               | 1                        |          |                              |                    | 1     |                                                                                 |

|                              |                         |             |                        |                         |                 |                            |                                       | TA                      | BLE 26                       |
|------------------------------|-------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|---------------------------------------|-------------------------|------------------------------|
| Well<br>num-<br>ber<br>(Fr-) | Owner or name           | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches)          | Length of casing (feet) | Topo-<br>graphic<br>position |
| Ed 22<br>Ed 23               | Preston Zimmerman<br>Do | A. L. Smith | 1955<br>Old            | 530<br>530              | Drilled<br>do   | 84<br>90                   | 5 <sup>5</sup> / <sub>8</sub><br>36-6 | 39.5                    | Hilltop<br>do                |
| Ed 24                        | Do                      |             |                        | 170                     | do              | 00                         | 6                                     |                         |                              |
| Ed 25                        | Tumblebrook Farms       | Keyser      | 1954                   | 320                     | do              | 150                        | 6                                     | 37                      | Hillside                     |
| Ed 26                        | Mr. Hicks               | Cromwell    | 1955                   | 325                     | do              | 40                         | 6                                     |                         | Hilltop                      |
| Ed 27                        | F Stalay                | E Drown     | 10.10                  | 220                     | 1.              | 1.5                        |                                       | 20                      |                              |
| Ed 28                        | R. A. Dudrow            | L. DIOWN    | Before<br>1938         | 280                     | do              | 45<br>21-24                | 36                                    | 20                      | do<br>Hillside               |
| Ed 29                        | Niles E. Abrecht        | D. Brown    | 1948                   | 320                     | do              | 106                        | 6                                     | 24                      | Upland                       |
| Ed 30                        | Charles F. Harley       | Harley      | 1953                   | 320                     | do              | 103                        | 58                                    | 15                      | do                           |
| Ed 31                        | Martin L. Summers       | Cromwell    | 1949                   | 320                     | do              | 116                        | 6                                     | 10                      | do                           |
| Ed 32                        | Do                      | D. Brown    | 1925                   | 320                     | do              | 106                        | 6                                     | _                       | do                           |
| Ed 33                        | Ideal Farms             | Grove       | 1932                   | 340                     | do              | 100                        | 6                                     |                         | Hillton                      |
| Ed 34                        | Do                      |             |                        | 340                     | do              | 170                        | 6                                     |                         | do                           |
| Ed 35                        | Do                      | Hilton      | 1948                   | .340                    | do              | 55                         | 6                                     | 30                      | do                           |
| Ed 36                        | Do                      | do          | 1948                   | 340                     | do              | 90                         | 6                                     | 35                      | do                           |
| Ed 37                        | Do                      | do          | 1954                   | 340                     | do              | 58                         | 6                                     | 26                      | do                           |
| Ed 38                        | Do                      | do          | 1955                   | 240                     | do              | 82                         | 6                                     | 1.1                     | Draw                         |
| 15d 39                       | Orval Wolfe             | Harley      | 1955                   | 620                     | do              | 150                        | 55                                    | 12                      | Hillside                     |
| Ed 40                        | Charles T. King         | Keyser      | 1951                   | 425                     | do              | 102                        | 5 <u>\$</u>                           | 24                      | do                           |
| Ed 41                        | W A Prior               | Coldona     | 1017                   | 0.05                    | 1.              | 280                        | 10.0.0                                |                         |                              |
| Ed 42                        | Do                      | Seiders     | 1947                   | 285                     | Spring          | 370                        | 12-8-0                                | _                       | do<br>do                     |
| Ed 43                        | William Moran           | Grove       | Old                    | 265                     | Drilled         | 90                         | 6                                     |                         | Upland                       |
| Ed 44                        | Allen E. Wiles          | Harley      | 1955                   | 440                     | do              | 67                         | 5툹                                    | 57                      | flat<br>Draw                 |
| Ed 45                        | Paul A. Rockwell        | do          | 1953                   | 450                     | do              | 90                         |                                       | _                       | Hillton                      |
| Ed 46                        | F. A. Hardy             | do          | 1054                   | 450                     | do              | 108                        |                                       | 25                      | do                           |
|                              |                         | u           |                        | 300                     | du              | 100                        |                                       | 23                      | do                           |
| Ed 47                        | John Bowers             | Kawaar      | 1050                   | 440                     | ,               |                            |                                       |                         |                              |
| Ed 48                        | D. R. Stodsgill         | Harley      | 1952                   | 440<br>440              | do<br>do        | 60<br>70                   | 58                                    | 10<br>25-30             | do<br>do                     |
| Ed 49                        | Edgar Larson            | do          | 1952                   | 455                     | do              | 90                         | 6                                     | 21                      | do                           |
| Ed 50                        | Gardner G. Gremillion   | do          | 1952                   | 455                     | do              | 77                         | 55                                    | 12-20                   | do                           |
| Ed 51                        | Franklin Waters         | Kevser      | 1052                   | 450                     | da              | 70                         | 6                                     | 10                      | de                           |
|                              |                         | 1203 001    | 1754                   | 400                     | uu              | 10                         | 0                                     | 10                      | 00                           |

| Water               | -hearing                  | Wabelo                       | ter level<br>w land s | (feet<br>urface)    | equip-     | Y                        | ield     | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                                    |
|---------------------|---------------------------|------------------------------|-----------------------|---------------------|------------|--------------------------|----------|-------------------------------|-----------------------|-------------|----------------------------------------------------------------------------------------------------|
| for                 | mation                    | Static                       | Pump-<br>ing          | Date                | Pumping    | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                            |
| Antietam            | quartzite<br>do           | 48.47<br>48.83               |                       | 8/27/56<br>8/27/56  | J,E<br>C,E | 10                       | 9/13/55  | .3                            | -                     | FD          | Dug well to 60 ft. Reported<br>when pumped, no noticeable<br>effect on water level in dug<br>well. |
|                     | do                        | 60 <sup>a</sup>              |                       | 1955                | J,E        |                          |          | -                             | - 1                   | D           | Adequate.                                                                                          |
| Frederick           | limestone                 | 50 <sup>a</sup>              | 100 <sup>a</sup>      | 5/10/54             | J,E        | 12                       | 5/10/54  | 2                             | . 24                  | D           |                                                                                                    |
|                     | do                        | -                            |                       | -                   | J,E        | -                        | -        | -                             |                       | D           | Water reported slightly hard.<br>Adequate supply.                                                  |
|                     | do                        | 25 <sup>n</sup>              | 32 <sup>a</sup>       | 6/9/49              | J,E        | 10                       | 6/9/49   | 1                             | 1.4                   | D           |                                                                                                    |
|                     | do                        | 17.23                        |                       | 8/29/56             | C,E        | -                        | -        | -                             | -                     | D           | Adequate.                                                                                          |
|                     | do                        | 70 <sup>a</sup>              |                       | 11/12/48            | N          | 3(?)                     | 11/12/48 | .5                            | _                     | N           | Destroyed.                                                                                         |
|                     | do                        | 23 <sup>8</sup>              | 90 <sup>8</sup>       | 5/27/53             | 2.E        | 3                        | 5/27/53  |                               | < 1                   | D           |                                                                                                    |
|                     | do                        | 70 <sup>a</sup>              | 72 <sup>n</sup>       | 9/9/49              | J,E        | 14                       | 9/9/49   | 2                             | 7                     | D           | Depth of pump jet 90 ft.                                                                           |
|                     |                           | 30.74                        |                       | 8/28/56             |            |                          |          |                               |                       |             | A 1 1 0                                                                                            |
|                     | do                        |                              | —                     |                     | N          |                          |          | -                             | -                     | N           | 4 ft. south of Ed 31. Poor yield.                                                                  |
|                     | do                        | 15 <sup>a</sup>              |                       |                     | C,E        | 10                       |          | . – .                         |                       | C           | Milk bottlers and distributors.                                                                    |
|                     | do                        | 201                          |                       | 10.10               | C,E        | 4-5                      | 10.10    | -                             |                       | N           |                                                                                                    |
|                     | do                        | 204                          | 10.8                  | 1948                | J,E        | 30                       | 1948     | 1                             |                       | С           | See well log.                                                                                      |
|                     | do                        | 318                          | 40                    | 8/22/51             | 1,15       | 20                       | 8/22/51  | 1                             | 1 8                   | C AT        | Temporarily not used.                                                                              |
|                     | 10                        | 26.60                        |                       | 8/20/56             |            | 20                       | 0/22/34  | 2                             | 1.0                   | 2.9         |                                                                                                    |
|                     | do                        | 12 <sup>a</sup>              | 58 <sup>a</sup>       | 8/22/55             | C.E        | 20                       | 8/22/55  | 2                             | . 1.3                 | C           |                                                                                                    |
| Harpers p           | hyllite                   | 578                          | 140 <sup>a</sup>      | 2/4/55              | C.E        | 2.5                      | 2/4/55   |                               | <.1                   | D           |                                                                                                    |
| New Oxi<br>stone co | ford (lime<br>onglomerate | - 30 <sup>n</sup><br>) 29.16 | 60 <sup>a</sup>       | 11/15/51<br>8/30/56 | J,E        | 20                       | 11/15/51 | 3                             | •6                    | D           |                                                                                                    |
| Grove lim           | estone                    | 27 <sup>8</sup>              | 240 <sup>rk</sup>     | 7/25/47             | C.E        | 2.25                     | 7/25/47  | 2.5                           | <.1                   | D           | Water softener.                                                                                    |
|                     | do                        | -                            |                       | -                   | S,E        | 20-25                    | 8/30/56  | -                             | -                     | D,F         | Temperature Aug. 30, 1956,<br>58°F                                                                 |
| Frederick           | limestone                 | 19± <sup>a</sup>             |                       |                     | J,E        | 5                        | -        | -                             |                       | D           |                                                                                                    |
| New Oxfo            | rd                        | 10 <sup>a</sup><br>20.71     | 20 <sup>a</sup>       | 1955                | J,E        | 10                       | 1955     |                               | 1                     | Ð           | Field test: hardness 122 ppm,                                                                      |
|                     | do                        | 10 <sup>a</sup>              |                       | 4/6/53              | J,E        | 15                       | 4/6/53   | -                             | _                     | D           | chronide to ppm.                                                                                   |
|                     | do                        | 17.55<br>15 <sup>a</sup>     | 30 <sup>a</sup>       | 7/2/56<br>9/15/54   | J,E        | 16                       | 9/15/54  |                               | 1.1                   | D           | Keyser reamed 8 in. hole to 25<br>ft., installed 5% in. casing to<br>25 ft., grouted in attempt to |
|                     |                           |                              |                       |                     |            |                          |          |                               |                       |             | improve sanitary quality.<br>Field test: hardness 212 ppm,<br>chloride 12 ppm.                     |
|                     | 0.0                       | 10"                          | 404                   | 7/28/52             | J,E        | 10                       | 7/28/52  | 1.25                          | .3                    | D           | Field test: chloride 14 ppm.                                                                       |
|                     | αu                        | 12 22                        | 2.5.~                 | 0/22/51             | J,E        | 15                       | 8/22/51  |                               | .9                    | D           | Field test: hardness 246 ppm,                                                                      |
|                     | do                        | 15.55<br>ga                  | _                     | 7/10/52             | LE         | 20                       | 7/10/52  |                               |                       | D           | Chioride 16 ppm.                                                                                   |
|                     |                           | 19.16                        |                       | 7/2/56              | يند و ال   | 20                       | 1/10/32  |                               |                       | D           | chloride 30 ppm                                                                                    |
|                     | do                        | 38                           | 70 <sup>a</sup>       | 8/22/52             | J,E        | 4                        | 8/22/52  |                               | <.1                   | D           | Field test: hardness 350 ppm,                                                                      |
|                     | do                        | 20 <sup>a</sup>              | 35 <sup>a</sup>       | 7/25/52             | J,E        | 20                       | 7/25/52  | 1                             | 1.3                   | D           | Field test: hardness 206 ppm,                                                                      |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name              | Driller                       | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|----------------------------|-------------------------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Ed 52                        | Howard Minnick             | Harris                        | 1954±                  | 450                     | Drilled         | 80                         | 6                            | 40                      | Hilltop                      |
| Fd 52                        | Howard Smith               |                               | bl0                    | 450                     | đo              | 70                         | 6                            | 5±                      | Upland                       |
| 120 55                       | Howard Smith               |                               | ora                    |                         |                 |                            |                              |                         | flat                         |
| Ed 54                        | Do                         | -                             | Old                    | 450                     | Dug             | 30                         | 48-6                         |                         | do                           |
| EJ EF                        | Mine Apple Bogons          |                               | 014                    | 280                     | do              | 24                         | 42-                          | _                       | Hillside                     |
| Ed 55<br>Ed 56               | Do                         | _                             | Old                    | 290                     | do              | 11                         | 36                           | _                       | Valley                       |
|                              |                            |                               |                        |                         |                 |                            |                              |                         |                              |
| Ed 57                        | Weldon Harper              | Keyser                        | 1952                   | 370                     | Drilled         | 82                         | 5%                           | 30                      | flat                         |
| Ed 58                        | John Hammond               | do                            | 1956                   | 450                     | do              | 87                         | 5 🕏                          | 13                      | Hillside                     |
| Ed 59                        | Board of Education         | -                             | n 1                    | 290                     | Spring          | -                          |                              | -                       | Hilltop                      |
| Ed 60                        | Alpha Portland Cement Co.  | Keyser                        | 1957                   | 300                     | Drilled         | 156                        | 6                            | 54.5                    | Upland                       |
| Ee 1                         | Mrs. Roy Putman            |                               | _                      | 330                     | Dug             | 58.1                       | 43                           |                         | do                           |
| Ee 2                         | Miss Constance Harding     | Columbia Pump and<br>Well Co. | 1946                   | 290                     | Drilled         | 155                        | 6                            | 110                     | do                           |
|                              |                            |                               |                        |                         |                 |                            |                              |                         |                              |
| Ee 3                         | Barbara Fritchie Candy Co. | do                            | 1947                   | 305                     | do              | 350                        | 6                            | 195                     | do                           |
| Ee 4                         | The Everedy Co.            | E. Brown                      | 1941                   | 280                     | do              | 61                         | 6                            | 29.7                    | do                           |
| Ee 5                         | Chestnut Farms Dairy, Inc. | _                             | _                      | 270                     | do              | 42.5                       | 6                            | _                       | do                           |
| Ee 6                         | Do                         | -                             | 1910±                  | 275                     | do              | 120                        | _                            |                         | do                           |
| Fo 7                         | Do                         |                               | _                      | 275                     | do              | 105.5                      | 8                            | _                       | do                           |
| Ee 8                         | Paul Guysmith              | Grove                         | 1915-20                | 250                     | do              | 100                        | 6                            | _                       | Hillside                     |
| Ee 9                         | Betsy Ross Motel           | -                             | -                      | 310                     | do              | 150                        | 6                            | 20                      | Upland                       |
| Ee 10                        | Baltimore and Ohio R. R.   | Myers                         | 1956                   | 270                     | do              | 100                        | б                            | 32.5                    | fiat<br>Hillside             |
| Fo 11                        | Herman Rice                | Harley                        | 1052                   | 200                     | do              | 109                        | 6                            | 15                      | do                           |
| Ee 12                        | Charles Hahn               | A. L. Smith                   | 1955                   | 330                     | do              | 83                         | 5흫                           | 37                      | do                           |
| Ee 13                        | Sportsmen's Club           | Corum                         | 1948                   | 360                     | do              | 253                        | 6                            | 12                      | Valley                       |
| Ee 14                        | William Lindsay            | Shaff                         | 1955                   | 440                     | do              | 50                         | 55                           | 23                      | Hillside                     |
| Ee 15                        | Woodrow Bowers             | Easterday                     | 1953                   | 360                     | do              | 105                        | 6                            | 19                      | do                           |
| Ee 16                        | Mrs. Annie Perkins         |                               | Before                 | 420                     | Dug             | 25                         | 36 or 48                     | -                       | Hilltop                      |
| F.e. 17                      | Rayner Montgomery          | _                             | 1714                   | 430                     | Drilled         | 60                         | 6                            |                         | Draw                         |
| Ee 18                        | John Montgomery            |                               | -                      | 500                     | do              | 85-95                      | 6                            | -                       | Hilltop                      |
| Ee 19                        | W. E. Bagent               | Harley                        | 1954                   | 400                     | do              | 76                         | -                            | 6                       | Hillside                     |

| Water-bearing<br>formation             | Wa<br>belo               | ter level<br>w land si | (feet<br>urface)  | equip-          | Yi                       | eld              | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                                                                                                                                   |
|----------------------------------------|--------------------------|------------------------|-------------------|-----------------|--------------------------|------------------|-------------------------------|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                              | Static                   | Pump-<br>ing           | Date              | Pumping<br>ment | Gallons<br>per<br>minute | Date             | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                                           |
| New Oxford                             |                          | -                      | _                 | J,E             | _                        | _                |                               |                       | D           | Originally 32 ft. of casing.<br>Keyser reamed 8 in. hole, in-<br>stalled 40 ft. casing, grouted<br>in attempt to improve sani-<br>tary quality. Field test: hard-<br>ness 175 ppm chloride 13 ppm |
| do                                     | 10.5±                    | -                      | 6/29/56           | J,E             | -                        | -                | -                             |                       | Ν           | Small yield. About 5 ft. of 4 in.<br>casing.                                                                                                                                                      |
| do                                     | 10.65                    |                        | 6/29/56           | C,H             | 1±                       | 6/29/56          | 1                             |                       | N           | Dug well 26 ft. deep; drilled<br>well 4 ft. deep in bottom.<br>Temperature June 29, 1956,<br>51°F.                                                                                                |
| Grove limestone                        | 21.9                     | -                      | 8/16/56           | C,H             | —                        |                  |                               | _                     | D           |                                                                                                                                                                                                   |
| Frederick limestone                    | 1.98                     | _                      | 8/16/56           | S,-             | _                        | -                | —                             | -                     | Ν           | Pump operated by water wheel<br>with flow of small creek.                                                                                                                                         |
| do                                     | 30 <sup>a</sup>          | 50 <sup>a</sup>        | 2/23/52           | J,E             | 8                        | 2/23/52          | 1                             | .4                    | D           |                                                                                                                                                                                                   |
| Antietam quartzite                     | 55ª                      | 60 <sup>a</sup>        | 7/9/56            | J,E             | 20                       | 7/9/56           | 1                             | 4.0                   | D           | See well log.                                                                                                                                                                                     |
| Frederick limestone<br>Grove limestone | 40 <sup>n</sup>          |                        | 1/5/57            | S,E<br>NI       |                          | =                | -                             | _                     | N<br>I      | Reported contaminated.                                                                                                                                                                            |
| Frederick limestone                    | 53.61                    | _                      | 12/6/55           | N               | _                        | -                | _                             | _                     | Ν           | Former water-level observation<br>well, Destroyed in 1955.                                                                                                                                        |
| Grove limestone                        | 30 <sup>a</sup><br>42.42 | 60 <sup>a</sup>        | 9/4/46<br>3/21/51 | J,E             | 30                       | 9/4/46           | 8                             | .6                    | D,F         | 8-in. to 110 ft.; 6-in. casing. See<br>well log and chemical analy-<br>sis. Temperature Mar. 21,<br>1951, 50°F. Depth of pump jet<br>80 ft.                                                       |
| do                                     | 30 <sup>a</sup>          | —                      | 8/1/47            | T(?),<br>E      | 40                       | 8/1/47           | 8                             | . 33                  | D           | Candy factory and restaurant.<br>See well log.                                                                                                                                                    |
| Frederick limestone                    | 13 <sup>a</sup>          | 21 <sup>a</sup>        | 1941              | T,E             | 275                      | 1941 and<br>1954 |                               | 34.7                  | С           | Fire protection. See well log and chemical analysis.                                                                                                                                              |
| Grove limestone                        | 12.91                    | —                      | 11/9/54           | N               | -                        | -                | -                             |                       | N           |                                                                                                                                                                                                   |
| Frederick limestone                    | 30 <sup>n</sup>          | _                      | 1954              | T,E             | 6075                     | 1954             |                               | _                     | С           | Pumped continuously six days per week.                                                                                                                                                            |
| do                                     | 14.85                    |                        | 11/9/54           | T,E             | -                        | -                | -                             |                       | C           |                                                                                                                                                                                                   |
| Grove limestone                        | 40±"                     | _                      |                   | J,E<br>C F      | 10                       | _                |                               |                       | D,F         | Contaminated with oil or gaso                                                                                                                                                                     |
| Grove milescone                        |                          |                        |                   | C,L             |                          |                  |                               |                       | C           | line.                                                                                                                                                                                             |
| Frederick limestone                    | 45 <sup>n</sup>          | 50 <sup>a</sup>        | 2/21/56           | J,E             | 30                       | 2/21/56          | 2                             | 6.0                   | С           | Western Union office. Bedrock<br>at 22 ft. Depth of pump jet<br>80 ft.                                                                                                                            |
| do                                     | 60 <sup>a</sup>          | 95 <sup>a</sup>        | 12/1/52           | J,E             | 14                       | 12/1/52          | -                             | . 4                   | D           |                                                                                                                                                                                                   |
| Antietam quartzite                     | 40ª                      | —                      | 7/30/56           | C,E             | 10                       | 7/30/56          | .5                            | -                     | D           | Water at shallow don't as t                                                                                                                                                                       |
| i jamsville phyllite                   | 8.                       | _                      | 11//48            | J,E             | 12                       | 11/—/48          | 1.5                           |                       | U           | water at shallow depth only.                                                                                                                                                                      |
| Antietam quartzite                     | 26 <sup>8</sup>          |                        | 8/20/55           | J,E             | 10                       | 8/20/55          | 3                             | -                     | D           |                                                                                                                                                                                                   |
| do                                     | 40 <sup>8</sup>          | 105 <sup>a</sup>       | 12/18/53          | J,E             | 3                        | 12/18/53         |                               | <.1                   | D           | See well log.                                                                                                                                                                                     |
| diabase                                | 12.80                    |                        | 2/13/56           | C,H             | -                        | _                | -                             | -                     | D           | Adequate.                                                                                                                                                                                         |
| Urbana phyllite<br>Jiamsville phyllite | 14±                      |                        | 4/6/56            | J,E<br>LE       | -                        |                  | _                             | -                     | F           | Adequate                                                                                                                                                                                          |
| do                                     | 12 <sup>a</sup>          | 40 <sup>a</sup>        | 10/6/54           | C.H             | 5                        | 10/6/54          | _                             | .18                   | D           |                                                                                                                                                                                                   |

# Carroll and Frederick Counties

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                | Driller   | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|------------------------------|-----------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Ee 20                        | Roland Kline                 | Harley    | 1953                   | 510                     | Drilled         | 95                         | _                            | 6                       | Upland                       |
| Ee 21                        | Mt. Carmel Church            | do        | 1955                   | 400                     | do              | 74                         | 5%                           | 12                      | flat<br>Hilltop              |
| Ee 22                        | Eston H. Hoffman             | D. Brown  | 1949                   | 360                     | do              | 68                         | 6                            | 11                      | Valley                       |
| Ee 23                        | Robert D. Weedon             | Harley    | 1950                   | 440                     | do              | 100                        | 6                            | 6                       | Hilltop                      |
| Ee 24                        | Richard L. Main              | Keyser    | 1952                   | 410                     | do              | 108                        | 5 \$                         | 57                      | Hillside                     |
| Ee 25                        | Roger L. Main                |           |                        | 310                     | do              | $85\pm$                    | 6                            |                         | do                           |
| Ee 26                        | Niles E. Abrecht             | -         | -                      | 320                     | do              | 106                        | 6                            | 46                      | Upland                       |
|                              |                              |           |                        |                         |                 |                            |                              |                         | IId C                        |
| Ee 27                        | Shields Trailer Sales        | Green     | 1955                   | 310                     | do              | 282                        | 55                           | 24                      | do                           |
| Ee 28                        | Irving E. Norwood            | Keyser    | 1956                   | 310                     | do              | 116                        | 55                           | 22.5                    | do                           |
| Ee 29                        | Do                           | E. Brown  | 1949                   | 310                     | do              | 68                         | 6                            | _                       | do                           |
| Ee 30                        | Thomas Oden                  | Shirley   | 1955                   | 310                     | do              | 87                         | 6                            | 78                      | do                           |
| Ee 31                        | W. A. Prior                  | Gladhill  | 1952                   | 295                     | do              | 92                         | 6                            | -                       | do                           |
| Ee 32                        | Miss Julia Young             | Grove     | 1                      | 400                     | do              | 162                        | 6                            | -                       | Hilltop                      |
| Ee 33                        | Milton Mosberg               | -         | -                      | 325                     | do              | 365                        | 6                            | -                       | Upland<br>flat               |
| Ee 34                        | Do                           | -         | 1931                   | 315                     | do              | 187                        | 6                            | - 1                     | do                           |
| Ee 35                        | Craig Esworthy               | Harley    | 1952                   | 330                     | do              | 90                         | 55                           | 15                      | do                           |
| Ee 36                        | Glenn Crouse                 | do        | 1956                   | 325                     | do              | 87                         | 5 🕏                          | 22                      | do                           |
| Ee 37                        | James Sier                   | do        | 1955                   | 280                     | do              | 117                        | 58                           | 8                       | Valley<br>flat               |
| Ef 1                         | Grange Hall                  | Easterday | 1954                   | 550                     | do              | 40                         | 6                            | 30                      | Hillside                     |
| Ef 2                         | New Market Elementary School | _         | 1932                   | 540                     | do              | 96                         | 6                            |                         | Hilltop                      |
| Ff 3                         | Mr. Stall                    | Harlow    | 1050                   | 5.20                    | do              | 80                         | 6                            | 22.5                    | do                           |
| Ef 4                         | Stanley Mullineaux           | Easterday | 1953                   | 400                     | do              | 100                        | 6                            |                         | do                           |
| RES                          | Millard Grosenickel          | do        | 1052                   | 615                     | do              | E t                        | 6                            | 20                      | Hillside                     |
| Ef 6                         | Monrovia Canning Co.         | _         | 1955                   | 430                     | do              | 95-100                     | 6                            |                         | Valley                       |
| FF 7                         | Do                           |           | 1051.52                | 4.20                    | de              | 10.2                       | 8.6                          | 01                      | side                         |
| Ef 8                         | Do                           | F Brown   | 01d                    | 430                     | do              | 84-05                      | 6                            | 07                      | do                           |
| Ef 9                         | Do                           | do        | do                     | 430                     | do              | 54                         | _                            | _                       |                              |
| Ef 10                        | E. W. Jackson                |           | _                      | 565                     | do              | 110                        | 6                            | _                       | Draw                         |
| Ef 11                        | Marshall Brandenburg         | Easterday | 1951                   | 500                     | do              | 32                         | -                            | -                       | Valley<br>side               |
| Ef 12                        | Margaret Dromenburg          | do        | 1955                   | 390                     | do              | 91                         | 6                            | 9.5                     | Hillside                     |
| Ef 13                        | J. E. Hatcher                | Greene    | 1945                   | 490                     | do              | 112                        | 58                           | 0                       | do                           |
| Ef 14                        | A. J. Smith                  | Easterday | 1955                   | 535                     | do              | 119                        | 6                            | 23                      | Hilltop                      |
| Ef 15                        | H. C. Green                  | E. Brown  | 1955                   | 560                     | do              | 80                         | 6                            | 30                      | do                           |
| Ef 16                        | Hilltop Liquors              | do        | 1955                   | 555                     | do              | 90                         | 6                            | -                       | do                           |
| Ef 17                        | G. P. Burdette               | D. Brown  | 1940                   | 470                     | do              | 50                         | - 5                          | 22±                     | Hillside                     |
| EF 10                        | Austin W. Lunn               | marr1s    | 1954                   | 3-23                    | do              | 15                         | 58                           | 24                      | do                           |
| Ef 20                        | Howard II Quinn              | Fasterday | 1052                   | 343                     | do              | 101                        | 6                            | 16                      | do                           |
| Ef 21                        | Bernard F. Rippeon           | Keyser    | 1952                   | 450                     | do              | 50                         | 6                            | 6                       | do                           |
|                              |                              |           |                        |                         |                 |                            |                              |                         |                              |

-Continued

| Water-bearing                 | Wat<br>belov        | ter level<br>v land su | (feet<br>irface) | equip-          | Yi                       | eld      | n of<br>ng test               | capacity<br>./ft.)   | Use         | Decile                                                                                                              |
|-------------------------------|---------------------|------------------------|------------------|-----------------|--------------------------|----------|-------------------------------|----------------------|-------------|---------------------------------------------------------------------------------------------------------------------|
| formation                     | Static              | Pump-<br>ing           | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific (<br>(g.p.m | oi<br>water | Kemarks                                                                                                             |
| Urbana phyllite               | 16 <sup>a</sup>     | 80 <sup>a</sup>        | 5/18/53          | ?,E             | 4                        | 5/18/53  | _                             | -                    | D           |                                                                                                                     |
| do                            | 30 <sup>a</sup>     | 64 <sup>a</sup>        | 6/2/55           | J(?),<br>E      | 4                        | 6/2/55   | -                             | . 1                  | D           |                                                                                                                     |
| Liamsville phyllite           | 108                 | _                      | 3/5/40           | CE              | 3                        | 3/5/49   | 5                             |                      | D           |                                                                                                                     |
| do                            | 158                 | 70 <sup>8</sup>        | 1/14/50          | LE              | 3                        | 1/14/50  |                               | .12                  | D           |                                                                                                                     |
| do                            | 308(2)              | 508(2)                 | 2/5/52           | LE              | 10(?)                    | 2/5/52   | 1                             | .5(?)                | D           |                                                                                                                     |
| Antietam quartzite            | 50 (.)              |                        |                  | I E             | 10(1)                    |          | _                             |                      | D           | Adequate.                                                                                                           |
| Frederick limestone           | _                   |                        | _                | J,E             | -                        | —        |                               | -                    | D           | 12 ft. of casing originally; in-<br>creased to 46 ft. in unsuccess-<br>ful attempt to eliminate con-<br>tamination. |
| Grove limestone               | 60 <sup>a</sup>     | -                      | 3/2/55           | T,E             | 4                        | 3/2/55   | 5                             | _                    | С           |                                                                                                                     |
| do                            | 60 <sup>a</sup>     | -                      | 11/28/56         | NI              | 5                        | 11/28/56 | 2                             | _                    | D           |                                                                                                                     |
|                               | 54.20               | _                      | 8/29/56          |                 |                          |          |                               |                      |             |                                                                                                                     |
| do                            | -                   |                        | -                | J,E             |                          |          | -                             |                      | D           | Practically no yield.                                                                                               |
| do                            | 57 <sup>8</sup>     | 70 <sup>a</sup>        | 1/5/55           | J,E             | 10                       | 1/5/55   | 4                             | .7                   | D           |                                                                                                                     |
| do                            | -                   | _                      |                  | T,E             | -                        | _        | -                             | -                    | D           | Adequate.                                                                                                           |
| Antietam quartzite            | -                   |                        | -                | C,E             | 5                        | _        |                               |                      | D           | Reported slightly irony.                                                                                            |
| Frederick limestone           |                     |                        | -                | C,W             | -                        | -        | -                             | _                    | D,F         | Poor yield reported.                                                                                                |
| do                            | 30 <sup>a</sup>     | _                      | -                | C,E             | -                        | -        | -                             | -                    | D           |                                                                                                                     |
| do                            | 63 <sup>a</sup>     |                        | 4/9/52           | J,E             | 10                       | 4/9/52   | -                             |                      | D           |                                                                                                                     |
| do                            | 41 <sup>a</sup>     | 60 <sup>8</sup>        | 1/4/56           | J,E             | 10                       | 1/4/56   |                               | .5                   | D           |                                                                                                                     |
| Antietam quartzite            | 38 <sup>n</sup>     | 100 <sup>a</sup>       | 9/20/55          | J,E             | 10                       | 9/20/55  |                               | .16                  | D           |                                                                                                                     |
| Sams Creek metaba-<br>salt    | 15 <sup>a</sup>     | 20 <sup>a</sup>        | 5/18/54          | ?,E             | 10                       | 5/18/54  | -                             | 2.0                  | D           | See well log.                                                                                                       |
| do                            | -                   | -                      | -                | J.E             | -                        |          | -                             | -                    | I           | Adequate supply. See chemical                                                                                       |
| do                            | 08                  | 658                    | 11/11/50         | IF              | 4                        | 11/11/50 | _                             | < 1                  | D           | uning 5.01                                                                                                          |
| Libertytown metarhy-          | 22 <sup>8</sup>     | 100 <sup>a</sup>       | 6/3/53           | ?,E             | 1                        | 6/3/53   | -                             | -                    | D           |                                                                                                                     |
| Olite<br>Tiamavilla phyllita  | 208                 |                        | 10/5/50          | TE              |                          | 10/5/52  | _                             | 1                    | D           | See well log                                                                                                        |
| Urbana phyllite               |                     | _                      | -                | C,E             | -                        | -        | _                             |                      | C           | Good yield reported. Pumped in<br>summer only.                                                                      |
| do                            | 16.13               | _                      | 4/19/56          | N               | _                        |          | _                             | _                    | N           |                                                                                                                     |
| oh                            | 18                  | _                      | Old              | C.E             | 35                       | _        | -                             |                      | C           | Pumped in summer only.                                                                                              |
| do                            | 18                  | _                      | Old              | N               | 5                        | _        | -                             | _                    | N           | Probably destroyed.                                                                                                 |
| do                            | 70 <sup>a</sup>     |                        | 11/-/55          | C.H             | _                        | _        |                               | _                    | D           | Water reported rusty.                                                                                               |
| Sams Creek metaba-<br>salt    | 2ª                  | 32ª                    | 8/31/51          | ?,E             | 5                        | 8/31/51  | -                             |                      | D           | See well log.                                                                                                       |
| Liamsville phyllite           | 30 <sup>a</sup>     | 91 <sup>a</sup>        | 5/20/55          | J,E             | 1                        | 5/20/55  |                               | _                    | D           |                                                                                                                     |
| Urbana phyllite               | 40 <sup>a</sup>     | -                      | 10/24/55         | C.E             | 10                       | 10/24/55 | 0.25                          | _                    | D,F         |                                                                                                                     |
| do                            | 45ª                 | 69 <sup>a</sup>        | 5/24/55          | ?,E             | 10                       | 5/24/55  | 5 -                           | .42                  | D           | See well log.                                                                                                       |
| do                            | 32ª                 | 65 <sup>8</sup>        | 4/29/55          | J.E             | 20                       | 4/29/55  | 5 1                           | .6                   | С           | Filling station.                                                                                                    |
| do                            | 86 <sup>a</sup> (?) | _                      | 1955             | J,E             | -                        | -        | -                             | -                    | С           | Yield less than 1 gpm.                                                                                              |
| do                            | _                   | _                      | -                | J,E             | -                        | _        | _                             |                      | D           | Adequate.                                                                                                           |
| do                            | 30 <sup>a</sup>     | 60 <sup>a</sup>        | 4/7/54           | J,E             | 7                        | 4/7/54   | L —                           | . 2                  | D           |                                                                                                                     |
| do                            | -                   | _                      |                  | N               | -                        | -        | 1                             | -                    | N           | Inadequate at times.                                                                                                |
| do                            | 70 <sup>a</sup>     | 80 <sup>a</sup>        | 11/10/53         | C,E             | 8                        | 11/10/53 | 3                             | .8                   | D           |                                                                                                                     |
| Libertytown metarhy-<br>olite | - 28ª               | 35 <sup>a</sup>        | 2/23/52          | 2?,E            | 10                       | 2/23/52  | 2 1                           | 1.4                  | D           |                                                                                                                     |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                        | Driller      | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing (feet) | Topo-<br>graphic<br>position |
|------------------------------|--------------------------------------|--------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|-------------------------|------------------------------|
| Ef 22                        | E. E. Zimmerman                      | _            | _                      | 460                     | Spring          |                            |                              | _                       | Draw                         |
| Ef 23                        | L. H. Crickenberger                  | Easterday    | 1956                   | 510                     | Drilled         | 167                        | б                            | 8                       | Hillside                     |
| Eg 1                         | J. Wesley Hood                       | -            | -                      | 690                     | Dug and         | 58                         | 36 and 6                     | -                       | Hilltop                      |
| Eg 2                         | Charles Iones                        | _            | 1808                   | 840                     | Drilled         | 60                         |                              |                         | 4.                           |
| Eg 3                         | Edgar Rhinecker                      | D Brown      | 1050                   | 710                     | do              | 00                         | 0                            | 10                      | 0.0                          |
| Eg 4                         | Mr Dorr                              | Eastardan    | 1950                   | (10                     | do              | 70                         | 0                            | 10                      | Hillside                     |
| AND I                        | MI. Dell                             | Isasterday   | 1952                   | 040                     | do              | 29                         | 0                            | 15                      | do                           |
| Eg 5                         | Do                                   | -            |                        | 630                     | Spring          | -                          |                              |                         | do                           |
| Fac                          | Harry F. Hahr                        | The day 1    | 1000                   |                         | D 111 1         |                            |                              |                         |                              |
| Eg O                         | Marry E. Hann                        | Easterday    | 1955                   | 470                     | Drilled         | 42                         | 6                            | 23.5                    | do                           |
| Eg /                         | MIT. GOELZ                           | Green        | 1954                   | 625                     | do              | 90                         | 6                            | 7                       | do                           |
| Egs                          | Frederick M.E. Church                | Easterday    | 1954                   | 660                     | do              | 120                        | 6                            |                         | Hilltop                      |
| Eg 9                         | Telephone Co.                        | do           | 1954                   | 835                     | do              | 90                         | 6                            | 32                      | Hillside                     |
| Eg 10                        | John Driver                          | E. Brown     | 1948                   | 600                     | do              | 110                        | 6                            | 10                      | Hillton                      |
| Eg 11                        | John M. Spencer, Sr                  |              | 1710                   | 720                     | do              | 07                         | 6                            | TO                      | milliop                      |
| Eg 12                        | Frank A. Gardner                     | _            |                        | 645                     | do              | 20                         | 6(2)                         |                         | D                            |
| Eg 13                        | Do                                   |              | _                      | 6.35                    | Contan          | 29                         | 0(r)                         |                         | Draw                         |
| Eg 14                        | C P Jacobs                           |              |                        | 540                     | Deilled         | 05.1                       | _                            | -                       | do                           |
| 106 11                       | 0.1. jacobs                          |              | _                      | 500                     | Drifted         | 80 ±                       | 0                            |                         | Inntop                       |
| Eg 15                        | Paul R. Kolb, Jr.                    | _            |                        | 550                     | do              | 64                         | 6                            |                         | Hillside                     |
| Eg 16                        | Charles N. Tregoning                 | Shaff        | 1952                   | 430                     | do              | 72                         | 58                           |                         | Hilltop                      |
| Eg 17                        | George A. Myers                      | D. Brown     | 1945                   | 600                     | do              | 107                        | 6                            | 17                      | Draw<br>side                 |
| Eg 18                        | George Harne                         | Easterday    | 1953                   | 630                     | do              | 90                         | 6                            | -                       | Hillside                     |
| Eh 1                         | Town of Mount Airy                   | E. Brown     | 1925                   | 660                     | do              | 125                        | 8                            | 34                      | Valley<br>flat               |
| Eh 2                         | Do                                   | do           | 1930                   | 660                     | do              | 96                         | 8                            | 30<br>(?)               | do                           |
| Eh 3                         | Mr. Loving                           | Easterday    | 1051                   | 675                     | do              | 106                        | 6                            |                         | Hillton                      |
| Eh 4                         | Do                                   | Easterday(?) |                        | 645                     | do              | 200                        | 6                            |                         | Hillaida                     |
| Eh 5                         | Harold L. Blaylock                   | Easterday    | 1055                   | 600                     | do              | 53                         | 6                            | 11                      | Vellow                       |
| Eh 6                         | Coop. Ground Water<br>Investigations | E. Brown     | 1955                   | 660                     | do              | 55                         | 6                            | 37.5                    | Valley<br>flat               |
| Eh 7                         | Do                                   | do           | 1955                   | 660                     | do              | 89                         | 6                            | 38                      | do                           |
|                              |                                      |              |                        |                         |                 |                            |                              |                         |                              |
| Eh 8                         | Do                                   | do           | 1955                   | 660                     | do              | 79.5                       | 6                            | 41.5                    | do                           |
| Eh 9                         | Do                                   | do           | 1055                   | 660                     | da              | 00.5                       | 6                            | 40                      | d -                          |
| /                            | ~~~                                  | 0.0          | 1/00                   | 000                     | uυ              | 77.0                       | 0                            | 47                      | 0.0                          |

| Water-bearing              | Wa<br>belov        | ter level<br>v land si | (feet<br>irface) | equip-          | Yi                       | eld      | of<br>ig test                 | apacity<br>/ft.)      | Use         |                                                                                  |
|----------------------------|--------------------|------------------------|------------------|-----------------|--------------------------|----------|-------------------------------|-----------------------|-------------|----------------------------------------------------------------------------------|
| formation                  | Static             | Pump-<br>ing           | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                          |
| Sams Creek metaba-         |                    | _                      | -                | S,E             | 30                       | 3/25/56  | _                             |                       | D,F         | Continuous flow reported.                                                        |
| do                         | 20 <sup>a</sup>    | 167 <sup>a</sup>       | 2/16/56          | NI              | 2                        | 2/16/56  | -                             | -                     | D           |                                                                                  |
| Marburg schist             | 38.20              | -                      | 6/13/55          | C,E             | -                        |          | _                             | -                     | D,F         | Dug well 42 ft., drilled through bottom.                                         |
| do                         |                    |                        | _                | 2.E             |                          | -        | _                             | _                     | D           | Adequate.                                                                        |
| do                         | 50 <sup>a</sup>    |                        | 11/16/50         | LE              | 3(?)                     | 11/16/50 |                               | _                     | D           |                                                                                  |
| do                         | 48                 | 20 <sup>8</sup>        | 4/10/52          | S.E             | 4                        | 4/10/52  |                               | .2                    | C           | Reported cloudy after rains.                                                     |
| 40                         | 3.5                |                        | 9/22/55          |                 |                          | -//      |                               |                       | - I         |                                                                                  |
| do                         | _                  | -                      | _                | N               | 5+                       | -        |                               | -                     | D,C         | Gravity flow to home and gro-<br>cery store Temperature Sept.<br>22, 1955, 59°F. |
| Ijamsville phyllite        | 15 <sup>a</sup>    | 16 <sup>a</sup>        | 7/15/55          | J.E             | 10                       | 7/15/55  |                               | 10                    | С           | Filling station.                                                                 |
| Marburg schist             | 30 <sup>n</sup>    | 40 <sup>a</sup>        | 2/15/54          | ?,E             | 10                       | 2/15/54  | 1                             | 1                     | D           |                                                                                  |
| do                         | 40 <sup>n</sup>    | 120 <sup>a</sup>       | 3/19/54          | I.E             | 3                        | 3/19/54  |                               |                       | D           | See log well.                                                                    |
| do                         | 30 <sup>n</sup>    | 54 <sup>n</sup>        | 9/21/54          | J.E             | 12                       | 9/21/54  |                               | .5                    | С           | 0                                                                                |
|                            |                    |                        |                  |                 |                          |          |                               |                       |             |                                                                                  |
| do                         | 30(?) <sup>a</sup> | 98(?) <sup>a</sup>     | 12/28/48         | C,E             | 10                       | 12/28/48 | 1                             | .1(?)                 | D           |                                                                                  |
| do                         | 67 <sup>a</sup>    |                        | 7//55            | J,E             |                          | [] - 4   | -                             | -                     | D           | Water corrosive.                                                                 |
| do                         |                    |                        | -                | S,E             |                          | _        |                               | !                     | D,F         | Adequate.                                                                        |
| do                         |                    |                        |                  | N               | 100                      | 8/30/55  |                               |                       | F           | Continuous flow reported.                                                        |
| Sams Creek metaba-<br>salt | -                  | -                      | -                | C,E             |                          | -        | -                             | -                     | D,F         |                                                                                  |
| Urbana phyllite(?)         | 18.90              |                        | 9/8/55           | C,H             |                          |          |                               | - 1                   | D           |                                                                                  |
| Libertytown metarhy-       | 42ª (?)            | 66 <sup>a</sup> (?)    | 11/4/52          | J,E             | 2                        | 11/4/52  | 2                             | <.1                   | D           |                                                                                  |
| olite or Wakefield         | L                  |                        |                  |                 |                          |          |                               |                       |             |                                                                                  |
| marble                     |                    |                        |                  |                 |                          |          |                               |                       |             |                                                                                  |
| Marburg schist             | 29.16              | -                      | 11/14/56         | J,E             | -                        | - 1      | - 1                           | -                     | D,F         | Adequate.                                                                        |
| do                         | -                  |                        | _                | C,E             | -                        | -        | -                             | _                     | D           |                                                                                  |
| do                         | 6 <sup>8,</sup>    | 8 <sup>a</sup>         | 1925             | T,E             | 60                       | 1925     | 1.2                           | 30                    | Р           | Town well no. 1. Main supply.                                                    |
|                            |                    | -                      |                  |                 | 205                      | 1947     |                               | _                     | 1           | Originally 106 It. deep. See                                                     |
| 1                          | 12.5               | 45.0                   | 5//55            | 02.13           | 190-255                  | 5//55    | 48                            | 0±                    | 0           | chemical analysis.                                                               |
| do                         | 20**               | 604                    | 1930             | T,E             | 106                      | 1930     | _                             | 2.6                   | P           | Auxiliary supply. Depth of                                                       |
|                            |                    |                        |                  |                 | 120                      | 1947     | -                             |                       |             | pump 60 ft.                                                                      |
| 1.                         | 20.8               | 008                    | 0./14.4./17.4    | CE              | 127                      | 3//55    | .5                            | 4==                   | D           |                                                                                  |
| 0.0                        | 30**               | 80.                    | 8/14/51          | C,E             | 8                        | 8/14/51  | _                             | .2                    | DE          | Advanta                                                                          |
| OD                         | 103                | 158                    | 2/06/55          | J,E             |                          | 2/06/55  | _                             |                       | D,r         | Adequate.                                                                        |
| OD                         | 11 . 12            | 35"                    | 5/20/00          | r,E             | 8                        | 3/20/33  |                               |                       | D           | Test hals and acuiton test ab                                                    |
| do                         | 11.23              | -                      | 3/ 23/ 33        | 1.1             | 24.7                     | 5/—/55   |                               | 2.4                   | N           | servation well no. 1. 158 ft.<br>north of Eh 1.                                  |
| do                         | 11.48              | _                      | 5/23/55          | N               | 24.5                     | 5//55    | .3                            | 5.4                   | N           | Test hole and aquifer-test ob-<br>servation well no. 2. 300 ft.                  |
| do                         | 9.83               |                        | 5/23/55          | N               | 26.7                     | 5/—/55   | .75                           | 10.7                  | N           | Test hole and aquifer-test ob-<br>servation well no. 3. 175 ft.<br>west of Eh 1. |
| do                         | 12.59              | amerik                 | 5/23/55          | N               | 26.7                     | 5//55    | .78                           | 3.6±                  | N           | Test hole and aquifer-test ob-<br>servation well no. 4. 58 ft,<br>west of Eh 1.  |

TABLE 26 casing Diameter of well (inches) Well Date Alti-Depth Length of c (feet) Toponum-Type Owner or name Driller graphic comtude of well (feet) ber of well pleted (feet) (Fr-) Fb I Robert V. Mahoney Corum 1950 Drilled 480 63 55 12 Hilltop Fb 2 C. M. Eagle Myers 1947 425 do 6 41 do Ralph Stauffer, Jr. Fb 3 Keyser 1950 480 do 88 6 13 do Fb 4 John T. Quinn Shaff 1954 300 do 80 5 **1**Iillside Fb 5 Dennis R. Cooper Keyser 1951 285 107 do 109 5홏 do Fb 6 Levin Cooper do 1950 270 do 50 5 12 do Fb 7 Do do 1950 315 do 112 5 42 do Fb 8 H. L. Wood Shaff 1951 do 70 5 Hilltop Fc 1 Charles F. Orrison 240 Dug 27.6 Valley Fc 2 Miss Lake Wright Hilton 1953 290 Drilled 102 5 102 Hillside Fc 3 Do do 1953 290 do 86 5 do Fc 4 Bernard Kolb D. Brown 1954 305 do 04 5# 23 do John Nuss Shaff Fc 5 1952 540 do 53 6 do Fc 6 T. B. King Keyser 1052 375 do 93 51 77 do Fc 7 William Bell Old Dug 280 38.2 do Do Fc 8 260 Spring Valley flat Fc 9 Harry Hildebrand Shaff 1952 410 Drilled 71 5 Hillside L. E. Rutherford Fc 10 Keyser 1952 225 do 33 5 33 do C. E. Reed Fc 11 Old 475 do 58 92 do 36 Do Fc 12 Spring 400 do L. P. Hale Fc 13 290 do do Fc 14 Assembly of God Church Keyser 1952 245 Drilled 77 55 77 do C. E. Reed Fc 15 550 Spring do Fd 1 Thomas and Company E. Brown and Hag-1947 305 Drilled 954 12-8-6 235 or Upland mann 430 flat Do E. Brown Fd 2 1916 305 do 6 22 do

| Water-bearing                                             | Wa<br>belo               | iter leve<br>w land s | l (feet<br>urface)  | equip-          | Y                        | ield                | of<br>1g test                 | apacity<br>/ft.)      | Use         |                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------|--------------------------|-----------------------|---------------------|-----------------|--------------------------|---------------------|-------------------------------|-----------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation                                                 | Static                   | Pump-<br>ing          | Date                | Pumping<br>ment | Gallons<br>per<br>minute | Date                | Duration<br>pumpir<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                                                                                                                                                                                                                  |
| granodiorite and gran-<br>ite gneiss                      | 12ª                      | 41 <sup>a</sup>       | 2/4/50              | J,E             | 15                       | 2/4/50              | 1                             | .5                    | D           | See chemical analysis.                                                                                                                                                                                                                                   |
| do                                                        | 24 <sup>n</sup>          | 32ª                   | 5/19/47             | C,H             | 2.5                      | 5/19/47             | - 1                           | .33                   | D.F         |                                                                                                                                                                                                                                                          |
| do                                                        | 35 <sup>8</sup>          | 67 <sup>a</sup>       | 12/19/50            | J,E             | 4                        | 12/19/50            | 1                             | .13                   | D           |                                                                                                                                                                                                                                                          |
| do                                                        | 20 <sup>a</sup>          | 50 <sup>a</sup>       | 7/5/54              | S,E             | 5                        | 7/5/54              | 6                             | .16                   | D           |                                                                                                                                                                                                                                                          |
| do                                                        | 30 <sup>a</sup>          | 90 <sup>a</sup>       | 7/30/51             | C,E             | 3                        | 7/30/51             | 1                             | <.1                   | D           |                                                                                                                                                                                                                                                          |
| do                                                        | 20 <sup>a</sup>          | 35 <sup>H</sup>       | 8/14/50             | J,E             | 3                        | 8/14/50             | .5                            | 1.0                   | D           |                                                                                                                                                                                                                                                          |
| do                                                        | 55 <sup>a</sup>          | 82ª                   | 7/24/50             | -               | 3                        | 7/24/50             | 1.5                           | .11                   | D           |                                                                                                                                                                                                                                                          |
| do                                                        | 20 <sup>a</sup>          | 30 <sup>a</sup>       | 5/14/51             | S,E             | 5                        | 5/14/51             | 2                             | . 5                   | D           |                                                                                                                                                                                                                                                          |
| New Oxford (lime-<br>stone conglomerate)                  | 16.06                    |                       | 10/22/46            | C,H             | -                        |                     |                               |                       | D           | Went dry in 1943. Water-level<br>observation well. See chemi-<br>cal analysis. Temperature<br>Dec 20, 1055, 51,5°F                                                                                                                                       |
| Catoctin metaba-<br>salt(?)                               | -                        | —                     |                     | J,E             | -                        | —                   |                               |                       | D           | Muddy water reported by                                                                                                                                                                                                                                  |
| do                                                        | -                        |                       |                     | N               | -                        |                     | -                             | -                     | N           | Cased through blue clay and<br>black mud to rock at 86 ft.;<br>no water; casing pulled, hole<br>destroyed.                                                                                                                                               |
| New Oxford (lime-<br>stone conglomerate)                  |                          |                       | -                   | J,E             | 10                       | 5/5/54              | .5                            |                       | D           | acouoyeu.                                                                                                                                                                                                                                                |
| granodiorite and gran-<br>ite gneiss                      | -                        | _                     | —                   | J,E             | - 1                      | _                   | _                             | _                     | D           |                                                                                                                                                                                                                                                          |
| Tomstown dolomite<br>granodiorite and gran-<br>ite gneiss | 30 <sup>a</sup><br>26.54 | _                     | 9/17/52<br>12/15/55 | J,E<br>C,H      | 30<br>                   | 9/17/52             | 1                             | _                     | D<br>D      |                                                                                                                                                                                                                                                          |
| do                                                        | -                        | -                     | -                   | N               | 3                        | 12/15/55            | -                             |                       | F           |                                                                                                                                                                                                                                                          |
| do                                                        | 40 <sup>a</sup>          | 55 <sup>8</sup>       | 6/30/52             | S.E             | 3                        | 6/30/52             | 2.5                           | 2                     | n           |                                                                                                                                                                                                                                                          |
| Catoctin metabasalt                                       | 10 <sup>a</sup>          | _                     | 10/9/52             | CH              | 5                        | 10/0/52             | 1                             | . 2                   | D           |                                                                                                                                                                                                                                                          |
| do                                                        | 13.39                    | _                     | 12/21/55            | CH              | _                        |                     | 1                             |                       | DE          |                                                                                                                                                                                                                                                          |
| do                                                        |                          | - 1                   | —                   | N               | 3                        | 12/21/55            |                               |                       | F           | Discharge in summer low or                                                                                                                                                                                                                               |
| granodiorite and gran-<br>ite gneiss                      |                          | -                     |                     | Ν               | 3                        | 12/21/55            |                               |                       | D           | Supplies two homes.                                                                                                                                                                                                                                      |
| Catoctin metabasalt<br>do                                 | 20 <sup>8</sup>          | 40 <sup>a</sup>       | 8/12/52             | J,E<br>N        | 10<br>12                 | 8/12/52<br>12/21/55 | 1                             | .5                    | D<br>D,F    | Gravity flow to home and barns.                                                                                                                                                                                                                          |
| Frederick limestone                                       | 21ª<br>16.67             | 180 <sup>a</sup>      | 3/—/47<br>10/1/56   | N               | 95<br>190                | 3/—/47<br>1947      | 108                           | .9                    | N           | Drilled to 430 ft. in 1941 by E.<br>Brown; water muddy. Reamed<br>12-in. diameter to 235 ft. by<br>Hagmann; cased with 8-in.<br>pipe. Drilled through bottom<br>of 6-ft. diameter dug well 36<br>ft. deep. Formerly equipped<br>with 120-200 gpm turbine |
| do                                                        | ga.ev                    | -                     | _                   | С,—             | _                        | -                   | -                             | -                     | N           | pump. Water-level observa-<br>tion well.<br>Steam power. Muddy if pumped<br>for long periods. Water en-<br>countered in 3-ft. cavity at<br>about 135 ft.                                                                                                 |

TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name           | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|-------------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Fd 3                         | Thomas and Company      | Hilton      | 1911                   | 305                     | Drilled         | 76.8                       | 6                            | 17                         | Upland                       |
| Fd 4                         | Do                      | E. Brown    | 1938                   | 305                     | do              | 60                         | 8                            | 20                         | do                           |
|                              |                         |             |                        |                         |                 |                            |                              |                            |                              |
| Fd 5                         | Do                      | _           | 1902                   | 305                     | do              | 35                         | 6                            | 20                         | do                           |
| Fd 6                         | Do                      | _           | 1904                   | 305                     | do              | 65                         | 6                            | 20                         | do                           |
| Fd 7                         | Do                      | Hagmann     | 1947                   | 305                     | do              | 1,209                      | 12-8-6                       | 220(?)                     | do                           |
|                              |                         |             |                        |                         |                 |                            |                              |                            |                              |
| Fd 8                         | Claggett Diocese Center | -           | 1904(?)                | 320                     | do              | 110                        | 6                            | -                          | Hilltop                      |
| Fd 9                         | Unknown                 | -           | 1952                   | 320                     | do              | 100+                       | 6                            | 0                          | Hillside                     |
| Fd 10                        | Jennings Bailey         | Hilton      | 1952                   | 300                     | do              | 99                         | б                            | 48                         | Upland                       |
|                              |                         | Vouses      | 1050                   | 220                     | do              | 170                        | 6                            | 8                          | Hillside                     |
| Fd 11                        | N C Fairall             | Stottlemver | 1950                   | 320                     | do              | 127                        | 5                            | 17                         | do                           |
| Fd 12<br>Fd 13               | Tuscarora Gun Club      | Hilton      | 1955                   | 300                     | do              | 115                        | 5                            | 38                         | do                           |
| Fd 14                        | Francis Wells           | -           | Old                    | 285                     | Dug             | 43.6                       | 36                           |                            | Upland                       |
| Fd 15                        | Do                      | Hilton      | 1955                   | 285                     | Drilled         | 164(?)                     | 6                            | 43                         | do                           |
| Fd 16                        | Do                      | do          | 1955                   | 270                     | do              | 49                         | 6                            | 18                         | Valley                       |
| Fd 17                        | Clarence Ausherman      | Harley      | 1952                   | 330                     | do              | 96                         | 6                            | 23                         | Upland                       |
| Fd 18                        | Howard Delauder         | Kevser      | 1952                   | 340                     | do              | 95                         | 6                            | 12                         | Hilltop                      |
| Fd 19                        | Carl Davis              | do          | 1952                   | 325                     | do              | 79                         | 5                            | 22                         | do                           |
| Fd 20                        | Veva V. Brown           | do          | 1952                   | 315                     | do              | 62                         | 6                            | 21.5                       | Hillside                     |
| E-1-01                       | John F. Baber           | do          | 1952                   | 350                     | do              | 86                         | 6                            | 6                          | Hilltop                      |
| FG 21                        | Lawrence Walters        | do          | 1953                   | 345                     | do              | 35                         | 51                           | 22                         | do                           |
| Fd 23                        | E. B. Earhart           | Shaff       | 1950                   | 350                     | do              | 100                        | 6                            | 0(?)                       | Hillside                     |
| Fd 24                        | Richard White           | Keyser      | 1952                   | 345                     | do              | 127                        | 5불                           | 30                         | do                           |
| Fd 25                        | W. H. Lauthon           | do          | 1952                   | 305                     | do              | 165                        | 6                            | 23                         | Upland                       |
| E-1.06                       | Robert Ionkins          | Shaff       | 1055                   | 290                     | do              | 52                         | 58                           | 22                         | do                           |
| F (1 20                      | Lohn Thomas             | E Brown     | 1950                   | 330                     | do              | 184                        | 6                            | 26                         | do                           |
| Fd 28                        | W. Homer Renn           | Harklund    | 1956                   | 290                     | do              | 75.5                       | 6                            | 24.7                       | do                           |
| E-1 20                       | Do                      | do          | 1954                   | 295                     | do              | 93                         | 8-61                         | 41.5                       | do                           |
| FQ 29                        | Gilbert Lowe            | Smith       | 1955                   | 305                     | do              | 96                         | 58                           | 23                         | do                           |
| Fd 31                        | Earl Smith              | Shaff       | 1948                   | 315                     | do              | 54.5                       | 6                            | -                          | do                           |
|                              |                         | Con the     | 1055                   | 205                     | do              | 27 5                       | 5.5                          | 23 5                       | Hillside                     |
| Fd 32                        | Tony Gibson             | Smith       | 1955                   | 310                     | do              | 68                         | 5                            | 9                          | Upland                       |
| rd 33                        | marry Manude            | liancy      | 1900                   | 515                     | 40              |                            |                              |                            | flat                         |

| formation S<br>Frederick limestone 12<br>do<br>do<br>do<br>do<br>do | Static<br>17.38  | Pump-<br>ing<br>— | Date<br>12/26/46 | Z Pumping ment | Gallons<br>per<br>minute | Date     | ration<br>umpin<br>nours) | ific c<br>p.m. | of<br>water | Remarks                                                                                                                                                                         |
|---------------------------------------------------------------------|------------------|-------------------|------------------|----------------|--------------------------|----------|---------------------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frederick limestone 1<br>do<br>do<br>do<br>do<br>do 22              |                  | -                 | 12/26/46         | N              |                          |          | De                        | Spec<br>(g.    |             |                                                                                                                                                                                 |
| do<br>do<br>do<br>do 24                                             | _                | -                 |                  |                | -                        |          | -                         | -              | N           | Muddy. Reported depth 73 ft.                                                                                                                                                    |
| do<br>do<br>do 24                                                   | -                |                   |                  | T,E            | 120                      | -        | -                         | -              | N           | Muddy. See chemical analysis.<br>No drawdown reported at 100                                                                                                                    |
| do<br>do 24                                                         |                  | _                 | _                | C.H            | 1                        | 1 - 1    | _                         | _              | N           | Water reported contaminated                                                                                                                                                     |
| do 24                                                               |                  |                   |                  | N              |                          |          |                           |                | N           | Sounded 48 ft. deep (filled in?)                                                                                                                                                |
|                                                                     | 24 <sup>a</sup>  | _                 | 5/—/47           | T,E            | 120                      | 1954     |                           | -              | N           | Originally 364 ft. deep; yield 80<br>gpm; 100 ft. of casing. Reamed<br>12-in. hole to 220 ft.; cased<br>with 8-in.(?) pipe. 8-in. hole<br>to 975 ft. Depth of pump 300<br>ft.+. |
| Antietam quartzite                                                  |                  |                   |                  | C,E            | -                        | -        | -                         |                | I           | Principal yield at 90 feet. Ade-<br>quate for intermittent heavy<br>demand                                                                                                      |
| Contact(?)-Antietam<br>quartzite and Fred-<br>erick limestone       | -                | =                 | -                | N              | -                        | -        |                           | -              | N           | "Clay and mud" penetrated to<br>bottom. Well destroyed.                                                                                                                         |
| Frederick limestone 10                                              | 16 <sup>a</sup>  | 68 <sup>a</sup>   | 12/29/52         | J,E            | 9                        | 12/29/52 | 2                         | .17            | F           | See well log.                                                                                                                                                                   |
| New Oxford 19                                                       | 19 <sup>8,</sup> | 79 <sup>a</sup>   | 11/5/50          | I.E            | 10                       | 11/5/50  | 2                         | .6             | T           |                                                                                                                                                                                 |
| do 4/                                                               | 12 <sup>n</sup>  | 120 <sup>a</sup>  | 11/18/54         | T,E            | 7                        | 11/18/54 | 1                         | <.1            | D           | Owner reports yield 37 gpm                                                                                                                                                      |
| do 50                                                               | 56 <sup>a</sup>  | 90 <sup>a</sup>   | 8/1/55           | C(?),<br>F     | 8                        | 8/1/55   | 1                         | . 24           | Ĉ           | owner reports yield of gpm.                                                                                                                                                     |
| Frederick limestone 38                                              | 38.52            |                   | 3/21/56          | C,E            | -                        | —        | —                         | -              | D           |                                                                                                                                                                                 |
| do 33                                                               | 338              | 120 <sup>a</sup>  | 1/21 /55         | N              | 2                        | 1/21/55  | 1                         | <.1            | Ň           | Poor yield; destroyed. May have                                                                                                                                                 |
| do 18                                                               | 8ª               | 29 <sup>a</sup>   | 8/1/55           | C,E            | 24                       | 8/1/55   | 1                         | 2.2            | D           | See chemical analysis.                                                                                                                                                          |
| do 34                                                               | 34 <sup>a</sup>  | -                 | 12/19/52         | C,E            | 19                       | 12/19/52 |                           | -              | D           |                                                                                                                                                                                 |
| New Oxford 2:                                                       | 58               |                   | 6/16/52          | 2.E            | 2                        | 6/16/52  | 5                         | _              | D           |                                                                                                                                                                                 |
| do 30                                                               | 30 <sup>a</sup>  | 50 <sup>%</sup>   | 5/30/52          | LE             | 3                        | 5/30/52  | 1                         | . 15           | D           |                                                                                                                                                                                 |
| New Oxford and lime- 35                                             | 5 <sup>8</sup>   | 40 <sup>a</sup>   | 4/12/52          | J,E            | 10                       | 4/12/52  | 1                         | 2.0            | D           |                                                                                                                                                                                 |
| New Oxford 40                                                       | 08               | 608               | 5/27/52          | IE             | 5                        | 5/27/52  | 1                         | 25             | D           |                                                                                                                                                                                 |
| do 2                                                                | 58               | 1008              | 1/10/53          | TE             | 8                        | 1/10/52  | 1                         | 1.0            | DE          | Low yield in summer                                                                                                                                                             |
| do 30                                                               | ina.             | a 00              | 6/28/50          | LF.            | 10                       | 6/29/50  | 6                         | 1.0            | D,r         | Low yield in summer.                                                                                                                                                            |
| do 10                                                               | 08               | 008               | 2/27/50          | J,E            | 10                       | 2/25/30  | 0                         | < 1            | 0,0         | Service station and residence.                                                                                                                                                  |
| do 30                                                               | 0 <sup>a</sup>   | 70ª               | 9/27/52          | C,E            | 12                       | 9/27/52  | 2                         | <.1<br>.35     | D           |                                                                                                                                                                                 |
| Frederick limestone                                                 | 2ª               | _                 | 6/10/55          |                | 7                        | 6/10/55  | 3                         |                | D I         |                                                                                                                                                                                 |
| do 33                                                               | 28               | - 1               | 2/16/56          | 2 E            | 4                        | 2/16/56  | 1                         |                | D D         |                                                                                                                                                                                 |
| do                                                                  | -                | -                 |                  | ?,E            | -                        |          |                           | -              | D           | Reamed 8-in. diameter to 28 ft.                                                                                                                                                 |
| do 26                                                               | 6 <sup>B</sup>   | 50ª               | 12/8/54          | J.E            | 12+                      | 12/8/54  | .5                        | 5+             | D           | or out out out and out and                                                                                                                                                      |
| do 60                                                               | 0 <sup>8</sup>   | 70 <sup>a</sup>   | 7/16/55          | J.E            | 10                       | 7/16/55  | . 25                      | 1.0            | D           |                                                                                                                                                                                 |
| do 23                                                               | .3ª              | -                 | 11/31/48         | C,E            | 4                        | 11/31/48 | 4                         | -              | D           | Contaminated with gasoline.                                                                                                                                                     |
| do 8                                                                | 8.5ª             | 10 <sup>a</sup>   | 9/6/55           | I.E            | 10                       | 9/6/55   | 25                        | 6.6            | D           | See wen log.                                                                                                                                                                    |
| do                                                                  | 6 <sup>a</sup>   | 12 <sup>a</sup>   | 8/19/55          | ?.E            | 15                       | 8/19/55  | • 40                      | 2.5            | D           |                                                                                                                                                                                 |

### TABLE 26

| Well<br>num-<br>ber<br>(Fr-) | Owner or name                | Driller   | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
|------------------------------|------------------------------|-----------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Fd 34                        | Harry Kanode                 | E. Brown  | 1948                   | 290                     | Drilled         | 70                         | 6                            | 18                         | Upland<br>flat               |
| Fd 35                        | George Hoffman, Jr.          | Smith     | 1955                   | 325                     | do              | 34                         | 55                           | 16                         | do                           |
| Fd 36                        | Joseph Leaks                 | Harley    | 1953                   | 305                     | do              | 49                         | 58                           | 15                         | Hillside                     |
| Fd 37                        | W. B. Grimes                 | Keyser    | 1950                   | 300                     | do              | 86                         | 6                            | 23                         | Upland                       |
| Fd 38                        | Charles F. Wilt              | Shaft     | 1951                   | 275                     | do              | 38                         | 6                            | 0                          | do                           |
| Fd 39                        | Conner M. Thomas             | Keyser    | 1956                   | 380                     | do              | 150                        | 51                           | 42                         | Hilltop                      |
| Fd 40                        | Do                           |           | Old                    | 360                     | do              | 64.4                       | 48                           |                            | Hillside                     |
| Fd 41                        | Baltimore and Ohio R. R.     | -         | Old                    | 300                     | Dug             | 19.6                       | 48                           | -                          | Upland<br>flat               |
| Fd 42                        | John Strailman               | Cromwell  | 1955                   | 300                     | Drilled         | 92                         | 5書                           | 7                          | do                           |
| 1 d 43                       | St. Joseph's Catholic Church | _         | 1920-25                | 340                     | Dug             | 65                         | 60                           |                            | Hilltop                      |
| Fd 44                        | G. C. Proctor                |           | Old                    | 285                     | Drilled         | 37                         | 6(?)                         |                            | Upland<br>flat               |
| Fd 45                        | W. H. Harris                 | _         | Old                    | 285                     | Dug             | 58                         |                              | _                          | do                           |
| Fd 46                        | Raymond Quillian             | _         | 1939                   | 305                     | Drilled         | 111                        | 6                            | 36                         | do                           |
| Fd 47                        | Do                           |           | 1945                   | 290                     | do              | 116                        | 6                            | -                          | Valley                       |
| Fd 48                        | Claggett Diocese Center      | -         | -                      | 320                     | do              | 120                        | 6                            | —                          | Hilltop                      |
| Fd 49                        | William Renn                 | -         | Old                    | 310                     | Dug             | 13.9                       | _                            | _                          | Upland                       |
| Fe 1                         | G O Hendrickson              | Easterday | 1953                   | 480                     | Drilled         | 80                         | _                            |                            | Hillton                      |
| Fe 2                         | Cecil A. Webb                | do        | 1954                   | 450                     | do              | 76                         | 6                            | 8                          | do                           |
| Fe 3                         | Charles R. Harmon            | Keyser    | 1950                   | 500                     | do              | 86                         | 58                           | 11                         | Hillside                     |
| Fe 4                         | Do                           | _         | 1941                   | 500                     | do              | 85                         | 6                            | 10                         | do                           |
| Fe 5                         | George P. Denny              | Grove     | Old                    | 470                     | do              | 60                         | 6                            |                            | Hilltop                      |
| Fe 6                         | Urbana Zion Church           | -         | -                      | 445                     | do              | 29.3                       | 6                            | -                          | Upland                       |
| Fe 7                         | Stronghold, Inc.             | Hilton    | 1929                   | 560                     | do              | .59                        | 6                            | 23                         | Hillside                     |
| Fe 8                         | A. D. Pollack                | D. Brown  | 1951                   | 430                     | do              | 59                         | 6                            | 25                         | Hilltop                      |
| Fe 9                         | Hope Hill M.E. Church        |           | Old                    | 380                     | do              | 95.9                       | 6                            | -                          | Hillside                     |
| Fe 10                        | Flint Hill Church            | Easterday | 1954                   | 460                     | do              | 100                        | 6                            | 14                         | Hilltop                      |
| Fe 11                        | Stronghold, Inc.             | Hilton    | 1952                   | 490                     | do              | 87.6                       | 6                            | 42                         | Hillside                     |
| Fe 12                        | R. F. Myers                  | -         |                        | 380                     | do              | 65±                        | 6                            | _                          | Hilltop                      |
| Fe 13                        | Do                           |           |                        | 380                     | Spring          | -                          |                              | -                          | Draw                         |
| Fe 14                        | John W. Davis                | Hilton    | $1910 \pm$             | 440                     | Drilled         | 75                         | 6                            | 30±                        | Hilltop                      |
| Fe 15                        | Do                           |           | Before<br>1910         | 440                     | do              | 75                         | 6                            | -                          | Hillside                     |
| Fe 16                        | Do                           | Hilton    | 1949                   | 430                     | do              | 102                        | 58                           | 12                         | Upland<br>flat               |
| Fe 17                        | Mr. Pohlmann                 | _         | Old                    | 450                     | do              | 54                         | 6                            | -                          | Hilltop                      |
| Fe 18                        | William T. Babcock           | -         | 1946                   | 460                     | do              | 62                         | 6                            | -                          | Upland                       |
| Fe 19                        | Carlyle Sale                 | Hilton    | 1955                   | 450                     | do              | 146                        | 58                           | 40                         | Hilltop                      |
| Fe 20                        | Frank Kendall                | do        | 1955                   | 390                     | do              | 128                        | 6                            | 22                         | do                           |
| Fe 21                        | Do                           | -         | Old                    | 390                     | Dug             | 46                         | 36                           | -                          | do                           |

| Water bearing             | Wa<br>belo        | ter level<br>w land su | (feet<br>urface) | equip-          | Yi                       | eld      | i of<br>ig test               | apacity<br>/ft.)     | Use   |                                                          |
|---------------------------|-------------------|------------------------|------------------|-----------------|--------------------------|----------|-------------------------------|----------------------|-------|----------------------------------------------------------|
| formation                 | Static            | Pump-<br>ing           | Date             | Pumping<br>ment | Gallons<br>per<br>minute | Date     | Duration<br>pumpin<br>(hours) | Specific (<br>(g.p.m | water | Kémarks                                                  |
| Frederick limestone       | 30 <sup>a</sup>   | -                      | 12/17/48         | J,E             | 6                        | 12/17/48 | .5                            | -                    | D,F   |                                                          |
| do                        | 10 <sup>8</sup>   | 28 <sup>8</sup>        | 11/3/55          | ?,E             | 6                        | 11/3/55  | . 33                          | .33                  | D     |                                                          |
| do                        | 20.00             | -                      | 8/16/56          | C,H             |                          |          | - 1                           |                      | D     |                                                          |
| do                        | 25 <sup>a</sup>   | 3.5ª                   | 2/20/50          | -               | 6                        | 2/20/50  | 1                             | .6                   | D     |                                                          |
| do                        | 108               | _                      | 1/16/51          | J,E             | 10                       | 1/16/51  | 2                             | _                    | D     |                                                          |
| Liamsville phyllite       | 35 <sup>8</sup>   | 150 <sup>a</sup>       | 1/23/56          | T,E             | 8                        | 1/23/56  | 1                             | <.1                  | D,F   | Tenant reports depth of 275 ft.                          |
| do                        | 59.72             | _                      | 3/30/56          | C.E             | 2                        | 1954     |                               | _                    | N     |                                                          |
| Frederick limestone       | 12.53             | -                      | 3/30/56          | C,H             |                          | -        |                               |                      | N     |                                                          |
| do                        | 20 <sup>n</sup>   | 82ª                    | 7/5/55           | J,E             | 3                        | 7/5/55   | .5                            | <.1                  | D     |                                                          |
| do                        | 37.02             |                        | 8/31/56          | C,H             |                          | -        | -                             | i —                  | D     |                                                          |
| Grove limestone           | Below<br>22       |                        | 8/16/56          | C,H             | -                        | -        | -                             | -                    | D     | Adequate.                                                |
| Frederick limestone       | $30\pm^{B}$       |                        | -                | C,H             |                          | _        |                               |                      | D     | Do                                                       |
| do                        | 20 <sup>8</sup>   |                        | _                | C,E             | -                        | —        | -                             |                      | D,F   | Good yield reported.                                     |
| do                        | 23.66             | -                      | 11/6/56          | C,E             |                          | -        | _                             |                      | D     | Do                                                       |
| Antietam quartzite        | -                 |                        | -                | C,E             | -                        | -        | _                             |                      | I     | Used alternately with Fd 8.<br>Adequate for intermittent |
| Frederick limestone       | 12.05             | -                      | 12/6/54          | B,H             | _                        | _        | -                             | _                    | D     | heavy demand.                                            |
| Urbana phyllite           | 32 <sup>B</sup>   | 80 <sup>a</sup>        | 9/26/53          | J,E             | 6                        | 9/26/53  |                               | -                    | D,C   | General store. See well log.                             |
| do                        | 30 <sup>a</sup>   | 55ª                    | 12/1/54          | J,E             | 8                        | 12/1/54  | - 1                           | .3                   | D     |                                                          |
| do                        | 35 <sup>a</sup>   | 52ª                    | 9/18/50          | J,E             | 4                        | 9/18/50  | 1                             | .73                  | D     |                                                          |
| do                        |                   | - 1                    | -                | J,E             | 10                       | 1941     | 12                            | -                    | F     |                                                          |
| do                        | 38.33             | -                      | 8/30/56          | Ċ,E             | 10                       | -        | _                             | -                    | D,F   |                                                          |
| do                        | 20.66             | -                      | 8/30/56          | C,H             | -                        | -        |                               |                      | D     |                                                          |
| do                        | 26.06             | -                      | 9/17/56          | C,E             | 24                       |          | _                             |                      | D     | Penetrated yellow loam and<br>white sand.                |
| do                        | 408               |                        | 10/23/51         | ?,E             | 6                        | 10/23/56 | 5 1                           | _                    | D     |                                                          |
| Liamsville phyllite       | 51.70             | _                      | 2/21/56          | C,H             | _                        | _        | -                             | _                    | N     |                                                          |
| Urbana phyllite           | 70 <sup>8</sup>   | 92 <sup>8</sup>        | 4/21/54          | C,E             | 8                        | 4/21/54  |                               | .36                  | D     | See well log.                                            |
| do                        | 20 <sup>a</sup>   | 45 <sup>a</sup>        | 1/3/52           | J,E             | 20                       | 1/3/52   | 2 1                           | .8                   | D     |                                                          |
|                           | 25.51             | -                      | 3/30/56          | 5               |                          |          |                               |                      |       |                                                          |
| do                        | -                 | -                      | _                | C,H             |                          | -        | -                             | -                    | F     |                                                          |
| do                        |                   | -                      | -                | S,E             | 10-20                    | 1952     | -                             | -                    | D     | Continuous flow reported.                                |
| do                        | 35 <sup>a</sup>   | _                      | 1931             | C,E             | 5+                       | -        | -                             | -                    | D,F   | Can pump more than 24 hrs. continuously.                 |
| do                        | -                 | _                      | _                | С,Н             | -                        | -        | -                             | -                    | N     | Inadequate. Crooked hole.                                |
| do                        | 16 <sup>8</sup>   | 30 <sup>a</sup>        | 8/16/49          | C,E             | 5                        | 8/16/49  | 1                             | . 3                  | D,F   |                                                          |
| do                        | 28.35             | _                      | 4/11/56          | 5 N             | -                        | _        | _                             | -                    | N     | Poor yield reported.                                     |
| do                        | 30 <sup>a</sup>   | -                      | 1947             | J,E             | -                        | -        | -                             | -                    | D     | See chemical analysis.                                   |
| Sams Creek metaba<br>salt | - 76 <sup>8</sup> | -                      | 9/28/55          | 5 T,E           | 3.5                      | 9/28/55  | 5 1                           | -                    | D     | Depth of pump 116 ft.                                    |
| Urbana phyllite           | 48 <sup>n</sup>   |                        | 7/3/53           | J,E             | 2.5                      | 7/3/5    | 5 1                           |                      | D     |                                                          |
| do                        | 35.96             | -                      | 4/11/50          | 5 C,H           | -                        | 1. —     | -                             |                      | N     |                                                          |

|                              |                     |             |                        |                         |                 |                            |                              | TA                         | BLE 26                       |
|------------------------------|---------------------|-------------|------------------------|-------------------------|-----------------|----------------------------|------------------------------|----------------------------|------------------------------|
| Well<br>num-<br>ber<br>(Fr-) | Owner or name       | Driller     | Date<br>com-<br>pleted | Alti-<br>tude<br>(feet) | Type<br>of well | Depth<br>of well<br>(feet) | Diameter of<br>well (inches) | Length of casing<br>(feet) | Topo-<br>graphic<br>position |
| Fe 22                        | Mr. Cosgrove        | _           | _                      | 440                     | Drilled         | 127                        | 6                            | _                          | Hillton                      |
| Fe 23                        | Claude A. Webb      | Keyser      | 1953                   | 420                     | do              | 58                         | 58                           | 12                         | Hillside                     |
| Ff 1                         | Arno G. Page        | -           | Old                    | 440                     | do              | 41                         | 6                            | 4                          | Valley                       |
| Ff 2                         | Do                  | _           | _                      | 440                     | Spring          | _                          |                              | -                          | do                           |
| Ff 3                         | Beary Bell          | Green       | 1955                   | 450                     | Drilled         | 86                         | 6                            | 18                         | Hilltop                      |
| Ff 4                         | Dr. Charles Fenwick | Hilton      | 1953                   | 390                     | do              | 58                         | 58                           | 19                         | Hillside                     |
| Ff 5                         | Blake Merson        |             | -                      | 390                     | do              | 41                         | 6                            |                            | do                           |
| Ff 6                         | Do                  | Green       | 1955                   | 390                     | do              | 90                         | 58                           | 20                         | do                           |
| Ff 7                         | W. C. Askins        | -           | Old                    | 460                     | do              | 108-110                    | 6                            | -                          | do                           |
| Ff 8                         | James M. Day        | Green       | 1952±                  | 640                     | do              | 100+                       | 6                            | -                          | Hilltop                      |
| Gd 1                         | E. A. Henderson     | Hilton      | 1951                   | 290                     | do              | 71                         | 6                            | 30                         | Hillside                     |
| Gd 2                         | J. P. Harris        | Stottlemyer | 1949                   | 340                     | do              | 80                         | 6                            | 9                          | do                           |
| Gd 3                         | Do                  | do          | 1949                   | 340                     | do              | 80                         | 6                            | 9                          | do                           |
| Ge 1                         | Charles H. Johnson  | do —        | 1949                   | 460                     | do              | 70                         | 5 <u>8</u>                   | 25                         | do                           |

| Water-bearing              | Water level (feet<br>below land surface) |                     | equip-   | Yield           |                          | of<br>ig test | apacity<br>/ft.)              | Use                   |             |                                                                       |
|----------------------------|------------------------------------------|---------------------|----------|-----------------|--------------------------|---------------|-------------------------------|-----------------------|-------------|-----------------------------------------------------------------------|
| formation                  | Static                                   | Pump-<br>ing        | Date     | Pumping<br>ment | Gallons<br>per<br>minute | Date          | Duration<br>pumpin<br>(hours) | Specific c<br>(g.p.m. | of<br>water | Remarks                                                               |
| Urbana phyllite            | -                                        | -                   |          | C.E             |                          |               | _                             |                       | Ð.F         |                                                                       |
| do                         | 20ª                                      | 50 <sup>a</sup>     | 2/13/53  | -               | 4                        | 2/13/53       | .5                            | .13                   | D           |                                                                       |
| do                         | 17.18                                    |                     | 4/11/56  | C,H             | -                        |               | _                             | _                     | D           | Adequate.                                                             |
| do                         | _                                        | _                   |          | N               | _                        | -             |                               |                       | F           |                                                                       |
| Sams Creek metaba-<br>salt | 66(?) <sup>a</sup>                       | 76(?)-              | 3/20/55  | J,E             | 5                        | 3/20/55       | 1                             | .5(?)                 | D           |                                                                       |
| do                         | 16 <sup>a</sup>                          | 32 <sup>a</sup>     | 9/17/53  | J.E             | 5                        | 9/17/53       | 1                             | .3                    | D           |                                                                       |
| do                         | 9.25                                     |                     | 4/5/56   | N               |                          | _             |                               |                       | N           |                                                                       |
| do                         | 16 <sup>n</sup>                          | 80 <sup>n</sup>     | 9/20/55  | ?,E             | 6                        | 9/20/55       | 2                             | .1                    | D           |                                                                       |
| Urbana phyllite            |                                          |                     | _        | J.E             |                          |               | _                             |                       | D           | Good yield reported.                                                  |
| Ijamsville phyllite        | -                                        |                     |          | J,E –           |                          | -             |                               | _                     | D           | Originally 62 ft.; only slight in-<br>crease in yield after deepened. |
| Frederick limestone        | 39 <sup>a</sup>                          | 52ª                 | 6/12/51  | C,E             | 16                       | 6/12/51       | 1                             | 1.2                   | D           |                                                                       |
| New Oxford                 | $45^{a}(?)$                              | 75 <sup>a</sup> (?) | 6/4/49   | T,E             | 5                        | 6/4/49        | 1                             | .10                   | F           |                                                                       |
| do                         | 45 <sup>a</sup> (?)                      | 75 <sup>a</sup> (?) | 6/4/49   | T,E             | 5                        | 6/4/49        | 1                             | .10                   | F           |                                                                       |
| Urbana phyllite            | 10 <sup>8</sup>                          | -                   | 10/20/49 | С,Е;<br>С,П     | 30                       | 10/20/49      | 1                             | -                     | D           |                                                                       |

# Carroll and Frederick Counties

### TABLE 27

### Drillers' Logs of Wells in Carroll and Frederick Counties

|   |                                      | Material                         | Thickness<br>(feet) | Depth<br>(feet) |
|---|--------------------------------------|----------------------------------|---------------------|-----------------|
| 1 | Wells in granodiorite, grani         | te gneiss, and associated rocks: |                     |                 |
|   | Fr-Eb 4. 11 miles north-             | Shale                            | 20                  | 20              |
|   | east of Burkittsville                | Rock, green                      | . 20                | 40              |
|   |                                      | Rock, sandy, white (water)       | . 26                | 66              |
|   |                                      | Rock, green (water)              | 42                  | 108             |
|   |                                      | , 8 (                            |                     | 200             |
|   | Fr-Eb 9 1 mile south-                | Shale                            | 20                  | 20              |
|   | west of Petersville                  | Sand rock gray                   | 30                  | 50              |
|   | WEST OF A CONSTRACT                  | Flint and mountain rock          | 25                  | 75              |
|   |                                      |                                  | . 20                | 15              |
|   | Fr-Fc 10, 2,3 miles north-           | Clay                             | 10                  | 10              |
|   | west of Iofforson                    | Constana                         | 70                  | 20              |
|   | west of Jenerson                     | Mountain and                     | 51                  | 121             |
|   |                                      | Mountain rock                    | 51                  | 131             |
| ¥ |                                      | 1                                |                     |                 |
| V | wells in the Catoctin metab          | asalt:                           | 4.0                 | 10              |
|   | Fr-Ad 6. At Sabillasville            | Clay and sandstone               | . 12                | 12              |
|   |                                      | Copper stone                     | . 28                | 40              |
|   |                                      | Sandstone (water)                | 7                   | 47              |
|   | T 110 1 11 11                        |                                  | 20                  | 20              |
|   | Fr-Ad 9. 2 mile north-               | Loose formation                  | . 20                | 20              |
|   | west of Sabillasville                | Sand rock                        | . 18                | 38              |
|   |                                      | Copper rock (water)              | . 7                 | 45              |
|   | Fr-Ad 18 2 miles east of             | Rock and clay                    | 20                  | 20              |
|   | Sabillacuillo                        | Sandstone                        | 14                  | 34              |
|   | Sabinasvine                          | Coppor mode (water)              | . 17                | 20              |
|   |                                      | Copper fock (water)              | . 4                 | 30              |
|   | Fr-Bd 25 21 miles south-             | Clay                             | 21                  | 21              |
|   | east of Foxville                     | Copper rock (water at 25 ft.)    | 6                   | 27              |
|   | cust of 1 barrier                    |                                  |                     | 21              |
|   | Fr-Ch 6 11 miles north-              | Shale vellow                     | 18                  | 18              |
|   | west of Myersville                   | Slate green                      | 70                  | 88              |
|   | west of myersvine                    | State, green                     | . 70                | 00              |
|   | Fr-Cc 1 At Wolfsville                | Earth                            | 8                   | 8               |
|   | IT GO I. IRE HORSTING                | Rock with crevices (water)       | 18                  | 26              |
|   |                                      | Rock (water)                     | 63                  | 80              |
|   |                                      | Rock (water)                     | . 00                | 07              |
|   | Fr-Db 4 3 miles west of              | Clay sandy red                   | 21                  | 21              |
|   | Myorsville                           | Mountain rock green              |                     | 6.1             |
|   | Mycisvine                            | Saudstone brown bard             | . 45                | 70              |
|   |                                      | Sandstone, brown, nard           | . 0                 | 10              |
|   | Fr-Dc 9. 1/2 mile north of           | Slate                            | . 20                | 20              |
|   | Middletown                           | Mountain rock, blue              | 36                  | 56              |
|   |                                      | Boulder ironstone                | 2                   | 58              |
|   |                                      | Mountain rock, gray              | 35                  | 93              |
|   |                                      | and and an room Bray             |                     | 20              |
|   | Fr-Dc 13. $\frac{1}{2}$ mile west of | Clay                             | . 6                 | 6               |
|   | Middletown                           | Shale rock                       | . 63                | 69              |
|   |                                      |                                  |                     |                 |

#### TABLE 27-Continued

|                                                                              | Material                                                                                                            | Thickness<br>(feet)                | Depth<br>(feet)               |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|
| Fr-Dc 18. 1 <sup>1</sup> / <sub>2</sub> miles north<br>of Braddock Heights   | Clay, red<br>Shale<br>Copper rock (water at 38 ft. and 72 ft.)                                                      | 15<br>40<br>21                     | 15<br>55<br>76                |
| Fr-Ec 11. At Jefferson                                                       | Mountain slate<br>Mountain rock, blue                                                                               | 40                                 | 40<br>62                      |
| Wells in aporhyolite:<br>Fr-Bc 8. At community<br>of Sensenbaugh School      | Earth<br>Rock<br>Rock with crevices (water)                                                                         | 10<br>51                           | 10<br>61<br>68                |
| Fr-Bc 11. 1 mile south-<br>west of Foxville                                  | Clay and boulders.<br>Mountain rock.                                                                                | 25                                 | 25<br>40                      |
| Fr-Bc 13. $\frac{3}{4}$ mile west of<br>Foxville                             | Clay.<br>Rock.<br>Clay and boulders.<br>Rock.<br>Earth (water)                                                      | . 14<br>. 5<br>. 16<br>. 11<br>. 2 | 14<br>19<br>35<br>46<br>48    |
| Wells in the Loudoun forma<br>Fr-Ae 4. 2½ miles south-<br>west of Emmitsburg | tion:<br>Sandstone<br>Shale, brown, soft<br>Sandstone<br>Shale, brown, soft (water)<br>Sandstone                    | 70<br>10<br>35<br>5<br>5           | 70<br>80<br>115<br>120<br>125 |
| Fr-Dd 29. 1 mile north-<br>west of Shookstown                                | Clay, yellow<br>Sandstone boulders                                                                                  | 21±                                | 21±<br>62                     |
| Fr-Dd 58. 2 miles north-<br>west of Shookstown                               | Boulders and clay                                                                                                   | . 60<br>. 14                       | 60<br>74                      |
| Fr-Dd 69. 2 miles east of<br>Harmony                                         | Overburden                                                                                                          | . 25<br>. 70–75                    | 25<br>95–100                  |
| Wells in the Harpers phyllit<br>Fr-Bd 15. At Catoctin<br>Furnace             | e:<br>Mountain wash and Harpers phyllite:<br>Ironstone boulders, sand, and gravel<br>Harpers phyllite:<br>Soapstone | . <b>13</b> 5<br>. 28              | 135<br>163                    |
| Fr-Be 2. 1.2 miles north-<br>east of Thurmont                                | Mountain wash and/or alluvium:<br>Material not reported<br>Harpers phyllite:                                        | . 19.4                             | 19.4                          |
|                                                                              | Shale                                                                                                               | . 37.0                             | 56.4<br>112.0                 |

|                                                    | INDIN 21 COmmuned                                            |                     |                 |
|----------------------------------------------------|--------------------------------------------------------------|---------------------|-----------------|
|                                                    | Material                                                     | Thickness<br>(feet) | Depth<br>(feet) |
| Fr-Be 14, 2 miles north                            | Mountain wash                                                |                     |                 |
| of Thurmont                                        | Dirt, soft; clay, yellow; and muck                           | . 82                | 82              |
|                                                    | Slate and flint, yellow                                      | . 35                | 117             |
|                                                    |                                                              |                     |                 |
| Fr-Be 15. ½ mile north of Thurmont                 | Mountain wash:<br>Stones, small; clay, soft; and gravel (wa  | -                   | <i>( m</i>      |
|                                                    | Harpers phyllite:                                            | . 67                | 67              |
|                                                    | ft                                                           | . 33.5              | 100.5           |
| Ex Cd 17 3 mile pouth of                           | Cand                                                         | 1.5                 | 4.5             |
| Catoctin Furnace                                   | Copper rock                                                  | . 15                | 63              |
|                                                    |                                                              |                     | 00              |
| Fr-Dd 47. At Braddock                              | Soapstone                                                    | . 55                | 55              |
|                                                    | Slate, blue                                                  | . 105               | 160             |
| Fr-Ec 6, 1 mile east of                            | Dirt                                                         | 22                  | 22              |
| Tefferson                                          | Mountain rock, grav                                          | 63                  | 85              |
| J                                                  | Flint rock                                                   | . 10                | 95              |
|                                                    | Mountain rock, gray                                          | . 70                | 165             |
| Vells in the Antietam quart                        | zite:                                                        |                     |                 |
| Fr-Cf 24: <sup>3</sup> / <sub>4</sub> mile north-  | Dirt, soft                                                   | . 3                 | 3               |
| east of LeGore                                     | Rock, yellow<br>Rock, blue; partly very hard and rough (very | . 27<br>y           | 30              |
|                                                    | little water)                                                | . 93                | 123             |
| Fr-Dd 51. At Braddock                              | Clav                                                         | 10                  | 10              |
|                                                    | Shale.                                                       | . 30                | 40              |
|                                                    | Mountain rock                                                | . 37                | 77              |
| Fr-Ec 13. $2\frac{1}{4}$ miles south-              | Clay                                                         | . 6                 | 6               |
| east of Jefferson                                  | Rock, hard, gray                                             | . 54                | 60              |
| Fr-Ed 58, <sup>‡</sup> mile south of               | Slate                                                        | 70                  | 70              |
| Braddock                                           | Sandstone                                                    | . 17                | 87              |
| Fr-Ee 15. 1 <sup>1</sup> / <sub>2</sub> miles east | Topsoil                                                      | . 4                 | 4               |
| of Buckeystown                                     | Shale                                                        | . 20                | 24              |
|                                                    | Rock, blue                                                   | . 81                | 105             |
| Vells in the Frederick limes                       | tone:                                                        |                     |                 |
| Fr-Be 3. 1.2 miles north-                          | Alluvium:                                                    |                     |                 |
| east of Thurmont                                   | Boulders.                                                    | . 19.0              | 19.0            |
|                                                    | Clay sandy vellow                                            | 0 5                 | 28 5            |
|                                                    | Rock and shale, weathered                                    | . 22.7              | 51.2            |
|                                                    | Limestone, hard                                              | . 100               | 151.2           |

TABLE 27—Continued

#### TABLE 27-Continued

|                                         | Material                                   | Chickness<br>(feet) | Depth<br>(feet) |
|-----------------------------------------|--------------------------------------------|---------------------|-----------------|
| Fr-Be 6. 1.3 miles north                | Sand and clay.                             | . 23                | 23              |
| of Thurmont                             | Sandstone                                  | 17                  | 40              |
|                                         | Clay                                       | 17                  | 57              |
|                                         | Flint rock (water)                         | . 3                 | 60              |
| Fr-De 26. At Harmony                    | Clav. red                                  | 10                  | 10              |
| Grove                                   | Limestone (water at 65 ft.)                | 60                  | 70              |
|                                         |                                            |                     |                 |
| Fr-Ed 6. At Buckeys-                    | Topsoil                                    | . 3                 | 3               |
| town                                    | Clay                                       | . 5                 | 8               |
|                                         | Sandy material                             | 32                  | 40              |
|                                         | Limestone                                  | 41                  | 81              |
| Fr-Ed 8. 1 mile north-                  | Clay, tough                                | 20                  | 20              |
| west of Limekiln                        | Limestone, flag                            | 28                  | 48              |
| Fr-Ed 35. 1 mile south of               | Clay vellow                                | 15                  | 15              |
| Frederick                               | Sand brown                                 | 10                  | 25              |
| 1 rodonen                               | Limestone                                  | 30                  | 55              |
| Er-Ee 4 At Erederick                    | Clay                                       | 20 5                | 20 5            |
| TPLC 4. At FIGUERICK                    | Chalo                                      | 29.5                | 29.0            |
|                                         | Cavity (water)                             | 2.0                 | 31.3            |
|                                         | Limatone                                   | 4.0                 | 33,3<br>EE E    |
|                                         | Limestone; cavity (water)                  | 5.5                 | 61              |
| Fr-Ed 10 At Limekiln                    | Farth                                      | 36                  | 36              |
| TT-TU TO. AL LINCKIM                    | Earth and shale                            |                     | 45              |
|                                         | Limestone                                  | 54                  | 99              |
| Walls in the Crown limeston             |                                            |                     |                 |
| Er. Cf. 1 At Woodshore                  | Clay                                       | 4                   | 4               |
| ri-Ci I. At Woodsboro                   | Limestane hand                             | 4                   | 4               |
|                                         | Limestone, hlack hand                      | 14                  | 18              |
|                                         | L'intestone, Diack, narq                   | 92                  | 110             |
|                                         | Limestone, white, soft                     | 90                  | 200             |
| Fr-Cf 10. 0.9 mile west of<br>Woodshoro | New Oxford formation, quartzose conglomer- |                     |                 |
| 110000000                               | Sand and gravel                            | 55                  | 55              |
|                                         | Grove limestone:                           |                     |                 |
|                                         | Limestone                                  | 36                  | 91              |
| Fr-De 9. $\frac{1}{2}$ mile south of    | Clay, red                                  | 38                  | 38              |
| Walkersville                            | Limestone                                  | 7                   | 45              |
|                                         | Clay, red                                  | 7                   | 52              |
|                                         | Limestone                                  | 13                  | 65              |
| Fr-De 13. At Walkers-                   | Clay, yellow, and boulders                 | 21                  | 21              |
| ville                                   | Limestone, blue                            | 46                  | 67              |
|                                         | Opening                                    | 3                   | 70              |

### TABLE 27-Continued

|                                                        | Material                                                                                           | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|-----------------|
| Fr-Ee 2. 1.2 mile south                                | Clay, red                                                                                          | . 40                | 40              |
| of Frederick                                           | Limestone, blue                                                                                    | . 40                | 80              |
|                                                        | Cavern, red mud                                                                                    | . 4                 | 84              |
|                                                        | Limestone, blue                                                                                    | . 19                | 103             |
|                                                        | Cavern, red mud                                                                                    | . 3                 | 106             |
|                                                        | Limestone, blue (water)                                                                            | . 49                | 155             |
| Fr-Ee 3. 1 mile south of                               | Clay                                                                                               | . 30                | 30              |
| Frederick                                              | Limestone                                                                                          | . 30                | 60              |
|                                                        | Openings, mud                                                                                      | . 25                | 85              |
|                                                        | Limestone                                                                                          | . 30                | 115             |
|                                                        | Openings, mud                                                                                      | . 15                | 130             |
|                                                        | Limestone                                                                                          | . 45                | 175             |
|                                                        | Openings, mud                                                                                      | . 10                | 185             |
|                                                        | Limestone, blue                                                                                    | . 165               | 350             |
| Wells in the Peters Creek qu                           | artzite:                                                                                           |                     |                 |
| Car-Cf 11. At Cedarhurst                               | Weathered rock (?)                                                                                 | . 10                | 10              |
|                                                        | Rock                                                                                               | 90-205              | 200-215         |
| (Geologist's description<br>and clear quartz; a little | of well cuttings: chiefly fragments of mica se<br>e fine-grained magnetite and crystallized pyrite | chist; sor<br>.)    | ne white        |
| Car-De 1. 1 mile north of                              | Shale, soft, green (water at base; sandy water)                                                    | ). 73               | 73              |
| Eldersburg                                             | Rock, hard, gray and black                                                                         | 107                 | 180             |
| Car-Ee 6. 1 mile west of                               | Shale, soft, brown                                                                                 | 20                  | 20              |
| Eldersburg                                             | Rock, brown (little water)                                                                         | 30                  | 50              |
|                                                        | Rock, gray (much water)                                                                            | . 50                | 100             |
| Car-Ef 11, 2 miles north-                              | Topsoil                                                                                            | 1.5                 | 1.5             |
| east of Eldersburg                                     | Clay, red                                                                                          | 8.5                 | 10              |
| 0                                                      | Sand, rock                                                                                         | 35                  | 45              |
|                                                        | Granite, soft                                                                                      | 30                  | 75              |
|                                                        | Granite, becoming harder with depth (wate                                                          | r;                  |                 |
|                                                        | first water at 88 ft.)                                                                             | 89                  | 164             |
| Wells in the Sams Creek me                             | tabasalt:                                                                                          |                     |                 |
| Car-Af 12. At Lineboro                                 | Earth                                                                                              | 12                  | 12              |
|                                                        | Slate, green (water, 3 gpm)                                                                        | 26                  | 38              |
|                                                        | Slate and flint, hard (water, 1 gpm)                                                               | . 7                 | 45              |
|                                                        | Flint, hard (water, 4 gpm)                                                                         | 9                   | 54              |
|                                                        | Slate, green                                                                                       | 5                   | 59              |
|                                                        |                                                                                                    |                     |                 |
| Car-Cc 8. At New Wind-                                 | Shale                                                                                              | 37                  | 37              |
| sor                                                    | Slate, blue, and flint (water, 2 gpm)                                                              | 16                  | 53              |
|                                                        | Flint and slate (water, 10 gpm)                                                                    | 12                  | 65              |
|                                                        | Slate, blue                                                                                        |                     | 70              |

|                                | TABLE 27-Communed                        |                     |                 |
|--------------------------------|------------------------------------------|---------------------|-----------------|
|                                | Material                                 | Thickness<br>(feet) | Depth<br>(feet) |
| Fr-Ef 1. At New Market         | Topsoil                                  | . 3                 | 3               |
|                                | Clay                                     | . 7                 | 10              |
|                                | Sandy material                           | . 20                | 30              |
|                                | Rock, gray                               | . 10                | 40              |
| Fr-Ef 11. At Ijamsville        | Topsoil                                  | . 2                 | 2               |
|                                | Shale                                    | . 2                 | 4               |
|                                | Rock, light green                        | . 22                | 26              |
|                                | Rock, light green, hard                  | . 6                 | 32              |
| Wells in the Ijamsville phylli | ite:                                     |                     |                 |
| Car-Ad 2. At Silver Run        | Clay and shale, yellow                   | . 28                | 28              |
|                                | Shale, yellow, and flint, mixed (water)  |                     | 62              |
|                                | Rock, blue (water)                       | 28                  | 90              |
|                                | Rock, blue                               | . 5                 | 95              |
| Fr-Cf 33. Near Ladies-         | Soil and slate, yellow (water at 24 ft.) | 24                  | 24              |
| burg                           | Slate (water at 70 ft. and 102 ft.)      | 86                  | 110             |
| 0                              |                                          |                     |                 |
| Fr-Dg 8. At Libertytown        | Shale, soft, and clay, mixed             | 20                  | 20              |
|                                | Soapstone                                | 42                  | 62              |
| Fr-Dg 13 At Unionville         | Slate, soft                              |                     | 50              |
| 0                              | Slate, blue-yellow, hard                 | 40                  | 90              |
| Fr-Ef 5. 2 miles south-        | Topsoil                                  | 4                   | 4               |
| east of New Market             | Clay                                     | 24                  | 28              |
|                                | Slate, blue                              | . 26                | 54              |
| Wells in the Urbana phyllite   | :                                        |                     |                 |
| Fr-Ef 14. 21 miles west of     | Topsoil                                  | . 4                 | 4               |
| Monrovia                       | Shale                                    | 6                   | 10              |
|                                | Sandy                                    | 10                  | 20              |
|                                | Slate rock                               | 20                  | 40              |
|                                | Slate and flint rock                     | 50                  | 90              |
|                                | Sand rock                                | 29                  | 119             |
| Fr-Fe 1. At Urbana             | Shale                                    | 20                  | 20              |
|                                | Slate, brown.                            | 40                  | 60              |
|                                | Slate, blue                              | . 20                | 80              |
| Er-Fe 10 At Flint Hill         | Topsoil                                  | 3                   | 3               |
| riere io. At i mit init        | Sandy                                    | 11                  | 14              |
|                                | Sand rock and flint                      |                     | 100             |
| Wells in the Marburg schist:   |                                          |                     |                 |
| Car-Ad 11. 13 miles            | Clay and shale, yellow                   | . 12                | 12              |
| northwest of Silver            | Shale and flint                          | 43                  | 55              |
| Run                            | Rock, blue                               | 53                  | 108             |
|                                | Water-bearing zone                       |                     | 108.5           |
|                                | Rock blue                                | 4.5                 | 113             |

### TABLE 27—Continued

|                                      | Material 7                                     | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------------------|------------------------------------------------|---------------------|-----------------|
| Car-Ad 13. 2 miles north-            | Ground                                         | . 6                 | 6               |
| west of Silver Run                   | Clay and flint stone                           | . 10                | 16              |
|                                      | Shale, yellow                                  | . 14                | 30              |
|                                      | Flint and shale, mixed (a little water)        | . 2                 | 32              |
|                                      | Shale, yellow                                  | . 9                 | 41              |
|                                      | Flint stone and shale (water)                  | . 3                 | 44              |
|                                      | Rock, blue                                     | . 5                 | 49              |
| Car-Ec 1. $1\frac{1}{2}$ miles north | Topsoil                                        | . 5                 | 5               |
| of Mount Airy                        | Slate, brown                                   | . 65                | 70              |
|                                      | Slate, blue                                    | . 35                | 105             |
| Fr-Eg 8. At Kemptown                 | Topsoil                                        | . 3                 | 3               |
|                                      | Shale                                          | 47                  | 50              |
|                                      | Slate, blue                                    | 70                  | 120             |
| Wells in the Wissahickon for         | mation:                                        |                     |                 |
| Car-Af 10. Near Line-                | Shale                                          | . 8                 | 8               |
| boro                                 | Slate (water, <sup>1</sup> / <sub>2</sub> gpm) | 23                  | 31              |
|                                      | Slate and flint (water, 2 gpm)                 | 15                  | 46              |
|                                      | Slate, blue, and flint (water, 4 gpm)          | 25                  | 71              |
|                                      | Slate                                          | 8                   | 79              |
| Car-Bf 1. At Hampstead               | Earth and decayed rock                         | 40                  | 40              |
|                                      | mica (water, 17 gpm at 150 ft.)                | 330                 | 370             |
|                                      | Rock, gradually hardening                      | 37                  | 407             |
| Car-Ce 44. Westminster               | Wissahickon formation:                         |                     |                 |
|                                      | Shale, brown, soft; some fine sand (water).    | 250                 | 250             |
|                                      | Wakefield marble(?):                           |                     |                 |
|                                      | Limestone, white                               | 2                   | 252             |
|                                      | Clay, brown, soft (water)                      | 3                   | 255             |
| Car-Dc 1. Near Taylors-              | Soil and clay                                  | 5                   | 5               |
| ville                                | Shale, yellow, and gravel, mixed               | 48                  | 53              |
|                                      | Shale, yellow, and flint, mixed (little water) | 18                  | 71              |
|                                      | Shale and flint (water, 6-inch vein)           | 24                  | 95              |
|                                      | Shale and flint                                | 4.5                 | 99.5            |
| Car-De 4. At Gamber                  | Shale, soft                                    | 45                  | 45              |
|                                      | Flint                                          | 5                   | 50              |
|                                      | Shale                                          | 52                  | 102             |
|                                      | Rock, gray, soit (water, 3 gpm)                | 18                  | 120             |
|                                      | Rock, blue, hard (water, 10 gpm at 150 ft.)    | 41                  | 101             |
| Wells in the Wakefield marb          | le:                                            |                     |                 |
| Car-Af 3. Melrose                    | Clay, yellow                                   | 31                  | 31              |
|                                      | Gravel                                         | 3                   | 34              |
|                                      | Clay, yellow                                   | 30                  | 64              |
|                                      | Shale                                          | 12                  | 76              |
|                                      | Gravel (water)                                 | 4                   | 80              |

### TABLE 27-Continued

|   |                             | Material T                                                           | hicknes<br>(feet) | s Depth<br>(feet) |
|---|-----------------------------|----------------------------------------------------------------------|-------------------|-------------------|
|   | Car-Cb 11. At Union         | Shale, brown soft                                                    | 24                | 24                |
|   | Bridge                      | Mud, brown                                                           | 3                 | 27                |
|   |                             | brown sand (water)                                                   | 43                | 70                |
|   | Car-Ce 2. At Westmins-      | Wakefield marble:                                                    |                   |                   |
|   | ter                         | Clay and boulders                                                    | 57                | 57                |
|   |                             | Limestone, solid                                                     | 103               | 160               |
|   |                             | Gravel, coarse (water)<br>Sams Creck metabasalt and Wakefield marble | . –               | 160               |
|   |                             | Schist, blue and green, with interbedded                             | 690               | 850               |
|   |                             | white marble                                                         | 070               | 000               |
|   | Car-Ce 3. At Westmins-      | Clay and boulders                                                    | 37                | 37                |
|   | ter                         | Limestone, solid                                                     | 17                | 54                |
|   |                             | Openings                                                             | 4                 | 58                |
|   |                             | Limestone, solid                                                     | . 58              | 116               |
|   |                             | Gravel, coarse (water)                                               |                   | at 116            |
|   | Car-Ce 49. At Westmins-     | Sams Creek metabasalt(?):                                            |                   |                   |
|   | ter                         | Flint and shale                                                      | . 92              | 92                |
|   |                             | Sams Creek metabasalt and Wakefield mar                              | -                 |                   |
|   |                             | ble(?):                                                              |                   |                   |
|   |                             | Rock, gray, with many openings                                       | . 58              | 150               |
|   |                             | Sams Creek metabasalt:                                               |                   |                   |
|   |                             | Rock, gray                                                           | . 50              | 200               |
| U | Vells in the New Oxford for | mation:                                                              |                   |                   |
|   | Car-Ac 2. 1 mile north-     | Dirt, soft                                                           | . 4               | 4                 |
|   | east of Taneytown           | Shale, soft, and rock, red                                           | . 61              | 65                |
|   |                             | Sand rock                                                            | . 25              | 90                |
|   |                             | Rock, red                                                            | . 18              | 108               |
|   | Car-Bc 11. At Mayberry      | Dirt, soft, and stone                                                | . 6               | 6                 |
|   |                             | Shale, red.                                                          | . 12              | 18                |
|   |                             | band laward                                                          | 82                | 100               |
|   |                             | Sandstone, red, softer, and red rock                                 | . 100             | 142               |
|   |                             |                                                                      | 2                 | 2                 |
|   | Fr-Bi 19. 4 miles south-    | Dirt, soit                                                           | . 5               | 0                 |
|   | east of Emmitsburg          | Shale rock, red                                                      | . 0               | 105               |
|   |                             | Rock, red                                                            | . 100             | 201               |
|   |                             | Kock, Diue                                                           | . 0               | 201               |
|   | Fr-Dd 3. 1 mile north-      | Clay, and rock, red                                                  | . 45              | 45                |
|   | west of Frederick           | Rock, red                                                            | . 10              | 55                |
|   |                             | Calico, and rock, red                                                | . 85              | 140               |

### TABLE 27—Continued

|                                                                         | Material                                | (feet) | Depth<br>(feet) |  |  |
|-------------------------------------------------------------------------|-----------------------------------------|--------|-----------------|--|--|
| Wells in the Gettysburg sha                                             | le:                                     |        | ()              |  |  |
| Fr-Ae 9. 1 mile north-                                                  | Gettysburg shale:                       |        |                 |  |  |
| west of Emmitsburg                                                      | Sandstone, coarse; sand and clay (baked |        |                 |  |  |
|                                                                         | zone)                                   | 52     | 52              |  |  |
|                                                                         | Diabase dike:                           |        |                 |  |  |
|                                                                         | "Ironstone or granite"                  | 23     | 75              |  |  |
| Fr-Af 3. 2 miles west of<br>Bridgeport                                  | Dirt, soft                              | 2      | 2               |  |  |
|                                                                         | Rock, red                               | 24     | 26              |  |  |
|                                                                         | Rock, red, soft; caving                 | 6      | 32              |  |  |
|                                                                         | Rock, red                               | 70     | 102             |  |  |
|                                                                         | Rock, blue                              | 1      | 103             |  |  |
| Fr-Af 19. <sup>3</sup> / <sub>4</sub> mile south-<br>west of Bridgeport | Dirt, soft                              | 3      | 3               |  |  |
|                                                                         | Rock, red                               | 17     | 20              |  |  |
|                                                                         | Sand, brown, soft                       | 30     | 50              |  |  |
|                                                                         | Rock, red                               | 15     | 65              |  |  |
|                                                                         | Rock, red, hard; some sand              | 30     | 95              |  |  |
|                                                                         | Rock, red, softer                       | 22     | 117             |  |  |
|                                                                         | Rock, red, hard                         | 5.5    | 122.5           |  |  |
|                                                                         | Rock, very hard                         | . 5    | 123             |  |  |
| Fr-Ag 1. At Bridgeport                                                  | Shale                                   | 8      | 8               |  |  |
|                                                                         | Rock, red                               | 33     | 41              |  |  |
|                                                                         | Sand, rock, gray, hard                  | 18     | 59              |  |  |
|                                                                         | Iron boulders (water at 59 ft.)         | 3      | 62              |  |  |

### THE SURFACE-WATER RESOURCES

#### BY

#### ROBERT M. BEALL

#### ABSTRACT

The surface-water resources of Carroll and Frederick Counties have been studied through the operation of 20 complete-record gaging stations. The data collected at these stations consist of continuous records of stage and periodic measurements of discharge. Mean daily discharges can be computed when a stage-discharge relation has been established.

Half of Carroll County is in the Monocacy River basin and, except for small areas tributary to Gunpowder Falls, Conewego Creek, and Codorus Creek, the remainder is in the Patapsco River basin. All of Frederick County is tributary to the Potomac River and three-quarters of it is within the Monocacy River basin. Catoctin Creek basin occupies most of the remaining area.

Although the surface-water resources are relatively undeveloped, about 165 square miles of Carroll County is in watersheds of the Baltimore water-supply system. During the 1957 season the amount of water used for irrigation was about 5 mgd. Municipal, institutional, and industrial facilities used about 7 mgd.

Except for silt pollution of the Piedmont streams, the quality of the surface waters is generally good. Weekly analyses of the Monocacy River at Bridgeport were made for a 3-year period. Daily partial analyses of raw water from Linganore Creek are made at the Frederick water treatment plant, and a continuous record of water temperature at the Linganore Creek gaging station has been obtained since 1952.

Analyses of streamflow records for the Monocacy River at Jug Bridge near Frederick indicate a mean annual flood of 21,000 cfs, a flow equal to or exceeding 494 cfs for 50 percent of the time, and the probability that the lowest 7-day flow in a year would be less than 66 cfs at average intervals of 5 years.

Tables of monthly discharge through September 1956 are presented, supplementing or superseding those published in Bulletins 1, 14 and 17.

#### INTRODUCTION

Increased demands for water create many complex problems, such as pollution and contamination from known or unknown sources within the drainage basin. Water precipitated as rain is essentially pure, but man has a trying task to maintain the quality. Outbreaks of sickness and epidemics have been traced in impure drinking water. Clean, pure streams and lakes are important assets to a community for recreational purposes in addition to their value as sources of public water supplies.

With few exceptions, the low-flow characteristics of a stream govern its utilization and exert a major influence on the costs of development. The magnitude, duration, and frequency of low flows are used to determine whether a project can be operated without storage or to compute the amount of storage required. The frequency of low flows affects the economics of both construction and operation of a water-utilization project.

Navigation was one of the earliest uses of surface waters, but with increased farming and industry, the use of streams for irrigation and industrial purposes has become important. There are manifold industrial uses of surface waters in our cities for which temperature and chemical quality are important factors.

Although streams are indispensable to man, floods can cause tremendous damage and even loss of life. It has been the inclination of man to establish his home on or near a stream in order to have a readily accessible supply of water or means of transportation. As river settlements grow, the usual trend is to encroach upon the flood plains and even for the normal stream channel to be crowded and its carrying capacity reduced by structures of various kinds. Thus, the tendency toward flooding is aggravated and the actual or potential flood damages are vastly increased. The problem of flood control then arises. For the proper planning of flood-control works such as dams, levees, or channel improvements and the designing of bridges with adequate waterways records of streamflow are needed over a sufficient number of years to establish the flood-flow characteristics of the stream.

#### DEFINITION OF TERMS AND ABBREVIATIONS

The terms used in streamflow and other hydrologic data are defined as follows:

*Cubic foot per second* (cfs) is the rate of discharge of a stream whose channel is 1 square foot in cross-sectional area and whose average velocity is 1 foot per second.

*Cubic feet per second per square mile* (cfsm) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Million gallons per day per square mile (mgdsm) is the average number of millions of gallons of water flowing per day from each square mile of area drained, assuming a uniform runoff distribution. One mgd is equivalent to 1.5472 cfs. Conversely, 1 cfs flowing for 1 day is equal to 0.646317 million gallons.

*Runoff in inches* is the depth to which an area would be covered if all the water draining from it in a given period were uniformly distributed on its

surface. The term is used for comparing runoff with rainfall, which is also usually expressed in inches.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane and usually expressed in square miles, which is so enclosed by a topographic divide that direct surface runoff from precipitation normally would drain by gravity into the river above the specified point.

*Stage* or *gage height* of a stream is the height of the water surface above a chosen datum corresponding to the zero of the gage. The mean sea level elevation of the zero of the gage is determined either by levelling to an established bench mark or from a topographic map.

*Stage-discharge relation* is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

*Control* designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, a long reach of the channel, or an artificial structure.

Water-year is a special annual period selected to facilitate water studies, commencing October 1 and ending September 30. The minimum flow of most streams usually occurs near the end of the water year. Another annual period, April 1 to March 31, normally encompassing the low-flow season, is sometimes used in the study of low-flow characteristics.

#### STREAMFLOW MEASUREMENT STATIONS

To systematically study the variations in streamflow which provide for its maximum beneficial use, the U. S. Geological Survey operates stream gaging stations throughout the country. In cooperation with the Maryland Department of Geology, Mines and Water Resources, and other State, Federal and municipal agencies, 84 gaging stations are in operation in Maryland and the District of Columbia. Six others are maintained in Pennsylvania or Delaware on streams which subsequently flow through Maryland.

The base data collected at gaging stations consist of records of stage and measurements of discharge. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information are used to supplement base data in determining the daily flow.

The records of stage are obtained from a continuous water-stage recorder. Segments of typical water-stage recorder charts for two streams are shown in figure 30. Inspections to service the recorder and to change the chart are usually made at intervals of four to six weeks.

Most water-stage recorders in Maryland are housed in concrete-block or reinforced-concrete structures whose inside dimensions are 4 feet square. These structures are connected to the stream by one or more horizontal intake pipes so that the water level in the gage well (and hence the recorder float)



#### SURFACE-WATER RESOURCES

can fluctuate simultaneously with the stream. The gage well is usually equipped with a flushing device for removing silt from the intake pipes. The height of the structure is determined on the basis of anticipated flood stages (Pl. 4, fig. 1). A temporary structure may be used where short-term records are desired. These are usually constructed of corrugated culvert pipe placed in a vertical position to act as the stilling well and topped with a small box-like shelter to house the recorder.

Measurements of discharge are made by means of a current meter and graduated rods or lines by which the mean velocity, depth and width at preselected points in the stream cross section can be determined. The product obtained by multiplying the area and the mean velocity of a part of the cross section constitutes a discharge measurement of that part. The summation of discharges for 20 to 30 or more representative parts of the total cross section defines, with acceptable accuracy, the discharge of the stream at that location. Plate 4, figure 2 shows a standard small Price-type and a pygmy current meter used for making discharge measurements, the latter designed for use in shallow depths. Figures 1 and 2 of Plate 5 illustrate the use of the current meter by wading and from a bridge.

Discharge measurements are made periodically and at various stages of the stream in order to establish a stage-discharge relation for the station. A typical relation, or rating, curve is shown in figure 31. A rating table giving the discharge for any stage is prepared from the relation curve. If extensions to the rating curves are necessary to define the extremes of discharge, they are made on the basis of indirect determinations of peak discharge (such as slope-area or contracted-opening determinations, computation of flow over dams or weirs, or by other methods), velocity-area studies, and logarithmic plotting. The application of the daily mean stage or gage height to the rating table gives the daily mean discharge, from which the monthly and yearly mean discharges are computed.

The selection of a gaging station site requires careful appraisal of various conditions: the stability of the stream channel; height of banks, their relative freedom from overflow, and suitability of conditions for installation and maintenance of gage structures; the range in stage within which current meter measurements can be obtained by wading; and the availability and accessibility of structures suitable for use in making measurements at higher stages. The site selected may not meet all requirements. A modified low weir may be necessary to stabilize the stage-discharge relation, especially for low flows. For a channel subject to frequent or continual change and where an artificial control is not feasible, more frequent measurements are required to define the stage-discharge relation. If a suitable bridge is not available near the gage site, a cableway from which high-stage measurements can be made may be required.



#### SURFACE-WATER RESOURCES

#### TOPOGRAPHY AND DRAINAGE

#### Carroll County

Carroll County lies entirely within the Piedmont Province of the Appalachian Highlands (fig. 3) and contains the headwaters of four streams which become major tributaries of the Susquehanna River, Chesapeake Bay and the Potomac River. The topography of most of the county is gently rolling and is of moderate relief. The drainage patterns are well established and not subject to extensive man-made modification. There are no natural lakes or ponds of significant size.

The highlands of the county bisect it in a southwest to northeast line from Mount Airy, along Parrs Ridge to Westminster, Manchester, and northward through Melrose. Elevations on this divide range from 700 to 1100 feet. From the divide, elevations decrease to 250 and 300 feet in the river valleys which form the southeast and northwest county boundaries.

The headwaters of South Branch Conewego Creek and West Branch Codorus Creek, Susquehanna River tributaries, are located in the extreme north-central part of the county. They account for 5 of the 456 square miles of Carroll County. Part of this area is tributary to Sheppard-Meyers Reservoir in the Hanover, Pennsylvania, municipal waterworks system.

The northeast part of the county beyond Wentz, Manchester, and Hampstead lies in the Gunpowder Falls basin. Most of the 33-square-mile-area is in the watershed of Prettyboy Reservoir, a unit of the Baltimore water-supply system.

Eastern, southeastern, and southern Carroll County contains 195 square miles of the Patapsco River basin. This is 43 percent of the county area. The eastern drainage, 135 square miles, contributes to the North Branch Patapsco River and most of it is in the watershed of Liberty Reservoir, another unit of the Baltimore water-supply system. The other 60 square miles to the south constitutes 13 percent of the county area and 70 percent of the South Branch Patapsco River basin at its confluence with the North Branch Patapsco River.

The remaining 49 percent of the county, the western 223 square miles, is directly or secondarily tributary to the Monocacy River. This is 23 percent of the total Monocacy River drainage area.

#### **Frederick County**

Frederick County lies within the Blue Ridge and Piedmont Provinces of the Appalachian Highlands (fig. 3). All of the streams and rivers of the county are eventually tributary to the Potomac River. The west-to-east topographic variation, through Myersville, Walkersville, and Libertytown, for example, is quite pronounced. There is a steep descent down the east slope of South Mountain to the rolling hills of Middletown Valley which terminate in the rugged

relief of Catoctin Mountain. East of this mountain lie the relatively flat lands of Frederick Valley which give way to the undulating terrain of the Piedmont uplands east of Walkersville. The only ponds of significant size in the county are those, principally in Frederick valley, devoted to fish culture.

The drainage area of the Potomac River below the mouth of the Monocacy River at the southernmost tip of the county is 10,670 square miles. The Monocacy River basin accounts for 970 square miles of which 499 square miles is in Frederick County. Of the remainder of the Monocacy basin, 228 square miles is in Pennsylvania, 223 square miles in Carroll County, and 20 square miles in Montgomery County. The Monocacy River drains 73 percent of the 670 square mile county area. Catoctin Creek, meandering down Middletown Valley, has a total drainage area of 121 square miles, or 18 percent of the county area, and is entirely within the county. The remaining 50 square miles of Frederick County is composed of the Potomac River itself and minor small drainage basins directly tributary to the Potomac.

The more important streams of Carroll and Frederick Counties and their drainage areas at selected points are listed in Table 28, based chiefly on data in the "Report to the General Assembly of Maryland by the Water Resources Commission of Maryland, January 1933." The principal streams are shown in figure 32.

#### SURFACE-WATER UTILIZATION

The surface-water resources played a dominant role in the early history of Frederick and Carroll Counties. In *The External Relations of Frederick, Maryland*, Mackin (1956, p. 10) writes:

From the end of the Revolution until the beginning of quantity commercial production in the Ohio country, (the 1870's), wheat farming in the Monocacy Valley enjoyed a heyday.\*\*\*\*Industry was at first limited to home handicrafts. Soon however, the excellent waterpower sites on both sides of the valley began to attract small enterprises. Flour mills were erected first, to be followed by sawmills, paper mills, textile mills, and others.\*\*\*The sites were selected on the basis of the availability of water power (and)\*\*\*being centers of business activity, frequently became the sites of villages\*\*\*(some of which) prospered, grew and became towns.\*\*\*\*After the opening up of practical trade routes between the Midwest and the Atlantic Coast, commercial grain farming\*\*\*suffered a relative decline.\*\*\*\*Cheap West Virginia coal shipped in by canal and railroad made local manufacturers independent of water power sites.

Although a small number of mills are still in operation little remains of this once prominent industry except for place names like Greenfield Mills on the lower Monocacy River and Union Mills on Big Pipe Creek.

At present, the largest user of the surface-water resources of the bicounty area is the water-supply system of the City of Baltimore. Approximately 165

| Name of stream in dependence on la                                                |                                 | Drainage area<br>(square miles)           |                   |
|-----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|-------------------|
| Name of stream in downstream order                                                | fributary to                    | At point                                  | Outside<br>of Md. |
| Palapsco River Basin<br>East Branch Patapsco River at mouth                       | North Branch Patapsco           | 21.1                                      | _                 |
| West Branch Patapsco River at mouth                                               | River do.                       | 20.8                                      |                   |
| Cranberry Branch near Westminster                                                 | West Branch Patapsco<br>River   | *3.29                                     |                   |
| North Branch Patapsco River at Cedar-<br>hurst                                    | Patapsco River                  | *56.6                                     | —                 |
| Beaver Run near Finksburg                                                         | North Branch Patapsco<br>River  | †12.7                                     |                   |
| Beaver Run at mouth<br>North Branch Patapsco River near Reis-                     | do.<br>Patapsco River           | 16.2<br>*91.0                             |                   |
| Morgan Run near Gamber                                                            | North Branch Patapsco<br>River  | †25.9                                     |                   |
| Morgan Run at mouth<br>North Branch Patapsco River at Liberty<br>Dam              | do.<br>Patapsco River           | 44.6<br>164                               | 1                 |
| North Branch Patapsco River near Mar-                                             | do.                             | *165                                      | _                 |
| North Branch Patapsco River at mouth                                              | do.                             | 171                                       |                   |
| Falls<br>Gillis Falls at mouth                                                    | uo.                             | 11.4                                      | _                 |
|                                                                                   | River                           | 19.5                                      | _                 |
| South Branch Patapsco River at Henry-<br>ton                                      | Patapsco River                  | *64.4                                     |                   |
| Piney Run near Sykesville                                                         | South Branch Patapsco<br>River  | *11.4                                     | -                 |
| Piney Run at mouth<br>South Branch Patapsco River at mouth<br>Potomac River Basin | do.<br>Patapsco River           | $\begin{array}{c} 18.2\\ 85.7\end{array}$ | _                 |
| Little Catoctin Creek at Harmony<br>Little Catoctin Creek at mouth                | Catoctin Creek                  | *8.91                                     |                   |
| Catoctin Creek near Middletown                                                    | Potomac River                   | *66.9                                     |                   |
| Broad Run at mouth<br>Catoctin Creek near Iefferson                               | Catoctin Creek<br>Potomac River | 16.0                                      | _                 |
| Catoctin Creek at mouth                                                           | do.                             | 121                                       |                   |
| Tuscarora Creek at mouth                                                          | Potomac River                   | *9,651 20.5                               | 8,374             |
| Potomac River above Monocacy River                                                | Chesapeake Bay                  | 9,697                                     | N.d.              |
| Marsh Creek at mouth<br>Rock Creek at mouth                                       | Monocacy River                  | 80.1<br>64.4                              | 79.1              |
| Alloway Creek at mouth                                                            | do.                             | 23.8                                      | 17.7              |
| Monocacy River at Bridgeport                                                      | Potomac River                   | *173                                      | N.d.              |
| gage)                                                                             | do.                             | *174                                      | N.d.              |
| Piney Creek near Taneytown                                                        | Monocacy River                  | †22.1                                     | 7.47              |
| Friends Creek at mouth                                                            | do.<br>Piney: Creek             | 35.5                                      | 7.47              |
| Middle Creek at mouth                                                             | Toms Creek                      | 26.9                                      | 24.5              |
| Toms Creek at mouth                                                               | Monocacy River                  | 88.8                                      | 59.3              |
| Monocacy River above Double Pipe<br>Creek                                         | Potomac River                   | 319                                       | 228               |

 TABLE 28

 Drainage Areas of Streams in Carroll and Frederick Counties

|                                                        |                       | Drainag<br>(square | Drainage area<br>(square miles) |  |  |
|--------------------------------------------------------|-----------------------|--------------------|---------------------------------|--|--|
| Name of stream in downstream order                     | Tributary to          | At point           | Outside<br>of Md.               |  |  |
| Potomac River Basin—continued                          |                       |                    |                                 |  |  |
| Big Pipe Creek at Bachman Mills                        | Double Pipe Creek     | †9.39              |                                 |  |  |
| Big Pipe Creek near Mayberry                           | do.                   | †49.9              |                                 |  |  |
| Meadow Branch near Uniontown                           | Big Pipe Creek        | †12.6              |                                 |  |  |
| Big Pipe Creek at Bruceville                           | Double Pipe Creek     | *102               |                                 |  |  |
| Big Pipe Creek at mouth                                | do.                   | 108                |                                 |  |  |
| Little Pipe Creek at Avondale                          | do.                   | *8.10              | _                               |  |  |
| Wolfpit Branch at Linwood                              | Little Pipe Creek     | 12.00              |                                 |  |  |
| Little Pipe Creek at Union Bridge                      | Double Pipe Creek     | 140.4              |                                 |  |  |
| Sams Creek at mouth                                    | Little Pipe Creek     | 15.4               |                                 |  |  |
| Little Pipe Creek at mouth                             | Double Pipe Creek     | 10.5               | _                               |  |  |
| Double Pipe Creck at mouth                             | Monocacy River        | 192                |                                 |  |  |
| Owens Creek at Lantz                                   | do.                   | 20.8               |                                 |  |  |
| Userting Creek at mouth                                | do.                   | 39.0               |                                 |  |  |
| Hunting Creek at Jimtown                               | do.<br>Hunting Crools | 10.4               |                                 |  |  |
| Hunting Creek at mouth                                 | Monogagy Divor        | 11.0               |                                 |  |  |
| Fishing Creek at mouth                                 | do                    | *7 20              |                                 |  |  |
| Fishing Creek near Dewistown                           | do.                   | 18 2               | _                               |  |  |
| Tuscarora Creek at mouth                               | do.                   | 16.8               |                                 |  |  |
| Monocacy River near Frederick (Ceres-<br>ville Bridge) | Potomac River         | *665               | 228                             |  |  |
| Israel Creek at mouth                                  | Monocacy River        | 33.2               | _                               |  |  |
| Carroll Crcek at mouth                                 | do.                   | 18.6               |                                 |  |  |
| North Fork Linganore Creek at mouth                    | Linganore Creek       | 20.3               | _                               |  |  |
| South Fork Linganore Creck at mouth                    | do.                   | 19.7               | —                               |  |  |
| Linganore Creek near Frederick                         | Monocacy River        | *82.3              |                                 |  |  |
| Linganore Creek near Frederick (pump station)          | do.                   | *84.6              | _                               |  |  |
| Linganore Creek at mouth                               | do.                   | 88.4               |                                 |  |  |
| Monocacy River near Frederick (Jug<br>Bridge)          | Potomac River         | *817               | 228                             |  |  |
| Bush Creek at mouth                                    | Monocacy River        | 33.7               |                                 |  |  |
| Ballenger Creek at mouth                               | do.                   | 18.0               |                                 |  |  |
| Little Bennett Creek at mouth                          | Bennett Creek         | 24.0               | _                               |  |  |
| Bennett Creek at Park Mills                            | Monocacy River        | 02.8               | _                               |  |  |
| Menergen Binger at mouth                               | Determe Diver         | 070                | 228                             |  |  |
| Determine Diver below mouth of Monograv                | Chesapoako Bay        | 10 667             | N d                             |  |  |
| River                                                  | Chesapeake Day        | 10,007             | 11.0.                           |  |  |

#### TABLE 28-Continued

\* At complete-record gaging station. † At partial-record low-flow site. N. d. Not determined.

square miles of Carroll County provides about 40 percent of the safe yield of this system through the development of the Gunpowder Falls basin (Prettyboy Reservoir) and the North Branch Patapsco River basin (Liberty Reservoir).

The principal water-supply systems or facilities, within Carroll and Frederick Counties, that use surface-water sources for a major part or all of their supply, are shown in Table 29.


239

#### TABLE 29

|                              | Data 101 1997                                                                           |                        | -               |
|------------------------------|-----------------------------------------------------------------------------------------|------------------------|-----------------|
| Facility                     | Stream source                                                                           | Capa-<br>city<br>(mgd) | Output<br>(mgd) |
| Municipal                    |                                                                                         |                        |                 |
| Emmittsburg                  | Turkey Run                                                                              |                        | 0.13            |
| Frederick                    | Linganore, Tuscarora, and<br>Fishing Creeks                                             | 4.5                    | 2.8             |
| Thurmont                     | High Run                                                                                | -                      | 0.13*           |
| Westminster                  | Cranberry Branch and West<br>Branch Patapsco River<br>(Luckabaugh and Hull<br>Branches) | 1.4                    | 0.74            |
| Institutional                |                                                                                         |                        |                 |
| Camp Detrick                 | Monocacy River                                                                          | 2.0                    | 2.0             |
| Springfield State Hospital   | Piney Run                                                                               | 1.0                    | 1.0             |
| Victor Cullen State Hospital | Owens Creek                                                                             | 0.13                   | (seldom used)   |
| Industrial (power)           |                                                                                         |                        |                 |
| Congoleum-Nairn Company      | North Branch Patapsco River                                                             |                        | 0.18            |

#### Principal Water-supply Facilities in Carroll and Frederick Counties Using Surface-water Data for 1957

\* Partly derived from ground-water sources.

Practically all of the estimated five million gallons daily of water used for irrigation during the 1957 season was derived from streams and ponds. Some ponds are partly or entirely supplied from ground-water storage, either because they are dug below the water table or are spring fed. Other ponds, though established on small perennial streams, are replenished to some degree by surface runoff following precipitation. Bohanan (1955, p. 5) reported that during 1954, 6 farms in Carroll County irrigated 1,740 acres and 12 farms in Frederick County irrigated 740 acres. M. B. Fussell, Maryland State Soil Conservationist, stated (personal communication) that as of January 1, 1958, 180 farm ponds had been constructed in Carroll County and 393 in Frederick County under the Soil Conservation Districts Law passed in 1937 and that perhaps 50 to 75 had been privately built. One early farm pond use, ice production, has practically disappeared. Ponds continue to be a valuable asset, however, for livestock watering, supplemental irrigation, recreation, fish production, firefighting, and other purposes.

Mackin (idem. p. 18) has further stated:

A rather unusual rural industry located in Frederick County is the commercial raising of goldfish. Hundreds of acre-sized ponds are scattered in clusters throughout the Monocacy Valley, especially along the sides of the valley where cool water from upland streams is available. (According to Dr. J. Pearson, Ichthyologist, U. S. Fish and Wildlife Service) the valley happens to lie within a narrow latitudinal belt, extending across the country, in which the temperature range is suited to goldfish breeding.

#### QUALITY OF SURFACE WATER

The many chemical and physical quality characteristics of surface waters vary in time and with rainfall, geology, land and water use, and climatic season. Systematic study of these characteristics in Carroll and Frederick Counties has been confined to (1) the analysis of weekly samples collected from the Monocacy River at Bridgeport between 1948 and 1951, (2) the collection of a continuous record of the temperature of Linganore Creek near Frederick since 1951 and (3) the daily partial analyses of Linganore Creek water entering the Frederick water treatment plant.

Isolated samples from the Monocacy River near Frederick indicated a calcium bicarbonate water, slightly alkaline on the pH scale and moderately hard. Similar samples from Fishing and Linganore Creeks showed a water very low in hardness and mineral content, and slightly acid on the pH scale. The latter analyses are published in U. S. Geological Survey Water-Supply Paper 1299, *Industrial Utility of Public Water Supplies*, wherein also is given average and extreme values for 1950 of alkalinity, pH, hardness, and turbidity for the raw and finished water at the Linganore Creek treatment plant. The treatment plant data for 1950 are given in Table 30 which also contains the raw water data for the years 1955 to 1957.

| Year |                | Alk | alinit;<br>CaCO:<br>(ppm) | yas<br>B | p   | Η   | Ia | lardne<br>s CaC(<br>(ppm) | ss<br>Da | Т  | `urbidity | 7   |
|------|----------------|-----|---------------------------|----------|-----|-----|----|---------------------------|----------|----|-----------|-----|
|      |                | Av  | Max                       | Min      | Max | Min | Av | Max                       | Min      | Av | Max       | Min |
| 1950 | Raw water      | 46  | 61                        | 17       | 8.6 | 6.9 | 52 | 66                        | 39       | 15 | 1000      | 5   |
|      | Finished water | 34  | 45                        | 23       | 7.0 | 6.2 | 53 | 68                        | 44       | 5  | 5         | 5   |
| 1955 | Raw water      | 49  | 68                        | 27       | 8.6 | 6.3 | 48 | 79                        | 34       | 13 | 400       | 5   |
| 1956 | do.            | 49  | 63                        | 27       | 9.1 | 6.7 | 47 | 67                        | 34       | 15 | 350       | 5   |
| 1957 | do.            | 53  | 79                        | 32       | 8.9 | 6.8 | 52 | 65                        | 35       | 12 | 350       | 5   |

TABLE 30

Extremes and Average of Determinations of Alkalinity, pH, Hardness and Turbidity of Raw and Finished Water, Linganore Creek Water Treatment Plant, City of Frederick

Computed from data on daily plant operation record sheets furnished by G. K. Smith, City Chemist. Data for 1955–57 include occasional analyses of raw water taken from a temporary storage pond (copper sulfate treated) which was used during periods of high river turbidity. Extremes, therefore, may not be representative of the river water although average figures may not be unduly biased.

| Period of collection                                  | Apr. 19<br>Sept. | 948 to<br>1948 | Oct<br>Se    | t. 1948<br>pt. 194 | to<br>9      | Oct<br>Se    | . 1949<br>pt. 1950 | to<br>)      | Oct. 19<br>June | 950 to<br>1951 |
|-------------------------------------------------------|------------------|----------------|--------------|--------------------|--------------|--------------|--------------------|--------------|-----------------|----------------|
| Number of samples                                     | 2.               | 3              |              | 48                 |              |              | 43                 |              | 31              | 0              |
|                                                       | Maxi-<br>mum     | Mini-<br>mum   | Maxi-<br>mum | Aver-<br>age       | Mini-<br>mum | Maxi-<br>mum | Aver-<br>age       | Mini-<br>mum | Maxi-<br>mum    | Mini-<br>mum   |
| Silica (SiO2)                                         | 11               | 0.8            | 12           | _                  | 0.8          | 12           |                    | 2.6          | 15              | 5.5            |
| Iron (Fe)                                             | .11              | .03            | .43          |                    | .05          | 1.1          |                    | .04          | .65             | .02            |
| Calcium (Ca)                                          | 27               | 14             | 22           | -                  | 15           | 23           | _                  | 9.4          | 22              | 9.0            |
| Magnesium (Mg)                                        | 8.1              | 4.7            | 7.3          |                    | 4.3          | 7.1          |                    | 3.9          | 6.7             | 3.0            |
| Sodium (Na) and Potassium (K)                         | 5.4              | 3.3            | 15           |                    | 2.0          | 19           |                    | 1.3          | 9.4             | 1.8            |
| Bicarbonate (HCO3)                                    | 94               | 36             | 100          | 58                 | 26           | 108          | 66                 | 34           | 83              | 24             |
| Sulfate (SO4)                                         | 32               | 18             | 38           | _                  | 14           | 58           | _                  | 17           | 29              | 14             |
| Chloride (Cl)                                         | 5.5              | 2.5            | 12           |                    | 4.0          | 7.0          |                    | 1.5          | 5.5             | 1.0            |
| Fluoride (F)                                          | 0                | 0              | .2           |                    | 0            | 0            |                    | 0            | 0               | 0              |
| Nitrate (NO <sub>2</sub> )                            | 7.8              | .5             | 11           | 2.6                | .2           | 7.0          | 3.4                | . 2          | 9.0             | 1.0            |
| Dissolved solids (Residue on<br>evaporation at 180°C) | 119              | 92             | 130          | -                  | 89           | 151          | -                  | 84           | 128             | 69             |
| Suspended solids                                      | 185              | 18             | 161          | 21                 | 1            | 403          | 26                 | 1            | 690             | 1              |
| Hardness as CaCO3                                     | 183              | 48             | 196          | 79                 | 44           | 102          | 70                 | 40           | 86              | 35             |
| Specific conductance (micromhos at 25°C)              | 215              | 128            | 218          | 161                | 122          | 245          | 173                | 94.8         | 217             | 87.4           |
| pH                                                    | 7.7              | 6.8            | 7.6          | -                  | 6.6          | 8.4          | -                  | 6.6          | 7.8             | 6.7            |
| Color                                                 | 90               | 1              | 70           | 15                 | 1            | 180          | 25                 | 5            | 140             | 5              |
| Dissolved oxygen                                      | 9.5              | 5.3            | 13.0         | 8.7                | 4.6          | 14.4         | 9.2                | 4.5          | 14.5            | 5.7            |
| Bio-chemical oxygen demand (5 days at 20°C)           | 3.0              | . 2            | 4.7          | 2.1                | 0            | 5.8          | 2.2                | .6           | 7.2             | .6             |
| Temperature (°F)                                      | 80               | 45             | 81           | 58                 | 36           | 81           | 59                 | 33           | 77              | 34             |
| Discharge (cfs)                                       | 1,260            | 5.2            | 1,950        | 193                | 7.6          | 2,160        | 187                | 4.8          | 3,080           | 13             |

#### Monocacy River at Bridgeport Maximum, Minimum and Average Values of Chemical Constituents and Related Physical Measurements (chemical constituents in parts per million)

TABLE 31

During the period April 1948 to June 1951, the U. S. Geological Survey, in cooperation with the Pennsylvania Department of Forests and Waters, collected and analysed 144 water samples from the Monocacy River at Bridgeport. Samples were obtained at weekly intervals and analysed for ten quality properties. Nine additional properties were determined on a monthly basis. These analyses have been published in U. S. Geological Survey Water-Supply Papers 1132, 1162, 1186 and 1197 which are in the annual series entitled *Quality of Surface Waters of the United States, Parts 1–4.* The data obtained in these analyses are summarized in Table 31. An average and a range is shown for those properties determined monthly or determined weekly during incomplete water years.

A water-temperature recorder has been operated since October 1951 in conjunction with the water-stage recorder on Linganore Creek near Frederick. The temperature record is collected by the U. S. Geological Survey in cooperation with the Maryland Department of Research and Education. Records of

daily water temperature extremes are published in the quality-of-water series of water-supply papers referred to above. A summary of the monthly temperature variation of Linganore Creek is shown in Table 32.

Data are particularly lacking on the amount, areal distribution, and rates

|        |      | (degree | s Farenhe | it)  |       |      |      |
|--------|------|---------|-----------|------|-------|------|------|
|        |      | 1952    | 1953      | 1954 | 1955  | 1956 | 1957 |
| Ian.   | max. | 48      | 50        | 45   | 44    | 38   | 45   |
| J      | min. | 33      | 36        | 32   | 32    | 33   | 32   |
| Feb.   | max. | 45      | 52        | 50   | - 622 | 47   | 53   |
|        | min. | 35      | 36        | 33   | 32    | 34   | 36   |
| Mar.   | max. | 52      | 56        | 58   | 54    | 50   | 53   |
|        | min. | 36      | 39        | 35   |       | 36   | 38   |
| Apr.   | max. | 63      | 68        | 72   | 70    | 72   | 75   |
|        | min. | 46      | 46        | 42   | 45    | 41   | 44   |
| May    | max. | 65      | 72        | 75   | 79    | 76   | 75   |
|        | min. | 52      | 57        | 51   | 56    | 53   | 52   |
| June   | max. | 82      | 83        | 82   | 79    | 83   | 86   |
|        | min. | 60      | 54        | 60   | 59    | 59   | 61   |
| July   | max. | 85      | 82        | 88   | 86    | 86   | 85   |
|        | min. | 65      | 66        | 67   | 69    | 64   | 65   |
| Aug.   | max. | 80      | 86        | 85   | 87    | 80   | 83   |
|        | min. | 62      | 63        | 65   | 67    | 63   | 65   |
| Sept.  | max. | 78      | 82        | 80   | 74    | 81   | 81   |
|        | min. | . 57    | 53        | 56   | 58    | 55   | 54   |
| Oct.   | max. | 68      | 67        | 74   | 70    | 65   | 64   |
|        | min. | 40      | 47        | 45   | -     | 49   | 4.   |
| Nov.   | max. | 57      | 56        | 54   | -     | 64   | 58   |
|        | min. | 38      | 35        | 37   | 35    | 35   | 31   |
| Dec.   | max. | 49      | 47        | 43   | 45    | 50   | 53   |
|        | min. | 35      | 32        | 34   | 33    | 35   | 3-   |
| Annual | max. | 85      | 83        | 88   | 87    | 86   | 80   |
|        | min. | 33      | 32        | 32   | 32    | 33   | 32   |

### TABLE 32 Monthly Temperature of Linganore Creek near Frederick

of sediment production in the region although certain problem areas have been investigated by the Soil Conservation Service. The Maryland State Planning Commission (1951, pp. 35, 39) states:

When farming began in Frederick County, there was an estimated average of 15 inches of top soil. After allowing two inches for shrinking, the loss on the average throughout the county is approximately 7 inches with an average of 6 inches remaining.\*\*\*\*\*The Maryland Water Pollution Control Commission has stated, "Our observations of the Monocacy River would indicate that industrial and sewage pollution contributed to this river is secondary in magnitude to the pollution caused by heavy silting from soil erosion."

The Interstate Commission on the Potomac River Basin has urged that a special sampling program be initiated "... to determine the amount of silt deposited annually in the Potomac watershed."<sup>1</sup>

#### GAGING STATIONS IN CARROLL AND FREDERICK COUNTIES

#### **Complete-record** stations

In 1888, The Federal Geological Survey began systematic work in collecting records of streamflow, mainly in the West, and in studying the problems related to the utilization of water for irrigation and other purposes. Specific appropriations for stream gaging were made by the Congress in an act of August 18, 1894, and a station was established on the Potomac River at Point of Rocks on February 15, 1895. The State of Maryland began cooperation with the Survey in 1896 by the payment of the services of gage readers. On August 4, 1896, a gaging station was established on the Monocacy River at Ceresville Bridge near Frederick under this cooperative plan. The Point of Rocks gage has been in practically continuous operation since 1895. The Ceresville Bridge gage was operated at that site (above the mouth of Linganore Creek) until September 1930, when it was replaced by the station at Jug Bridge below Linganore Creek established in November 1929.

Six additional gaging stations were established between 1927 and 1932, one in 1942, and ten between 1945 and 1949. The drainage areas and periods of record for all the stream-gaging stations in Carroll and Frederick Counties are presented in Table 33. Their locations are shown on figure 32. As of September 30, 1956, 351 station years of record have been accumulated, 104 years in the Patapsco River basin and 247 years in the Potomac River basin. No gaging stations have been operated on streams in the relatively small part of Carroll County in the Susquehanna and Gunpowder River basins. There are also a number of secondary basins of significant size whose streamflow characteristics have not been defined.

<sup>1</sup> From an account of the May 10, 1958 meeting of the commission in Bedford, Pa., as reported in The Evening Star, Washington, D. C.

244

#### TABLE 33

#### Stream-gaging Stations in Carroll and Frederick Counties

| Map<br>identi-<br>fication | Stream-gaging station or low-flow site<br>(numbered) (lettered) | Drainage<br>area<br>(sq mi) | Records<br>available*                    |
|----------------------------|-----------------------------------------------------------------|-----------------------------|------------------------------------------|
|                            | Palapsco River Basin                                            |                             |                                          |
| 1                          | Cranberry Branch near Westminster                               | 3.29                        | Oct. 1949-                               |
| 2                          | North Branch Patapsco River at Cedarhurst                       | 56.6                        | Oct. 1945-                               |
| А                          | Beaver Run near Finksburg <sup>†</sup>                          | 12.7                        | 1957                                     |
| 3                          | North Branch Patapsco River near Reisterstown                   | 91.0                        | June 1927 to<br>Dec. 1953.               |
| В                          | Morgan Run near Gamber†                                         | 25.9                        | 1957                                     |
| 4                          | North Branch Patapsco River near Marriottsville                 | 165                         | Oct. 1929-                               |
| 5                          | South Branch Patapsco River near Henryton                       | 64.4                        | Aug. 1948-                               |
| 6                          | Piney Run near Sykesville                                       | 11.4                        | Oct. 1931-                               |
|                            | Potomac River Basin                                             | 1                           |                                          |
| 7                          | Little Catoctin Creek at Harmony                                | 8.91                        | July 1947-                               |
| 8                          | Catoctin Creek near Middletown                                  | 66.9                        | Aug. 1947-                               |
| 9                          | Catoctin Creek near Jefferson                                   | 111                         | June 1928 to                             |
|                            |                                                                 |                             | Sept. 1931.                              |
| 10                         | Potomac River at Point of Rocks                                 | 9651                        | Feb. 1895-                               |
| 11                         | Monocacy River at Bridgeport                                    | 173                         | May 1942-                                |
| С                          | Piney Creek near Taneytown <sup>†</sup>                         | 22.1                        | 1956                                     |
| D                          | Big Pipe Creek at Bachman Mills <sup>†</sup>                    | 9.39                        | 1956                                     |
| Е                          | Big Pipe Creek near Mayberry†                                   | 49.9                        | 1956                                     |
| F                          | Meadow Branch near Uniontown <sup>†</sup>                       | 12.6                        | 1956                                     |
| 12                         | Big Pipe Creek at Bruceville                                    | 102                         | Oct. 1947-                               |
| 13                         | Little Pipe Creek at Avondale                                   | 8.10                        | Aug. 1947 to<br>Sept. 1956.              |
| G                          | Wolfpit Branch at Linwood <sup>†</sup>                          | 2,00                        | 1956                                     |
| Η                          | Little Pipe Creek at Union Bridge <sup>†</sup>                  | 40.4                        | 1956                                     |
| 14                         | Owens Creek at Lantz                                            | 5.93                        | Oct. 1931-                               |
| 15                         | Hunting Creek at Jimtown                                        | 18.4                        | Oct. 1949-                               |
| 16                         | Fishing Creek near Lewistown                                    | 7.29                        | Oct. 1947-                               |
| 17                         | Monocacy River near Frederick (Ceresville)                      | 665                         | Aug. 1896 to<br>Sept. 1930.              |
| 18                         | Linganore Creek near Frederick                                  | 82.3                        | Dec. 1931 to<br>Mar. 1932.<br>Sept 1934- |
| 19                         | Monocacy River at Jug Bridge near Frederick                     | 817                         | Nov 1020-                                |
| 20                         | Bennett Creek at Park Mills                                     | 62.8                        | Tuly 1048_                               |
|                            |                                                                 | 0                           | July I'IU                                |

\* Stations without closing date are still in operation.

† Initial base-flow measurements at partial-record sites made in indicated year.

#### Partial-record stations

In order that some knowledge might be gained of the low-flow characteristics of a greater number of streams, a modest low-flow program was initiated in 1956. Eight sites were selected in Carroll County (Table 33 and figure 32).

The program consists of measuring the base-flow discharge<sup>2</sup> at these sites two or three times a year for several years after which they will be correlated with nearby complete-record stations. A limited but useful amount of information can be obtained from this discharge relation in regard to duration and frequency of low and medium flows at the partial-record sites. Some of the sites are on gaged streams but at locations with significant differences in drainage area.

#### CHARACTERISTICS OF RUNOFF

#### Floods

Knowledge of the magnitude, frequency, and volume of flood runoff is a necessary prerequisite to the efficient and economic design of such structures as bridge and culvert openings, reservoirs, and flood control works.

The annual series of surface-water-supply papers contain the maximum gage heights and discharges for the report year and, since 1938, a listing of peak discharges above a base so selected that an average of about three peaks a year will be presented.

Detailed information on the stage and discharge of many streams during major floods has been included in special reports of the U. S. Geological Survey. Some of these reports also contain other pertinent hydrologic information and analyses and compilations of data relating to earlier notable floods. The following reports contain data on streams in Carroll and Frederick Counties:

- Water-supply Paper 771: Floods in the United States, magnitude and frequency
- Water-supply Paper 800: The floods of 1936, Part 3, Potomac, James, and upper Ohio Rivers
- Water-supply Paper 1420: Floods of August-October 1955, New England to North Carolina.

Records for the Monocacy River at Ceresville Bridge and at Jug Bridge indicate that the greatest known general floods occurred in 1889, 1933, 1934 and 1937. Storm damage was probably most widespread following the flood of August 1933, although the floods of June 1889 must have been devastating to the many riverbank millsites. Peak discharges from these large general storms (frequently hurricanes or extra-tropical cyclones) have been exceeded on Monocacy and Patapsco River tributaries by peaks resulting from intense thunder-shower activity. An example of such a flood was that of July 20, 1956, on Piney Run near Sykesville when a peak discharge of 7,380 cfs was recorded, in comparison with a peak of 1,800 cfs on August 23, 1933.

<sup>2</sup> The base-flow discharge of a stream has been described as that sustained or fair-weather flow which is largely composed of ground-water effluent, as differentiated from direct runoff which principally results from overland flow during and following periods of rainfall or snowmelt. As an example of the magnitude-frequency analysis of the floods at a single station site, the recurrence interval of annual floods on the Monocacy River at Jug Bridge near Frederick is shown in figure 33. The analysis was based on a historical flood peak plus the momentary maximum discharge occurring during each of the water years of record in Table 34. The flood experience at the Ceresville gage site was used in the determination of the recurrence interval of several of the higher order floods. The recurrence interval is the average interval in which a flood of a given size may be expected to recur as an annual flood. The data have been shown on an extreme value probability paper which was designed to enhance the straight-line plotting of such data. The mean annual flood is considered to be that having a recurrence interval of 2.33 years. The statistical theory of extreme values and some practical applications have been discussed by Gumbel (1954) in a series of lectures published by the National Bureau of Standards.

Since the individual station records are strongly influenced by the inclusion or exclusion of chance events of great magnitude in dissimilar periods of operation, a regional, rather than single-station, analysis is desirable. Such an analysis will be made in the near future and will provide information for presently ungaged areas.

#### Average Runoff

The streamflow records presented in this report are for various intervals during the period from 1895 to 1956. Because of the year-to-year variation in precipitation and consequent runoff, comparisons between different streams should be made for similar periods of time. To facilitate such comparisons, Table 35 presents the average discharge in cubic feet per second per square mile for different periods of time, corresponding to the full length of record at each of the gaging stations.

While it might appear that runoff varies inversely with drainage area, it should be remembered that the gaging stations are usually established on perennial streams and that relatively large parts of the larger drainage areas contain streams that are intermittent or ephemeral in character. Principally because of dissimilarities in climatic environment the average discharge of the Potomac River is not comparable with that of the other streams in the area. It will be noted that the average discharge per square mile from Hunting and Fishing Creeks, draining the east slope of Catoctin Mountain, and from Owens Creek on the east slope of South Mountain, is significantly higher than that of the other gaged streams.

#### Flow-Duration Studies

As described by Mitchell (1957, p. 3):

Charts that show the frequency of occurrence of the various rates of flow throughout the entire regimen of a stream at a given point are known as flow-





248

| A T  | TD. | T. | T.2 | 21 |  |
|------|-----|----|-----|----|--|
| 1.72 | D   | 1. | L.  | 34 |  |

| Water year | Date           | Gage<br>Height | Discharge | Order   | (M) in<br>ed period | Recurrence<br>Interval |
|------------|----------------|----------------|-----------|---------|---------------------|------------------------|
|            |                | (fect)         | (045)     | 69 yrs. | 28 yrs.             | (years)‡               |
| 1889       | June           | 30*            | 56,000    | 1       |                     | 70.0                   |
| 1930       | Oct. 3, 1929   |                | 18,500†   |         | 16                  | 1.81                   |
| 1931       | Apr. 2, 1931   | 11.37          | 10,800    |         | 27                  | 1.07                   |
| 1932       | May 13, 1932   | 13.76          | 14,900    |         | 23                  | 1.26                   |
| 1933       | Aug. 24, 1933  | 28.1           | 51,000    | 2       | (1)                 | 35.0                   |
| 1934       | Sept. 17, 1934 | 21.6           | 33,500    | 4       | (3)                 | 17.5                   |
| 1935       | Dec. 2, 1934   | 17.2           | 22,800    |         | 10                  | 2.90                   |
| 1936       | Mar. 12, 1936  | 16.4           | 20,900    |         | 14                  | 2.07                   |
| 1937       | Apr. 27, 1937  | 21.7           | 33,800    | 3       | (2)                 | 23.3                   |
| 1938       | Nov. 14, 1937  | 16.75          | 21,800    |         | 12                  | 2.42                   |
| 1939       | Feb. 4, 1939   | 14.46          | 16,800    |         | 18                  | 1.61                   |
| 1940       | Sept. 1, 1940  | 17.85          | 24,100    |         | 9                   | 3.22                   |
| 1941       | Apr. 6, 1941   | 14.35          | 16,500    |         | 19                  | 1.53                   |
| 1942       | Aug. 14, 1942  | 20.29          | 27,900    |         | 5                   | 5.80                   |
| 1943       | May 21, 1943   | 18.74          | 24,600    |         | 7                   | 4.14                   |
| 1944       | Jan. 4, 1944   | 19.01          | 25,300    |         | 6                   | 4.83                   |
| 1945       | Sept. 19, 1945 | 15.50          | 16,300    |         | 20                  | 1.45                   |
| 1946       | June 3, 1946   | 19.27          | 24,600    |         | 8                   | 3.62                   |
| 1947       | May 22, 1947   | 12.57          | 11,000    |         | 25                  | 1.16                   |
| 1948       | Jan. 2, 1948   | 15.43          | 16,100    |         | 21                  | 1.38                   |
| 1949       | July 13, 1949  | 21.30          | 29,700    |         | 4                   | 7.25                   |
| 1950       | Mar. 23, 1950  | 15.09          | 15,500    |         | 22                  | 1.32                   |
| 1951       | Dec. 5, 1950   | 17.30          | 20,100    |         | 15                  | 1.93                   |
| 1952       | Apr. 27, 1952  | 18.41          | 22,500    |         | 11                  | 2.64                   |
| 1953       | Nov. 22, 1952  | 17.73          | 21,000    |         | 13                  | 2.23                   |
| 1954       | Mar. 2, 1954   | 9.37           | 6,590     | 10      | 28                  | 1.04                   |
| 1955       | Mar. 23, 1955  | 16.17          | 17,700    |         | 17                  | 1.71                   |
| 1956       | July 21, 1956  | 13.08          | 12,000    |         | 24                  | 1.21                   |
| 1957       | Apr. 6, 1957   | 12.37          | 11,000    |         | 26                  | 1.12                   |

Frequency Analysis of Annual Floods, Monocacy River at Jug Bridge near Frederick Drainage area 817 square miles. Period of record: Nov. 21, 1929 to Sept. 30, 1957

\* From floodmarks.

† Estimated on basis of graphed peak for station at Ceresville Bridge.

Recurrence interval = (N + 1)/M. N = 69 for floods of order 1-4, based on flood experience at Ceresville Bridge gage; N = 28 for floods of order 4-28.

duration curves.\*\*\*\*They indicate the percent of time, within a given period, during which any given rate of flow was equaled or exceeded.

Flow-duration analyses have long been used in water power development investigations and, more recently, have been found useful in studies related to water supply and waste disposal.

Data for the gaging stations on Monocacy River near Frederick are combined

|                 |                                           |                           |                    |                    |                    | Period of                               | record h           | eginning           | October            | 1 ending           | Septemb            | er 30              | ł                  |                    |                    |
|-----------------|-------------------------------------------|---------------------------|--------------------|--------------------|--------------------|-----------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Map             |                                           | Drainage                  | 1895<br>to<br>1956 | 1896<br>to<br>1930 | 1927<br>to<br>1953 | 1928<br>to<br>1931                      | 1929<br>to<br>1956 | 1929<br>to<br>1952 | 1931<br>to<br>1956 | 1934<br>to<br>1956 | 1942<br>to<br>1956 | 1945<br>to<br>1956 | 1947<br>to<br>1956 | 1948<br>to<br>1956 | 1949<br>to<br>1956 |
| tifica-<br>tion | Gaging station                            | area<br>(square<br>miles) |                    |                    |                    |                                         |                    | Number             | of water           | years              |                    |                    |                    |                    |                    |
|                 |                                           |                           | 61                 | 34                 | 26                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 27                 | 23                 | 25                 | 22                 | 14                 | 11                 | 6                  | 00                 | 4                  |
|                 |                                           |                           |                    |                    |                    |                                         | Average            | discharg           | e in cfs p         | er square          | e mile             |                    |                    |                    |                    |
| -               | Cranberry Branch near Westminster         | 3.29                      | 1                  | I                  | I                  | -                                       |                    |                    | I                  | 1                  | 1                  | 1                  | 1                  | -                  | *1.24              |
| 2               | N. Br. Patapsco River at Cedarhurst       | 56.6                      | I                  | 1                  | I                  | I                                       |                    | 1                  |                    |                    |                    | *1.25              | 1.25               | 1.24               | 1.21               |
| 3               | N. Br. Patapsco River near Reisterstown   | 91.0                      | 1                  | I                  | *1.13              | . 899                                   | I                  | 1.09               | 1                  | 1                  |                    |                    | I                  | 1                  | 1                  |
| 4               | N. Br. Patapsco River near Marriottsville | 165                       |                    | ]                  | I                  | 1                                       | 1                  | *1.08              |                    |                    | 1                  | I                  | 1                  | I                  |                    |
| 2               | S. Br. Patapsco River at Henryton         | 64.4                      | 1                  | 1                  |                    | I                                       | 1                  |                    | I                  | 1                  | 1                  | [                  | I                  | *1.21              | 1.16               |
| 9               | Piney Run near Sykesville                 | 11.4                      | 1                  | 1                  | I                  | 1                                       | 1                  | 1                  | *1.13              | 1.14               | 1.20               | 1.25               | 1.26               | 1.25               | 1.21               |
| 1               | Little Catoctin Creek at Harmony          | 8.91                      |                    | I                  | I                  | I                                       | 1                  | I                  | I                  | 1                  | 1                  | 1                  | *1.16              | 1.17               | 1.12               |
| 00              | Catoctin Creek near Middletown            | 6.99                      | 1                  | 1                  | 1                  | 1                                       | 1                  | 1                  | I                  | 1                  | 1                  | 1                  | *1.20              | 1.22               | 1.16               |
| 0               | Catoctin Creek near Jefferson             | 111                       | I                  | 1                  | 1                  | *.659                                   |                    | 1                  | I                  | 1                  | 1                  | 1                  | I                  | 1                  | I                  |
| 10              | Potomac River at Point of Rocks           | 9,651                     | *.965              | 066.               | .964               | .689                                    | .938               | .948               | .966               | .982               | 696.               | .957               | 1.01               | 1.03               | .984               |
| 11              | Monocacy River at Bridgeport              | 173                       | I                  | 1                  | I                  | I                                       | I                  | 1                  | ]                  | I                  | *1.16              | 1.12               | 1.16               | 1.16               | 1.12               |
| 12              | Big Pipe Creek at Bruceville              | 102                       | 1                  | I                  | 1                  | 1                                       | 1                  | 1                  | I                  | I                  | 1                  |                    | *1.13              | 1.12               | 1.08               |
| 13              | Little Pipe Creek at Avondale             | 8.10                      |                    | 1                  | 1                  | 1                                       | 1                  | I                  | I                  | I                  | 1                  | I                  | *1.14              | 1.16               | 1.14               |
| 14              | Owens Creek at Lantz                      | 5.93                      |                    | 1                  | I                  | 1                                       | 1                  | 1                  | *1.56              | 1.58               | 1.59               | 1.62               | 1.68               | 1.72               | 1.67               |
| 15              | Hunting Creek at Jimtown                  | 18.4                      | I                  | 1                  | 1                  | 1                                       | 1                  |                    | 1                  | I                  | I                  | 1                  | 1                  | 1                  | *1.50              |
| 16              | Fishing Crcek near Lewistown              | 7.29                      | I                  | I                  | I                  | I                                       | I                  | I                  | 1                  | I                  | 1                  | 1                  | *1.67              | 1.71               | 1.62               |
| 17              | Monocacy River near Frederick             | 665                       | 1                  | *1.42              | 1                  | ]                                       | 1                  | ]                  | 1                  | I                  | 1                  | 1                  | I                  |                    | 1                  |
| 18              | Linganore Creek near Frederick            | 82.3                      |                    |                    | 1                  | I                                       | I                  | 1                  | I                  | *1.05              | 1.08               | 1.10               | 1.12               | 1.12               | 1.08               |
| 19              | Monocacy River at Jug Bridge              | 817                       | [                  |                    | I                  |                                         | *1.12              | 1.15               | 1.16               | 1.16               | 1.15               | 1.14               | 1.18               | 1.19               | 1.13               |
| 20              | Bennett Creek at Park Mills               | 62.8                      |                    | -                  |                    |                                         |                    | 1                  | l                  | 1                  | I                  | 1                  | 1                  | *1.05              | . 990              |
|                 |                                           |                           |                    |                    |                    |                                         |                    |                    |                    |                    |                    |                    |                    |                    |                    |

\* Longest period of record.

TABLE 35 Average Discharge of Streams in Carroll and Frederick Counties CARROLL AND FREDERICK COUNTIES

#### TABLE 36

### Daily Flow-duration Data for Monocacy River near Frederick (for the years starting A pril 1 during 1897–1955) (Drainage area, 817 square miles)

| Disch | arge   | Number | of days or perc  | ent of time d | lischarge equaled    | or exceede           | d that shown |  |
|-------|--------|--------|------------------|---------------|----------------------|----------------------|--------------|--|
| cfsm  | cfs    | Mini   | mum year<br>1930 | 59-ye<br>18   | ar period<br>97–1955 | Maximum year<br>1902 |              |  |
|       |        | Days   | Percent          | Days          | Percent              | Days                 | Percent      |  |
| 0.028 | 23     |        |                  | 21549         | 100.00               |                      |              |  |
| .048  | 39     | 365    | 100.00           | 21526         | 99.89                |                      |              |  |
| . 059 | 48     | 347    | 95.07            | 21469         | 99.63                |                      |              |  |
| .073  | 60     | 310    | 84.93            | 21273         | 98.72                |                      |              |  |
| .092  | 75     | 233    | 63.84            | 21018         | 97.54                | 365                  | 100.00       |  |
| .115  | 94     | 194    | 53.15            | 20659         | 95.87                | 355                  | 97.26        |  |
| .143  | 117    | 169    | 46.30            | 19980         | 92.72                | 343                  | 93.97        |  |
| .177  | 145    | 150    | 41.10            | 19133         | 88.79                | 326                  | 89.32        |  |
| .219  | 179    | 130    | 35.62            | 18168         | 84.31                | 317                  | 86.85        |  |
| .270  | 221    | 109    | 29.86            | 16918         | 78.51                | 307                  | 84.11        |  |
| .335  | 274    | 92     | 25.21            | 15335         | 71.16                | 261                  | 71.51        |  |
| .417  | 341    | 72     | 19.73            | 13624         | 63.22                | 240                  | 65.75        |  |
| .521  | 426    | 58     | 15.89            | 12096         | 56.13                | 208                  | 56.99        |  |
| .652  | 533    | 41     | 11.23            | 10370         | 48.12                | 196                  | 53.70        |  |
| .815  | 666    | 28     | 7.67             | 8602          | 39.92                | 176                  | 48.22        |  |
| 1.01  | 829    | 19     | 5.21             | 6865          | 31.86                | 165                  | 45.21        |  |
| 1.26  | 1,030  | 13     | 3.56             | 5411          | 25.11                | 155                  | 42.47        |  |
| 1.55  | 1,270  | 9      | 2.47             | 4299          | 19.95                | 144                  | 39.45        |  |
| 1.92  | 1,570  | 7      | 1.92             | 3327          | 15.44                | 126                  | 34.52        |  |
| 2.37  | 1,940  | 6      | 1.64             | 2577          | 11.96                | 120                  | 32 88        |  |
| 2.95  | 2,410  | _      |                  | 1950          | 9.05                 | 91                   | 24.93        |  |
| 3.66  | 2,990  | 3      | . 822            | 1455          | 6.75                 | 74                   | 20.27        |  |
| 4.55  | 3,720  |        |                  | 1050          | 4.87                 | 47                   | 12.88        |  |
| 5.69  | 4.650  | 2      | . 548            | 791           | 3.67                 | 38                   | 10.41        |  |
| 7.14  | 5,830  | 1      | .274             | 561           | 2.60                 | 27                   | 7.40         |  |
| 8.95  | 7.310  |        |                  | 390           | 1.81                 | 18                   | 4.93         |  |
| 11.2  | 9,150  |        |                  | 275           | 1.28                 | 16                   | 4.38         |  |
| 14.0  | 11.400 |        |                  | 165           | .766                 | 11                   | 3.01         |  |
| 17.4  | 14,200 |        |                  | 96            | .445                 | 6                    | 1.64         |  |
| 21.5  | 17,600 |        |                  | 34            | .158                 | 2                    | .548         |  |
| 26.7  | 21,800 |        |                  | 10            | .046                 | 1 1                  |              |  |
| 33.3  | 27,200 |        |                  | 3             | .014                 |                      |              |  |
| 51.5  | 42,100 | 1      |                  | 1             | .0046                |                      |              |  |

Note that data for the station at Ceresville Bridge (1897–1930) have been converted to equivalent Jug Bridge values through a discharge relation curve developed from the period of concurrent operation.



252

and used as an example of single site flow-duration study (Table 36 and figure 34). A yearly period beginning on April 1 was adopted rather than the customary water year (beginning October 1) in order that the usual low-flow season (during the fall months) would remain unbroken and be entirely contained within a single "year". In addition to a summary curve for the entire period of record, 1897–1956, the annual curves for the maximum and minimum years are shown.

As is the case with flood-frequency and low-flow frequency analyses, flowduration analyses can be improved by regionalization to some long-term standard period. These procedures modify the individual gaging-station records so that the position of the curves from short-term records, and particularly the ends of those curves, will not be unduly influenced by a predominance of wet years or dry years within the short period.

#### Low-Flow Frequency

Extreme drought conditions prevailed throughout Maryland from 1930 to 1934. The annual precipitation in 1930 was only 24 inches compared with a 54-year average of 42 inches. A study of the hydrologic conditions during this period was published by the U. S. Geological Survey in Water-Supply Paper 680, *Droughts of 1930–34*. Sustained periods of subnormal streamflow were experienced also in 1910, 1941, and 1943.

Information on the frequency of consecutive days of low flows can be expressed best by curves which indicate how often, on the average, flow for

| Periods (consecutive days) | Average | discharge in c<br>recu | ubic feet per<br>rrence interva | second for in<br>als | dicated |
|----------------------------|---------|------------------------|---------------------------------|----------------------|---------|
|                            | 2 years | 5 years                | 10 years                        | 25 years             | 50 year |
| 7                          | 109     | 66                     | 49                              | 38                   | 33      |
| 15                         | 121     | 72                     | 55                              | 42                   | 37      |
| 30                         | 146     | 86                     | 66                              | 50                   | 42      |
| 60                         | 206     | 120                    | 88                              | 63                   | 51      |
| 120                        | 308     | 177                    | 129                             | 88                   | 68      |
| 183                        | 445     | 261                    | 189                             | 127                  | 95      |
| 274                        | 695     | 440                    | 330                             | 232                  | 180     |
| 365                        | 1,040   | 735                    | 590                             | 450                  | 370     |

TABLE 37

Magnitude and Frequency of Annual Low Flow, Monocacy River near Frederick (for periods of 7 to 365 days based on records for 1897–1955)

Note that data have been taken from smoothed curves (figure 35) based on records for station at Jug Bridge (1930-55) and for station at Ceresville Bridge (1897-1930) which have been converted to equivalent Jug Bridge values through a discharge relation curve developed from the period of concurrent operation.



254

periods of various lengths might be expected to be as low as a specified discharge. Such analyses, treating consecutive days as a unit, indicate, for instance, whether the lowest 30 days of record occurred in one rare drought year or as a few days in each of many years. As an example of low-flow frequency, data for the two Monocacy River stations near Frederick have been combined and analysed to determine the recurrence interval of the average discharge during selected consecutive periods. This information is presented in figure 35 and summarized in Table 37.

Reliable low-flow frequency analyses for other gaging stations in Carroll and Frederick Counties, which have relatively short records, would require correlation with the long-term Monocacy River record. These and other useful analyses of low-flow characteristics such as curves that indicate the maximum number of consecutive days during which the flow was less than a specified discharge, and draft-storage curves which show the additional net storage required to maintain specific outflow rates, are beyond the scope of this report.

#### DISCHARGE RECORDS

Daily discharge records for the gaging stations in Frederick and Carroll Counties are published in Part 1 (Part 1B subsequent to 1950) of the annual series of water-supply papers of the U. S. Geological Survey entitled *Surface Water Supply of the United States*.

Monthly discharge records prior to October 1943 were published in Bulletin 1 of the Maryland Department of Geology, Mines and Water Resources. Similar records for the period since October 1943 are contained in the following pages. A summary table of annual data for the entire period of record is presented for each station. Some monthly discharge figures prior to October 1943 are republished herein, either because of a drainage area revision, which necessitated revision of the previously published unit runoff figures, or because a recent area-wide review and compilation disclosed errors in the data. Some of the monthly data subsequent to October 1943, for stations in the Patapsco River basin, have been published in Bulletins 14 and 17 and are not repeated here unless revisions have been made. Reference to the bulletins in which specific records may be found is contained in the *Records available* paragraph of the individual station records.

The gaging station records follow in downstream order. The locations of the stations are shown in figure 32.

#### PATAPSCO RIVER BASIN

#### 1. Cranberry Branch near Westminster

Location.—Lat 39°35'35", long 76°58'05", on left bank 80 ft upstream from small wooden bridge, half a mile upstream from mouth, and 1.8 miles northeast of Westminster, Carroll County.

Drainage area.-3.29 sq mi.

Records available .- October 1949 to September 1956.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 670 ft (from topographic map).

Average discharge.-7 years, 4.09 cfs.

*Extremes.*—Maximum discharge, 720 cfs July 4, 1951 (gage height, 5.14 ft, from high-water mark in well), from rating curve extended above 200 cfs by logarithmic plotting; minimum, 0.4 cfs Jan. 20, 1955, result of freezeup.

|           |         | Discharg | e in cfs |                    | D C                 | Discharge<br>in million               |  |
|-----------|---------|----------|----------|--------------------|---------------------|---------------------------------------|--|
| Month     | Maximum | Minimum  | Mean     | Per square<br>mile | Runoff in<br>inches | gallons per<br>day per<br>square mile |  |
| 1949-50   |         |          |          |                    |                     |                                       |  |
| October   | 6.8     | 1.5      | 2.16     | 0.657              | 0.76                | 0.425                                 |  |
| November  | 3.9     | 1.7      | 2.06     | .626               | .70                 | .405                                  |  |
| December  | 10      | 1.7      | 2.89     | .878               | 1.01                | . 567                                 |  |
| January   | 5.6     | 2.3      | 2.77     | .842               | .97                 | . 544                                 |  |
| February  | 9.1     | 2.3      | 4.48     | 1.36               | 1.42                | .879                                  |  |
| March     | 26      | 2.1      | 5.34     | 1.62               | 1.87                | 1.05                                  |  |
| April     | 4.9     | 2.9      | 3.70     | 1.12               | 1.26                | .724                                  |  |
| May       | 9.7     | 2.9      | 4.22     | 1.28               | 1.48                | .827                                  |  |
| June      | 7.1     | 2.1      | 3.13     | .951               | 1.06                | .615                                  |  |
| July.     | 7.0     | 1.7      | 2.45     | .745               | .86                 | .482                                  |  |
| August    | 12      | 1.3      | 2.14     | .650               | .75                 | .420                                  |  |
| September | 33      | 1.6      | 4.19     | 1.27               | 1.42                | .821                                  |  |
| The year  | 33      | 1.3      | 3.29     | 1.00               | 13.56               | .646                                  |  |
| 1950-51   |         |          |          |                    |                     |                                       |  |
| October   | 11      | 2.0      | 2.69     | 0.818              | 0.94                | 0.529                                 |  |
| November  | 32      | 2.1      | 3.82     | 1.16               | 1.30                | .750                                  |  |
| December  | 49      | 3.1      | 6.55     | 1.99               | 2.30                | 1.29                                  |  |
| January   | 16      | 3.5      | 4.95     | 1.50               | 1.74                | .969                                  |  |
| February  | 32      | 4.3      | 8.15     | 2.48               | 2.58                | 1.60                                  |  |
| March     | 10      | 4.1      | 5.52     | 1.68               | 1.93                | 1.09                                  |  |
| April     | 8.0     | 3.3      | 4.54     | 1.38               | 1.54                | .892                                  |  |
| May       | 6.2     | 2.9      | 3.86     | 1.17               | 1.35                | .756                                  |  |
| June      | 33      | 2.7      | 6.24     | 1.90               | 2.12                | 1.23                                  |  |
| July      | 55      | 2.4      | 5.27     | 1.60               | 1.85                | 1.03                                  |  |
| August.   | 7.6     | 2.0      | 3.20     | .973               | 1.12                | . 629                                 |  |
| September | 4.8     | 1.7      | 2.18     | . 663              | .74                 | .429                                  |  |
| The year  | 55      | 1.7      | 4.73     | 1.44               | 19.51               | .931                                  |  |

Monthly discharge of Cranberry Creek near Westminster

# PATAPSCO RIVER BASIN—Continued Monthly discharge of Cranberry Creek near Westminster—Continued

|           |         | Discharg | ge in cfs |                    |                     | Discharge<br>in million               |
|-----------|---------|----------|-----------|--------------------|---------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile | Runoii in<br>inches | gallons per<br>day per<br>square mile |
| 1951-52   |         |          |           |                    |                     |                                       |
| October   | 3.1     | 1.6      | 1.93      | 0.587              | 0.68                | 0.379                                 |
| November  | 16      | 2.1      | 3.98      | 1.21               | 1.35                | .782                                  |
| December  | 18      | 2.3      | 4.57      | 1.39               | 1.60                | 898                                   |
| lanuary   | 15      | 4.3      | 6.37      | 1.94               | 2.23                | 1 25                                  |
| February  | 15      | 3.9      | 5.54      | 1.68               | 1.82                | 1.09                                  |
| March     | 38      | 3.9      | 8 09      | 2 46               | 2 84                | 1 59                                  |
| April     | 47      | 5.2      | 11 9      | 3 62               | 4 05                | 2 34                                  |
| May       | 36      | 4.0      | 11.3      | 3 43               | 3 07                | 2.04                                  |
| June      | 30      | 4.0      | 7 55      | 2 20               | 2.56                | 1 18                                  |
| Julie     | 18      | 3 1      | 5 51      | 1.68               | 1 01                | 1.40                                  |
| August    | 7 3     | 2 1      | 3 30      | 1.00               | 1.94                | 1.09                                  |
| September | 36      | 2.3      | 3.91      | 1.19               | 1.33                | . 769                                 |
| The year  | 47      | 1.6      | 6.17      | 1.88               | 25.56               | 1.22                                  |
| 1952-53   |         |          |           |                    |                     |                                       |
| October   | 5.3     | 2.1      | 2.46      | 0.748              | 0.86                | 0.483                                 |
| November  | 58      | 2.0      | 6.66      | 2.02               | 2.26                | 1.31                                  |
| December  | 20      | 3.5      | 5.76      | 1.75               | 2.02                | 1.13                                  |
| January   | 22      | 3.9      | 7.58      | 2.30               | 2.66                | 1.49                                  |
| February  | 16      | 4.9      | 6.25      | 1.90               | 1.98                | 1.23                                  |
| March     | 25      | 4.9      | 8.44      | 2.57               | 2.96                | 1.66                                  |
| April     | 15      | 4.9      | 7.12      | 2.16               | 2.41                | 1.40                                  |
| May       | 16      | 3.7      | 6.18      | 1.88               | 2.17                | 1.22                                  |
| Iune      | 11      | 2.7      | 4.06      | 1.23               | 1.38                | 795                                   |
| Iuly      | 3.9     | 2.1      | 2.51      | 763                | 88                  | 493                                   |
| Angust    | 10      | 1.6      | 2 59      | 787                | 91                  | 509                                   |
| September | 6.5     | 1.4      | 2.11      | . 641              | .71                 | .414                                  |
| The year  | 58      | 1.4      | 5.14      | 1.56               | 21.20               | 1.01                                  |
| 1953-54   |         |          |           |                    |                     |                                       |
| October   | 7.3     | 1.3      | 1.73      | 0.526              | 0.61                | 0.340                                 |
| November  | 5.9     | 1.4      | 2.15      | . 653              | .73                 | . 422                                 |
| December  | 19      | 1.7      | 4.99      | 1.52               | 1.75                | . 982                                 |
| January   | 6.6     | 2.1      | 2.77      | . 842              | .97                 | . 544                                 |
| February  | 4.7     | 1.9      | 2.50      | . 760              | .79                 | . 491                                 |
| March     | 24      | 2.4      | 3.79      | 1.15               | 1.33                | .743                                  |
| April     | 8.0     | 2.2      | 2.82      | . 857              | .96                 | . 554                                 |
| May       | 7.2     | 1.9      | 3.07      | .933               | 1.08                | .603                                  |
| June      | 2.3     | 1.1      | 1.57      | .477               | .53                 | .308                                  |
| July      | 5.5     | .7       | 1.38      | . 419              | .48                 | .271                                  |
| August    | 4.1     | .7       | 1.46      | . 444              | .51                 | . 287                                 |
| September | 1.7     | 1.0      | 1.18      | .359               | .40                 | .232                                  |
| The year  | 24      | .7       | 2.46      | . 748              | 10.14               | .483                                  |

# PATAPSCO RIVER BASIN-Continued

# Monthly discharge of Cranberry Creek near Westminster-Conlinued

|           |         | Discharg | e in cfs |                    | - Runoff in | Discharge<br>in million               |
|-----------|---------|----------|----------|--------------------|-------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean     | Per square<br>mile | inches      | gallons per<br>day per<br>square mile |
| 1954-55   |         |          |          |                    |             |                                       |
| October   | 6.1     | 1.0      | 1.61     | 0.489              | 0.56        | 0.316                                 |
| November  | 4.9     | 1.5      | 1.98     | . 602              | . 67        | .389                                  |
| December  | 6.6     | 1.4      | 2.43     | .739               | .85         | .478                                  |
| January   | 2.8     | 1.3      | 1.76     | . 535              | . 62        | . 346                                 |
| February  | 23      | 1.3      | 4.00     | 1.22               | 1.26        | .789                                  |
| March     | 29      | 2.4      | 4.95     | 1.50               | 1.73        | .969                                  |
| April     | 4.6     | 2.5      | 3.08     | .936               | 1.05        | . 605                                 |
| May       | 3.7     | 1.5      | 2.02     | .614               | .71         | . 397                                 |
| June      | 13      | 1.4      | 2.73     | .830               | .93         | . 536                                 |
| July      | 2.0     | .9       | 1.25     | .380               | .44         | .246                                  |
| August    | 70      | .8       | 6.91     | 2.10               | 2.42        | 1.36                                  |
| September | 5.8     | 2.1      | 2.66     | . 809              | . 90        | .523                                  |
| The year  | 70      | .8       | 2.94     | . 894              | 12.14       | .578                                  |
| 1955-56   |         |          |          |                    |             |                                       |
| October   | 32      | 2.0      | 3.55     | 1.08               | 1.24        | 0.698                                 |
| November  | 5.1     | 1.9      | 2.51     | .763               | .85         | .493                                  |
| December  | 2.7     | 1.7      | 2.09     | . 635              | .73         | .410                                  |
| January   | 25      | 1.6      | 2.92     | .888               | 1.02        | .574                                  |
| February  | 21      | 3.0      | 6.43     | 1.95               | 2.11        | 1.26                                  |
| March     | 24      | 3.0      | 5.69     | 1.73               | 2.00        | 1.12                                  |
| April     | 11      | 3.8      | 5.39     | 1.64               | 1.83        | 1.06                                  |
| May       | 8.5     | 2.5      | 3.62     | 1.10               | 1.27        | .711                                  |
| June      | 5.7     | 1.7      | 2.69     | .818               | . 91        | . 529                                 |
| July      | 40      | 1.6      | 6.63     | 1.98               | 2.29        | 1.28                                  |
| August    | 5.8     | 1.9      | 2.74     | .833               | . 96        | . 538                                 |
| September | 5.2     | 1.9      | 2.29     | . 696              | .78         | .450                                  |
| The year  | 40      | 1.6      | 3.87     | 1.18               | 15.99       | .763                                  |

## PATAPSCO RIVER BASIN-Continued

Yearly discharge of Cranberry Creek near Westminster

|         |         | Year end              | ling Sept.          | 30                                       | Calendar year |                       |                     |                                          |  |
|---------|---------|-----------------------|---------------------|------------------------------------------|---------------|-----------------------|---------------------|------------------------------------------|--|
| Year    | Dischar | Discharge in cfs      |                     | Discharge in<br>million                  | Dischar       | ge in cfs             |                     | Discharge in<br>million                  |  |
|         | Mean    | Per<br>square<br>mile | Runoff<br>in inches | gallons<br>per day<br>per square<br>mile | Mean          | Per<br>square<br>mile | Runoff<br>in inches | gallons<br>per day<br>per square<br>mile |  |
| 1950    | 3.29    | 1.00                  | 13.56               | 0.646                                    | 3.79          | 1.15                  | 15.63               | 0.743                                    |  |
| 1951    | 4.73    | 1.44                  | 19.51               | . 931                                    | 4.51          | 1.37                  | 18.60               | .885                                     |  |
| 1952    | 6.17    | 1.88                  | 25.56               | 1.22                                     | 6.54          | 1.99                  | 27.07               | 1.29                                     |  |
| 1953    | 5.14    | 1.56                  | 21.20               | 1.01                                     | 4.64          | 1.41                  | 19.15               | .911                                     |  |
| 1954    | 2.46    | .748                  | 10.14               | . 483                                    | 2.22          | .675                  | 9.13                | . 436                                    |  |
| 1955    | 2.94    | . 894                 | 12.14               | . 578                                    | 3.12          | .948                  | 12.88               | .613                                     |  |
| 1956    | 3.87    | 1.18                  | 15.99               | .763                                     |               |                       | -                   | —                                        |  |
| Highest | 6.17    | 1.88                  | 25.56               | 1.22                                     | 6.54          | 1.99                  | 27.07               | 1.29                                     |  |
| Average | 4.09    | 1.24                  | 16.87               | . 801                                    | 4.14          | 1.26                  | 17.08               | .814                                     |  |
| Lowest  | 2.46    | .748                  | 10.14               | .483                                     | 2.22          | .675                  | 9.13                | .436                                     |  |

#### PATAPSCO RIVER BASIN

#### 2. North Branch Patapsco River at Cedarhurst

Location.—Lat 39°30'00", long 76°53'00", on left bank at downstream side of private footbridge at Cedarhurst, Carroll County, 0.8 mile downstream from Roaring Run and 8 miles southeast of Westminster.

Drainage area. -56.6 sq mi.

*Records available.*—October 1945 to September 1956. Monthly records October 1945 to September 1954 published in Bulletin 17.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 425 ft (from topographic map).

Average discharge.—11 years, 70.9 cfs.

*Extremes.*—Maximum discharge, 4,130 cfs Aug. 13, 1955 (gage height, 10.38 ft), from rating curve extended above 1,700 cfs by logarithmic plotting; minimum, 3.0 cfs Oct. 16, 1949 (gage height, 1.18 ft), result of filling pond above station; minimum daily, 12 cfs Aug. 2, Sept. 14, 1954.

*Remarks.*—Slight diurnal fluctuation at low and medium flow caused by mill above station. Small diversion above station for municipal supply of Westminster; sewage effluent discharged into Little Pipe Creek.

|           |         | Discharg |      | - Runoff in        | Discharge<br>in million |                                       |
|-----------|---------|----------|------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1954–55   |         |          |      |                    |                         |                                       |
| October   | 88      | 13       | 23.3 | 0.412              | 0.47                    | 0.266                                 |
| November  | 70      | 20       | 28.8 | . 509              | . 57                    | .329                                  |
| December  | 135     | 17       | 36.7 | . 648              | .75                     | .419                                  |
| January   | 46      | 16       | 26.7 | .472               | . 54                    | .305                                  |
| February  | 518     | 18       | 67.6 | 1.19               | 1.24                    | .769                                  |
| March     | 338     | 41       | 84.4 | 1.49               | 1.72                    | .963                                  |
| April     | 75      | 40       | 51.6 | .912               | 1.02                    | .589                                  |
| May       | 59      | 23       | 32.5 | .574               | .66                     | .371                                  |
| Tune      | 161     | 21       | 47.2 | .834               | .93                     | . 539                                 |
| Iuly      | 55      | 13       | 19.7 | .348               | .40                     | .225                                  |
| August    | 2,240   | 14       | 165  | 2.92               | 3.36                    | 1.89                                  |
| September | 98      | 30       | 43.4 | .767               | .86                     | . 496                                 |
| The year  | 2,240   | 13       | 52.2 | .922               | 12.52                   | . 596                                 |
| 1955-56   |         |          |      |                    |                         |                                       |
| October   | 663     | 29       | 67.3 | 1.19               | 1.37                    | 0.769                                 |
| November  | 116     | 29       | 44.4 | .784               | .87                     | . 507                                 |
| December  | 43      | 22       | 31.8 | . 562              | .65                     | .363                                  |
| January   | 270     | 22       | 44.2 | .781               | . 90                    | . 505                                 |
| February  | 350     | 56       | 120  | 2.12               | 2.29                    | 1.37                                  |
| March     | 375     | 48       | 106  | 1.87               | 2.17                    | 1.21                                  |
| April     | 191     | 50       | 88.6 | 1.57               | 1.75                    | 1.01                                  |
| May       | 100     | 40       | 51.2 | .905               | 1.04                    | . 585                                 |
| June      | 83      | 24       | 40.8 | .721               | . 80                    | .466                                  |
| July      | 1,150   | 18       | 115  | 2.03               | 2.34                    | 1.31                                  |
| August    | 93      | 27       | 39.5 | . 698              | .80                     | .451                                  |
| September | 73      | 23       | 30.7 | . 542              | .60                     | . 350                                 |
| The year  | 1,150   | 18       | 64.8 | 1.14               | 15.58                   | .737                                  |

Monthly discharge of North Branch Patapsco River at Cedarhurst

#### Year ending Sept. 30 Calendar year Discharge in cfs Discharge in cfs Discharge Discharge Year Runoff in million gallons per day per square mile Runoff in million in inches in inches Per gallons per Per Mean day per square mile square mile Mean square mile 1946 79.9 1.41 19.16 0.911 73.7 1.30 17.68 0.840 1947. 62.7 1.11 15.03 .717 63.4 1.12 15.20 .724 1948... 77.3 .885 1.37 18.58 80.6 1.42 19.38 .918 1949. 79.7 1.41 .911 72.2 19.101.28 17.31 .827 1950. 51.7 .913 12.39 .590 61.3 1.08 14.68 .698 .898 1951 78.4 1.39 18.81 73.3 1.30 17.59 .840 1952. 102 1.80 24.641.16 109 1.93 26.23 1.25 1953. 88.3 1.56 1.01 80.3 21.18 1.42 19.27 .918 1954. 42.6 .753 10.22 .487 37.9 .670 9.08 .433 1955..... 52.2 .922 12.52 . 596 56.8 1.0013.62 .646 1956 .737 64.8 1.14 15.58 Highest ..... 102 1.80 24.64 1.16 109 1.93 26.23 1.25 1.25 Average 70.9 17.02 1.25 .808 70.8 17.00.808 Lowest.... 42.6 .753 10.22 37.9 .670 .433 .487 9.08

#### PATAPSCO RIVER BASIN— Continued Yearly discharge of North Branch Patapsco at Cedarhurst

#### PATAPSCO RIVER BASIN

#### 3. North Branch Patapsco River near Reisterstown

*Location.*—Lat  $39^{\circ}26'31''$ , long  $76^{\circ}53'14''$ , on left bank at upstream side of highway bridge on Louisville-Delight road, 600 ft upstream from Cooks Branch and  $3\frac{1}{2}$  miles southwest of Reisterstown, Baltimore County.

Drainage area.—91.0 sq mi.

*Records available.*—July 1927 to December 1953 (discontinued). Monthly records July 1927 to September 1943 published in Bulletin 1 (1930 revised herein); October 1943 to December 1953, in Bulletin 17.

Gage.-Water-stage recorder. Concrete control since May 15, 1942. Datum of gage is 344.35 ft above mean sca level, adjustment of 1912.

Average discharge.-26 years, 103 cfs.

*Extremes.*—Maximum discharge, 11,000 cfs Aug. 24, 1933 (gage height, 14.6 ft from highwater mark in gage house), from rating curve extended above 2,400 cfs on basis of velocityarea determination of peak flow; minimum, 8.0 cfs Feb. 21, 1947 (gage height, 1.34 ft).

*Remarks.*—Slight diurnal fluctuation at low and medium flow caused by mill above station. Small diversion above station for municipal supply of Westminster; sewage effluent discharged into Little Pipe Creek.

|           |         | Discharg |      | Runoff in          | Discharge<br>in million |                        |
|-----------|---------|----------|------|--------------------|-------------------------|------------------------|
| Month     | Maximum | Minimum  | Mean | Per square<br>mile | inches                  | day per<br>square mile |
| 1929-30   |         |          |      |                    |                         |                        |
| October*  | 2,080   | 58       | 169  | 1.86               | 2.14                    | 1.20                   |
| November  | 346     | 60       | 105  | 1.15               | 1.28                    | .743                   |
| December  | 140     |          | 87.4 | .960               | 1.11                    | . 620                  |
| Ianuary   | 120     |          | 75.3 | .827               | .95                     | . 535                  |
| February  | 559     |          | 149  | 1.64               | 1.71                    | 1.06                   |
| March     | 519     | 84       | 137  | 1.51               | 1.74                    | .976                   |
| April     | 569     | 91       | 142  | 1.56               | 1.74                    | 1.01                   |
| May       | 95      | 60       | 76.4 | . 840              | . 97                    | . 543                  |
| [une      | 303     | 43       | 84.4 | .927               | 1.03                    | . 599                  |
| July      | 91      | 24       | 37.4 | .411               | .47                     | .266                   |
| August    | 39      | 18       | 24.7 | .271               | .31                     | .175                   |
| September | 126     | 19       | 30.0 | .330               | .37                     | . 213                  |
| The year  | 2,080   | 18       | 92.8 | 1.02               | 13.82                   | . 659                  |

Monthly discharge of North Branch Patapsco River near Reisterstown

\* Revised.

## PATAPSCO RIVER BASIN-Continued

Yearly discharge of North Branch Patapsco River near Reisterstown

|         |         | Year en               | ding Sept.          | 30                     | Calendar year |                       |                     |                                       |  |
|---------|---------|-----------------------|---------------------|------------------------|---------------|-----------------------|---------------------|---------------------------------------|--|
| Year    | Dischar | ge in cfs             |                     | Discharge              | Dischar       | ge in cfs             |                     | Discharge                             |  |
|         | Mean    | Per<br>square<br>mile | Runoff in<br>inches | day per<br>square mile | Mean          | Per<br>square<br>mile | Runoff in<br>inches | gallons per<br>day per<br>square mile |  |
| 1928    | 141     | 1.55                  | 21.09               | 1.00                   | 128           | 1.41                  | 19.10               | 0.911                                 |  |
| 1929    | 108     | 1.19                  | 16.13               | .769                   | 121           | 1.33                  | 18.00               | .860                                  |  |
| 1930    | 92.8    | 1.02                  | 13.82               | .659                   | 70.9          | .779                  | 10.57               | . 503                                 |  |
| 1931    | 44.6    | .490                  | 6.66                | .317                   | 41.7          | .458                  | 6.24                | . 296                                 |  |
| 1932    | 47.3    | .520                  | 7.10                | .336                   | 70.0          | .769                  | 10.49               | . 497                                 |  |
| 1933    | 149     | 1.64                  | 22.23               | 1.06                   | 138           | 1.52                  | 20.56               | .982                                  |  |
| 1934    | 92.0    | 1.01                  | 13.71               | .653                   | 98.7          | 1.08                  | 14.71               | . 698                                 |  |
| 1935    | 102     | 1.12                  | 15.19               | .724                   | 93.6          | 1.03                  | 13.95               | . 666                                 |  |
| 1936    | 119     | 1.31                  | 17.84               | .847                   | 118           | 1.30                  | 17.70               | .840                                  |  |
| 1937    | 110     | 1.21                  | 16.40               | .782                   | 133           | 1.46                  | 19.87               | .944                                  |  |
| 1938    | 94.4    | 1.04                  | 14.07               | .672                   | 70.9          | .779                  | 10.58               | . 503                                 |  |
| 1939    | 88.5    | .973                  | 13.19               | .629                   | 86.1          | .946                  | 12.85               | .611                                  |  |
| 1940    | 87.0    | .956                  | 13.03               | .618                   | 97.5          | 1.07                  | 14.59               | .692                                  |  |
| 1941    | 83.4    | .916                  | 12.44               | .592                   | 68.3          | .751                  | 10.19               | .485                                  |  |
| 1942    | 73.0    | . 802                 | 10.90               | . 518                  | 104           | 1.14                  | 15.52               | .737                                  |  |
| 1943    | 114     | 1.25                  | 17.06               | .808                   | 96.5          | 1.06                  | 14.37               | .685                                  |  |
| 1944    | 90.2    | . 991                 | 13.48               | . 641                  | 83.8          | . 921                 | 12.53               | . 595                                 |  |
| 1945    | 91.7    | 1.01                  | 13.68               | .653                   | 106           | 1.16                  | 15.86               | .750                                  |  |
| 1946    | 130     | 1.43                  | 19.35               | .924                   | 118           | 1.30                  | 17.64               | .840                                  |  |
| 1947    | 75.0    | .824                  | 11.18               | . 533                  | 71.4          | .785                  | 10.65               | . 507                                 |  |
| 1948    | 103     | 1.13                  | 15.49               | .730                   | 116           | 1.27                  | 17.32               | .821                                  |  |
| 1949    | 125     | 1.37                  | 18.67               | .885                   | 114           | 1.25                  | 16.96               | .808                                  |  |
| 1950    | 80.8    | . 888                 | 12.05               | .574                   | 93.6          | 1.03                  | 13.95               | .666                                  |  |
| 1951    | 119     | 1.31                  | 17.77               | .847                   | 113           | 1.24                  | 16.83               | .801                                  |  |
| 1952    | 168     | 1.85                  | 25.16               | 1.20                   | 182           | 2.00                  | 27.19               | 1.29                                  |  |
| 1953    | 145     | 1.59                  | 21.68               | 1.03                   | 130           | 1.43                  | 19.41               | .924                                  |  |
| Highest | 168     | 1.85                  | 25.16               | 1.20                   | 182           | 2.00                  | 27.19               | 1.29                                  |  |
| Average | 103     | 1.13                  | 15.36               | .730                   | 102           | 1.12                  | 15.29               | .724                                  |  |
| Lowest  | 44.6    | . 490                 | 6.66                | . 317                  | 41.7          | .458                  | 6.24                | . 296                                 |  |

#### PATAPSCO RIVER BASIN

#### 4. North Branch Patapsco River near Marriottsville

Location.—Lat 39°21′56″, long 76°53′06″, on left bank at downstream side of highway bridge 0.9 mile downstream side of highway bridge 0.9 mile downstream from Liberty Dam, 1.2 miles northeast of Marriottsville, Howard County, and 2.3 miles upstream from confluence with South Branch.

Drainage area.—165 sq mi.

*Records available.*—October 1929 to September 1956. Monthly records October 1929 to September 1943 published in Bulletin 1 (1930 and 1938 revised herein); October 1943 to September 1952, in Bulletin 14.

Gage.-Water-stage recorder. Datum of gage is 269.78 ft above mean sea level (city of Baltimore bench-mark).

*Extremes.*—Maximum discharge, 19,500 cfs Aug. 24, 1933 (gage height, 20.8 ft, from highwater mark in gage house), from rating curve extended above 2,700 cfs on basis of slope-area determination at gage height 13.93 ft and velocity-area study of peak flow; minimum, 0.2 cfs on many days in September, October 1954.

*Remarks.*—Flow regulated by Liberty Reservoir beginning July 22, 1954 (usable capacity, 42,072,000,000 gal). Diversion above station for municipal supply of Westminster (sewage effluent discharged into Little Pipe Creek) and from Liberty Reservoir beginning Feb. 1953 for municipal supply of Baltimore.

*Cooperation.*—Records of diversion for municipal supply of Westminster furnished by Maryland Waterworks Co., those for diversions from and change in contents in Liberty Reservoir furnished by Baltimore Department of Public Works.

|           |         | Dischar |      | - Runoff in        | Discharge<br>in million |                        |
|-----------|---------|---------|------|--------------------|-------------------------|------------------------|
| Month     | Maximum | Minimum | Mean | Per square<br>mile | inches                  | day per<br>square mile |
| 1929-30   |         |         |      |                    |                         |                        |
| October*  | 3,000   | 100     | 279  | 1.69               | 1.95                    | 1.09                   |
| November  | 725     | 92      | 191  | 1.16               | 1.29                    | .750                   |
| December  | 259     | _       | 156  | .945               | 1.09                    | .611                   |
| January   | 209     |         | 138  | . 836              | .96                     | . 540                  |
| February  | 654     |         | 249  | 1.51               | 1.57                    | .976                   |
| March.    | 1,100   | 164     | 262  | 1.59               | 1.83                    | 1.03                   |
| April     | 1,200   | 164     | 257  | 1.56               | 1.74                    | 1.01                   |
| May       | 176     | 109     | 136  | .824               | .95                     | . 533                  |
| Iune      | 454     | 80      | 144  | .873               | .97                     | . 564                  |
| July      | 104     | 36      | 58.0 | .352               | .41                     | . 228                  |
| August    | 49      | 29      | 35.5 | .215               | .25                     | . 139                  |
| September | 150     | 26      | 43.9 | .266               | .30                     | . 172                  |
| The year  | 3,000   | 26      | 162  | .982               | 13.31                   | .635                   |

Monthly discharge of North Branch Patapsco River near Marriottsville

\* Revised.

# PATAPSCO RIVER BASIN-Continued

|           |         | Dischar | ge in cfs |                    | Runoff in | Discharge<br>in million                                           |
|-----------|---------|---------|-----------|--------------------|-----------|-------------------------------------------------------------------|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile | inches    | gallons per<br>day per<br>square mile                             |
| 1937-38   |         |         |           |                    |           |                                                                   |
| October   | 2,230   | 69      | 254       | 1.54               | 1.78      | 0.995                                                             |
| November* | 4,200   | 141     | 369       | 2.24               | 2.49      | 1.45                                                              |
| December  | 229     | 154     | 177       | 1.07               | 1.23      | .692                                                              |
| January   | 373     | 126     | 167       | 1.01               | 1.16      | . 653                                                             |
| February  | 430     | 143     | 185       | 1.12               | 1.17      | .724                                                              |
| March     | 300     | 151     | 188       | 1.14               | 1.31      | .737                                                              |
| April     | 334     | 136     | 168       | 1.02               | 1.14      | . 659                                                             |
| May       | 207     | 114     | 135       | .818               | . 94      | . 529                                                             |
| June      | 491     | 67      | 116       | . 703              | .78       | .454                                                              |
| July      | 451     | 58      | 131       | . 794              | . 92      | .513                                                              |
| August    | 426     | 41      | 88.5      | . 536              | .62       | .346                                                              |
| September | 553     | 54      | 108       | .655               | .73       | . 423                                                             |
| The year  | 4,200   | 41      | 174       | 1.05               | 14.27     | .679                                                              |
| 1952–53   |         |         |           |                    |           |                                                                   |
| October   | 188     | 98      | 116       | 0.703              | 0.81      | 0.454                                                             |
| November  | 2,940   | 96      | 353       | 2.14               | 2.39      | 1.38                                                              |
| December  | 965     | 185     | 296       | 1.79               | 2.07      | 1.16                                                              |
| January   | 1,270   | 207     | 398       | 2.41               | 2.78      | 1.56                                                              |
|           |         |         |           |                    |           | Diversions<br>and change<br>in contents,<br>equivalent<br>in cfs† |
| February  | 612     | 248     | 317       |                    |           | +1.3                                                              |
| March     | 1.340   | 234     | 478       |                    |           | +6.6                                                              |
| April     | 636     | 294     | 402       |                    |           | 0                                                                 |
| May       | 859     | 213     | 339       |                    |           | 0                                                                 |
| June      | 538     | 113     | 203       |                    |           | +8.4                                                              |
| July      | 276     | 34      | 91.0      |                    |           | +35.9                                                             |
| August    | 391     | 20      | 66.0      |                    |           | +41.9                                                             |
| September | 628     | 7.7     | 79.6      |                    |           | +41.5                                                             |
| The year  | 2,940   | 7.7     | 261       |                    |           | +11.4                                                             |

# Monthly Discharge of North Branch near Marriottsville-Continued

† Diversions only prior to July 1954.

|           |         | Dischar | Runoff in | Diversions<br>and change |        |                     |
|-----------|---------|---------|-----------|--------------------------|--------|---------------------|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile       | inches | eqivalent<br>in cfs |
| 1953-54   |         |         |           |                          |        |                     |
| October   | 238     | 23      | 50.0      |                          |        | +36.0               |
| November  | 2.10    | 17      | 62 6      |                          |        | 130.0               |
| December  | 861     | 0.0     | 203       |                          |        | 10 5                |
| Japuaru   | 200     | 28      | 0.0 1     |                          |        | 135 7               |
| February  | 290     | 20      | 70.0      |                          |        | +33.7               |
| March     | 696     | 150     | 19.9      |                          |        | 742.2               |
| March     | 200     | 130     | 120       |                          |        | +1.1                |
| April     | 308     | 01      | 139       |                          |        | +15.4               |
| May       | 1,090   | 70      | 18/       |                          |        | +13.1               |
| June      | 04      | 2.8     | 15.4      |                          |        | +59.8               |
| July      | 208     | .4      | 42.9      |                          |        | +41.3               |
| August    | 1.8     | .3      | . 53      |                          |        | +72.8               |
| September | .5      | . 2     | . 25      |                          |        | +53.0               |
| The year  | 1,090   | . 2     | 91.3      |                          |        | +35.7               |
| 1954-55   |         |         |           |                          |        |                     |
| October   | 1.0     | 0.2     | 0.29      |                          |        | +67.3               |
| November  | .6      | .3      | .40       |                          |        | +83.4               |
| December  | 2.0     | .3      | . 59      |                          |        | +121                |
| January   | . 6     | .4      | .42       |                          |        | +87.2               |
| February  | 3.1     | .3      | .61       |                          |        | +226                |
| March     | 3.2     | .5      | .79       |                          |        | +280                |
| April     | 1.1     | .6      | .76       |                          |        | +146                |
| Mav       | .9      | .4      | . 55      |                          |        | +114                |
| June      | 4.4     | .4      | .85       |                          |        | +170                |
| July      | .5      | .3      | .43       |                          |        | +52.8               |
| August    | 27      | .3      | 1.94      |                          |        | +535                |
| September | .8      | .4      | . 55      | _                        |        | +135                |
| The year  | 27      | .2      | .68       |                          |        | +168                |
| 1955-56   |         |         |           |                          |        |                     |
| October   | 11      | 0.6     | 1.08      | L = 1                    |        | +203                |
| November  | 1.2     | .5      | .70       |                          |        | +120                |
| December  | .8      | . 6     | . 67      |                          |        | +93.3               |
| January   | 3.6     | .7      | . 88      |                          |        | +138                |
| February  | 574     | 1.2     | 225       |                          |        | +112                |
| March     | 747     | 122     | 296       |                          |        | +8.9                |
| April     | 502     | 180     | 256       |                          |        | 4                   |
| May       | 210     | 92      | 143       |                          |        | +5.4                |
| June      | 400     | 15      | 92.3      |                          |        | +37.1               |
| July      | 4,100   | 12      | 322       |                          |        | +54.6               |
| August    | 130     | 17      | 55.2      |                          |        | +50.1               |
| September | 140     | 1.2     | 27.0      |                          | 1      | +59.9               |
| The year  | 4,100   | . 5     | 118       |                          |        | +73.5               |

# PATAPSCO RIVER BASIN—Continued Monthly Discharge of North Branch near Marriottsville—Continued

266

# PATAPSCO RIVER BASIN-Continued

Yearly discharge of North Branch Patapsco River near Marriottsville

|         |          | Year en               | di <mark>ng</mark> Sept. | 30                                                              | Calendar year |                       |              |                                                                 |
|---------|----------|-----------------------|--------------------------|-----------------------------------------------------------------|---------------|-----------------------|--------------|-----------------------------------------------------------------|
| Year    | Discharg | e in cfs              | Runoff                   | Discharge                                                       | Discharg      | e in cfs              | Runoff       | Discharge<br>in million                                         |
|         | Mean     | Per<br>square<br>mile | in<br>inches             | gallons per<br>day per<br>square mile                           | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile                           |
| 1930    | 162      | 0.982                 | 13.31                    | 0.635                                                           | 122           | 0.739                 | 10.07        | 0.478                                                           |
| 1931    | 75.8     | .459                  | 6.23                     | .297                                                            | 73.4          | .445                  | 6.04         | .288                                                            |
| 1932    | 87.8     | . 532                 | 7.24                     | . 344                                                           | 124           | .752                  | 10.22        | .486                                                            |
| 1933    | 262      | 1.59                  | 21.56                    | 1.03                                                            | 245           | 1.48                  | 20.19        | .957                                                            |
| 1934    | 164      | .994                  | 13.44                    | .642                                                            | 175           | 1.06                  | 14.40        | .685                                                            |
| 1935    | 188      | 1.14                  | 15.49                    | .737                                                            | 176           | 1.07                  | 14.48        | . 692                                                           |
| 1936    | 211      | 1.28                  | 17.42                    | .827                                                            | 208           | 1.26                  | 17.16        | .814                                                            |
| 1937    | 195      | 1.18                  | 16.09                    | . 763                                                           | 236           | 1.43                  | 19.40        | .924                                                            |
| 1938    | 174      | 1.05                  | 14.28                    | .679                                                            | 133           | .806                  | 10.96        | . 521                                                           |
| 1939    | 169      | 1.02                  | 13.86                    | .659                                                            | 167           | 1.01                  | 13.73        | .653                                                            |
| 1940    | 154      | .933                  | 12.72                    | .603                                                            | 167           | 1.01                  | 13.82        | .653                                                            |
| 1941    | 139      | .842                  | 11.41                    | . 544                                                           | 113           | .685                  | 9.33         | .443                                                            |
| 1942    | 123      | .745                  | 10.13                    | .482                                                            | 177           | 1.07                  | 14.58        | . 692                                                           |
| 1943    | 206      | 1.25                  | 16.93                    | . 808                                                           | 174           | 1.05                  | 14.29        | .679                                                            |
| 1944    | 1.59     | .964                  | 13.15                    | .623                                                            | 150           | .909                  | 12.39        | .588                                                            |
| 1945    | 170      | 1.03                  | 13.99                    | .666                                                            | 198           | 1.20                  | 16.26        | .776                                                            |
| 1946    | 229      | 1.39                  | 18.82                    | .898                                                            | 206           | 1.25                  | 16.98        | .808                                                            |
| 1947    | 142      | . 861                 | 11.66                    | . 556                                                           | 137           | .830                  | 11.25        | .536                                                            |
| 1948    | 197      | 1.19                  | 16.23                    | .769                                                            | 222           | 1.35                  | 18.33        | .873                                                            |
| 1949    | 237      | 1.44                  | 19.47                    | .931                                                            | 211           | 1.28                  | 17.38        | .827                                                            |
| 1950    | 151      | .915                  | 12.40                    | . 591                                                           | 175           | 1.06                  | 14.38        | .685                                                            |
| 1951    | 215      | 1.30                  | 17.68                    | . 840                                                           | 201           | 1.22                  | 16.56        | .789                                                            |
| 1952    | 304      | 1.84                  | 25.07                    | 1.19                                                            | 331           | 2.01                  | 27.32        | 1.30                                                            |
|         |          |                       |                          | Diversions<br>and change<br>in contents<br>equivalent<br>in cfs |               |                       |              | Diversions<br>and change<br>in contents<br>equivalent<br>in cfs |
| 1953    | 261      |                       |                          | +11.4                                                           | 224           | _                     | _            | +19.9                                                           |
| 1954    | 91.3     |                       |                          | +35.7                                                           | 64.8          | —                     | _            | +50.5                                                           |
| 1955    | .68      |                       | _                        | +168                                                            | .78           | _                     | _            | +180                                                            |
| 1956    | 118      |                       |                          | +73.5                                                           |               | —                     | _            | _                                                               |
| 1930–52 |          |                       |                          |                                                                 |               |                       |              |                                                                 |
| Highest | 304      | 1.84                  | 25.07                    | 1.19                                                            | 331           | 2.01                  | 27.32        | 1.30                                                            |
| Average | 179      | 1.08                  | 14.72                    | . 698                                                           | 179           | 1.08                  | 14.76        | . 698                                                           |
| Lowest  | 75.8     | . 459                 | 6.23                     | . 297                                                           | 73.4          | .445                  | 6.04         | . 288                                                           |

#### PATAPSCO RIVER BASIN

5. South Branch Patapsco River at Henryton

Location.—Lat 39°21′05″, long 76°54′50″, on right bank at downstream side of bridge on State Highway 101 at Henryton, Carroll County, 1.3 miles upstream from Piney Run, 2.3 miles upstream from confluence with North Branch, and 3.2 miles southeast of Sykesville.

Drainage area.-64.4 sq mi.

*Records available.*—August 1948 to September 1956. Monthly records September 1948 to September 1952 published in Bulletin 14; October 1952 to September 1954, in Bulletin 17.

Gage.—Water-stage recorder and concrete control. Datum of gage is 289.15 ft above mean sca level, datum of 1929.

Average discharge.- 8 years 78.0 cfs.

*Extremes.*—Maximum discharge, 12,100 cfs July 21, 1956 (gage height, 19.40 ft), from rating curve extended above 1,900 cfs on basis of slope-area determination of peak flow; minimum, 5.3 cfs Jan. 28, 1955, result of freezeup.

|           |         | Discharg |      | Dunafi             | Discharge<br>in million |                                       |
|-----------|---------|----------|------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1948      |         |          |      |                    |                         |                                       |
| August‡   | 125     | 39       | 64.2 | 0.997              | 1.15                    | 0.644                                 |
| 1954-55   |         |          |      |                    |                         |                                       |
| October   | 66      | 8.0      | 17.7 | 0.275              | 0.32                    | 0.178                                 |
| November  | 47      | 19       | 23.5 | .365               | .41                     | .236                                  |
| December  | 145     | 15       | 39.7 | . 616              | .71                     | .398                                  |
| January   | 53      | 16       | 28.3 | .439               | . 51                    | .284                                  |
| February  | 696     | 15       | 78.5 | 1.22               | 1.27                    | .789                                  |
| March     | 327     | 45       | 96.6 | 1.50               | 1.73                    | .969                                  |
| April     | 84      | 43       | 52.7 | .818               | .91                     | . 529                                 |
| May       | 73      | 24       | 35.5 | .551               | . 64                    | .356                                  |
| Iune      | 346     | 20       | 59.9 | .930               | 1.04                    | .601                                  |
| July      | 60      | 12       | 21.8 | .339               | .39                     | .219                                  |
| August    | 2,080   | 9.8      | 157  | 2.44               | 2.80                    | 1.58                                  |
| September | 96      | 37       | 50.5 | .784               | .87                     | . 507                                 |
| The year  | 2,080   | 8.0      | 55.0 | .854               | 11.60                   | . 552                                 |
| 1955-56   |         |          |      |                    |                         |                                       |
| October   | 483     | 36       | 70.6 | 1.10               | 1.26                    | 0.711                                 |
| November  | 99      | 39       | 52.3 | .812               | .91                     | .525                                  |
| December  | 45      | 27       | 36.9 | .573               | .66                     | .370                                  |
| January   | 250     | 30       | 51.2 | .795               | .92                     | .514                                  |
| February  | 317     | 66       | 128  | 1.99               | 2.14                    | 1.29                                  |
| March     | 428     | 60       | 115  | 1.79               | 2.06                    | 1.16                                  |
| April     | 166     | 66       | 90.8 | 1.41               | 1.57                    | .911                                  |
| May       | 79      | 43       | 56.1 | .871               | 1.00                    | .563                                  |
| June      | 163     | 28       | 48.1 | .747               | .83                     | .483                                  |
| July      | 3,010   | 27       | 162  | 2.52               | 2.90                    | 1.63                                  |
| August    | 76      | 28       | 40.6 | .630               | .73                     | . 407                                 |
| September | 76      | 24       | 30.9 | .480               | .54                     | .310                                  |
| The year  | 3,010   | 24       | 73.4 | 1.14               | 15.52                   | .737                                  |

Monthly discharge of South Branch Patapsco River at Henryton

‡ August 1-18 estimated.

# Surface-water Resources

#### PATAPSCO RIVER BASIN-Continued

|         |                  | Year en               | ding Sept.   | 30                     | Calendar year |                       |              |                                       |  |
|---------|------------------|-----------------------|--------------|------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
| Year    | Discharge in cfs |                       | Discharge    |                        | Dischar       | Discharge in cfs      |              | Discharge                             |  |
| 1010    | Mean             | Per<br>square<br>mile | in<br>inches | day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1949    | 101              | 1.57                  | 21.32        | 1.01                   | 87.7          | 1.36                  | 18.49        | 0.879                                 |  |
| 1950    | 60.5             | .939                  | 12.75        | .607                   | 70.3          | 1.09                  | 14.81        | .704                                  |  |
| 1951    | 81.2             | 1.26                  | 17.13        | .814                   | 72.9          | 1.13                  | 15.38        | .730                                  |  |
| 1952    | 114              | 1.77                  | 24.04        | 1.14                   | 125           | 1.94                  | 26.45        | 1.25                                  |  |
| 1953    | 95.8             | 1.49                  | 20.21        | .963                   | 83.5          | 1.30                  | 17.61        | .840                                  |  |
| 1954    | 42.8             | .665                  | 9.02         | .430                   | 38.8          | . 602                 | 8.19         | .389                                  |  |
| 1955    | 55.0             | .854                  | 11.60        | . 552                  | 61.6          | .957                  | 12.99        | . 619                                 |  |
| 1956    | 73.4             | 1.14                  | 15.52        | .737                   |               |                       |              |                                       |  |
| Highest | 114              | 1.77                  | 24.04        | 1.14                   | 125           | 1.94                  | 26.45        | 1.25                                  |  |
| Average | 78.0             | 1.21                  | 16.45        | .782                   | 77.1          | 1.20                  | 16.27        | .776                                  |  |
| Lowest  | 42.8             | .665                  | 9.02         | .430                   | 38.8          | . 602                 | 8.19         | . 389                                 |  |

# Yearly discharge of South Branch Patapsco River at Henryton

#### PATAPSCO RIVER BASIN

### 6. Piney Run near Sykesville

*Location.*—Lat  $39^{\circ}22'55''$ , long  $76^{\circ}58'00''$ , on left bank 75 ft downstream from bridge on State Highway 32,  $1\frac{1}{4}$  miles north of Sykesville, Carroll County, and  $5\frac{1}{4}$  miles upstream from mouth.

Drainage area.-11.4 sq mi.

*Records available.*—October 1931 to September 1956. Monthly records October 1931 to September 1943 published in Bulletin 1 (1933, 1938 revised herein); October 1943 to September 1952, in Bulletin 14 (1944 revised herein); October 1952 to September 1954, in Bulletin 17.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 450 ft (from topographic map).

Average discharge.-25 years, 12.9 cfs.

*Extremes.*—Maximum discharge 7,380 cfs July 20, 1956 (gage height, about 12.0 ft), from rating curve extended above 1,200 cfs on basis of slope-area determination of peak flow; minimum, 0.4 cfs Jan. 25, 1939; minimum daily, 1.2 cfs Sept. 17–21, 25, 26, 1932.

|           |         | Discharg | Pupoff in | Discharge<br>in million |        |                                       |
|-----------|---------|----------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1932-33   |         |          |           |                         | -      |                                       |
| October   | 53      | 1.4      | 8.25      | 0.724                   | 0.83   | 0.468                                 |
| November  | 125     | 7.1      | 18.4      | 1.61                    | 1.80   | 1.04                                  |
| December  | 30      | 5.4      | 10.5      | . 921                   | 1.06   | . 595                                 |
| January   | 59      | 8.2      | 13.2      | 1.16                    | 1.34   | .750                                  |
| February  | 49      | 10.5     | 16.1      | 1.41                    | 1.47   | .911                                  |
| March     | 53      | 11.5     | 20.8      | 1.82                    | 2.10   | 1.18                                  |
| April     | 99      | 17       | 30.3      | 2.65                    | 2.96   | 1.71                                  |
| May       | 59      | 14.5     | 22.4      | 1.96                    | 2.26   | 1.27                                  |
| June      | 41      | 8.7      | 12.9      | 1.13                    | 1.26   | .730                                  |
| July      | 102     | 5.8      | 13.7      | 1.20                    | 1.38   | .776                                  |
| August*   | 561     | 5.0      | 32.5      | 2.85                    | 3.29   | 1.84                                  |
| September | 45      | 8.5      | 11.8      | 1.04                    | 1.16   | .672                                  |
| The year  | 561     | 1.4      | 17.6      | 1.54                    | 20.91  | .995                                  |
| 1937–38   |         |          |           |                         |        | *                                     |
| October   | 202     | 4.8      | 18.2      | 1.60                    | 1.84   | 1.03                                  |
| November* | 356     | 8.8      | 25.6      | 2.25                    | 2.51   | 1.45                                  |
| December  | 18      | 8.5      | 11.0      | . 965                   | 1.11   | .624                                  |
| January   | 28      | 8.5      | 11.9      | 1.04                    | 1.20   | .672                                  |
| February  | 38      | 9.4      | 13.1      | 1.15                    | 1.20   | .743                                  |
| March     | 19      | 10       | 13.1      | 1.15                    | 1.33   | .743                                  |
| April     | 38      | 8.8      | 12.2      | 1.07                    | 1.19   | .692                                  |
| May       | 17      | 7.2      | 9.67      | .848                    | .98    | .548                                  |
| June      | 41      | 5.1      | 9.94      | .872                    | .97    | . 564                                 |
| July      | 134     | 3.9      | 16.0      | 1.40                    | 1.61   | .905                                  |
| August    | 87      | 3.6      | 10.1      | . 886                   | 1.02   | . 573                                 |
| September | 40      | 4.1      | 8.71      | .764                    | .85    | .494                                  |
| The year  | 356     | 3.6      | 13.3      | 1.17                    | 15.81  | .756                                  |

Monthly discharge of Piney Run near Sykesville

\* Revised

# PATAPSCO RIVER BASIN-Continued Monthly Discharge of Piney Run near Sykesville-Continued

|           |         | Discharg | Dunoff in | Discharge<br>in million |        |                                       |
|-----------|---------|----------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1943-44   |         |          |           |                         |        |                                       |
| October   | 38      | 2.4      | 4.85      | 0.425                   | 0.49   | 0.275                                 |
| November* | 199     | 4.5      | 16.8      | 1.47                    | 1.64   | .950                                  |
| December  | 100     | 3.7      | 8.79      | .771                    | . 89   | . 498                                 |
| January   | 514     | 5.0      | 26.6      | 2.33                    | 2.69   | 1.51                                  |
| February  | 12      | 5.4      | 7.55      | .662                    | .71    | .428                                  |
| March     | 83      | 7.7      | 18.7      | 1.64                    | 1.90   | 1.06                                  |
| April     | 33      | 10       | 15.5      | 1.36                    | 1.52   | .879                                  |
| May       | 59      | 7.4      | 12.8      | 1 12                    | 1 29   | 724                                   |
| Iune      | 95      | 5.4      | 11 1      | 074                     | 1.08   | 630                                   |
| Tuly      | 6.8     | 2.6      | 4 11      | 361                     | 42     | 233                                   |
| August    | 11      | 2.0      | 3 10      | 272                     | 31     | 176                                   |
| September | 23      | 2.2      | 4.58      | . 402                   | .45    | . 260                                 |
| The year  | 514     | 2.0      | 11.2      | .982                    | 13.39  | . 635                                 |
| 1954-55   |         |          |           |                         |        |                                       |
| October   | 13      | 2.2      | 3.59      | 0.315                   | 0.36   | 0.204                                 |
| November  | 10      | 3.5      | 4.39      | .385                    | .43    | .249                                  |
| December  | 27      | 3.0      | 7.00      | .614                    | .71    | . 397                                 |
| January   | 7.8     | 3.0      | 4.45      | .390                    | .45    | .252                                  |
| February  | 109     | 3.0      | 15.3      | 1.34                    | 1.40   | .866                                  |
| March     | 66      | 7.1      | 16.1      | 1.41                    | 1.63   | .911                                  |
| April.    | 15      | 6.5      | 8.78      | .770                    | .86    | .498                                  |
| May       | 12      | 4.5      | 6.09      | . 534                   | . 62   | .345                                  |
| Iune.     | 85      | 39       | 10.7      | 939                     | 1.05   | 607                                   |
| Iuly      | 13      | 2.6      | 4 31      | 378                     | 44     | 244                                   |
| August    | 481     | 2.5      | 33.0      | 2 80                    | 3 33   | 1.87                                  |
| September | 21      | 6.5      | 8.85      | .776                    | .87    | . 502                                 |
| The year  | 481     | 2.2      | 10.2      | . 895                   | 12.15  | . 578                                 |
| 1955-56   |         |          |           |                         |        |                                       |
| October   | 101     | 6.5      | 12.3      | 1.08                    | 1.24   | 0.698                                 |
| November  | 19      | 7.1      | 9.40      | .825                    | .92    | . 533                                 |
| December  | 9.0     | 5.6      | 7.05      | . 618                   | .71    | . 399                                 |
| January   | 58      | 5.4      | 10.0      | .877                    | 1.01   | . 567                                 |
| February  | 74      | 11       | 24.0      | 2.11                    | 2.27   | 1.36                                  |
| March     | 86      | 11       | 20        | 1.75                    | 2.02   | 1.13                                  |
| April     | 34      | 9.9      | 15.0      | 1.32                    | 1.46   | .853                                  |
| May       | 66      | 6.8      | 10.8      | .947                    | 1.10   | . 612                                 |
| June      | 23      | 5.4      | 8.95      | . 785                   | . 88   | . 507                                 |
| July      | 600     | 5.1      | 42.5      | 3.73                    | 4.30   | 2.41                                  |
| August    | 15      | 5.4      | 8.20      | .719                    | .83    | .465                                  |
| September | 18      | 5.1      | 6.77      | . 594                   | .66    | .384                                  |
| The year  | 600     | 5.1      | 14.6      | 1.28                    | 17.40  | . 827                                 |

# PATAPSCO RIVER BASIN—Continued

# Yearly discharge of Piney Run near Sykesville

| YearN   |         | Year ending Sept. 30  |                        |                                      |                  | Calendar year         |                        |                                       |  |
|---------|---------|-----------------------|------------------------|--------------------------------------|------------------|-----------------------|------------------------|---------------------------------------|--|
|         | Dischar | Discharge in cfs      |                        | Discharge                            | Discharge in cfs |                       | Dung                   | Discharge                             |  |
|         | Mean    | Per<br>square<br>mile | Runoff<br>in<br>inches | allons per<br>day per<br>square mile | Mean             | Per<br>square<br>mile | Kunoff<br>in<br>inches | gallons per<br>day per<br>square mile |  |
| 1932    | 6.21    | 0.545                 | 7.41                   | 0.352                                | 8.68             | 0.761                 | 10.36                  | 0.492                                 |  |
| 1933.   | 17.6    | 1.54                  | 20.91                  | .995                                 | 16.5             | 1.45                  | 19.65                  | .937                                  |  |
| 1934    | 11.3    | .991                  | 13.50                  | .641                                 | 12.0             | 1.05                  | 14.23                  | .679                                  |  |
| 1935    | 13.5    | 1.18                  | 16.01                  | .763                                 | 13.0             | 1.14                  | 15.53                  | .737                                  |  |
| 1936    | 15.4    | 1.35                  | 18.42                  | .873                                 | 15.0             | 1.32                  | 17.90                  | .853                                  |  |
| 1937    | 13.8    | 1.21                  | 16.43                  | .782                                 | 16.6             | 1.46                  | 19.73                  | .944                                  |  |
| 1938    | 13.3    | 1.17                  | 15.81                  | .756                                 | 10.7             | .939                  | 12.81                  | .607                                  |  |
| 1939    | 12.4    | 1.09                  | 14.76                  | .704                                 | 12.0             | 1.05                  | 14.25                  | .679                                  |  |
| 1940    | 10.5    | .921                  | 12.49                  | . 595                                | 11.2             | .982                  | 13.42                  | .635                                  |  |
| 1941    | 8.80    | . 772                 | 10.48                  | . 499                                | 7.20             | . 632                 | 8.57                   | . 408                                 |  |
| 1942    | 7.62    | . 668                 | 9.08                   | . 432                                | 11.0             | .965                  | 13.17                  | . 624                                 |  |
| 1943    | 12.3    | 1.08                  | 14.70                  | . 698                                | 10.6             | .930                  | 12.66                  | . 601                                 |  |
| 1944    | 11.2    | .982                  | 13.39                  | .635                                 | 10.5             | . 921                 | 12.50                  | . 595                                 |  |
| 1945    | 11.6    | 1.02                  | 13.87                  | .659                                 | 13.7             | 1.20                  | 16.35                  | .776                                  |  |
| 1946    | 16.1    | 1.41                  | 19.14                  | .911                                 | 14.0             | 1.23                  | 16.65                  | . 795                                 |  |
| 1947    | 10.3    | .904                  | 12.22                  | . 584                                | 10.5             | . 921                 | 12.51                  | . 595                                 |  |
| 1948    | 15.0    | 1.32                  | 17.87                  | .853                                 | 17.6             | 1.54                  | 20.97                  | . 995                                 |  |
| 1949    | 18.0    | 1.58                  | 21.41                  | 1.02                                 | 15.3             | 1.34                  | 18.27                  | . 866                                 |  |
| 1950    | 11.8    | 1.04                  | 14.02                  | .672                                 | 13.6             | 1.19                  | 16.24                  | .769                                  |  |
| 1951    | 15.1    | 1.32                  | 18.00                  | .853                                 | 13.7             | 1.20                  | 16.29                  | .776                                  |  |
| 1952    | 20.3    | 1.78                  | 24.27                  | 1.15                                 | 22.1             | 1.94                  | 26.39                  | 1.25                                  |  |
| 1953    | 17.4    | 1.53                  | 20.70                  | .989                                 | 15.1             | 1.32                  | 18.00                  | .853                                  |  |
| 1954    | 7.26    | . 637                 | 8.64                   | .412                                 | 6.58             | . 577                 | 7.84                   | .373                                  |  |
| 1955    | 10.2    | . 895                 | 12.15                  | . 578                                | 11.3             | .991                  | 13.52                  | . 641                                 |  |
| 1956    | 14.6    | 1.28                  | 17.40                  | .827                                 | -                | _                     | _                      | _                                     |  |
| Highest | 20.3    | 1.78                  | 24.27                  | 1.15                                 | 22.1             | 1.94                  | 26.39                  | 1.25                                  |  |
| Average | 12.9    | 1.13                  | 15.32                  | .730                                 | 12.9             | 1.13                  | 15.33                  | .730                                  |  |
| Lowest  | 6.21    | . 545                 | 7.41                   | . 352                                | 6.58             | .577                  | 7.84                   | . 373                                 |  |

#### POTOMAC RIVER BASIN

#### 7. Little Catoctin Creek at Harmony

Location.--Lat 39°28'55", long 77°32'20", on right bank at upstream side of highway bridge, 0.9 mile southwest of Harmony, Frederick County, 2.6 miles north of Middletown, and 2.8 miles upstream from mouth.

Drainage area.-8.9 sq mi, approximately.

Records available .- July 1947 to September 1956.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 540 ft (from topographic map).

Average discharge.-9 years, 10.3 cfs.

*Extremes.*—Maximum discharge, 5,400 cfs Aug. 20, 1952 (gage height, 8.49 ft in gage well, 9.82 ft from floodmark), from rating curve extended above 220 cfs on basis of slope-area determinations at gage heights 3.87, 5.58, and 6.82 ft, and contracted-opening determination of peak flow; minimum, 0.4 cfs part of each day July 28 to Aug. 2, Oct. 12–14, 1954.

Remarks.-Small diversion above station for municipal water supply of Middletown.

Monthly discharge of Little Catoctin Creek at Harmony

|           |         | Dischar |      | Discharge          |                     |                                       |
|-----------|---------|---------|------|--------------------|---------------------|---------------------------------------|
| Month     | Maximum | Minimum | Mean | Per square<br>mile | Runoll in<br>inches | gallons per<br>day per<br>square mile |
| 1947      |         |         |      |                    |                     |                                       |
| July      | 64      | 2.8     | 8.70 | 0.978              | 1.13                | 0.632                                 |
| August    | 60      | 2.1     | 5.91 | . 664              | .77                 | .429                                  |
| September | 2.1     | 1.3     | 1.66 | .187               | . 21                | . 121                                 |
| 1947-48   |         |         |      |                    |                     |                                       |
| October   | 2.8     | 1.3     | 1.55 | 0.174              | 0.20                | 0.112                                 |
| November  | 37      | 1.6     | 6.83 | .767               | .86                 | .496                                  |
| December  | 6.1     | 2.3     | 3.34 | .375               | .43                 | .242                                  |
| January   | 40      | 5.0     | 9.09 | 1.02               | 1.18                | . 659                                 |
| February  | 91      | 3.6     | 13.0 | 1.46               | 1.57                | .944                                  |
| March     | 34      | 12      | 16.6 | 1.87               | 2.15                | 1.21                                  |
| April     | 56      | 14      | 22.2 | 2.49               | 2.78                | 1.61                                  |
| May       | 77      | 9.7     | 22.1 | 2.48               | 2.86                | 1.60                                  |
| June      | 25      | 2.6     | 6.30 | . 708              | .79                 | .458                                  |
| July      | 7.5     | 1.9     | 2.99 | . 336              | . 39                | . 217                                 |
| August    | 7.0     | 1.6     | 2.63 | . 296              | .34                 | . 191                                 |
| September | 2.8     | 1.3     | 1.54 | . 173              | . 19                | . 112                                 |
| The year  | 91      | 1.3     | 8.98 | 1.01               | 13.74               | . 653                                 |

#### Discharge in cfs Discharge in million Runoff in Month gallons per inches day per square mile Per square Maximum Minimum Mean mile 1948-49 0.315 October..... 11 1.3 2.80 0.204 0.36 .789 November..... 65 1.8 10.9 1.22 1.37 8.5 179 23.4 2.63 3.03 1.70 121 15 36.5 4.10 4.72 2.65 January..... February.... 44 21 26.8 3.01 1.95 3.13 6.5 10.5 1.18 .763 March..... 18 1.35 April..... 25 5.8 11.0 1.24 1.37 .801 78 6.5 16.7 1.88 1.22 May..... 2.16 2.4 4.40.494 .319 June 26 . 55 182 2.0 17.7 1.99 2.29 1.29 July August 12 2.2 4.09.460 . 53 .297 30 4.03September ..... 1.6 .453 .293 .51 The year.... 182 1.3 14.01.57 21.37 1.01 1949-50 October ..... 17 1.9 3.28 0.369 0.238 0.42 7.9 2.4 3.32 November..... .373 .42 .241 December.... 28 2.2 7.66 .99 .556 .861 4.8 7.73 .869 .562 January.... 12 1.00 9.0 17.1 February..... 32 1.92 2.001.24 7.0 March..... 78 18.7 2.10 2.42 1.36 April..... 7.2 20 11.01.24 1.38 .801 May..... 28 8.5 14.3 1.61 1.85 1.04 22 5.1 10.21.15 .743 June..... 1.27 8.4 2.0 3.81 .277 .428 July..... .49 August..... 3.0 1.4 1.79 .201 .23 .130 September.... 15 1.5 5.41.608 .68 .393 .970 78 8.63 The year.... 1.4 13.15 .627 1950-51 2.4 5.69 0.639 0.413 October..... 26 0.74 .827 November.... 144 3.4 11.4 1.28 1.43 December.... 172 9.0 31.1 3.49 4.022.26 7.8 13.9 1.56 1.01 January..... 24 1.80 26.5 98 2.98 12 3.10 1.93 February..... March..... 27 12 16.7 1.88 1.22 2.17 April..... 25 12 17.9 2.012.25 1.30 17 5.1 10.6 1.19 .769 May..... 1.38 15.5 June..... 72 3.2 1.74 1.95 1.12 3.99 .290 July..... 9.2 2.2 .448 .52 August.... 9.6 1.0 1.76 .198 .23 .128 September..... 3.8 .6 1.12 .126 .14 .081 The year ..... .937 172 .6 12.9 1.45 19.73

### POTOMAC RIVER BASIN—Continued Monthly Discharge of Little Catoctin Creek at Harmony—Continued

274
# POTOMAC RIVER BASIN—Continued Monthly Discharge of Little Catoctin Creek at Harmony—Continued

|                    |         | Discharg | Punoff in | Discharge<br>in million |        |                                       |
|--------------------|---------|----------|-----------|-------------------------|--------|---------------------------------------|
| Month              | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1951-52            |         |          |           |                         |        |                                       |
| October            | 1.4     | 0.7      | 0.98      | 0.110                   | 0.13   | 0.071                                 |
| November           | 23      | 1.8      | 3 76      | 422                     | 47     | 273                                   |
| December           | 40      | 1.3      | 6 31      | 709                     | 82     | 458                                   |
| January            | 4.3     | 0.7      | 20.1      | 2.26                    | 2 60   | 1 46                                  |
| February           | 71      | 7 0      | 20.1      | 2.20                    | 2.00   | 1.46                                  |
| March              | 80      | 6.7      | 20.1      | 2.20                    | 3 15   | 1.76                                  |
| April              | 178     | 14       | 30 8      | 4 47                    | 4 00   | 2 80                                  |
| Max                | 101     | 11       | 30.2      | 3 30                    | 3 01   | 2.09                                  |
| May                | 101     | 2.6      | 0 52      | 0.59                    | 1.07   | 2.19                                  |
| June               | 10      | 5.0      | 0.00      | .930                    | 1.07   | .019                                  |
| August             | 4.2     | 1.0      | 2.41      | . 210                   | .32    | . 180                                 |
| Santambar          | 00      | 2.0      | 7.50      | . 849                   | .98    | . 348                                 |
| September          |         | 2.0      | 1.00      | . 010                   | .95    |                                       |
| The year           | 178     | .7       | 14.3      | 1.61                    | 21.83  | 1.04                                  |
| 1952-53            |         |          |           |                         |        |                                       |
| October            | 4.5     | 1.8      | 2.22      | 0.249                   | 0.29   | 0.161                                 |
| November           | 286     | 1.7      | 19.9      | 2.24                    | 2.49   | 1.45                                  |
| December           | 53      | 7.6      | 14.3      | 1.61                    | 1.85   | 1.04                                  |
| lanuary            | 59      | 7.0      | 23.5      | 2.64                    | 3.04   | 1 71                                  |
| February           | 27      | 9.1      | 14.0      | 1.57                    | 1.64   | 1.01                                  |
| March              | 56      | 9.1      | 23.2      | 2.61                    | 3.01   | 1.69                                  |
| April              | 32      | 11       | 20.4      | 2 29                    | 2 55   | 1 48                                  |
| Mav                | 47      | 8.6      | 17.4      | 1.96                    | 2.25   | 1.27                                  |
| Iune               | 65      | 3.1      | 12.0      | 1.35                    | 1.51   | 873                                   |
| Iuly.              | 21      | 1.8      | 3.25      | .365                    | 42     | 236                                   |
| August             | 5.2     | 1.0      | 1.86      | 209                     | 24     | 135                                   |
| September          | 11      | .8       | 1.76      | . 198                   | . 22   | . 128                                 |
| The year           | 286     |          | 12.8      | 1 44                    | 10 51  | 031                                   |
|                    |         |          |           |                         |        |                                       |
| 1953-54<br>October | 2.1     | 0.9      | 1.01      | 0 112                   | 0.12   | 0.072                                 |
| October            | 2.1     | 0.8      | 1.01      | 0.115                   | 0.15   | 0.073                                 |
| November           | 3.0     | 1.0      | 1.23      | .138                    | .15    | .089                                  |
| December           | 20      | 1.1      | 4.34      | .488                    | .50    | .315                                  |
| January            | 11      | 1.2      | 2.72      | . 300                   | .35    | . 198                                 |
| February           | 10      | 1.8      | 3.71      | . 417                   | .43    | .270                                  |
| March              | 34      | 4.8      | 8.68      | .975                    | 1.12   | . 630                                 |
| April              | 39      | 4.2      | 9.08      | 1.02                    | 1.14   | . 659                                 |
| May                | 12      | 2.8      | 6.72      | .755                    | .87    | . 488                                 |
| June               | 5.1     | 1.2      | 2.16      | . 243                   | . 27   | .157                                  |
| July               | 8.1     | .4       | 1.35      | . 152                   | .18    | . 098                                 |
| August             | 18      | .4       | 1.80      | .202                    | . 23   | .131                                  |
| September          | 2.6     | .7       | .91       | . 102                   | . 11   | .066                                  |
| The year           | 39      | .4       | 3.65      | .410                    | 5.54   | .265                                  |

# CARROLL AND FREDERICK COUNTIES

|           |         | Dischar |      | Runoff in          | Discharge<br>in million |                                       |
|-----------|---------|---------|------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum | Mean | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1954-55   |         |         |      |                    |                         |                                       |
| October   | 25      | 0.4     | 1.95 | 0.219              | 0.25                    | 0.142                                 |
| November  | 3.8     | 1.2     | 1.72 | . 193              | .22                     | .125                                  |
| December  | 40      | 1.1     | 5.63 | . 633              | .73                     | .409                                  |
| Tanuary   | 6.5     | 1.3     | 2.80 | .315               | .36                     | .204                                  |
| February  | 53      | 1.3     | 8.28 | .930               | .97                     | .601                                  |
| March     | 71      | 7.2     | 21.4 | 2.40               | 2.77                    | 1.55                                  |
| April     | 20      | 5.8     | 10.2 | 1.15               | 1.28                    | .743                                  |
| May       | 14      | 2.6     | 5.63 | .633               | .73                     | .409                                  |
| Iune      | 21      | 2.2     | 4.41 | .496               | .55                     | .321                                  |
| Julv      | 13      | 1.4     | 2.73 | . 307              | .35                     | . 198                                 |
| August    | 228     | 1.2     | 31.2 | 3.51               | 4.04                    | 2.27                                  |
| September | 16      | 3.2     | 6.10 | .685               | .76                     | .443                                  |
| The year  | 228     | .4      | 8.54 | . 960              | 13.01                   | . 620                                 |
| 1955-56   |         |         |      |                    |                         |                                       |
| October   | 69      | 2.8     | 7.49 | 0.842              | 0.97                    | 0.544                                 |
| November  | 12      | 2.5     | 4.19 | .471               | . 52                    | . 304                                 |
| December  | 4.0     | 1.6     | 2.67 | . 300              | .35                     | . 194                                 |
| January   | 26      | 1.5     | 3.93 | . 442              | . 51                    | . 286                                 |
| February  | 56      | 4.8     | 19.1 | 2.15               | 2.32                    | 1.39                                  |
| March     | 68      | 8.0     | 20.6 | 2.31               | 2.67                    | 1.49                                  |
| April     | 46      | 10      | 21.1 | 2.37               | 2.64                    | 1.53                                  |
| May       | 12      | 3.4     | 6.29 | .707               | . 82                    | .457                                  |
| June      | 7.0     | 2.0     | 3.10 | .348               | . 39                    | . 225                                 |
| July      | 102     | 1.7     | 11.6 | 1.30               | 1.50                    | .840                                  |
| August    | 9.0     | 1.6     | 3.49 | . 392              | .45                     | .253                                  |
| September | 9.9     | 1.4     | 2.34 | . 263              | . 29                    | . 170                                 |
| The year  | 102     | 1.4     | 8.77 | .985               | 13.43                   | .637                                  |

# POTOMAC RIVER BASIN—Continued Monthly Discharge of Little Catoctin Creek at Harmony—Continued

### POTOMAC RIVER BASIN-Continued

| Year    |                  | Year en               | ding Sept.   | 30                                    | Calendar year |                       |              |                                       |  |
|---------|------------------|-----------------------|--------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
|         | Discharge in cfs |                       | 7            | Discharge                             | Dischar       | ge in cfs             | Durafi       | Discharge                             |  |
|         | Mean             | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1948    | 8.98             | 1.01                  | 13.74        | 0.653                                 | 11.1          | 1.25                  | 17.01        | 0.808                                 |  |
| 1949    | 14.0             | 1.57                  | 21.37        | 1.01                                  | 12.1          | 1.36                  | 18.44        | .879                                  |  |
| 1950    | 8.63             | .970                  | 13.15        | .627                                  | 11.5          | 1.29                  | 17.51        | .834                                  |  |
| 1951    | 12.9             | 1.45                  | 19.73        | .937                                  | 9.80          | 1.10                  | 14.96        | .711                                  |  |
| 1952    | 14.3             | 1.61                  | 21.83        | 1.04                                  | 16.4          | 1.84                  | 25.04        | 1.19                                  |  |
| 1953    | 12.8             | 1.44                  | 19.51        | .931                                  | 10.3          | 1.16                  | 15.72        | .750                                  |  |
| 1954    | 3.65             | .410                  | 5.54         | .265                                  | 3.88          | .436                  | 5.90         | . 282                                 |  |
| 1955    | 8.54             | .960                  | 13.01        | . 620                                 | 8.96          | 1.01                  | 13.65        | .653                                  |  |
| 1956    | 8.77             | . 985                 | 13.43        | . 637                                 |               | -                     | -            | _                                     |  |
| Highest | 14.3             | 1.61                  | 21.83        | 1.04                                  | 16.4          | 1.84                  | 25.04        | 1.19                                  |  |
| Average | 10.3             | 1.16                  | 15.70        | .750                                  | 10.5          | 1.18                  | 16.03        | .763                                  |  |
| Lowest  | 3.65             | .410                  | 5.54         | .265                                  | 3.88          | .436                  | 5.90         | . 282                                 |  |

# Yearly discharge of Little Catoctin Creek at Harmony

#### POTOMAC RIVER BASIN

#### 8. Catoctin Creek near Middletown

*Location.*—Lat 39°25′35″, long 77°33′25″, on right bank 300 ft downstream from bridge on State Highway 17, 1.3 miles south of Middletown, Frederick County, and  $2\frac{1}{4}$  miles downstream from Little Catoctin Creek.

Drainage area.-66.9 sq mi.

Records available .- August 1947 to September 1956.

*Gage.*—Water-stage recorder and concrete control. Altitude of gage is 385 ft (from topographic map).

Average discharge.-9 years, 80.4 cfs.

*Extremes.*—Maximum discharge, 7,760 cfs July 18, 1949 (gage height, 11.18 ft), from rating curve extended above 1,500 cfs on basis of slope-area determination of peak flow; minimum daily 1.5 cfs July 31, Aug. 1, 1954.

Monthly discharge of Catoctin Creek near Middletown

|           |         | Discharg | Runoff in | Discharge<br>in million |        |                                       |
|-----------|---------|----------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1947      |         |          |           |                         |        |                                       |
| August‡   | 125     | 14       | 30.4      | 0.454                   | 0.52   | 0.293                                 |
| September | 15      | 5.1      | 9.24      | .138                    | .15    | . 089                                 |
| 1947–48   |         |          |           |                         |        |                                       |
| October   | 31      | 5.1      | 7.96      | 0.119                   | 0.14   | 0.077                                 |
| November  | 222     | 12       | 48.2      | .720                    | .80    | .465                                  |
| December  | 36      | 16       | 23.5      | .351                    | .41    | .227                                  |
| January   | 604     | 21       | 107       | 1.60                    | 1.85   | 1.03                                  |
| February  | 520     | 18       | 118       | 1.76                    | 1.91   | 1.14                                  |
| March     | 245     | 71       | 125       | 1.87                    | 2.15   | 1.21                                  |
| April     | 526     | 86       | 179       | 2.68                    | 2.99   | 1.73                                  |
| May       | 590     | 59       | 157       | 2.35                    | 2.70   | 1.52                                  |
| June      | 89      | 22       | 43.0      | .643                    | .72    | .416                                  |
| July      | 56      | 12       | 22.6      | .338                    | .39    | .218                                  |
| August    | 136     | 9.5      | 24.1      | .360                    | .42    | .233                                  |
| September | 22      | 6.3      | 9.26      | .138                    | .15    | . 089                                 |
| The year  | 604     | 5.1      | 71.9      | 1.07                    | 14.63  | . 692                                 |
| 1948–49   |         |          |           |                         |        |                                       |
| October   | 136     | 6.0      | 31.6      | 0.472                   | 0.54   | 0.305                                 |
| November  | 345     | 17       | 103       | 1.54                    | 1.72   | .995                                  |
| December  | 1,280   | 85       | 218       | 3.26                    | 3.75   | 2.11                                  |
| January   | 800     | 92       | 256       | 3.83                    | 4.40   | 2.48                                  |
| February  | 295     | 128      | 171       | 2.56                    | 2.67   | 1.65                                  |
| March     | 113     | 49       | 76.8      | 1.15                    | 1.32   | .743                                  |
| April     | 205     | 47       | 79.7      | 1.19                    | 1.33   | .769                                  |
| May       | 187     | 34       | 69.7      | 1.04                    | 1.20   | .672                                  |
| June      | 118     | 18       | 33.4      | .499                    | . 56   | .323                                  |
| July      | 1,410   | 10       | 214       | 3.20                    | 3.69   | 2.07                                  |
| August    | 110     | 14       | 31.4      | . 469                   | .54    | . 303                                 |
| September | 149     | 9.5      | 27.1      | .405                    | .45    | .262                                  |
| The year  | 1,410   | 6.0      | 109       | 1.63                    | 22.17  | 1.05                                  |

‡ August 1-19 estimated.

# POTOMAC RIVER BASIN—Continued Monthly Discharge of Catoctin Creek near Middletown—Continued

|           |         | Discharg | Dunoffin | Discharge<br>in million |        |                                       |
|-----------|---------|----------|----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean     | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1949-50   |         |          |          |                         |        |                                       |
| October   | 151     | 11       | 24.5     | 0.366                   | 0.42   | 0.237                                 |
| November  | 75      | 18       | 31.0     | .463                    | . 52   | . 299                                 |
| December  | 498     | 18       | 81.0     | 1.21                    | 1.40   | .782                                  |
| Ianuary   | 126     | 35       | 64.4     | .963                    | 1.11   | . 622                                 |
| February  | 372     | 62       | 174      | 2.60                    | 2.71   | 1.68                                  |
| March     | 692     | 44       | 154      | 2.30                    | 2.65   | 1.49                                  |
| April     | 156     | 49       | 82.7     | 1.24                    | 1.38   | .801                                  |
| May       | 234     | 58       | 118      | 1.76                    | 2.03   | 1.14                                  |
| Tune      | 218     | 22       | 69.0     | 1.03                    | 1.15   | . 666                                 |
| Tuly      | 33      | 84       | 18.8     | .281                    | .32    | .182                                  |
| August    | 22      | 4.4      | 7.55     | .113                    | .13    | .073                                  |
| September | 198     | 6.2      | 40.4     | . 604                   | . 67   | . 390                                 |
| The year  | 692     | 4.4      | 71.5     | 1.07                    | 14.49  | . 692                                 |
| 1950-51   |         |          |          |                         |        |                                       |
| October   | 142     | 15       | 36.6     | 0.547                   | 0.63   | 0.354                                 |
| November  | 1,480   | 23       | 107      | 1.60                    | 1.79   | 1.03                                  |
| December  | 1,930   | 64       | 245      | 3.66                    | 4.22   | 2.37                                  |
| January   | 253     | 58       | 111      | 1.66                    | 1.92   | 1.07                                  |
| February  | 856     | 90       | 233      | 3.48                    | 3.63   | 2.25                                  |
| March     | 258     | 71       | 133      | 1.99                    | 2.30   | 1.29                                  |
| April     | 250     | 79       | 131      | 1.96                    | 2.19   | 1.27                                  |
| May       | 149     | 30       | 70.3     | 1.05                    | 1.21   | .679                                  |
| June      | 568     | 24       | 130      | 1.94                    | 2.16   | 1.25                                  |
| July      | 57      | 13       | 26.1     | . 390                   | .45    | . 252                                 |
| August    | 45      | 5.4      | 11.4     | .170                    | .20    | . 110                                 |
| September | 14      | 2.9      | 5.45     | .081                    | . 09   | . 052                                 |
| The year  | 1,930   | 2.9      | 102      | 1.52                    | 20.79  | . 982                                 |
| 1951-52   |         |          |          |                         |        |                                       |
| October   | 10      | 2.7      | 4.93     | 0.074                   | 0.08   | 0.048                                 |
| November  | 113     | 9.2      | 22.8     | . 341                   | .38    | . 220                                 |
| December  | 338     | 12       | 62.2     | .930                    | 1.07   | . 601                                 |
| January   | 620     | 74       | 199      | 2.97                    | 3.43   | 1.92                                  |
| February  | 548     | 46       | 124      | 1.85                    | 1.99   | 1.20                                  |
| March     | 621     | 46       | 185      | 2.77                    | 3.18   | 1.79                                  |
| April     | 1,250   | 79       | 289      | 4.32                    | 4.82   | 2.79                                  |
| May       | 1,240   | 56       | 220      | 3.29                    | 3.79   | 2.13                                  |
| June      | 142     | 22       | 54.4     | . 813                   | .91    | . 525                                 |
| July      | 44      | 7.5      | 16.1     | . 241                   | .28    | .156                                  |
| August    | 208     | 5.0      | 19.6     | . 293                   | . 34   | . 189                                 |
| September | 740     | 9.2      | 60.6     | .906                    | 1.01   | . 586                                 |
| The year  | 1,250   | 2.7      | 105      | 1.57                    | 21.28  | 1.01                                  |

|           |         | Dischar | ge in cfs |                    | - Runoff in | Discharge<br>in million               |  |
|-----------|---------|---------|-----------|--------------------|-------------|---------------------------------------|--|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile | inches      | gallons per<br>day per<br>square mile |  |
| 1952-53   |         |         |           |                    |             |                                       |  |
| October   | 30      | 8.1     | 11.9      | 0.178              | 0.21        | 0.115                                 |  |
| November  | 1,620   | 7.5     | 161       | 2.41               | 2.69        | 1.56                                  |  |
| December  | 639     | 65      | 145       | 2.17               | 2.49        | 1.40                                  |  |
| January   | 630     | 60      | 212       | 3.17               | 3.65        | 2.05                                  |  |
| February  | 179     | 68      | 102       | 1.52               | 1.58        | .982                                  |  |
| March     | 655     | 68      | 206       | 3.08               | 3.55        | 1.99                                  |  |
| April     | 280     | 76      | 164       | 2.45               | 2.74        | 1.58                                  |  |
| May       | 473     | 62      | 121       | 1.81               | 2.09        | 1.17                                  |  |
| June      | 527     | 23      | 89.0      | 1.33               | 1.48        | .860                                  |  |
| July      | 493     | 8.4     | 36.8      | . 550              | .63         | .355                                  |  |
| August    | 65      | 3.1     | 12.8      | .191               | .22         | . 123                                 |  |
| September | 52      | 2.6     | 10.3      | .154               | .17         | .100                                  |  |
| The year  | 1,620   | 2.6     | 106       | 1.58               | 21.50       | 1.02                                  |  |
| 1953–54   |         |         |           |                    |             |                                       |  |
| October   | 22      | 2.8     | 5.50      | 0.082              | 0.09        | 0.053                                 |  |
| November  | 24      | 5.1     | 8.71      | .130               | .15         | .084                                  |  |
| December  | 191     | 7.5     | 37.0      | . 553              | . 64        | .357                                  |  |
| January   | 90      | 9.0     | 23.9      | .357               | .41         | .231                                  |  |
| February  | 70      | 13      | 28.8      | .430               | .45         | .278                                  |  |
| March     | 299     | 54      | 89.2      | 1.33               | 1.54        | .860                                  |  |
| April     | 200     | 30      | 63.4      | . 948              | 1.06        | .613                                  |  |
| May       | 114     | 24      | 53.0      | . 792              | . 91        | .512                                  |  |
| June      | 24      | 4.7     | 13.5      | . 202              | . 23        | . 131                                 |  |
| July      | 74      | 1.5     | 8,90      | .133               | .15         | .086                                  |  |
| August    | 183     | 1.5     | 16.6      | . 248              | . 29        | . 160                                 |  |
| September | 23      | 3.1     | 6.77      | . 101              | . 11        | ,065                                  |  |
| The year  | 299     | 1.5     | 29.7      | . 444              | 6.03        | . 287                                 |  |
| 1954–55   |         |         |           |                    |             |                                       |  |
| October   | 164     | 2.7     | 21.2      | 0.317              | 0.37        | 0.205                                 |  |
| November  | 43      | 12      | 20.5      | . 306              | .34         | . 198                                 |  |
| December  | 219     | 10      | 53.8      | . 804              | .93         | . 520                                 |  |
| January   | 72      | 12      | 31.5      | .471               | .54         | .304                                  |  |
| February  | 270     | 12      | 72.0      | 1.08               | 1.12        | .698                                  |  |
| March     | 833     | 69      | 186       | 2.78               | 3.21        | 1.80                                  |  |
| April     | 107     | 49      | 70.3      | 1.05               | 1.17        | .679                                  |  |
| May       | 69      | 15      | 35.9      | . 537              | . 62        | .347                                  |  |
| June      | 135     | 11      | 31.0      | . 463              | . 52        | . 299                                 |  |
| July      | 181     | 4.0     | 20.7      | . 309              | . 36        | 2.00                                  |  |
| August    | 1,490   | 2.6     | 208       | 3.11               | 3.58        | 2.01                                  |  |
| September | 74      | 18      | 33.8      | . 505              | . 56        | .326                                  |  |

# POTOMAC RIVER BASIN—Continued Monthly Discharge of Catoctin Creek near Middletown—Continued

2.6

65.6

.981

13.32

.634

1,490

The year .....

### POTOMAC RIVER BASIN-Continued

|           |         | Discharg | Runoff in | Discharge<br>in million |        |                                       |
|-----------|---------|----------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1955-56   |         |          |           |                         |        |                                       |
| October.  | 434     | 16       | 58.8      | 0.879                   | 1.01   | 0.568                                 |
| November  | 83      | 24       | 32.4      | .484                    | .54    | . 313                                 |
| December  | 29      | 10       | 18.6      | .278                    | .32    | .180                                  |
| January   | 220     | 11       | 29.7      | .444                    | . 51   | . 287                                 |
| February  | 556     | 83       | 190       | 2.84                    | 3.06   | 1.84                                  |
| March     | 576     | 64       | 151       | 2.26                    | 2.61   | 1.46                                  |
| April     | 264     | 54       | 104       | 1.55                    | 1.74   | 1.00                                  |
| May       | 74      | 23       | 40.8      | . 610                   | .70    | . 394                                 |
| June      | 58      | 7.8      | 22.7      | . 339                   | .38    | .219                                  |
| July      | 621     | 7.8      | 76.9      | 1.15                    | 1.32   | .743                                  |
| August    | 53      | 9.2      | 20.4      | .305                    | .35    | . 197                                 |
| September | 47      | 6.4      | 12.8      | . 191                   | .21    | . 123                                 |
| The year  | 621     | 6.4      | 62.7      | .937                    | 12.75  | . 606                                 |

Monthly Discharge of Catoctin Creek near Middletown-Continued

### Yearly discharge of Catoctin Creek near Middletown

| Year    |                  | Year en               | ding Sept.   | 30                                   | Calendar year |                       |              |                                       |  |
|---------|------------------|-----------------------|--------------|--------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
|         | Discharge in cfs |                       | D (7         | Discharge                            | Dischar       | ge in cfs             | Dunoff       | Discharge                             |  |
|         | Mean             | Per<br>square<br>mile | in<br>inches | allons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1948    | 71.9             | 1.07                  | 14.63        | 0.692                                | 94.8          | 1.42                  | 19.29        | 0.918                                 |  |
| 1949    | 109              | 1.63                  | 22.17        | 1.05                                 | 91.2          | 1.36                  | 18.50        | .879                                  |  |
| 1950    | 71.5             | 1.07                  | 14.49        | .692                                 | 92.6          | 1.38                  | 18.79        | . 892                                 |  |
| 1951    | 102              | 1.52                  | 20.79        | .982                                 | 77.3          | 1.16                  | 15.68        | .750                                  |  |
| 1952    | 105              | 1.57                  | 21.28        | 1.01                                 | 124           | 1.85                  | 25.14        | 1.20                                  |  |
| 1953    | 106              | 1.58                  | 21.50        | 1.02                                 | 83.8          | 1.25                  | 16.99        | . 808                                 |  |
| 1954    | 29.7             | .444                  | 6.03         | .287                                 | 33.4          | . 499                 | 6.79         | .323                                  |  |
| 1955    | 65.6             | .981                  | 13.32        | .634                                 | 66.8          | . 999                 | 13.55        | . 646                                 |  |
| 1956    | 62.7             | .937                  | 12.75        | . 606                                | -             | -                     |              | -                                     |  |
| Highest | 109              | 1.63                  | 22.17        | 1.05                                 | 124           | 1.85                  | 25.14        | 1.20                                  |  |
| Average | 80.4             | 1.20                  | 16.33        | .776                                 | 83.0          | 1.24                  | 16.84        | . 801                                 |  |
| Lowest  | 29.7             | . 444                 | 6.03         | .287                                 | 33.4          | . 499                 | 6.79         | . 323                                 |  |

### CARROLL AND FREDERICK COUNTIES

#### POTOMAC RIVER BASIN

#### 9. Catoctin Creek near Jefferson

Location.—Lat 39°21′25″, long 77°34′24″, on left bank 500 ft downstream from bridge on U.S. Highway 340, 600 ft downstream from small tributary, and 2 miles west of Jefferson, Frederick County.

Drainage area.-111 sq mi.

Records available.—June 1928 to September 1931 (discontinued). Monthly records published in Bulletin 1.

Gage.--Staff gage. Altitude of gage is 270 ft (from topographic map). Jan. 27 to Nov. 27, 1929, chain gage at bridge 500 ft upstream at datum 2 ft lower.

*Extremes.*—Maximum discharge observed, 6,980 cfs June 19, 1928 (gage height, 11.3 ft), from rating curve extended above 610 cfs; minimum observed, 0.7 cfs Aug. 10-14, Sept. 29, 30, 1930 (gage height, 0.90 ft).

Maximum stage known, about 18 ft in 1885, from information by local resident.

Stage of about 15 ft reached in 1926, from information by local residents.

### Monthly discharge of Catoctin Creek near Jefferson

| Month         |         | Discharg | Runoff | Discharge<br>in million |                     |                                       |
|---------------|---------|----------|--------|-------------------------|---------------------|---------------------------------------|
|               | Maximum | Minimum  | Mean   | Per<br>square mile      | Runoff<br>in inches | gallons per<br>day per<br>square mile |
| 1928<br>June‡ | 2,820   | 45       | 373    | 3.36                    | 3.75                | 2.17                                  |

‡ Not previously published; discharge partly estimated.

| Y | early | disc | harge | of | Catoctin | Creek | near | Jefferson |
|---|-------|------|-------|----|----------|-------|------|-----------|
|---|-------|------|-------|----|----------|-------|------|-----------|

| Year |                  | Year end              | ling Sept.         | 30                                   | Calendar year |                       |                        |                                      |  |
|------|------------------|-----------------------|--------------------|--------------------------------------|---------------|-----------------------|------------------------|--------------------------------------|--|
|      | Discharge in cfs |                       | Dunof              | Discharge                            | Dischar       | ge in cfs             | Durit                  | Discharge                            |  |
|      | Mean             | Per<br>square<br>mile | in<br>in<br>inches | allons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | Runoff<br>in<br>inches | ailons per<br>day per<br>square mile |  |
| 1929 | 94.0             | 0.847                 | 11.49              | 0.547                                | 111           | 1.00                  | 13.63                  | 0.646                                |  |
| 1930 | 79.4             | .715                  | 9.70               | .462                                 | 55.7          | . 502                 | 6.80                   | .324                                 |  |
| 1931 | 46.3             | .417                  | 5.67               | . 270                                |               | -                     | —                      | -                                    |  |

#### POTOMAC RIVER BASIN

#### 10. Potomac River at Point of Rocks

Location.—Lat 39°16'25", long 77°32'35", on left bank at downstream side of bridge on U. S. Highway 15 at Point of Rocks, Frederick County, a third of a mile downstream from Catoctin Creek (Virginia) and 6 miles upstream from Monocacy River.

Drainage area. -9,651 sq mi.

*Records available.*—February 1895 to September 1956. Monthly records March 1895 to September 1943 published in Bulletin 1 (1895, 1896, 1899, 1901, 1902, 1904, 1905, 1912, 1915, 1918, 1920, 1924 revised herein). Monthly records August 1931 to September 1936 for Chesapeake and Ohio Canal published in Bulletin 1.

*Gage.*—Water-stage recorder. Datum of gage is 200.54 ft above mean sea level, adjustment of 1912. Sept. 2, 1902, to Oct. 28, 1929, chain gage on downstream side of highway bridge at same datum. Prior to Sept. 2, 1902, wire-weight gage at same site, at datum 0.45 ft higher. Jan. 1 to June 17, 1896, 1897, and Apr. 16, 1901, to Sept. 1, 1902, datum questionable.

July 14, 1931, to Sept. 30, 1936, staff gage on Chesapeake and Ohio Canal at locks 0.6 mile upstream at different datum.

Average discharge.-61 years, 9,316 cfs.

*Extremes.*—Maximum discharge, 480,000 cfs Mar. 19, 1936 (gage height, 41.03 ft), from rating curve extended above 300,000 cfs on basis of adjustment of figure of peak flow at station near Washington for inflow and storage, and slope-area determination of peak flow; minimum, 540 cfs Sept. 10, 1914 (gage height, 0.38 ft).

Flood of June 2, 1889, reached a stage of 40.2 ft, from floodmarks (discharge, about 460,000 cfs, from rating curve extended as explained above).

Remarks .- Low flow affected slightly since 1913 by Stony River Reservoir.

Discharge of Chesapeake and Ohio Canal which parallels the Potomac River on the Maryland side is not included in records for this station. Canal diverts from left bank of Potomac River at Harpers Ferry and returns below gaging station. Canal closed after Nov. 20, 1935, and not reopened, as the flood of March 1936 destroyed canal banks above the gage.

|            |         | Dischar | Runoff | Discharge<br>in million |           |                                       |
|------------|---------|---------|--------|-------------------------|-----------|---------------------------------------|
| Month      | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | gallons per<br>day per<br>square mile |
| 1895       |         |         |        |                         |           |                                       |
| February 1 | 15,260  | 3,000   | 5,593  | 0.580                   | 0.60      | 0.375                                 |
| March      | 65,980  | 11,520  | 24,560 | 2.54                    | 2.93      | 1.64                                  |
| April      | 67,640  | 6,200   | 14,500 | 1.50                    | 1.67      | . 969                                 |
| May        | 29,340  | 7,120   | 12,540 | 1.30                    | 1.50      | .840                                  |
| June       | 7,580   | 2,280   | 3,910  | .405                    | .45       | .262                                  |
| July       | 10,500  | 2,600   | 4,462  | . 462                   | . 53      | . 299                                 |
| August     | 3,300   | 1,340   | 1,997  | .207                    | .24       | . 134                                 |
| September  | 2,600   | 1,180   | 1,565  | . 162                   | .18       | .105                                  |
| The year   |         |         |        |                         |           |                                       |

Monthly discharge of Potomac River at Point of Rocks

‡ Not previously published; estimated or partly estimated.

|           |         | Dischar |        | Dunoff             | Discharge<br>in million |                                       |
|-----------|---------|---------|--------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile | in inches               | gallons per<br>day per<br>square mile |
| 1895-96   |         |         |        |                    |                         |                                       |
| October   | 1.340   | 1.040   | 1 163  | 0.121              | 0.14                    | 0.078                                 |
| November  | 1 540   | 1 180   | 1 333  | 138                | 15                      | 0.078                                 |
| December  | 5 320   | 1 180   | 2 2 50 | 234                | .13                     | 151                                   |
| Ianuary*  | 26.020  | 1,100   | 6 303  | 662                | . 21                    | .131                                  |
| February* | 30 320  | 3 680   | 11 050 | 1 24               | 1 3/                    | 801                                   |
| Marcht    | 34 500  | 3,000   | 10.070 | 1.24               | 1.04                    | . 001                                 |
| Aprilt    | 34 500  | 3,000   | 10,070 | 1.04               | 1.20                    | .072                                  |
| Mavt      | 6 660   | 2 280   | 2 200  | 251                | 1.20                    | .098                                  |
| lune*     | 14 160  | 1 760   | 6 020  | .331               | .40                     | . 227                                 |
| July      | 50, 200 | 2,040   | 0,000  | . 020              | 1 1 1                   | . 405                                 |
| August    | 0,500   | 2,940   | 9,200  | .902               | 1.11                    | ,022                                  |
| August    | 9,300   | 1,540   | 3,449  | .337               | .41                     | .321                                  |
| September | 25,380  | 1,180   | 2,175  | . 225              | .25                     | . 145                                 |
| The year  | 50,300  | 1,040   | 5,632  | 0.548              | 7.93                    | .377                                  |
| 1898-99   |         |         |        |                    |                         |                                       |
| October   | 86,730  | 1,760   | 13,670 | 1.42               | 1.64                    | 0.918                                 |
| November  | 15,260  | 5,320   | 8,557  | .887               | .99                     | . 573                                 |
| December  | 54,360  | 6,200   | 15.330 | 1.59               | 1.83                    | 1.03                                  |
| January   | 45,500  | 8,540   | 18,680 | 1.94               | 2.24                    | 1.25                                  |
| February* | 100,800 | 7,000   | 23,710 | 2.46               | 2.56                    | 1.59                                  |
| March     | 115,400 | 14,160  | 35,240 | 3.65               | 4.21                    | 2.36                                  |
| April     | 25,380  | 5,760   | 11,750 | 1.22               | 1.36                    | .789                                  |
| May       | 49,140  | 5,320   | 11,600 | 1.20               | 1.38                    | .776                                  |
| June      | 16,380  | 2,940   | 5,314  | . 551              | .61                     | .356                                  |
| July      | 7,120   | 1,540   | 2,519  | .261               | .30                     | . 169                                 |
| August    | 3,680   | 1,540   | 2,335  | . 242              | .28                     | .156                                  |
| September | 3,680   | 1,670   | 2,345  | . 243              | .27                     | .157                                  |
| The year  | 115,400 | 1,540   | 12,560 | 1.30               | 17.67                   | 0.840                                 |
| 1900-01   |         |         |        |                    |                         |                                       |
| October   | 2,600   | 1,180   | 1,333  | 0.138              | 0.16                    | 0.089                                 |
| November  | 46,300  | 1,040   | 4,570  | .474               | . 53                    | . 306                                 |
| December  | 29,340  | 2,280   | 6,218  | . 644              | .74                     | .416                                  |
| January   | 21,040  | 1,760   | 4,950  | .513               | . 59                    | . 332                                 |
| February* | 4,080   | 2,280   | 3,148  | .326               | .34                     | .211                                  |
| March     | 80,920  | 2,280   | 13,800 | 1.43               | 1.65                    | .924                                  |
| April     | 150,600 | 7,120   | 39,750 | 4.12               | 4.60                    | 2.66                                  |
| May       | 95,860  | 6,200   | 26,920 | 2.79               | 3.22                    | 1.80                                  |
| June      | 48,700  | 8,060   | 19,180 | 1.99               | 2.22                    | 1.29                                  |
| July      | 26,680  | 4,900   | 10,720 | 1.11               | 1.28                    | .717                                  |
| August    | 20,440  | 4.080   | 8,337  | .864               | 1.00                    | .558                                  |
| September | 28,000  | 3,680   | 7,636  | . 791              | .88                     | .511                                  |
| The year  | 150,600 | 1,040   | 12,230 | 1.27               | 17.21                   | .821                                  |

\* Revised

|         | Рот       | OMAC  | RIVER | R BASI | IN- | -Conti | inn | ed           |     |
|---------|-----------|-------|-------|--------|-----|--------|-----|--------------|-----|
| Monthly | Discharge | of Po | tomac | River  | at  | Point  | of  | Rocks-Contin | ned |

|           |         | Dischar | Runoff | Discharge<br>in million |           |                        |  |
|-----------|---------|---------|--------|-------------------------|-----------|------------------------|--|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | day per<br>square mile |  |
| 1901-02   |         |         |        |                         |           |                        |  |
| October   | 12.040  | 2.600   | 4.303  | 0.446                   | 0.51      | 0.288                  |  |
| November  | 19.840  | 2.280   | 4.648  | .482                    | .54       | .312                   |  |
| December  | 130.700 | 4,480   | 25.610 | 2.65                    | 3.06      | 1.71                   |  |
| January   | 75,110  | 7.580   | 17.520 | 1.82                    | 2.10      | 1.18                   |  |
| February* | 203.800 | 8,000   | 25.230 | 2.61                    | 2.72      | 1.69                   |  |
| March     | 218,700 | 14.700  | 54.260 | 5.62                    | 6.47      | 3.63                   |  |
| April     | 108.700 | 7.700   | 28.760 | 2.98                    | 3.32      | 1.93                   |  |
| May       | 9.530   | 4,670   | 5.973  | .619                    | .71       | .400                   |  |
| Iune      | 4 330   | 2.530   | 3.186  | .330                    | .37       | .213                   |  |
| Inly      | 4.330   | 2.000   | 3.086  | .320                    | .37       | 207                    |  |
| August    | 4,330   | 1,515   | 2,464  | .255                    | .29       | .165                   |  |
| September | 2,000   | 1,295   | 1,490  | .154                    | .17       | . 100                  |  |
| The year  | 218,700 | 1,295   | 14,680 | 1.52                    | 20.63     | .982                   |  |
| 1903-04   |         |         |        |                         |           | -                      |  |
| October.  | 6.130   | 2.000   | 3.212  | 0.333                   | 0.38      | 0.215                  |  |
| November  | 2,810   | 2,000   | 2,175  | .225                    | . 25      | .145                   |  |
| December  | 4,010   | 2,000   | 2,926  | . 303                   | . 35      | . 196                  |  |
| Ianuary   | 35,620  | 3,400   | 7,287  | .755                    | .87       | .488                   |  |
| February* | 31,000  | 7,200   | 14,680 | 1.52                    | 1.64      | .982                   |  |
| March     | 22,300  | 5,380   | 11,170 | 1.16                    | 1.34      | .750                   |  |
| April     | 28,120  | 3,400   | 7,406  | .767                    | .86       | .496                   |  |
| May       | 27,460  | 5,380   | 9,362  | .970                    | 1.12      | . 627                  |  |
| lune      | 38,500  | 3,100   | 10,160 | 1.05                    | 1.17      | .679                   |  |
| July.     | 10,970  | 2,530   | 4,505  | .467                    | . 54      | . 302                  |  |
| August    | 3,400   | 1,750   | 2,394  | .248                    | . 29      | . 160                  |  |
| September | 2,000   | 1,295   | 1, 592 | . 165                   | .18       | . 107                  |  |
| The year  | 38,500  | 1,295   | 6,372  | . 660                   | 8.99      | .427                   |  |
| 1904-05   |         |         |        |                         |           |                        |  |
| October   | 2,000   | 900     | 1,164  | 0.121                   | 0.14      | 0.078                  |  |
| November  | 1,515   | 1,090   | 1,340  | . 139                   | .16       | .090                   |  |
| December  | 5,020   | 1,515   | 2,201  | .228                    | .26       | . 147                  |  |
| January   | 17,430  | 4,670   | 8,626  | .894                    | 1.03      | .578                   |  |
| February* | 5,000   | 4,000   | 4,368  | .453                    | . 47      | . 293                  |  |
| March     | 63,900  | 6,520   | 23,480 | 2.43                    | 2.80      | 1.57                   |  |
| April     | 10,000  | 4,010   | 6,581  | . 682                   | .76       | . 441                  |  |
| May       | 9,070   | 2,810   | 4,493  | . 466                   | .54       | . 301                  |  |
| June      | 32,820  | 2,810   | 6,979  | .723                    | .81       | . 467                  |  |
| July      | 22,300  | 3,400   | 10,190 | 1.06                    | 1.22      | . 685                  |  |
| August    | 13,530  | 2,810   | 5,830  | . 604                   | .70       | . 390                  |  |
| September | 5,750   | 2,000   | 3,205  | . 332                   | .37       | . 215                  |  |
| The year  | 63,900  | 900     | 6,578  | . 682                   | 9.26      | .441                   |  |

|           |                | Dischar        | D              | Discharge<br>in million |                     |                                       |
|-----------|----------------|----------------|----------------|-------------------------|---------------------|---------------------------------------|
| Month     | Maximum        | Minimum        | Mean           | Per<br>square mile      | Kunoli<br>in inches | gallons per<br>day per<br>square mile |
| 1911-12   |                |                |                |                         |                     |                                       |
| October   | 33,500         | 4.010          | 8.510          | 0.882                   | 1.02                | 0.570                                 |
| November  | 13,000         | 2.940          | 5.970          | 619                     | 60                  | 400                                   |
| December  | 29,400         | 3,390          | 10.200         | 1.06                    | 1 22                | 685                                   |
| Ianuary*  | 21,100         | 3.500          | 7.330          | 760                     | 88                  | 491                                   |
| Februarv* | 80,500         | 5,100          | 14,900         | 1.54                    | 1 66                | .995                                  |
| March.    | 80,500         | 8,180          | 28,700         | 2.97                    | 3 42                | 1.92                                  |
| April     | 37,100         | 7.330          | 14.900         | 1.54                    | 1 72                | 995                                   |
| May       | 68.900         | 6.130          | 19,800         | 2.05                    | 2 36                | 1.32                                  |
| Iune      | 7 330          | 3 700          | 5 280          | 547                     | 61                  | 354                                   |
| July      | 46,000         | 3,860          | 8 550          | 886                     | 1.02                | 573                                   |
| August    | 7 7 50         | 2 120          | 3 460          | 350                     | 41                  | 232                                   |
| September | 39,200         | 1,640          | 6,360          | . 659                   | .74                 | . 426                                 |
| The year  | 80,500         | 1,640          | 11,200         | 1.16                    | 15.75               | .750                                  |
| 1914–15   |                |                |                |                         |                     |                                       |
| October   | 2,800          | 706            | 1,400          | 0.145                   | 0.17                | 0.094                                 |
| November  | 2,940          | 643            | 1,540          | .160                    | .18                 | . 103                                 |
| December* | 15,700         | 1,100          | 5,540          | . 574                   | . 66                | .371                                  |
| January   | 84,600         | 4,500          | 28,600         | 2.96                    | 3.41                | 1.91                                  |
| February  | 121,000        | 10,000         | 27,000         | 2.80                    | 2.92                | 1.81                                  |
| March     | 16,300         | 4,670          | 8,230          | .853                    | .98                 | . 551                                 |
| April     | 5,750          | 3,090          | 4,370          | .453                    | .51                 | .293                                  |
| May       | 15,200         | 3,240          | 5,900          | .611                    | .70                 | .395                                  |
| June      | 127,000        | 3,540          | 20,400         | 2.11                    | 2.35                | 1.36                                  |
| July      | 3,390          | 1,910          | 2,670          | .277                    | .32                 | .179                                  |
| August    | 19,800         | 1,240          | 6,760          | .700                    | .81                 | . 452                                 |
| September | 11,000         | 2,800          | 5,350          | . 554                   | . 62                | .358                                  |
| The year  | 127,000        | 643            | 9,690          | 1.00                    | 13.63               | . 646                                 |
| 1917–18   |                |                |                |                         |                     |                                       |
| October   | 30,100         | 770            | 4,770          | 0.494                   | 0.57                | 0.319                                 |
| November  | 18,600         | 1,260          | 3,830          | . 397                   | . 44                | .257                                  |
| December* | 3,000          | 1,700          | 2,270          | .235                    | . 27                | .152                                  |
| January   | -              | -              | 2,500          | .259                    | .30                 | . 167                                 |
| February  | 105,000        | _              | 28,300         | 2.93                    | 3.05                | 1.89                                  |
| March     | 43,000         | 4,500          | 13,600         | 1.41                    | 1.63                | .911                                  |
| April     | 111,000        | 4,010          | 39,800         | 4.12                    | 4.60                | 2.66                                  |
| May       | 16,300         | 2,660          | 5,990          | . 621                   | .72                 | .401                                  |
| June      | 5,750          | 2,250          | 3,310          | . 343                   | .38                 | . 222                                 |
| July      | 4,840          | 2,120          | 3,360          | . 348                   | . 40                | .225                                  |
| August    | 3,700<br>6,920 | 2,120<br>1,990 | 2,910<br>3,940 | . 302                   | .35                 | .195                                  |
| The year  | 111,000        | 770            | 9,370          | .971                    | 13.17               | . 628                                 |

| Pc                | DTOMAC RIVER | R BASIN-Conti  | nucd               |
|-------------------|--------------|----------------|--------------------|
| Monthly Discharge | e of Potomac | River at Point | of Rocks-Continued |

|           |         | Dischar | Dunoff | Discharge<br>in million |           |                                       |
|-----------|---------|---------|--------|-------------------------|-----------|---------------------------------------|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | gallons per<br>day per<br>square mile |
| 1919-20   |         |         |        |                         |           |                                       |
| October   | 4.840   | 1.010   | 2.420  | 0.251                   | 0.29      | 0.162                                 |
| November  | 14, 100 | 2,250   | 4.620  | 479                     | 53        | 310                                   |
| December  | 12 000  | 3 700   | 6.880  | 713                     | 82        | 461                                   |
| Ianuary*  | 35,000  | 5,000   | 12 700 | 1.32                    | 1 52      | 853                                   |
| February* | 35,000  | 10,000  | 20,300 | 2 10                    | 2 26      | 1 36                                  |
| March     | 103,000 | 9,070   | 32 300 | 3 35                    | 3 86      | 2.17                                  |
| April     | 32,800  | 8 620   | 14 500 | 1.50                    | 1.67      | 060                                   |
| May       | 13 500  | 4 840   | 8 700  | 001                     | 1 04      | 582                                   |
| Tupo      | 18,600  | 4 010   | 8 550  | . 901                   | 00        | 572                                   |
| Julie     | 7 750   | 2,660   | 3 700  | 303                     | .99       | .515                                  |
| August    | 32 100  | 1 000   | 7 150  | 7.11                    | .40       | 470                                   |
| September | 18,000  | 2,250   | 4,960  | .514                    | .57       | .332                                  |
| The year  | 103,000 | 1,010   | 10,600 | 1.10                    | 14.85     | .711                                  |
| 1923–24   |         |         |        |                         |           |                                       |
| October   | 1,930   | 676     | 1,040  | 0.108                   | 0.12      | 0.070                                 |
| November  | 2,920   | 780     | 2,030  | . 210                   | .23       | . 136                                 |
| December  | 14,000  | 2,920   | 6,880  | .713                    | .82       | . 461                                 |
| January   | 68,300  | 8,550   | 18,700 | 1.94                    | 2.24      | 1.25                                  |
| February  | 14,500  | 5,000   | 8,170  | .847                    | .91       | . 547                                 |
| March     | 156,000 | 6,130   | 33,800 | 3.50                    | 4.04      | 2.26                                  |
| April*    | 76,500  | 8,130   | 22,100 | 2.29                    | 2.56      | 1.48                                  |
|           | 237,000 | 8,130   | 42,000 | 4.35                    | 5.02      | 2.81                                  |
| June      | 24,400  | 7,300   | 14,400 | 1.49                    | 1.66      | .963                                  |
| July      | 19,600  | 3,580   | 8,960  | . 928                   | 1.07      | . 600                                 |
| August    | 4,270   | 2,600   | 3,170  | .328                    | .38       | .212                                  |
| September | 15,500  | 1,420   | 2,680  | .278                    | .31       | . 180                                 |
| The year  | 237,000 | 676     | 13,700 | 1.42                    | 19.36     | .918                                  |
| 1943-44   |         |         |        |                         |           |                                       |
| October   | 2,530   | 995     | 1,514  | 0.157                   | 0.18      | 0.101                                 |
| November  | 5,210   | 1,600   | 2,403  | . 249                   | .28       | .161                                  |
| December  | 2,600   | 1,000   | 1,439  | . 149                   | . 17      | .096                                  |
| January   | 27,000  | 2,150   | 5,860  | .607                    | .70       | .392                                  |
| February  | 27,600  | 2,500   | 7,281  | .754                    | .81       | .487                                  |
| March     | 57,700  | 12,800  | 23,760 | 2.46                    | 2.84      | 1.59                                  |
| April     | 30,300  | 9,280   | 14,840 | 1.54                    | 1.72      | .996                                  |
| May       | 57,900  | 6,420   | 15,100 | 1.56                    | 1.80      | 1.01                                  |
| June      | 7,520   | 2,620   | 4,159  | . 431                   | .48       | .279                                  |
| July      | 2,930   | 1,330   | 1,787  | .185                    | .21       | .120                                  |
| August    | 1,780   | 1,110   | 1,296  | .134                    | . 15      | .087                                  |
| September | 13,000  | 1,100   | 2,666  | .276                    | .31       | . 178                                 |
| The year  | 57,900  | 995     | 6,849  | .710                    | 9.65      | .459                                  |

|           |         | Dischar | D. C   | Discharge<br>in million |           |                                       |
|-----------|---------|---------|--------|-------------------------|-----------|---------------------------------------|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | gallons per<br>day per<br>square mile |
| 1944-45   |         |         |        |                         |           |                                       |
| October   | 33,400  | 2.040   | 5.499  | 0.570                   | 0.66      | 0.368                                 |
| November  | 3 660   | 1 010   | 2 378  | 246                     | 27        | 150                                   |
| December  | 23 800  | 3 040   | 7 185  | 744                     | 86        | 181                                   |
| January   | 21,000  | 5 380   | 8 567  | 888                     | 1 02      | 574                                   |
| February  | 40 300  | 3,400   | 15 430 | 1.60                    | 1.66      | 1.03                                  |
| March     | 43 300  | 7 330   | 18,060 | 1.00                    | 2 16      | 1 21                                  |
| April     | 10,200  | 6,060   | 0,100  | 044                     | 1.05      | 610                                   |
| May       | 19,200  | 6,600   | 10,100 | 1.05                    | 1.05      | 670                                   |
| Juno      | 6 800   | 2,800   | 1 127  | 1.05                    | 1.41      | 201                                   |
| June      | 10,700  | 2,000   | 4,407  | .403                    | . 32      | .301                                  |
| July      | 10,700  | 2,000   | 5,100  | .328                    | .33       | . 212                                 |
| August    | 115,200 | 2,000   | 0,071  | .029                    | .13       | .407                                  |
| September | 115,000 | 2,030   | 17,000 | 1.82                    | 2.03      | 1.18                                  |
| The year  | 115,000 | 1,910   | 8,925  | .925                    | 12.55     | . 598                                 |
| 1945-46   |         |         |        |                         |           |                                       |
| October   | 11,100  | 2,550   | 4,472  | 0.463                   | 0.53      | 0.299                                 |
| November  | 32,500  | 2,530   | 6,888  | .714                    | .80       | .461                                  |
| December  | 29,200  | 5,550   | 12,250 | 1.27                    | 1.46      | . 821                                 |
| January   | 31,000  | 6,420   | 14,220 | 1.47                    | 1.70      | .950                                  |
| February  | 20,900  | 6,780   | 10,670 | 1.11                    | 1.16      | .717                                  |
| March     | 25,900  | 10,700  | 15,480 | 1.60                    | 1.85      | 1.03                                  |
| April     | 19,700  | 4,540   | 8,198  | .849                    | .95       | . 549                                 |
| May       | 25,900  | 5,550   | 13,510 | 1.40                    | 1.61      | .905                                  |
| June      | 43,600  | 4,340   | 11,870 | 1.23                    | 1.37      | .795                                  |
| July      | 5,380   | 1,950   | 3,389  | .351                    | .40       | . 227                                 |
| August    | 8,880   | 1,740   | 3,149  | .326                    | .38       | .211                                  |
| September | 3,560   | 1,090   | 1,726  | . 179                   | . 20      | .116                                  |
| The year  | 43,600  | 1,090   | 8,828  | .915                    | 12.41     | . 591                                 |
| 1946-47   |         |         |        |                         |           |                                       |
| October   | 8,680   | 1,570   | 2,824  | 0.293                   | 0.34      | 0.189                                 |
| November  | 3,880   | 1,700   | 2,163  | . 224                   | .25       | .145                                  |
| December  | 6,960   | 1,450   | 2,144  | . 222                   | . 26      | . 143                                 |
| January   | 18,300  | 4,870   | 8,969  | . 929                   | 1.07      | . 600                                 |
| February  | 12,100  | 2,900   | 5,083  | . 527                   | .55       | .341                                  |
| March     | 37,500  | 2,680   | 10,490 | 1.09                    | 1.25      | .704                                  |
| April     | 9,480   | 4,700   | 6,201  | . 643                   | .72       | .416                                  |
| May       | 13,300  | 5,210   | 8,353  | .866                    | 1.00      | .560                                  |
| June      | 9,880   | 3,040   | 5,697  | . 590                   | .66       | .381                                  |
| July      | 12,400  | 2,410   | 5,020  | . 520                   | .60       | .336                                  |
| August    | 8,610   | 1,780   | 3,555  | .368                    | .42       | . 238                                 |
| September | 3,260   | 1,350   | 1,972  | . 204                   | . 23      | .132                                  |
| The year  |         | 1,350   | 5,220  | . 541                   | 7.35      | . 350                                 |

|           |         | Dischar | D      | Discharge<br>in million |           |                                       |  |
|-----------|---------|---------|--------|-------------------------|-----------|---------------------------------------|--|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | gallons per<br>day per<br>square mile |  |
| 1947-48   |         |         |        |                         |           |                                       |  |
| October   | 1,760   | 995     | 1.305  | 0.135                   | 0.16      | 0.087                                 |  |
| November  | 8,090   | 1,430   | 4.566  | .473                    | . 53      | .306                                  |  |
| December  | 4,110   | 1,850   | 2.680  | .278                    | . 32      | .180                                  |  |
| January   | 26,100  | 2,300   | 6.085  | .631                    | .73       | .408                                  |  |
| February  | 54,600  | 2.300   | 11.380 | 1.18                    | 1.27      | 763                                   |  |
| March     | 32,500  | 8,480   | 15.780 | 1.64                    | 1.88      | 1.06                                  |  |
| April     | 74.200  | 8,680   | 19,930 | 2.07                    | 2.30      | 1.34                                  |  |
| May       | 33.700  | 5.210   | 14.980 | 1.55                    | 1 79      | 1.00                                  |  |
| Tune      | 14.200  | 4 170   | 6 399  | 663                     | 74        | 129                                   |  |
| Inly      | 8.090   | 2.820   | 3,988  | 413                     | 48        | 267                                   |  |
| August    | 8,280   | 2,620   | 4,985  | .517                    | . 60      | . 334                                 |  |
| September | 4,200   | 2,000   | 2,624  | . 272                   | . 30      | .176                                  |  |
| The year  | 74,200  | 995     | 7,867  | . 815                   | 11.10     | . 527                                 |  |
| 1948-49   |         |         |        |                         |           | *                                     |  |
| October   | 23,300  | 2,400   | 8,249  | 0.855                   | 0.99      | 0.553                                 |  |
| November  | 22,900  | 3,290   | 9,269  | .960                    | 1.07      | .620                                  |  |
| December  | 62,200  | 9,880   | 23,600 | 2.45                    | 2.82      | 1.58                                  |  |
| January   | 53,100  | 11,100  | 24,930 | 2.58                    | 2.98      | 1.67                                  |  |
| February  | 28,100  | 15,000  | 19,590 | 2.03                    | 2.11      | 1.31                                  |  |
| March     | 14,600  | 7,900   | 10.300 | 1.07                    | 1.23      | .692                                  |  |
| April.    | 35,000  | 6,780   | 12,570 | 1.30                    | 1.45      | .840                                  |  |
| May.      | 18,300  | 6,600   | 9,489  | . 983                   | 1.13      | . 635                                 |  |
| June      | 110,000 | 2,720   | 13,050 | 1.35                    | 1.51      | .873                                  |  |
| [uly      | 63,900  | 5,890   | 16,000 | 1.66                    | 1.91      | 1.071                                 |  |
| August    | 20,200  | 3,690   | 7,259  | .752                    | . 87      | .486                                  |  |
| September | 14,200  | 2,220   | 4,365  | . 452                   | . 50      | . 292                                 |  |
| The year  | 110,000 | 2,220   | 13,210 | 1.37                    | 18.57     | . 885                                 |  |
| 1949-50   |         |         |        |                         |           |                                       |  |
| October   | 4,540   | 1,660   | 2,242  | 0.232                   | 0.27      | 0.150                                 |  |
| November  | 12,000  | 2,850   | 4,988  | . 517                   | .58       | . 334                                 |  |
| December  | 21,200  | 3,600   | 7,565  | . 784                   | . 90      | . 507                                 |  |
| January   | 12,000  | 4,700   | 7,307  | .757                    | .87       | . 489                                 |  |
| February  | 63,300  | 7,710   | 21,380 | 2.22                    | 2.31      | 1.43                                  |  |
| March     | 44,500  | 5,890   | 15,090 | 1.56                    | 1.80      | 1.01                                  |  |
| April     | 16,800  | 5,210   | 8,337  | . 864                   | . 96      | . 558                                 |  |
| May       | 29,200  | 7,900   | 14,410 | 1.49                    | 1.72      | .963                                  |  |
| June      | 24,400  | 3,530   | 8,550  | . 886                   | . 99      | . 573                                 |  |
| July      | 3,780   | 2,550   | 3,028  | . 314                   | .36       | .203                                  |  |
| August.   | 3,480   | 1,290   | 1,941  | . 201                   | .23       | .130                                  |  |
| September | 32,500  | 2,360   | 8,818  | . 914                   | 1.02      | .591                                  |  |
| The year  | 63,300  | 1,290   | 8,543  | . 885                   | 12.01     | . 572                                 |  |

|           |         | Dischar | Dunoff | Discharge<br>in million |           |                                       |
|-----------|---------|---------|--------|-------------------------|-----------|---------------------------------------|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | gallons per<br>day per<br>square mile |
| 1950-51   |         |         |        |                         |           |                                       |
| October   | 13,700  | 3,070   | 5.511  | 0.571                   | 0.66      | 0.369                                 |
| November  | 52.300  | 3.880   | 10,170 | 1.05                    | 1.18      | .679                                  |
| December  | 98,700  | 7,710   | 25.010 | 2.59                    | 2.99      | 1.67                                  |
| Ianuary.  | 28,000  | 7,140   | 14.300 | 1.48                    | 1.71      | .957                                  |
| February  | 54,000  | 15.000  | 26.200 | 2 71                    | 2.83      | 1.75                                  |
| March     | 36.600  | 11,600  | 18 330 | 1 90                    | 2.19      | 1 23                                  |
| April     | 60.900  | 10.700  | 22.710 | 2.35                    | 2 63      | 1.52                                  |
| May       | 10 200  | 5 380   | 11 550 | 1 20                    | 1 38      | 776                                   |
| Iune      | 90,000  | 4 700   | 15 240 | 1.58                    | 1.76      | 1.02                                  |
| Tuly      | 7 520   | 3 240   | 4 400  | 466                     | 54        | 301                                   |
| Anouet    | 3 210   | 1 760   | 2 388  | 247                     | 20        | 160                                   |
| September | 2 090   | 1 310   | 1 706  | 177                     | 20        | 114                                   |
| September |         |         | 1,700  |                         | . 20      | . 114                                 |
| The year  | 98,700  | 1,310   | 13,030 | 1.35                    | 18.36     | .873                                  |
| 1951–52   |         |         |        |                         |           |                                       |
| October   | 1,490   | 1,130   | 1,304  | 0.135                   | 0.16      | 0.087                                 |
| November  | 3,070   | 1,510   | 2,210  | . 229                   | . 26      | .148                                  |
| December  | 18,800  | 2,290   | 5,939  | .615                    | .71       | .397                                  |
| January   | 50,500  | 11,100  | 20,330 | 2.11                    | 2.43      | 1.36                                  |
| February  | 43,300  | 6,780   | 14,860 | 1.54                    | 1.66      | .995                                  |
| March     | 82,200  | 6,420   | 21,660 | 2.24                    | 2.59      | 1.45                                  |
| April     | 123,000 | 11,100  | 27,570 | 2.86                    | 3.19      | 1.85                                  |
| May       | 49,300  | 11,600  | 20,850 | 2.16                    | 2.49      | 1.40                                  |
| June      | 10,500  | 3,910   | 6,012  | . 623                   | .70       | .403                                  |
| July      | 9,480   | 2,110   | 4,001  | .415                    | .48       | .268                                  |
| August    | 4,070   | 2,180   | 2,871  | . 297                   | .34       | . 192                                 |
| September | 17,800  | 2,200   | 4,601  | .477                    | . 53      | . 308                                 |
| The year  | 123,000 | 1,130   | 11,010 | 1.14                    | 15.54     | .737                                  |
| 1952-53   |         |         |        |                         |           |                                       |
| October   | 2,390   | 1,500   | 1,941  | 0.201                   | 0.23      | 0.130                                 |
| November  | 100,000 | 1,570   | 11,180 | 1.16                    | 1.29      | .750                                  |
| December  | 38,500  | 5,460   | 10,550 | 1.09                    | 1.26      | .704                                  |
| January   | 51,900  | 6,180   | 21,380 | 2.22                    | 2.55      | 1.43                                  |
| February  | 30,500  | 9,360   | 14,620 | 1.51                    | 1.58      | .976                                  |
| March     | 75,900  | 9,920   | 26,220 | 2.72                    | 3.13      | 1.76                                  |
| April     | 30,700  | 10,200  | 16,180 | 1.68                    | 1.87      | 1.09                                  |
| May       | 27,400  | 7,250   | 14,200 | 1.47                    | 1.70      | .950                                  |
| June      | 29,500  | 3,080   | 7,761  | .804                    | .90       | . 520                                 |
| July      | 5,390   | 1,760   | 2,695  | .279                    | .32       | . 180                                 |
| August    | 3,160   | 1,300   | 1,968  | . 204                   | .24       | .132                                  |
| September | 2,320   | 1,200   | 1,535  | . 159                   | . 18      | . 103                                 |
| The year  | 100,000 | 1,200   | 10,840 | 1.12                    | 15.25     | .724                                  |

|           |         | Dischar | Dunoff | Discharge<br>in million |           |                                       |
|-----------|---------|---------|--------|-------------------------|-----------|---------------------------------------|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in inches | gallons per<br>day per<br>square mile |
| 1953-54   |         |         |        |                         |           |                                       |
| October   | 1,650   | 1,100   | 1,210  | 0.125                   | 0.14      | 0.081                                 |
| November  | 2,790   | 1,260   | 1,600  | .166                    | .18       | .107                                  |
| December  | 7,330   | 1,460   | 2.866  | .297                    | .34       | . 192                                 |
| January   | 8,440   | 1,400   | 3.315  | .343                    | .40       | . 222                                 |
| February  | 9,240   | 1,950   | 3.842  | . 398                   | .41       | .257                                  |
| March     | 87.700  | 6.700   | 17.120 | 1.77                    | 2.05      | 1.14                                  |
| April     | 12.700  | 4,860   | 7.043  | .730                    | .81       | .472                                  |
| May       | 15.500  | 4,470   | 7.071  | .733                    | .84       | .474                                  |
| Iune      | 12 400  | 2 500   | 5 578  | 578                     | 64        | 374                                   |
| July      | 1 360   | 1 250   | 2 055  | 213                     | 25        | 138                                   |
| August    | 6,290   | 1,080   | 2.321  | .240                    | .28       | .155                                  |
| September | 3,820   | 1,240   | 1,799  | .186                    | .21       | .120                                  |
| The year  | 87,700  | 1,080   | 4,665  | . 483                   | 6.55      | .312                                  |
| 1954–55   |         |         |        |                         |           |                                       |
| October   | 119,000 | 1,040   | 10,610 | 1.10                    | 1.27      | 0.711                                 |
| November  | 30,200  | 2,860   | 8,036  | .833                    | .93       | . 538                                 |
| December  | 37,400  | 4,360   | 10,870 | 1.13                    | 1.30      | .730                                  |
| January   | 55,700  | 2,450   | 10,170 | 1.05                    | 1.21      | . 679                                 |
| February  | 28,000  | 2,800   | 10,660 | 1.10                    | 1.15      | .711                                  |
| March     | 73,100  | 11,600  | 27,200 | 2.82                    | 3.25      | 1.82                                  |
| April     | 27,200  | 6,150   | 10,950 | 1.13                    | 1.27      | .730                                  |
| May       | 12,800  | 4,540   | 6,587  | . 683                   | .79       | .441                                  |
| June      | 44,400  | 2,640   | 10,570 | 1.10                    | 1.22      | .711                                  |
| July      | 4,750   | 1,610   | 2,618  | .271                    | .31       | .175                                  |
| August    | 190,000 | 1,460   | 23,580 | 2.44                    | 2.82      | 1.58                                  |
| September | 7,600   | 2,580   | 3,943  | .409                    | .46       | . 264                                 |
| The year  | 190,000 | 1,040   | 11,350 | 1.81                    | 15.98     | .763                                  |
| 1955-56   |         |         |        |                         |           |                                       |
| October   | 8,050   | 2,110   | 2,936  | 0.304                   | 0.35      | 0.196                                 |
| November  | 2,940   | 2,020   | 2,503  | .259                    | .29       | .167                                  |
| December  | 2,580   | 1,550   | 1,981  | .205                    | . 24      | . 132                                 |
| January   | 3,800   | 1,500   | 1,947  | . 202                   | . 23      | . 131                                 |
| February  | 41,000  | 10,100  | 18,980 | 1.97                    | 2.12      | 1.27                                  |
| March     | 49,600  | 7,180   | 16,680 | 1.73                    | 1.99      | 1.12                                  |
| April     | 55,400  | 6,580   | 15,260 | 1.58                    | 1.76      | 1.02                                  |
| May       | 14,900  | 4,300   | 6,445  | . 668                   | .77       | . 432                                 |
| June      | 10,000  | 2,860   | 5,219  | . 541                   | .60       | .350                                  |
| July      | 17,400  | 2,160   | 5,528  | .573                    | .66       | .370                                  |
| August    | 28,400  | 2,320   | 5,517  | .572                    | .66       | .370                                  |
| September | 4,680   | 1,860   | 2,355  | .244                    | . 27      | . 158                                 |
| The year  | 55,400  | 1,500   | 7,056  | .731                    | 9.94      | .472                                  |

|      |         | Year er               | iding Sept. | . 30                                  | Calendar year |                       |              |                                       |  |
|------|---------|-----------------------|-------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
| Year | Dischar | ge in cfs             | Dunoff      | Discharge                             | Dischar       | ge in cfs             | Dunoff       | Discharge                             |  |
|      | Mean    | Per<br>square<br>mile | inches      | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1896 | 5,632   | 0.584                 | 7.93        | 0.377                                 | 7,259         | 0.752                 | 10.22        | 0.486                                 |  |
| 1897 | 11,760  | 1.22                  | 16.53       | .789                                  | 10,630        | 1.10                  | 14.94        | .711                                  |  |
| 1898 | 9,566   | .991                  | 13.44       | . 641                                 | 11,830        | 1.23                  | 16.64        | .795                                  |  |
| 1899 | 12,560  | 1.30                  | 17.67       | .840                                  | 10,140        | 1.05                  | 14.27        | . 679                                 |  |
| 1900 | 6,395   | . 663                 | 9.00        | . 429                                 | 6,665         | .691                  | 9.37         | .447                                  |  |
| 1901 | 12,230  | 1.27                  | 17.21       | .821                                  | 14,130        | 1.46                  | 19.89        | .944                                  |  |
| 1902 | 14,680  | 1.52                  | 20.63       | .982                                  | 13,810        | 1.43                  | 19.40        | .924                                  |  |
| 1903 | 13,740  | 1.42                  | 19.32       | .918                                  | 12,390        | 1.28                  | 17.42        | .827                                  |  |
| 1904 | 6,372   | .660                  | 8.99        | .427                                  | 6,069         | .629                  | 8.57         | .407                                  |  |
| 1905 | 6,578   | .682                  | 9.26        | .441                                  | 7,518         | .779                  | 10.57        | . 503                                 |  |
| 1906 | 9,257   | .959                  | 13.02       | .620                                  | 10,770        | 1.12                  | 15.14        | .724                                  |  |
| 1907 | 13,900  | 1.44                  | 19.54       | .931                                  | 13,500        | 1.40                  | 18.98        | .905                                  |  |
| 1908 | 14,000  | 1.45                  | 19.73       | . 937                                 | 12,200        | 1.26                  | 17.21        | .814                                  |  |
| 1909 | 6,430   | .666                  | 9.03        | . 430                                 | 6,370         | .660                  | 8.94         | .427                                  |  |
| 1910 | 7,750   | .803                  | 10.91       | . 519                                 | 7,570         | .784                  | 10.68        | . 507                                 |  |
| 1911 | 6,500   | .674                  | 9.13        | .436                                  | 8,150         | .844                  | 11.45        | . 545                                 |  |
| 1912 | 11,200  | 1.16                  | 15.75       | .750                                  | 9,910         | 1.03                  | 13.97        | .666                                  |  |
| 1913 | 7,930   | . 822                 | 11.16       | . 531                                 | 9,490         | .983                  | 13.36        | .635                                  |  |
| 1914 | 10,200  | 1.06                  | 14.43       | .685                                  | 8,580         | .889                  | 12.09        | .575                                  |  |
| 1915 | 9,690   | 1.00                  | 13.63       | . 646                                 | 10,400        | 1.08                  | 14.63        | . 698                                 |  |
| 1916 | 10,400  | 1.08                  | 14.63       | . 698                                 | 9,520         | .986                  | 13.45        | .637                                  |  |
| 1917 | 7,880   | .816                  | 11.09       | . 527                                 | 8,200         | .850                  | 11.54        | . 549                                 |  |
| 1918 | 9,370   | .971                  | 13.17       | . 628                                 | 10,200        | 1.06                  | 14.30        | .685                                  |  |
| 1919 | 8,390   | .869                  | 11.80       | . 562                                 | 7,850         | .813                  | 11.03        | .525                                  |  |
| 1920 | 10,600  | 1.10                  | 14.85       | .711                                  | 10,800        | 1.12                  | 15.22        | .724                                  |  |
| 1921 | 7,040   | .729                  | 9.90        | .471                                  | 7,080         | .734                  | 9.97         | .474                                  |  |
| 1922 | 8,160   | . 846                 | 11.46       | .547                                  | 7,070         | .733                  | 9.93         | .474                                  |  |
| 1923 | 5,030   | . 521                 | 7.08        | . 337                                 | 5,480         | . 568                 | 7.71         | .367                                  |  |
| 1924 | 13,700  | 1.42                  | 19.36       | .918                                  | 14,200        | 1.47                  | 20.04        | .950                                  |  |
| 1925 | 6,920   | .717                  | 9.73        | .463                                  | 6,860         | .711                  | 9.63         | . 460                                 |  |
| 1926 | 7,970   | .826                  | 11.22       | . 534                                 | 9,870         | 1.02                  | 13.90        | . 659                                 |  |
| 1927 | 11,500  | 1.19                  | 16.14       | .769                                  | 11,100        | 1.15                  | 15.57        | .743                                  |  |
| 1928 | 12,000  | 1.24                  | 16.94       | .801                                  | 10,100        | 1.05                  | 14.19        | . 679                                 |  |
| 1929 | 8,550   | .886                  | 12.03       | . 573                                 | 10,700        | 1.11                  | 15.14        | .717                                  |  |
| 1930 | 6,490   | .672                  | 9.14        | . 434                                 | 3,760         | .390                  | 5.28         | .252                                  |  |
| 1931 | 4,920   | . 510                 | 6.92        | . 330                                 | 5,050         | . 523                 | 7.11         | .338                                  |  |
| 1932 | 6,920   | .717                  | 9.78        | .463                                  | 8,860         | .918                  | 12.51        | . 593                                 |  |
| 1933 | 12,700  | 1.32                  | 17.83       | .853                                  | 11,100        | 1.15                  | 15.57        | .743                                  |  |
| 1934 | 4,856   | . 503                 | 6.84        | .325                                  | 6,123         | .634                  | 8.61         | .410                                  |  |
| 1935 | 10,670  | 1.11                  | 15.00       | .717                                  | 9,948         | 1.03                  | 14.00        | .666                                  |  |
| 1936 | 13,440  | 1.39                  | 18.95       | . 898                                 | 13,650        | 1.41                  | 19.25        | . 911                                 |  |
| 1937 | 12,760  | 1.31                  | 17.83       | .847                                  | 14,940        | 1.55                  | 21.02        | 1.00                                  |  |

# POTOMAC RIVER BASIN—Continued Yearly discharge of Potomac River at Point of Rocks

### POTOMAC RIVER BASIN-Continued

|         |                  | Year en               | ding Sept.   | 30                                    | Calendar year |                       |              |                                       |  |
|---------|------------------|-----------------------|--------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
| Year    | Discharge in cfs |                       | Runoff       | Discharge                             | Disch         | arge                  | Dunoff       | Discharge                             |  |
|         | Mean             | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1938.   | 8,692            | .901                  | 12.24        | . 582                                 | 5,881         | . 609                 | 8.28         | .394                                  |  |
| 1939    | 9,002            | .933                  | 12.65        | . 603                                 | 8,944         | .927                  | 12.57        | . 599                                 |  |
| 1940    | 9,108            | .944                  | 12.86        | .610                                  | 10,200        | 1.06                  | 14.41        | .685                                  |  |
| 1941    | 7,317            | .758                  | 10.31        | .490                                  | 5,841         | . 605                 | 8.23         | .391                                  |  |
| 1942    | 6,744            | . 699                 | 9.48         | .452                                  | 11.350        | 1.18                  | 15.94        | 763                                   |  |
| 1943    | 13,480           | 1.40                  | 18.96        | .905                                  | 8,839         | .916                  | 12.43        | .592                                  |  |
| 1944    | 6,849            | .710                  | 9.65         | .459                                  | 7,671         | .795                  | 10.81        | .514                                  |  |
| 1945    | 8,925            | .925                  | 12.55        | . 598                                 | 9,638         | .999                  | 13.55        | 646                                   |  |
| 1946    | 8,828            | .915                  | 12.41        | . 591                                 | 7,442         | .771                  | 10.47        | .498                                  |  |
| 1947    | 5,220            | .541                  | 7.35         | .350                                  | 5,334         | .553                  | 7.51         | .357                                  |  |
| 1948    | 7,867            | .815                  | 11.10        | .527                                  | 10.610        | 1.10                  | 14.97        | 711                                   |  |
| 1949    | 13,210           | 1.37                  | 18.57        | .885                                  | 10,980        | 1.14                  | 15.44        | 7.37                                  |  |
| 1950    | 8,543            | .885                  | 12.01        | .572                                  | 10,730        | 1.11                  | 15.09        | 717                                   |  |
| 1951    | 13,030           | 1.35                  | 18.36        | .873                                  | 10,400        | 1.08                  | 14.66        | 698                                   |  |
| 1952    | 11,010           | 1.14                  | 15.54        | .737                                  | 12,190        | 1.26                  | 17.19        | 814                                   |  |
| 1953    | 10,840           | 1.12                  | 15.25        | .724                                  | 9,338         | .968                  | 13.13        | 626                                   |  |
| 1954    | 4,665            | .483                  | 6.55         | .312                                  | 6.672         | . 691                 | 9.39         | 447                                   |  |
| 1955    | 11,350           | 1.18                  | 15.98        | .763                                  | 9,492         | 984                   | 13.36        | .636                                  |  |
| 1956    | 7,056            | .731                  | 9.94         | .472                                  | _             | _                     | _            |                                       |  |
| Highest | 14,680           | 1.52                  | 20.63        | 0.982                                 | 14,940        | 1.55                  | 21.02        | 1.00                                  |  |
| Average | 9,316            | .965                  | 13.11        | .624                                  | 9,357         | .970                  | 13.17        | . 627                                 |  |
| Lowest  | 4,665            | .483                  | 6.55         | .312                                  | 3,760         | . 390                 | 5.28         | .252                                  |  |

### Yearly discharge of Potomac River at Point of Rocks-Continued

### CARROLL AND FREDERICK COUNTIES

#### POTOMAC RIVER BASIN

#### 11. Monocacy River at Bridgeport

Location.—Lat 39°40′43″, long 77°14′06″, on right bank 60 ft downstream from bridge on State Highway 32, at Bridgeport, Carroll County, 0.9 mile upstream from Cattail Branch, 3.4 miles northwest of Taneytown, and 4.8 miles downstream from confluence of Rock and Marsh Creeks at Pennsylvania-Maryland State line.

Drainage area.-173 sq mi. At site used prior to May 3, 1946, 174 sq mi.

Records available .- May 1942 to September 1956.

Supplemental records available.—Records of chemical analyses and water temperatures for the period April 1948 (suspended sediment loads from August 1948) to June 1951, are published in reports of U. S. Geological Survey.

Gage.-Water-stage recorder. Concrete control since Sept. 15, 1947. Datum of gage is 340.83 ft above mean sea level (Corps of Engineers benchmark). Prior to May 3, 1946, staff gage and crest-stage indicators at site 0.3 mile downstream at datum 0.98 ft lower.

Average discharge .- 14 years, 201 cfs.

*Extremes.*—Maximum discharge, 15,000 cfs May 21, 1943 (gage height, 20.53 ft, former site and datum), from rating curve extended above 6,700 cfs on basis of logarithmic plotting and velocity-area studies; minimum, 0.1 cfs Aug. 27, 28, 1944.

Maximum stage known, about 25 ft, present site and datum, Aug. 24, 1933, from floodmarks. Stage exceeded that of June 1889 from information by local residents.

Remarks.—Occasional regulation at low flow from unknown source above station.

|           |         | Discharg | ge in cfs |                    | Dunoff in | Discharge<br>in million<br>gallons per<br>day per<br>square mile |
|-----------|---------|----------|-----------|--------------------|-----------|------------------------------------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile | inches    |                                                                  |
| 1942      |         |          |           |                    |           |                                                                  |
| May       | 5,900   | 28       | 378       | 2.17               | 2.50      | 1.40                                                             |
| June      | 1,300   | 36       | 207       | 1.19               | 1.33      | .769                                                             |
| July      | 2,380   | 22       | 349       | 2.01               | 2.32      | 1.30                                                             |
| August    | 4,620   | 65       | 613       | 3.52               | 4.06      | 2.28                                                             |
| September | 523     | 16       | 53.5      | .307               | .34       | .198                                                             |
| 1942-43   |         |          |           |                    |           |                                                                  |
| October   | 5,160   | 16       | 520       | 2.99               | 3.44      | 1.93                                                             |
| November  | 720     | 62       | 188       | 1.08               | 1.21      | .698                                                             |
| December  | 5,230   | 47       | 575       | 3.30               | 3.81      | 2.13                                                             |
| January   | 510     | 83       | 179       | 1.03               | 1.19      | .666                                                             |
| February  | 2,340   | 117      | 447       | 2.57               | 2.68      | 1.66                                                             |
| March     | 2,030   | 94       | 401       | 2.30               | 2.66      | 1.49                                                             |
| April     | 2,400   | 57       | 272       | 1.56               | 1.75      | 1.01                                                             |
| May       | 7,640   | 57       | 554       | 3.18               | 3.67      | 2.06                                                             |
| June      | 156     | 16       | 56.0      | .322               | .36       | . 208                                                            |
| July      | 162     | 6.0      | 22.4      | . 129              | .15       | .083                                                             |
| August    | 27      | 2.7      | 6.56      | . 038              | . 04      | .025                                                             |
| September | 6.3     | .3       | 2.34      | .013               | . 01      | .008                                                             |
| The year  | 7,640   | .3       | 269       | 1.55               | 20.97     | 1.00                                                             |

Monthly discharge of Monocacy River at Bridgeport

|           |         | Discharg | ge in cfs |                                       | D (7.1 | Discharge<br>in million<br>gallons per<br>day per<br>square mile |
|-----------|---------|----------|-----------|---------------------------------------|--------|------------------------------------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile                    | inches |                                                                  |
| 1943-44   |         |          |           |                                       |        |                                                                  |
| October   | 1,270   | 0.3      | 93.8      | 0.539                                 | 0.62   | 0.348                                                            |
| November  | 5.840   | 22       | 361       | 2.07                                  | 2.32   | 1.34                                                             |
| December  | 739     | 6.0      | 63.5      | .365                                  | .42    | .236                                                             |
| lanuary   | 5.210   | 4.6      | 348       | 2.00                                  | 2.31   | 1.29                                                             |
| February  | 972     | 15       | 153       | .879                                  | .95    | .568                                                             |
| March.    | 4.090   | 117      | 709       | 4.07                                  | 4.70   | 2.63                                                             |
| April     | 1.440   | 107      | 333       | 1.91                                  | 2.14   | 1.23                                                             |
| May.      | 540     | 52       | 142       | .816                                  | .94    | . 527                                                            |
| Iune      | 48      | 9.6      | 26.9      | 155                                   | 17     | 100                                                              |
| Inty      | 12      | 2.3      | 5 48      | 0.31                                  | 04     | 020                                                              |
| August    | 7.0     | .2       | 2.40      | .014                                  | .02    | . 009                                                            |
| September | 89      | .4       | 10.5      | ,060                                  | .07    | .039                                                             |
| The year  | 5,840   | . 2      | 188       | 1.08                                  | 14.70  | . 698                                                            |
| 1944-45   |         |          |           |                                       |        |                                                                  |
| October   | 427     | 2.5      | 35.7      | 0.205                                 | 0.24   | 0.132                                                            |
| November  | 675     | 10       | 57.8      | .332                                  | .37    | .215                                                             |
| December  | 4,030   | 32       | 358       | 2.06                                  | 2.37   | 1.33                                                             |
| Ianuary   | 780     | 32       | 103       | . 592                                 | . 68   | .383                                                             |
| February. | 2.240   | 35       | 769       | 4.42                                  | 4.60   | 2.86                                                             |
| March     | 1,320   | 64       | 285       | 1.64                                  | 1.89   | 1.06                                                             |
| April     | 1,680   | 71       | 308       | 1.77                                  | 1.97   | 1.14                                                             |
| May       | 450     | 60       | 166       | .954                                  | 1.10   | .617                                                             |
| June      | 64      | 11       | 35.2      | . 202                                 | .23    | .131                                                             |
| July      | 578     | 7.0      | 110       | . 632                                 | .73    | .408                                                             |
| August    | 1,740   | 13       | 178       | 1.02                                  | 1.18   | .659                                                             |
| September | 4,980   | 18       | 328       | 1.89                                  | 2.10   | 1.22                                                             |
| The year  | 4,980   | 2.5      | 224       | 1.29                                  | 17.46  | . 834                                                            |
| 1945-46   |         |          |           | · · · · · · · · · · · · · · · · · · · |        |                                                                  |
| October   | 74      | 17       | 34.2      | 0.197                                 | 0.23   | 0.127                                                            |
| November  | 4,200   | 19       | 411       | 2.36                                  | 2.64   | 1.53                                                             |
| December  | 3,340   | 70       | 499       | 2.87                                  | 3.30   | 1.85                                                             |
| January   | 1,320   | 59       | 249       | 1.43                                  | 1.65   | .924                                                             |
| February  | 1,800   | 50       | 179       | 1.03                                  | 1.07   | . 666                                                            |
| March     | 2,600   | 110      | 345       | 1.98                                  | 2.29   | 1.28                                                             |
| April     | 170     | 28       | 58.7      | . 337                                 | .38    | .218                                                             |
| May       | 1,830   | 27       | 230       | 1.33                                  | 1.53   | .860                                                             |
| June      | 6,970   | 25       | 377       | 2.18                                  | 2.43   | 1.41                                                             |
| July      | 106     | 8.2      | 31.1      | .180                                  | . 21   | .116                                                             |
| August    | 402     | 8.6      | 50.1      | .290                                  | . 33   | . 187                                                            |
| September | 1,200   | 1.3      | 65.1      | .376                                  | . 42   | .243                                                             |
| The year  | 6,970   | 1.3      | 211       | 1.22                                  | 16.48  | .789                                                             |

### POTOMAC RIVER BASIN—Continued Monthly discharge of Monocacy River at Bridgeport—Continued

# POTOMAC RIVER BASIN-Continued

|           |         | Dischar | Punoff in | Discharge<br>in million |        |                                       |
|-----------|---------|---------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>suqare mile |
| 1946-47   |         |         |           |                         |        |                                       |
| October   | 409     | 8.9     | 73.6      | 0.425                   | 0.49   | 0.275                                 |
| November  | 66      | 22      | 33.4      | . 193                   | .22    | .125                                  |
| December  | 470     | 16      | 81.1      | .469                    | .54    | .303                                  |
| January   | 1.650   | 87      | 307       | 1.77                    | 2.04   | 1.14                                  |
| February. | 341     | 29      | 78.1      | .451                    | .47    | .291                                  |
| March.    | 2.330   | 44      | 263       | 1.52                    | 1.75   | .982                                  |
| April     | 186     | 44      | 68.8      | .398                    | .44    | .257                                  |
| May       | 3 760   | 47      | 303       | 1 75                    | 2 02   | 1 13                                  |
| lune      | 655     | 35      | 91 1      | 527                     | .59    | 341                                   |
| Inly      | 044     | 31      | 167       | 965                     | 1 12   | 624                                   |
| Aumst     | 488     | 9.6     | 44 6      | 258                     | 30     | 167                                   |
| September | 26      | 6.5     | 12.6      | .073                    | .08    | .047                                  |
| The year  | 3,760   | 6.5     | 128       | . 740                   | 10.06  | .478                                  |
| 1947-48   |         |         |           |                         |        |                                       |
| October   | 36      | 3.7     | 6.67      | 0.039                   | 0.04   | 0.025                                 |
| November  | 1,990   | 13      | 254       | 1.47                    | 1.64   | .950                                  |
| December  | 138     | 32      | 62.5      | .361                    | .42    | .233                                  |
| January   | 3,780   | 29      | 295       | 1.71                    | 1.96   | 1.11                                  |
| February  | 1,570   | 30      | 397       | 2.29                    | 2.48   | 1.48                                  |
| March     | 1,040   | 153     | 402       | 2.32                    | 2.68   | 1.50                                  |
| April     | 2,520   | 97      | 393       | 2.27                    | 2.54   | 1.47                                  |
| May       | 2,310   | 56      | 276       | 1.60                    | 1.84   | 1.03                                  |
| June      | 492     | 30      | 90.2      | .521                    | .58    | .337                                  |
| July      | 68      | 12      | 30.2      | .175                    | . 20   | .113                                  |
| August    | 806     | 11      | 84.4      | .488                    | . 56   | .315                                  |
| September | 19      | 5.2     | 7.62      | .044                    | .05    | .028                                  |
| The year  | 3,780   | 3.7     | 190       | 1.10                    | 14.99  | .711                                  |
| 1948-49   |         |         |           |                         |        |                                       |
| October   | 102     | 5.6     | 23.8      | 0.138                   | 0.16   | 0.089                                 |
| November  | 1,840   | 13      | 326       | 1.88                    | 2.10   | 1.22                                  |
| December  | 5,440   | 74      | 512       | 2.96                    | 3.41   | 1.91                                  |
| January   | 3,610   | 97      | 617       | 3.57                    | 4.11   | 2.31                                  |
| February  | 903     | 162     | 379       | 2.19                    | 2.28   | 1.42                                  |
| March     | 178     | 55      | 94.7      | .547                    | .63    | .354                                  |
| April     | 3,000   | 71      | 277       | 1.60                    | 1.78   | 1.03                                  |
| May       | 472     | 27      | 81.2      | . 469                   | .54    | .303                                  |
| June      | 68      | 10      | 21.7      | .125                    | .14    | .081                                  |
| July      | 5,000   | 8.8     | 598       | 3.46                    | 3.98   | 2.24                                  |
| August    | 77      | 7.2     | 25.7      | .149                    | .17    | .096                                  |
| September | 47      | 7.7     | 15.9      | . 092                   | .10    | .059                                  |
| The year  | 5,440   | 5.6     | 248       | 1.43                    | 19.40  | .924                                  |

# Monthly discharge of Monocacy River at Bridgeport-Continued

|           |         | Discharg |      | Punoff in          | Discharge<br>in million |                                       |
|-----------|---------|----------|------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1949-50   |         |          |      |                    |                         |                                       |
| October   | 250     | 10       | 33.3 | 0.192              | 0.22                    | 0.124                                 |
| November  | 156     | 18       | 38.5 | .223               | .25                     | .144                                  |
| December  | 2.710   | 21       | 218  | 1.26               | 1.46                    | .814                                  |
| Ianuary   | 409     | 68       | 138  | .798               | .92                     | .516                                  |
| February  | 2.380   | 66       | 557  | 3.22               | 3.35                    | 2.08                                  |
| March     | 5,480   | 56       | 468  | 2.71               | 3.12                    | 1.75                                  |
| April     | 229     | 58       | 112  | .647               | .72                     | .418                                  |
| May       | 2.630   | 81       | 415  | 2.40               | 2.76                    | 1.55                                  |
| Iune      | 1.580   | 23       | 175  | 1.01               | 1.13                    | 653                                   |
| Tube      | 331     | 13       | 53 5 | 300                | 36                      | 200                                   |
| August    | 42      | 5.7      | 12.1 | .070               | .08                     | .045                                  |
| September | 666     | 7.5      | 56.2 | . 325              | .36                     | . 210                                 |
| The year  | 5,480   | 5.7      | 188  | 1.09               | 14.73                   | .704                                  |
| 1950-51   |         |          |      |                    |                         |                                       |
| October   | 249     | 12       | 54.8 | 0.317              | 0.37                    | 0.205                                 |
| November  | 1,870   | 30       | 155  | . 896              | 1.00                    | . 579                                 |
| December  | 5,430   | 60       | 436  | 2.52               | 2.91                    | 1.63                                  |
| Tanuary   | 1,580   | 81       | 365  | 2.11               | 2.43                    | 1.36                                  |
| February  | 3,620   | 140      | 674  | 3.90               | 4.06                    | 2.52                                  |
| March.    | 2,060   | 103      | 281  | 1.62               | 1.88                    | 1.05                                  |
| April     | 673     | 97       | 213  | 1.23               | 1.37                    | .795                                  |
| May       | 250     | 27       | 70.9 | .410               | .47                     | .265                                  |
| June      | 2,860   | 20       | 426  | 2.46               | 2.74                    | 1.59                                  |
| July      | 1,150   | 15       | 85.3 | . 493              | . 57                    | . 319                                 |
| August    | 327     | 7.7      | 24.6 | .142               | .16                     | .092                                  |
| September | 21      | 3.7      | 9.14 | .053               | .06                     | .034                                  |
| The year  | 5,430   | 3.7      | 230  | 1.33               | 18.02                   | .860                                  |
| 1951-52   |         |          |      |                    |                         |                                       |
| October   | 15      | 4.3      | 7.09 | 0.041              | 0.05                    | 0.026                                 |
| November  | 662     | 27       | 99.7 | . 576              | .64                     | .372                                  |
| December  | 1,950   | 41       | 282  | 1.63               | 1.88                    | 1.05                                  |
| January   | 3,400   | 143      | 773  | 4.47               | 5.15                    | 2.89                                  |
| February  | 3,600   | 81       | 327  | 1.89               | 2.04                    | 1.22                                  |
| March     | 6,730   | 82       | 656  | 3.79               | 4.37                    | 2.45                                  |
| April     | 3,000   | 114      | 637  | 3.68               | 4.11                    | 2.38                                  |
| May       | 1,770   | 74       | 287  | 1.66               | 1.91                    | 1.07                                  |
| June      | 244     | 18       | 62.9 | . 364              | .41                     | .235                                  |
| July      | 2,900   | 15       | 200  | 1.16               | 1.33                    | .750                                  |
| August    | 603     | 10       | 60.2 | . 348              | . 40                    | .225                                  |
| September | 1,830   | 11       | 157  | . 908              | 1.01                    | . 587                                 |
| The year  | 6,730   | 4.3      | 296  | 1.71               | 23.30                   | 1.11                                  |

# POTOMAC RIVER BASIN—Continued Monthly discharge of Monocacy River at Bridgeport—Continued

# POTOMAC RIVER BASIN—Continued Monthly discharge of Monocacy River at Bridgeport—Continued

|           |         | Dischar | Dunoff in | Discharge<br>in million |        |                                       |
|-----------|---------|---------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1952-53   |         |         |           |                         |        |                                       |
| October   | 42      | 8.0     | 15.8      | 0.091                   | 0.11   | 0.059                                 |
| November  | 6.000   | 11      | 394       | 2 28                    | 2 54   | 1 47                                  |
| December  | 2 920   | 65      | 337       | 1 05                    | 2.01   | 1.26                                  |
| Ianuary   | 4 260   | 92      | 662       | 3 83                    | 4 41   | 2 48                                  |
| February  | 1 440   | 100     | 316       | 1.83                    | 1 00   | 1 18                                  |
| March     | 1 450   | 103     | 468       | 2 71                    | 3 12   | 1.10                                  |
| April     | 1 360   | 84      | 243       | 1.40                    | 1 57   | 0.05                                  |
| May       | 1 350   | 58      | 245       | 1.50                    | 1.83   | 1 03                                  |
| Iune      | 1 340   | 22      | 178       | 740                     | 1.00   | 1.03                                  |
| Tuly      | 255     | 22      | 25 4      | 140                     | .02    | .470                                  |
| August    | 200     | 0.0     | 11 0      | . 147                   | .17    | .095                                  |
| September | 59      | .9      | 8.21      | .009                    | .08    | .030                                  |
| The year  | 6,000   | .9      | 240       | 1.39                    | 18.85  | . 898                                 |
| 1953-54   |         |         |           |                         |        |                                       |
| October   | 21      | 1.7     | 5 59      | 0.032                   | 0.04   | 0.021                                 |
| November  | 28      | 3.9     | 10.4      | 060                     | 07     | 030                                   |
| December  | 1.000   | 7.6     | 157       | 908                     | 1.05   | 587                                   |
| January.  | 130     | 22      | 51 4      | 297                     | 34     | 192                                   |
| February  | 507     | 19      | 101       | 584                     | 61     | 377                                   |
| March.    | 1.230   | 84      | 250       | 1 45                    | 1.66   | 937                                   |
| April     | 1,210   | 34      | 123       | .711                    | .79    | 460                                   |
| May       | 1.900   | 32      | 186       | 1 08                    | 1 24   | 698                                   |
| Iune      | 62      | 5.0     | 15.8      | 091                     | .10    | .059                                  |
| July      | 8.0     | .6      | 4.45      | 026                     | .03    | .017                                  |
| August    | 76      | .3      | 0 00      | .056                    | .07    | .036                                  |
| September | 20      | .9      | 4.96      | . 029                   | .03    | .019                                  |
| The year  | 1,900   | .3      | 76.8      | . 444                   | 6.03   | .287                                  |
| 1954-55   |         |         |           |                         |        |                                       |
| October   | 73      | 1.3     | 14.3      | 0.083                   | 0.10   | 0.054                                 |
| November  | 124     | 15      | 40.9      | . 236                   | .26    | .153                                  |
| December  | 1,640   | 24      | 191       | 1.10                    | 1.27   | .711                                  |
| January   | 245     | 14      | 68.4      | . 395                   | .46    | .255                                  |
| February  | 1,700   | 12      | 235       | 1.36                    | 1.42   | .879                                  |
| March     | 5,380   | 118     | 616       | 3.56                    | 4.10   | 2.30                                  |
| April     | 404     | 54      | 139       | .803                    | . 89   | . 519                                 |
| May       | 157     | 19      | 50.7      | . 293                   | .34    | .189                                  |
| June      | 1,220   | 11      | 162       | .936                    | 1.04   | . 605                                 |
| July      | 326     | 4.5     | 39.2      | . 227                   | .26    | .147                                  |
| August    | 2,960   | 2.3     | 303       | 1.75                    | 2.02   | 1.13                                  |
| September | 129     | 13      | 33.8      | .195                    | .22    | . 126                                 |
| The year  | 5,380   | 1.3     | 158       | .913                    | 12.38  | . 590                                 |

# POTOMAC RIVER BASIN-Continued

| Month     |         | Discharg | Runoff in | Discharge<br>in million |        |                        |
|-----------|---------|----------|-----------|-------------------------|--------|------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | day per<br>square mile |
| 1955-56   |         |          |           |                         |        |                        |
| October   | 2,070   | 17       | 192       | 1.11                    | 1.28   | 0.717                  |
| November  | 426     | 42       | 86.5      | . 500                   | . 56   | . 323                  |
| December  | 55      | 15       | 28.9      | . 167                   | . 19   | .108                   |
| January   | 652     | 14       | 52.0      | . 301                   | .35    | . 195                  |
| February  | 1,930   | 120      | 564       | 3.26                    | 3.52   | 2.11                   |
| March     | 3,150   | 90       | 490       | 2.83                    | 3.26   | 1.83                   |
| April     | 1,970   | 74       | 290       | 1.68                    | 1.87   | 1.09                   |
| May       | 432     | 26       | 86.3      | . 499                   | . 58   | . 323                  |
| June      | 158     | 12       | 39.2      | . 227                   | .25    | . 147                  |
| July      | 2,540   | 9.7      | 199       | 1.15                    | 1.33   | .743                   |
| August    | 120     | 10       | 33.0      | . 191                   | .22    | . 123                  |
| September | 86      | 8.0      | 19.2      | .111                    | .12    | .072                   |
| The year  | 3,150   | 8.0      | 172       | . 994                   | 13.53  | . 642                  |

### Monthly discharge of Monocacy River at Bridgeport-Continued

### Yearly discharge of Monocacy River at Bridgeport

|         |         | Year end              | ling Sept.   | 30                                    | Calendar year |                       |              |                                       |
|---------|---------|-----------------------|--------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|
| Year    | Dischar | Discharge in cfs      |              | Discharge                             | Dischar       | ge in cfs             | Dunoff       | Discharge                             |
|         | Mean    | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |
| 1943    | 269     | 1.55                  | 20.97        | 1.00                                  | 203           | 1.17                  | 15.87        | 0.756                                 |
| 1944    | 188     | 1.08                  | 14.70        | . 698                                 | 183           | 1.05                  | 14.32        | .679                                  |
| 1945    | 224     | 1.29                  | 17.46        | .834                                  | 265           | 1.52                  | 20.65        | .982                                  |
| 1946    | 211     | 1.22                  | 16.48        | .789                                  | 148           | .855                  | 11.56        | . 553                                 |
| 1947    | 128     | .740                  | 10.06        | .478                                  | 139           | . 803                 | 10.91        | .519                                  |
| 1948    | 190     | 1.10                  | 14.99        | . 711                                 | 236           | 1.36                  | 18.56        | .879                                  |
| 1949    | 248     | 1.43                  | 19.40        | .924                                  | 200           | 1.16                  | 15.66        | .750                                  |
| 1950    | 188     | 1.09                  | 14.73        | .704                                  | 218           | 1.26                  | 17.08        | .814                                  |
| 1951    | 230     | 1.33                  | 18.02        | .860                                  | 208           | 1.20                  | 16.31        | .776                                  |
| 1952    | 296     | 1.71                  | 23.30        | 1.11                                  | 326           | 1.88                  | 25.63        | 1.22                                  |
| 1953    | 240     | 1.39                  | 18.85        | . 898                                 | 193           | 1.12                  | 15.11        | .724                                  |
| 1954    | 76.8    | .444                  | 6.03         | .287                                  | 82.8          | .479                  | 6.50         | .310                                  |
| 1955    | 158     | .913                  | 12.38        | . 590                                 | 163           | .942                  | 12.78        | .609                                  |
| 1956    | 172     | .994                  | 13.53        | . 642                                 | -             | -                     | -            | —                                     |
| Highest | 296     | 1.71                  | 23.30        | 1.11                                  | 326           | 1.88                  | 25.63        | 1.22                                  |
| Average | 201     | 1.16                  | 15.78        | .750                                  | 197           | 1.14                  | 15.46        | .737                                  |
| Lowest  | 76.8    | .444                  | 6.03         | . 287                                 | 82.8          | .479                  | 6.50         | .310                                  |

#### POTOMAC RIVER BASIN

#### 12. Big Pipe Creek at Bruceville

Location.—Lat  $39^{\circ}36'45''$ , long  $77^{\circ}14'10''$ , on left bank 300 ft downstream from bridge on State Highway 71, 800 ft downstream from Bruceville, Carroll County, and  $3\frac{1}{2}$  miles upstream from Detour and confluence with Little Pipe Creek.

Drainage area.—102 sq mi.

Records available .- October 1947 to September 1956.

 $\mathit{Gage}.-\!\!\!$  Water-stage recorder and concrete control. Altitude of gage is 340 ft (from topographic map).

Average discharge.-9 years, 115 cfs.

*Extremes.*—Maximum discharge, 9,500 cfs July 12, 1949 (gage height, 11.92 ft), from rating curve extended above 2,300 cfs on basis of slope-area determination at gage height 8.38 ft and slope-conveyance study; minimum, 2.4 cfs July 28, 1954; minimum daily, 7.4 cfs Aug. 1, 1954.

Remarks .- Diurnal fluctuation caused by mills above station.

Monthly discharge of Big Pipe Creek at Bruceville

|                       |         | Dischar | D    | Discharge          |        |                                       |
|-----------------------|---------|---------|------|--------------------|--------|---------------------------------------|
| Month                 | Maximum | Minimum | Mean | Per square<br>mile | inches | gallons per<br>day per<br>square mile |
| 1947-48               |         |         |      |                    |        |                                       |
| October‡              |         |         | 22   | 0.216              | 0.25   | 0.140                                 |
| November <sup>‡</sup> | _       | _       | 185  | 1.81               | 2.02   | 1.17                                  |
| December <b>‡</b>     | 64      | 32      | 37.0 | .363               | .42    | .235                                  |
| January               | 1,240   | 40      | 155  | 1.52               | 1.75   | .982                                  |
| February              | 1,400   | 37      | 232  | 2.27               | 2.46   | 1.47                                  |
| March                 | 367     | 103     | 169  | 1.66               | 1.91   | 1.07                                  |
| April                 | 687     | 88      | 163  | 1.60               | 1.78   | 1.03                                  |
| May                   | 764     | 98      | 208  | 2.04               | 2.35   | 1.32                                  |
| June                  | 462     | 76      | 141  | 1.38               | 1.54   | .892                                  |
| July                  | 477     | 59      | 120  | 1.18               | 1.36   | .763                                  |
| August                | 197     | 40      | 79.4 | .778               | .90    | .503                                  |
| September             | 56      | 28      | 35.7 | .350               | .39    | .226                                  |
| The year              | _       |         | 128  | 1.25               | 17.13  | . 808                                 |
| 1948-49               |         |         |      |                    |        |                                       |
| October               | 147     | 30      | 51.8 | 0.508              | 0.59   | 0.328                                 |
| November              | 542     | 38      | 100  | .980               | 1.10   | . 633                                 |
| December              | 2,070   | 64      | 225  | 2.21               | 2.55   | 1.43                                  |
| January               | 1,170   | 117     | 307  | 3.01               | 3.48   | 1.95                                  |
| February              | 367     | 163     | 227  | 2.23               | 2.32   | 1.44                                  |
| March                 | 172     | 96      | 127  | 1.25               | 1.43   | .808                                  |
| April                 | 371     | 94      | 159  | 1.56               | 1.74   | 1.01                                  |
| May                   | 197     | 62      | 99.8 | .978               | 1.13   | .632                                  |
| June                  | 70      | 38      | 49.4 | .484               | . 54   | .313                                  |
| July                  | 2,700   | 28      | 295  | 2.89               | 3.33   | 1.87                                  |
| August                | 94      | 38      | 57.9 | .568               | .65    | .367                                  |
| September             | 51      | 28      | 35.0 | .343               | .38    | .222                                  |
| The year              | 2,700   | 28      | 144  | 1.41               | 19.24  | .911                                  |

<sup>‡</sup>October 1 to December 22 estimated.

# POTOMAC RIVER BASIN—Continued Monthly discharge of Big Pipe Creek at Bruceville—Continued

|           |         | Dischar | Dunoff in | Discharge<br>in million |        |                                       |
|-----------|---------|---------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1949-50   |         |         |           |                         |        |                                       |
| October   | 141     | 29      | 42.8      | 0.420                   | 0.48   | 0.271                                 |
| November  | 66      | 30      | 38 1      | 374                     | 42     | 242                                   |
| December  | 485     | 30      | 74.2      | .727                    | .84    | .470                                  |
| Ianuary   | 134     | 43      | 59.0      | .578                    | . 67   | .374                                  |
| February  | 511     | 70      | 190       | 1.86                    | 1.94   | 1.20                                  |
| March     | 1.800   | 54      | 201       | 1.97                    | 2.27   | 1 27                                  |
| April     | 131     | 66      | 92.7      | 909                     | 1.01   | .588                                  |
| May       | 305     | 78      | 127       | 1.25                    | 1.43   | .808                                  |
| June      | 340     | 39      | 76.9      | .754                    | . 84   | .487                                  |
| Tuly      | 103     | 28      | 44 6      | 437                     | .50    | 282                                   |
| August    | 340     | 18      | 34 6      | 339                     | .39    | .219                                  |
| September | 342     | 27      | 75.7      | .742                    | . 83   | .480                                  |
| The year  | 1,800   | 18      | 87.4      | .857                    | 11.62  | . 554                                 |
| 1950-51   |         |         |           |                         |        |                                       |
| October   | 157     | 32      | 45.7      | 0.448                   | 0.52   | 0.290                                 |
| November  | 1,000   | 37      | 96.6      | .947                    | 1.06   | .612                                  |
| December  | 1,820   | 60      | 192       | 1.88                    | 2.17   | 1.22                                  |
| January   | 466     | 70      | 130       | 1.27                    | 1.47   | .821                                  |
| February  | 1,250   | 120     | 291       | 2.85                    | 2.97   | 1.84                                  |
| March     | 360     | 103     | 143       | 1.40                    | 1.61   | .905                                  |
| April     | 175     | 80      | 108       | 1.06                    | 1.18   | .685                                  |
| May       | 121     | 50      | 70.6      | .692                    | . 80   | . 447                                 |
| June      | 682     | 43      | 156       | 1.53                    | 1.71   | .989                                  |
| July      | 866     | 42      | 99.2      | .973                    | 1.12   | . 629                                 |
| August    | 666     | 36      | 79.5      | . 779                   | . 90   | . 503                                 |
| September | 87      | 21      | 35.8      | .351                    | . 39   | . 227                                 |
| The year  | 1,820   | 21      | 119       | 1.17                    | 15.90  | .756                                  |
| 1951–52   |         |         |           |                         |        |                                       |
| October   | 57      | 20      | 25.8      | 0.253                   | 0.29   | 0.163                                 |
| November  | 364     | 40      | 86.2      | .845                    | . 94   | .546                                  |
| December  | 536     | 37      | 132       | 1.29                    | 1.49   | .834                                  |
| January   | 895     | 121     | 276       | 2.71                    | 3.12   | 1.75                                  |
| February  | 746     | 103     | 175       | 1.72                    | 1.85   | 1.11                                  |
| March     | 1,020   | 103     | 228       | 2.24                    | 2.58   | 1.45                                  |
| April     | 2,420   | 123     | 393       | 3.85                    | 4.30   | 2.49                                  |
| May       | 887     | 133     | 263       | 2.58                    | 2.97   | 1.67                                  |
| June      | 769     | 73      | 140       | 1.37                    | 1.53   | . 885                                 |
| July      | 432     | 54      | 107       | 1.05                    | 1.21   | .679                                  |
| August    | 209     | 38      | 67.4      | . 661                   | .76    | .427                                  |
| September | 1,220   | 43      | 109       | 1.07                    | 1.19   | . 692                                 |
| The year  | 2,420   | 20      | 167       | 1.64                    | 22.23  | 1.06                                  |

|           |         | Dischar | Dune G in    | Discharge<br>in million |        |                                       |
|-----------|---------|---------|--------------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum | Mean         | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1952-53   |         |         |              |                         |        |                                       |
| October   | 68      | 30      | 37.9         | 0.372                   | 0.43   | 0.240                                 |
| November  | 1.800   | 30      | 186          | 1.82                    | 2 03   | 1 18                                  |
| December  | 1.000   | 75      | 171          | 1 68                    | 1 93   | 1 09                                  |
| Ianuary   | 767     | 80      | 243          | 2.38                    | 2 75   | 1 54                                  |
| February  | 558     | 116     | 171          | 1 68                    | 1 75   | 1.01                                  |
| March     | 035     | 111     | 245          | 2 40                    | 2 77   | 1.55                                  |
| April     | 385     | 114     | 178          | 1 75                    | 1 05   | 1.33                                  |
| May       | 734     | 00      | 217          | 2 13                    | 2 45   | 1 39                                  |
| Tune      | 200     | 53      | 02.8         | 2.13                    | 1.02   | 1.30                                  |
| June      | 200     | 33      | 92.0         | .910                    | 1.02   | . 300                                 |
| July      | 10      | 29      | 42.0         | .420                    | . 48   | .2/1                                  |
| August    | 523     | 23      | 50.4<br>20.5 | . 555                   | .04    | .357                                  |
| September | 169     | 20      | 38.5         | .377                    | .42    | . 244                                 |
| The year  | 1,800   | 20      | 140          | 1.37                    | 18.62  | .885                                  |
| 1953–54   |         |         |              |                         |        |                                       |
| October   | 93      | 21      | 29.0         | 0.284                   | 0.33   | 0.184                                 |
| November  | 126     | 26      | 39.9         | . 391                   | . 44   | .253                                  |
| December  | 1,150   | 31      | 154          | 1.51                    | 1.74   | .976                                  |
| January   | 222     | 36      | 70.0         | .686                    | .79    | .443                                  |
| February  | 107     | 32      | 58.1         | .570                    | . 59   | .368                                  |
| March.    | 484     | 71      | 118          | 1.16                    | 1.33   | .750                                  |
| April     | 293     | 46      | 75.7         | .742                    | .83    | .480                                  |
| May       | 260     | 38      | 77.8         | .763                    | .88    | . 493                                 |
| June      | 38      | 14      | 27.5         | .270                    | .30    | .175                                  |
| July      | 39      | 8.2     | 17.4         | .171                    | .20    | .111                                  |
| August    | 229     | 7.4     | 40.9         | .401                    | .46    | 2.59                                  |
| September | 49      | 14      | 21.4         | . 201                   | . 23   | . 130                                 |
| The year  | 1,150   | 7.4     | 61.0         | . 598                   | 8.12   | . 386                                 |
| 1954–55   |         |         |              |                         |        |                                       |
| October   | 130     | 15      | 27.9         | 0.274                   | 0.32   | 0.177                                 |
| November  | 104     | 25      | 36.3         | .356                    | .40    | .230                                  |
| December  | 389     | 21      | 73.2         | .718                    | .83    | .464                                  |
| January   | 108     | 21      | 47.4         | . 465                   | .54    | .301                                  |
| February  | 1,120   | 28      | 127          | 1.25                    | 1.30   | .808                                  |
| March     | 1,670   | 72      | 229          | 2.25                    | 2.59   | 1.45                                  |
| April     | 154     | 63      | 84.5         | .828                    | .92    | . 535                                 |
| May       | 126     | 27      | 46.2         | . 453                   | . 52   | . 293                                 |
| June      | 690     | 27      | 78.0         | .765                    | .85    | .494                                  |
| July      | 43      | 14      | 24.2         | .237                    | .27    | . 153                                 |
| August    | 2,180   | 11      | 212          | 2.08                    | 2.40   | 1.34                                  |
| September | 205     | 39      | 66.0         | . 647                   | .72    | . 418                                 |
| The year  | 2,180   | 11      | 87.5         | . 858                   | 11.66  | .555                                  |

# POTOMAC RIVER BASIN—Continued Monthly discharge of Big Pipe Creek at Bruceville—Continued

#### Discharge in million Discharge in cfs Runoff in inches Month gallons per Per square mile day per Maximum Minimum Mean square mile 1955-56 1,170 40 119 1.17 1.34 0.756 November 246 42 73.0 .716 .80 .463 58 30 .262 December..... 41.3 .405 .47 289 26 54.0.529 .61 January.... .342 89 252 2.47 2.67 808 1.60 February..... 1,000 72 211 2.072.38 1.34 April..... 487 82 150 1.47 1.64 .950 156 51 71.6 .702 .81 .454 May..... 52 55.2 . 541 .60 .350 128 June..... 1,240 30 151 1.48 1.70 .957 July..... August..... 145 35 53.7 .526 .61 .340 39.6 September ..... 140 28 .388 .43 .251 105 The year ..... 1,240 26 1.03 14.06 .666

### POTOMAC RIVER BASIN—Continued Monthly discharge of Big Pipe Creek at Bruceville—Continued

#### POTOMAC RIVER BASIN—Continued Yearly discharge of Big Pipe Creek at Bruceville

|         |         | Year en               | ding Sept.   | 30                                    | Calendar year |                       |              |                                       |  |
|---------|---------|-----------------------|--------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
| Year    | Dischar | Discharge in cfs      |              | Discharge                             | Dischar       | ge in cfs             | Dunoff       | Discharge                             |  |
|         | Mean    | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1948    | 128     | 1.25                  | 17.13        | 0.808                                 | 140           | 1.37                  | 18.68        | 0.885                                 |  |
| 1949    | 144     | 1.41                  | 19.24        | .911                                  | 126           | 1.24                  | 16.74        | .801                                  |  |
| 1950    | 87.4    | .857                  | 11.62        | . 554                                 | 102           | 1.00                  | 13.63        | . 646                                 |  |
| 1951    | 119     | 1.17                  | 15.90        | .756                                  | 112           | 1.10                  | 14.87        | .711                                  |  |
| 1952    | 167     | 1.64                  | 22.23        | 1.06                                  | 179           | 1.75                  | 23.90        | 1.13                                  |  |
| 1953    | 140     | 1.37                  | 18.62        | .885                                  | 126           | 1.24                  | 16.74        | .801                                  |  |
| 1954    | 61.0    | . 598                 | 8.12         | .386                                  | 53.8          | . 527                 | 7.16         | .341                                  |  |
| 1955    | 87.5    | .858                  | 11.66        | . 555                                 | 95.6          | .937                  | 12.72        | . 606                                 |  |
| 1956    | 105     | 1.03                  | 14.06        | . 666                                 |               |                       | . –          | _                                     |  |
| Highest | 167     | 1.64                  | 22.23        | 1.06                                  | 179           | 1.75                  | 23.90        | 1.13                                  |  |
| Average | 115     | 1.13                  | 15.40        | .730                                  | 117           | 1.15                  | 15.56        | .743                                  |  |
| Lowest  | 61.0    | . 598                 | 8.12         | .386                                  | 53.8          | .527                  | 7.16         | .341                                  |  |

### CARROLL AND FREDERICK COUNTIES

#### POTOMAC RIVER BASIN

#### 13. Little Pipe Creek at Avondale

Location.—Lat 39°33'40", long 77°02'40", on left bank at downstream side of private bridge, 0.1 mile downstream from Copps Branch, 0.5 mile northwest of Avondale, Carroll County, and 3.0 miles southwest of Westminster.

Drainage area.-8.10 sq mi.

Records available .- September 1947 to September 1956.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 525 ft (from topographic map).

Average discharge.-9 years, 9.21 cfs (adjusted for inflow).

*Extremes.*—Maximum discharge, 1,880 cfs July 4, 1956 (gage height, 8.47 ft), from rating curve extended above 130 cfs on basis of slope-area determinations at gage heights 3.85 and 5.50 ft, and contracted-opening determination at 7.60 ft; minimum, 1.4 cfs July 1, 1954 (gage height, 1.36 ft), result of storage behind temporary earth dam upstream; minimum daily, 3.0 cfs Sept. 13, 1947.

*Remarks.*—Records include pumpage from Patapsco River basin for municipal supply of Westminster which is discharged as sewage into Little Pipe Creek above station.

|           |         | Ι        | Adjusted |      |                    |           |                                                                  |
|-----------|---------|----------|----------|------|--------------------|-----------|------------------------------------------------------------------|
| Month     |         | Observed |          | Ad   | justed             | Punoff in | Discharge<br>in million<br>gallons per<br>day per<br>square mile |
|           | Maximum | Minimum  | Mean     | Mean | Per square<br>mile | inches    |                                                                  |
| 1947      |         |          |          |      |                    |           |                                                                  |
| September | 4.3     | 3.0      | 3.51     | 2.80 | 0.346              | 0.39      | 0.224                                                            |
| 1947-48   |         |          |          |      |                    |           |                                                                  |
| October   | 6.0     | 3.1      | 3.74     | 3.11 | 0.384              | 0.44      | 0.248                                                            |
| November  | 24      | 3.8      | 6.48     | 5.80 | .716               | . 80      | . 463                                                            |
| December  | 6.3     | 3.8      | 4.34     | 3.73 | . 460              | . 53      | . 297                                                            |
| January   | 84      | 4.3      | 9.41     | 8.80 | 1.09               | 1.26      | .704                                                             |
| February  | 87      | 3.8      | 12.6     | 11.9 | 1.47               | 1.58      | . 950                                                            |
| March     | 20      | 7.5      | 9.97     | 9.30 | 1.15               | 1.33      | .743                                                             |
| April     | 22      | 7.5      | 9.72     | 9.09 | 1.12               | 1.25      | .724                                                             |
| May       | 53      | 7.5      | 14.0     | 13.2 | 1.63               | 1.88      | 1.05                                                             |
| June      | 55      | 8.8      | 12.8     | 12.0 | 1.48               | 1.65      | .957                                                             |
| July      | 17      | 6.7      | 8.35     | 7.61 | . 940              | 1.08      | . 608                                                            |
| August    | 13      | 5.2      | 7.05     | 6.39 | .789               | .91       | . 510                                                            |
| September | 7.1     | 4.6      | 5.12     | 4.48 | . 553              | . 62      | . 357                                                            |
| The year  | 87      | 3.1      | 8.61     | 7.93 | . 979              | 13.33     | . 633                                                            |

#### Monthly discharge of Little Pipe Creek at Avondale

|             |          | I       | Adjusted |      |                    |                     |                                       |
|-------------|----------|---------|----------|------|--------------------|---------------------|---------------------------------------|
| Month       | Observed |         |          | Adj  | usted              | D                   | Discharge<br>in million               |
|             | Maximum  | Minimum | Mean     | Mean | Per square<br>mile | Runott in<br>inches | gallons per<br>day per<br>square mile |
| 1948-49     |          |         |          |      |                    |                     |                                       |
| October     | 11       | 4.6     | 5.45     | 4.83 | 0.596              | 0.69                | 0.385                                 |
| November    | 21       | 4.9     | 6.56     | 5.91 | .730               | .81                 | .472                                  |
| December    | 93       | 6.6     | 13.4     | 12.8 | 1.58               | 1.82                | 1.02                                  |
| Tanuary     | 87       | 11      | 20.6     | 20.0 | 2.47               | 2.85                | 1.60                                  |
| February    | 28       | 16      | 19.0     | 18.3 | 2.26               | 2.35                | 1 46                                  |
| March       | 16       | 11      | 13.2     | 12.6 | 1.56               | 1.80                | 1 01                                  |
| April       | 22       | 10      | 12.6     | 12.0 | 1.50               | 1.65                | 057                                   |
| May         | 18       | 8.6     | 10.1     | 0.28 | 1.15               | 1 33                | 743                                   |
| Iure        | 0.5      | 6.6     | 7 66     | 6.87 | 848                | .95                 | . 743                                 |
| Julie       | 95       | 5.2     | 10.7     | 10.1 | 1 25               | 1 44                | 808                                   |
| August      | 10       | 4.8     | 5 80     | 5 11 | 631                | 73                  | 408                                   |
| September   | 7 2      | 4.4     | 5 14     | 4 47 | 552                | 62                  | 357                                   |
| September   |          |         |          |      |                    |                     |                                       |
| The year    | 95       | 4.4     | 10.8     | 10.1 | 1.25               | 17.04               | . 808                                 |
| 1949-50     |          |         |          |      |                    |                     |                                       |
| October     | 10       | 4.1     | 4.86     | 4.15 | 0.512              | 0.59                | 0.331                                 |
| November    | 7.4      | 4.4     | 4.92     | 4.19 | . 517              | . 58                | .334                                  |
| December    | 19       | 4.4     | 6.25     | 5.59 | . 690              | .80                 | .446                                  |
| Tanuary     | 10       | 4.9     | 5.45     | 4.76 | .588               | .68                 | .380                                  |
| February    | 20       | 6.8     | 10.2     | 9.40 | 1.16               | 1.21                | .750                                  |
| March.      | 57       | 6.2     | 12.1     | 11.3 | 1.40               | 1.61                | .905                                  |
| April       | 11       | 7.0     | 8.31     | 7.63 | .942               | 1.05                | .609                                  |
| May         | 27       | 6.2     | 8.27     | 7.49 | .925               | 1.07                | . 598                                 |
| Iune        | 21       | 5.2     | 8.10     | 7.37 | .910               | 1.02                | .588                                  |
| July        | 19       | 4.9     | 6.85     | 6.17 | .762               | .88                 | 492                                   |
| August      | 15       | 4.3     | 5 23     | 4.58 | 565                | 65                  | 365                                   |
| September   | 19       | 4.1     | 7.04     | 6.40 | .790               | .88                 | .511                                  |
| The year    | 57       | 4.1     | 7.27     | 6.56 | .810               | 11.02               | . 524                                 |
| 1950-51     |          |         |          |      |                    |                     |                                       |
| October     | 19       | 4.6     | 5.99     | 5.29 | 0.653              | 0.75                | 0 422                                 |
| November    | 74       | 4.6     | 8.89     | 8.11 | 1 00               | 1 12                | 646                                   |
| December    | 95       | 7 4     | 14.8     | 14 1 | 1 74               | 2 01                | 1 12                                  |
| Ianuary     | 20       | 7.8     | 10.5     | 0.85 | 1 22               | 1 41                | 780                                   |
| February    | 70       | 12      | 10.5     | 10 0 | 2 35               | 2 45                | 1 52                                  |
| March       | 20       | 0.0     | 11.5     | 10.0 | 1 35               | 1 56                | 072                                   |
| April       | 12       | 7.0     | 0.50     | 0.00 | 1.33               | 1.30                | .013                                  |
| лргш<br>Мат | 10       | 1.0     | 7 24     | 6.61 | 016                | 1.24                | ./1/                                  |
| May         | 62       | 5.9     | 12.6     | 12.0 | 1.50               | 1 77                | 1.02                                  |
| June        | 21       | 6.2     | 7 00     | 7.00 | 075                | 1.//                | 1.03                                  |
| July        | 21       | 0.2     | 6 56     | 5.02 | .013               | 1.01                | . 300                                 |
| August      | 43       | 4.9     | 0.30     | 3.83 | ./20               | .83                 | .405                                  |
| September   | 8.0      | 4.1     | 4.79     | 4.12 | . 309              | . 57                | . 329                                 |
| The year    | 95       | 4.1     | 10.0     | 9.31 | 1.15               | 15.66               | .743                                  |

### POTOMAC RIVER BASIN—Continued Monthly discharge of Little Pipe Creek at Avondale—Continued

|           |          | 1       | Adjusted |      |                    |           |                                       |
|-----------|----------|---------|----------|------|--------------------|-----------|---------------------------------------|
| Month     | Observed |         |          | Ad   | justed             | Dunoff in | Discharge<br>in million               |
|           | Maximum  | Minimum | Mean     | Mean | Per square<br>mile | inches    | gallons per<br>day per<br>square mile |
| 1951-52   |          |         |          |      |                    |           |                                       |
| October   | 7.4      | 4.0     | 4.55     | 3.91 | 0.483              | 0.56      | 0.312                                 |
| November  | 32       | 4.9     | 8.21     | 7.60 | .938               | 1.05      | . 606                                 |
| December  | 22       | 4.3     | 8.86     | 8.24 | 1.02               | 1.18      | .659                                  |
| January   | 26       | 8.8     | 14.3     | 13.7 | 1.69               | 1.95      | 1.09                                  |
| February  | 31       | 7.9     | 13.0     | 12.4 | 1.53               | 1.65      | . 989                                 |
| March     | 72       | 7.9     | 18.1     | 17.4 | 2.15               | 2.48      | 1.39                                  |
| April     | 181      | 14      | 32.9     | 32.3 | 3.99               | 4 45      | 2 58                                  |
| May       | 75       | 11      | 25.8     | 25.1 | 3 10               | 3 57      | 2.00                                  |
| Tune      | 31       | 11      | 15.2     | 14.5 | 1 70               | 2 00      | 1 16                                  |
| July      | 35       | 8.0     | 12 7     | 12.0 | 1 48               | 1 71      | 057                                   |
| August    | 49       | 6.3     | 10.3     | 9.58 | 1 1 18             | 1 36      | 763                                   |
| September | 181      | 7.5     | 15.6     | 14.9 | 1.84               | 2.05      | 1.19                                  |
| The year  | 181      | 4.0     | 14.9     | 14.2 | 1.75               | 24.01     | 1.13                                  |
| 1952-53   |          |         |          |      |                    | - i       |                                       |
| October   | 15       | 6.3     | 7.41     | 6.72 | 0.830              | 0.96      | 0.536                                 |
| November  | 130      | 5.9     | 16.3     | 15.6 | 1.93               | 2.15      | 1.25                                  |
| December  | 47       | 11      | 15.5     | 14.8 | 1.83               | 2.11      | 1.18                                  |
| January   | 48       | 11      | 19.0     | 18.4 | 2.27               | 2.62      | 1.47                                  |
| February  | 39       | 13      | 16.0     | 15.3 | 1.89               | 1.97      | 1.22                                  |
| March     | 55       | 13      | 20.0     | 19.3 | 2.38               | 2.74      | 1.54                                  |
| April     | 30       | 13      | 17.0     | 16.3 | 2.01               | 2.24      | 1.30                                  |
| May       | 28       | 11      | 14.8     | 14.0 | 1.73               | 1.99      | 1.12                                  |
| June      | 18       | 7.1     | 9.52     | 8.70 | 1.07               | 1.19      | . 692                                 |
| July      | 9.2      | 4.3     | 5,99     | 5.21 | . 643              | .74       | .416                                  |
| August    | 36       | 4.3     | 7.37     | 6.60 | .815               | . 94      | . 527                                 |
| September | 25       | 4.4     | 6.81     | 6.04 | .746               | . 83      | . 482                                 |
| The year  | 130      | 4.3     | 13.0     | 12.3 | 1.52               | 20.48     | .982                                  |
| 1953–54   |          |         |          |      |                    |           |                                       |
| October   | 14       | 4.4     | 5.23     | 4.51 | 0.557              | 0.64      | 0.360                                 |
| November  | 13       | 4.6     | 5.66     | 4.97 | .614               | .68       | . 397                                 |
| December  | 49       | 4.9     | 12.8     | 12.1 | 1.49               | 1.72      | .963                                  |
| January   | 14       | 5.6     | 7.25     | 6.39 | .789               | .91       | . 510                                 |
| February  | 10       | 5.9     | 6.81     | 5.94 | . 733              | .76       | . 474                                 |
| March     | 40       | 8.2     | 10.7     | 9.82 | 1.21               | 1.40      | .782                                  |
| April     | 15       | 7.0     | 8.12     | 7.25 | . 895              | 1.00      | . 578                                 |
| May       | 32       | 6.0     | 9.55     | 8.53 | 1.05               | 1.21      | .679                                  |
| June      | 6.0      | 4.2     | 5.16     | 4.01 | .495               | . 55      | .320                                  |
| July      | 36       | 3.6     | 6.58     | 5.48 | .677               | .78       | . 438                                 |
| August    | 30       | 3.4     | 6.78     | 5.68 | . 701              | .81       | . 453                                 |
| September | 7.1      | 3.3     | 4.27     | 3.15 | . 389              | . 43      | .251                                  |
| The year  | 49       | 3.3     | 7.44     | 6.52 | . 805              | 10.89     | . 520                                 |

# Ротомас River Basin—Continued Monthly discharge of Little Pipe Creek at Avondale—Continued

#### Discharge in cfs Adjusted Discharge Observed Adjusted Month in million Runoff in gallons per inches Per square mile day per square mile Maximum Minimum Mean Mean 1954-55 October ..... 20 3.5 4.89 3.95 0.488 0.56 0.315 11 5.54 4.63 .572 .370 November ..... 4.6 .64 .744 December ..... 16 4.6 7.03 6.03 .86 .481 January . . . . . . . . 8.4 4.6 5.98 4.83 . 596 .69 .385 65 4.6 11.1 9.87 1.22 1.27 .789 February ..... 6.7 13.4 12.3 1.52 1.75 .982 March..... 66 April.... 12 7.4 8.95 7.91 .977 1.09 .631 May ..... 8.6 4.4 6.10 4.92 .607 .70 .392 4.5 4.89 .604 .390 June . . . . . . . . . . . . . . . . 19 6.03 .67 5.6 3.4 4.35 3.00 .370 .43 .239 July..... August 204 3.6 19.6 18.3 2.26 2.61 1.46 September ..... 5.8 7.16 6.01 .742 .83 .480 12 204 8.33 7.21 .890 The year ..... 3.4 12.10 .575 1955-56 October..... 44 5.6 8.34 7.24 0.8941.03 0.578 November..... 5.2 5.85 11 6.92 .722 .81 .467 December ..... 6.6 4.9 5.45 4.44 .548 .63 .354 34 4.9 6.34 5.33 .658 .76 .425 January . . . . . . . . 40 7.3 13.9 12.9 1.59 1.72 1.03 February . . . . . . . March..... 45 7.9 13.3 12.3 1.52 1.75 .982 9.7 12.1 .885 April. . . . . . . . . . . . . 22 11.1 1.37 1.53 7.6 7.58 12 8.74 .936 May..... 1.08 .605 10 5.15 June..... 5.2 6.41 .636 .71 .411 July..... 184 5.0 23.9 22.7 2.80 3.23 1.81 August . . . . . . . . . 5.9 7.13 5.71 .705 11 .81 .456 September ..... 12 5.5 5.13 .633 . 409 6.42 .71 The year..... 9.92 14.77184 4.9 8.78 1.08 .698

### POTOMAC RIVER BASIN—Continued Monthly discharge of Little Pipe Creek at Avondale—Continued

# CARROLL AND FREDERICK COUNTIES

### POTOMAC RIVER BASIN—Continued Yearly discharge of Little Pipe Creek at Avondale (Adjusted for inflow)

| Year    |                  | Year en               | ding Sept.   | 30                                    | Calendar year    |                       |              |                                       |  |
|---------|------------------|-----------------------|--------------|---------------------------------------|------------------|-----------------------|--------------|---------------------------------------|--|
|         | Discharge in cfs |                       | Dunof        | Discharge                             | Discharge in cfs |                       | Dura         | Discharge                             |  |
|         | Mean             | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean             | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1948    | 7.93             | 0.979                 | 13.33        | 0.633                                 | 8.85             | 1.09                  | 14.88        | 0.704                                 |  |
| 1949    | 10.1             | 1.25                  | 17.04        | . 808                                 | 9.31             | 1.15                  | 15.69        | .743                                  |  |
| 1950    | 6.56             | .810                  | 11.02        | .524                                  | 7.70             | .951                  | 12.93        | .615                                  |  |
| 1951    | 9.31             | 1.15                  | 15.66        | .743                                  | 8.66             | 1.07                  | 14.57        | . 692                                 |  |
| 1952    | 14.2             | 1.75                  | 24.01        | 1.13                                  | 15.7             | 1.94                  | 26.44        | 1.25                                  |  |
| 1953    | 12.3             | 1.52                  | 20.48        | .982                                  | 11.0             | 1.36                  | 18.30        | .879                                  |  |
| 1954    | 6.52             | .805                  | 10.89        | . 520                                 | 5.92             | .731                  | 9.91         | .472                                  |  |
| 1955    | 7.21             | . 890                 | 12.10        | .575                                  | 7.45             | .920                  | 12.51        | . 595                                 |  |
| 1956    | 8.78             | 1.08                  | 14.77        | . 698                                 |                  |                       | _            | -                                     |  |
| Highest | 14.2             | 1.75                  | 24.01        | 1.13                                  | 15.7             | 1.94                  | 26.44        | 1.25                                  |  |
| Average | 9.21             | 1.14                  | 15.48        | .737                                  | 9.32             | 1.15                  | 15.65        | .743                                  |  |
| Lowest  | 6.52             | .805                  | 10.89        | . 520                                 | 5.92             | .731                  | 9.91         | .472                                  |  |

#### POTOMAC RIVER BASIN

#### 14. Owens Creek at Lantz

*Location.*—Lat 39°40′36″, long 77°27′52″, on right bank half a mile west of Lantz Post Office (Deerfield station on Western Maryland Railway), Frederick County,  $1\frac{1}{2}$  miles south fo Sabillasville, and  $4\frac{1}{2}$  miles northwest of Thurmont.

Drainage area. - 5.93 sq mi.

*Records available.*—October 1931 to September 1956. Monthly records October 1931 to September 1943 published in Bulletin 1.

Gage.-Water-stage recorder and concrete control. Altitude of gage is 965 ft (from topographic map).

Average discharge .- 25 years, 9.26 cfs (adjusted for diversion).

*Extremes.*—Maximum discharge, 3,270 cfs Dec. 1, 1934 (gage height, 8.4 ft), from rating curve extended above 750 cfs on basis of slope-area determinations at gage heights 5.11 and 6.30 ft; minimum, 0.06 cfs Oct. 8, 1941, Sept. 7, 1944, not including water diverted above gage; minimum daily, including water diverted above gage, 0.18 cfs Sept. 20, 1932, Sept. 30, Oct. 7, 8, 1941.

*Remarks.*—Occasional diversions half a mile above station to Victor Cullen State Hospital at Cullen (formerly Maryland Tuberculosis Sanatorium at Sabillasville).

|           |          |              | Adjusted |      |                    |           |                                       |
|-----------|----------|--------------|----------|------|--------------------|-----------|---------------------------------------|
| Month     | Observed |              |          | Adj  | usted              |           | Discharge<br>in million               |
|           | Maximum  | Mini-<br>mum | Mean     | Mean | Per square<br>mile | in inches | gallons per<br>day per<br>square mile |
| 1943-44   |          |              |          |      |                    |           |                                       |
| October   | 12.0     | 0.21         | 1.21     | 1,29 | 0.218              | 0.25      | 0.141                                 |
| November  | 45       | .76          | 4.53     | 4.56 | .769               | .86       | .497                                  |
| December  | 7.5      | .37          | 1.40     | 1.43 | .241               | .28       | .156                                  |
| January   | 58       | 1.1          | 8.10     | 8.10 | 1.37               | 1.58      | .885                                  |
| February  | 13       | 2.7          | 4.89     | 4.89 | .825               | . 89      | . 533                                 |
| March     | 47       | 6.0          | 19.4     | 19.4 | 3.27               | 3.77      | 2.11                                  |
| April     | 28       | 11.5         | 16.7     | 16.7 | 2.82               | 3.15      | 1.82                                  |
| May       | 54       | 3.6          | 12.1     | 12.1 | 2.04               | 2.35      | 1.32                                  |
| Iune      | 20       | 1.6          | 3.64     | 3.64 | .614               | .68       | .397                                  |
| July      | 4.0      | .80          | 1.28     | 1.30 | .219               | .25       | . 142                                 |
| August.   | 2.2      | .14          | . 507    | .557 | .094               | .11       | .061                                  |
| September | 7.3      | .07          | .726     | .814 | .137               | .15       | .089                                  |
| The year  | 58       | .07          | 6.21     | 6.23 | 1.05               | 14.32     | . 679                                 |

Monthly discharge of Owens Creek at Lantz

# Ротомас River Basin—Continued Monthly discharge of Owens Creek at Lantz—Continued

|           |         |              | Adjusted |      |                    |                     |                                                                  |
|-----------|---------|--------------|----------|------|--------------------|---------------------|------------------------------------------------------------------|
| Month     |         | Observed     |          | Ad   | justed             | Runoff<br>in inches | Discharge<br>in million<br>gallons per<br>day per<br>square mile |
|           | Maximum | Mini-<br>mum | Mean     | Mean | Per square<br>mile |                     |                                                                  |
| 1944-45   |         |              |          |      |                    |                     |                                                                  |
| October   | 20      | 0.41         | 2.73     | 2.78 | 0.469              | 0.54                | 0.303                                                            |
| November  | 10.5    | 1.1          | 2.06     | 2.10 | .354               | .40                 | .229                                                             |
| December  | 105     | 2.1          | 11.9     | 12.0 | 2.02               | 2.33                | 1.31                                                             |
| January   | 29      | 4.3          | 8.05     | 8.05 | 1.36               | 1.57                | .879                                                             |
| February  | 52      | 3.7          | 15.3     | 15.3 | 2.58               | 2.69                | 1.67                                                             |
| March     | 40      | 7.3          | 18.1     | 18.1 | 3.05               | 3.52                | 1.97                                                             |
| April     | 42      | 6.8          | 16.3     | 16.3 | 2.75               | 3.07                | 1.78                                                             |
| May       | 30      | 6.8          | 15.0     | 15.0 | 2.53               | 2.92                | 1.64                                                             |
| Iune      | 8.6     | 1.9          | 4.84     | 4.84 | .816               | .91                 | 527                                                              |
| [u]v      | 6.3     | 1.1          | 2.26     | 2.29 | 386                | 44                  | 240                                                              |
| August    | 16.0    | .56          | 2.04     | 2.08 | 351                | 40                  | 227                                                              |
| September | 115     | .76          | 9.14     | 9.16 | 1.54               | 1.72                | .995                                                             |
| The year  | 115     | .41          | 8.94     | 8.96 | 1.51               | 20.51               | .976                                                             |
| 1945-46   |         |              |          |      |                    |                     |                                                                  |
| October   | 6.7     | 2.4          | 3.23     | 3.23 | 0.545              | 0.63                | 0.352                                                            |
| November  | 71      | 2.3          | 9.63     | 9.63 | 1.62               | 1.81                | 1.05                                                             |
| December  | 39      | 8.5          | 15.9     | 15.9 | 2.68               | 3.09                | 1.73                                                             |
| January   | 30      | 6.7          | 13.6     | 13.6 | 2.29               | 2.64                | 1.48                                                             |
| February  | 28      | 5.6          | 9.29     | 9.29 | 1.57               | 1.64                | 1.01                                                             |
| March     | 25      | 9.5          | 15.1     | 15.1 | 2.55               | 2.94                | 1.65                                                             |
| April     | 9.5     | 4.0          | 6.04     | 6.04 | 1.02               | 1.14                | .659                                                             |
| May       | 86      | 3.7          | 13.2     | 13.2 | 2.23               | 2.57                | 1.44                                                             |
| June      | 121     | 6.2          | 18.7     | 18.7 | 3.15               | 3.51                | 2.04                                                             |
| July      | 8.5     | 4.0          | 5.11     | 5.11 | .862               | .99                 | 557                                                              |
| August    | 9.9     | 1.3          | 2.98     | 2.98 | . 503              | .58                 | .325                                                             |
| September | 14.5    | . 65         | 2.31     | 2.33 | . 393              | .44                 | .254                                                             |
| The year  | 121     | .65          | 9.59     | 9.59 | 1.62               | 21.98               | 1.05                                                             |
| 1946-47   |         |              |          |      |                    |                     |                                                                  |
| October   | 11.5    | 1.5          | 3.92     | 3.92 | 0.661              | 0.76                | 0.427                                                            |
| November  | 3.7     | 2.3          | 2.81     | 2.81 | .474               | .53                 | . 306                                                            |
| December  | 10.5    | 1.7          | 3.42     | 3.43 | .578               | .67                 | . 374                                                            |
| January   | 20      | 5.2          | 8.92     | 8.92 | 1.50               | 1.73                | .969                                                             |
| February  | 12.5    | 3.0          | 5.91     | 5.91 | .997               | 1.04                | .644                                                             |
| March     | 46      | 3.9          | 10.5     | 10.5 | 1.77               | 2.04                | 1.14                                                             |
| April     | 10.5    | 5.0          | 6.59     | 6.59 | 1.11               | 1.24                | .717                                                             |
| May       | 39      | 6.2          | 12.9     | 12.9 | 2.18               | 2.51                | 1.41                                                             |
| June      | 34      | 4.8          | 11.2     | 11.2 | 1.89               | 2.11                | 1.22                                                             |
| July      | 13.5    | 3.1          | 6.08     | 6.08 | 1.03               | 1.19                | .666                                                             |
| August    | 11.5    | 2.0          | 3.51     | 3.51 | .592               | .68                 | .383                                                             |
| September | 3.1     | 1.5          | 2.18     | 2.18 | .368               | .41                 | . 238                                                            |
| The year  | 46      | 1.5          | 6.51     | 6.51 | 1.10               | 14.91               | .711                                                             |
### POTOMAC RIVER BASIN—Continued Monthly discharge of Owens Creek at Lantz—Continued

|           |         |              |      | Adjusted |                    |           |                                       |
|-----------|---------|--------------|------|----------|--------------------|-----------|---------------------------------------|
| Month     |         | Observed     |      | Adj      | usted              | Runoff    | Discharge<br>in million               |
|           | Maximum | Mini-<br>mum | Mean | Mean     | Per square<br>mile | in inches | gallons per<br>day per<br>square mile |
| 1947-48   |         |              |      |          |                    |           |                                       |
| October   | 4.1     | 0.98         | 1.23 | 1.23     | 0.207              | 0.24      | 0.134                                 |
| November  | 17      | 1.3          | 4.97 | 4.97     | .838               | .94       | . 542                                 |
| December  | 4.7     | 2.2          | 3.03 | 3.03     | . 511              | . 59      | .330                                  |
| January   | 44      | 3.6          | 8.32 | 8.32     | 1.40               | 1.61      | .905                                  |
| February  | 21      | 3.1          | 9.85 | 9.85     | 1.66               | 1.79      | 1.07                                  |
| March     | 22      | 10           | 14.9 | 14.9     | 2.51               | 2.89      | 1.62                                  |
| April     | 50      | 12           | 19.6 | 19.6     | 3.31               | 3.69      | 2.14                                  |
| May       | 46      | 8.0          | 16.6 | 16.6     | 2.80               | 3.23      | 1.81                                  |
| Tune      | 24      | 4.0          | 8.39 | 8.39     | 1.41               | 1.57      | .911                                  |
| July      | 9.0     | 2.5          | 4.35 | 4.35     | .734               | .85       | .474                                  |
| August    | 14.5    | 1.8          | 3.49 | 3.49     | . 589              | . 68      | .381                                  |
| September | 3.5     | 1.2          | 1.61 | 1.61     | . 272              | .30       | .176                                  |
| The year  | 50      | .98          | 8.01 | 8.01     | 1.35               | 18.38     | .873                                  |
| 1948–49   |         |              |      |          |                    |           |                                       |
| October   | 20      | 1.2          | 4.25 | 4.25     | 0.717              | 0.83      | 0.463                                 |
| November  | 28      | 3.2          | 11.5 | 11.5     | 1.94               | 2.16      | 1.25                                  |
| December  | 94      | 6.9          | 16.8 | 16.8     | 2.83               | 3.26      | 1.83                                  |
| January   | 57      | 9.5          | 22.1 | 22.1     | 3.73               | 4.30      | 2.41                                  |
| February  | 28      | 14           | 18.8 | 18.8     | 3.17               | 3.30      | 2.05                                  |
| March     | 14      | 5.6          | 8.30 | 8.30     | 1.40               | 1.61      | .905                                  |
| April     | 30      | 6.7          | 12.6 | 12.6     | 2.12               | 2.36      | 1.37                                  |
| May       | 22      | 3.9          | 8.02 | 8.02     | 1.35               | 1.56      | .873                                  |
| June      | 14      | 2.2          | 3.71 | 3.71     | . 626              | . 70      | . 405                                 |
| July      | 200     | 1.5          | 27.1 | 27.1     | 4.57               | 5.27      | 2.95                                  |
| August    | 72      | 2.4          | 7.83 | 7.83     | 1.32               | 1.52      | .853                                  |
| September | 15      | 3.0          | 6.25 | 6.25     | 1.05               | 1.17      | . 679                                 |
| The year  | 200     | 1.2          | 12.3 | 12.3     | 2.07               | 28.04     | 1.34                                  |
| 1949–50   |         |              |      |          |                    |           |                                       |
| October   | 20      | 3.6          | 5.95 | 5.95     | 1.00               | 1.15      | 0.646                                 |
| November  | 14      | 4.3          | 6.77 | 6.77     | 1.14               | 1.27      | .737                                  |
| December  | 48      | 4.3          | 10.6 | 10.6     | 1.79               | 2.06      | 1.16                                  |
| January   | 15      | 6.0          | 9.59 | 9.59     | 1.62               | 1.87      | 1.05                                  |
| February  | 35      | 8.4          | 18.8 | 18.8     | 3.17               | 3.30      | 2.05                                  |
| March     | 45      | 6.2          | 15.9 | 15.9     | 2.68               | 3.09      | 1.73                                  |
| April     | 21      | 6.9          | 11.4 | 11.4     | 1.92               | 2.14      | 1.24                                  |
| May       | 36      | 7.4          | 15.6 | 15.6     | 2.63               | 3.03      | 1.70                                  |
| June      | 20      | 3.0          | 7.18 | 7.18     | 1.21               | 1.35      | .782                                  |
| July      | 10      | 1.5          | 2.93 | 2.93     | .494               | . 57      | .319                                  |
| August    | 4.9     | .58          | 1.25 | 1.30     | .219               | .25       | . 142                                 |
| September | 7.9     | . 84         | 2.21 | 2.27     | . 383              | . 43      | .248                                  |
| The year  | 48      | .58          | 8.96 | 8.97     | 1.51               | 20.51     | .976                                  |

|           |         |              | Discharge in | n cfs |                    | Adjusted            |                                       |
|-----------|---------|--------------|--------------|-------|--------------------|---------------------|---------------------------------------|
| Month     |         | Observed     |              | Ad    | justed             |                     | Discharge<br>in million               |
|           | Maximum | Mini-<br>mum | Mean         | Mean  | Per square<br>mile | Runoff<br>in inches | gallons per<br>day per<br>square mile |
| 1950-51   |         |              |              |       |                    |                     |                                       |
| October   | 71      | 0.89         | 7.57         | 7.58  | 1.28               | 1.48                | 0.827                                 |
| November  | 171     | 3.5          | 13.3         | 13.3  | 2.24               | 2.50                | 1.45                                  |
| December  | 283     | 8.6          | 34.4         | 34.4  | 5.80               | 6.69                | 3.75                                  |
| January   | 25      | 7.9          | 14.4         | 14.4  | 2.43               | 2.80                | 1.57                                  |
| February  | 57      | 12           | 22.4         | 22.4  | 3.78               | 3 94                | 2 44                                  |
| March     | 28      | 10           | 16.1         | 16.1  | 2. 72              | 3 14                | 1 76                                  |
| April     | 52      | 14           | 20.7         | 20.7  | 3 49               | 3 89                | 2.26                                  |
| May       | 15      | 4.3          | 9.25         | 9.25  | 1.56               | 1.80                | 1.01                                  |
| Tune      | 74      | 3.6          | 15.3         | 15.3  | 2 58               | 2.88                | 1.67                                  |
| July      | 12      | 2.4          | 4 67         | 4 67  | 788                | 01                  | 500                                   |
| August.   | 29      | 1.6          | 3.85         | 3.85  | 640                | 75                  | 410                                   |
| September | 2.8     | .65          | 1.36         | 1.41  | .238               | .27                 | . 154                                 |
| The year  | 283     | .65          | 13.5         | 13.5  | 2.28               | 31.05               | 1.47                                  |
| 1951–52   |         |              |              |       |                    |                     |                                       |
| October   | 1.8     | 0.47         | 0.955        | 1.04  | 0.175              | 0.20                | 0.113                                 |
| November  | 32      | 1.8          | 4.06         | 4.12  | . 695              | .78                 | .449                                  |
| December  | 41      | 2.0          | 8.21         | 8.24  | 1.39               | 1.60                | . 898                                 |
| January   | 74      | 9.1          | 19.8         | 19.8  | 3.34               | 3.85                | 2.16                                  |
| February  | 82      | 6.8          | 16.3         | 16.3  | 2.75               | 2.97                | 1.78                                  |
| March     | 139     | 6.4          | 23.2         | 23.2  | 3.91               | 4.51                | 2.53                                  |
| April     | 92      | 11           | 26.3         | 26.3  | 4.44               | 4.95                | 2.87                                  |
| May       | 48      | 9.4          | 20.7         | 20.7  | 3.49               | 4.02                | 2.26                                  |
| June      | 37      | 4.3          | 11.0         | 11.0  | 1.85               | 2.06                | 1.20                                  |
| July      | 24      | 1.7          | 4.41         | 4.51  | .761               | .88                 | . 492                                 |
| August    | 6.9     | 1.1          | 2.26         | 2.26  | .381               | . 44                | .246                                  |
| September | 355     | 3.0          | 24.0         | 24.0  | 4.05               | 4.52                | 2.62                                  |
| The year  | 355     | .47          | 13.4         | 13.4  | 2.26               | 30.78               | 1.46                                  |
| 1952-53   |         |              |              |       |                    |                     |                                       |
| October   | 7.5     | 1.9          | 2.87         | 2.90  | 0.489              | 0.56                | 0.316                                 |
| November  | 260     | 1.9          | 21.3         | 21.3  | 3.59               | 4.00                | 2.32                                  |
| December  | 55      | 9.0          | 15.8         | 15.8  | 2.66               | 3.07                | 1.72                                  |
| January   | 95      | 6.6          | 22.5         | 22.5  | 3.79               | 4.37                | 2.45                                  |
| February  | 19      | 10           | 12.8         | 12.8  | 2.16               | 2.25                | 1.40                                  |
| March     | 60      | 9.1          | 22.5         | 22.5  | 3.79               | 4.37                | 2.45                                  |
| April     | 39      | 11           | 20.0         | 20.0  | 3.37               | 3.76                | 2.18                                  |
| May       | 31      | 7.8          | 16.2         | 16.2  | 2.73               | 3.15                | 1.76                                  |
| June      | 24      | 2.8          | 7.06         | 7.06  | 1.19               | 1.33                | .769                                  |
| July      | 46      | 1.2          | 3.35         | 3.35  | . 565              | .65                 | .365                                  |
| August    | 5.0     | . 57         | 1.43         | 1.43  | . 241              | . 28                | .156                                  |
| September | 2.7     | . 45         | . 892        | . 909 | . 153              | .153                | . 099                                 |
| The year  | 260     | .45          | 12.2         | 12.2  | 2.06               | 27.96               | 1.33                                  |

# Ротомас River Basin—Continued Monthly discharge of Owens Creek at Lantz—Continued

# POTOMAC RIVER BASIN—Continued Monthly discharge of Owens Creek at Lantz—Continued

|             |         | Γ            |       | Adjusted |                    |           |                         |
|-------------|---------|--------------|-------|----------|--------------------|-----------|-------------------------|
| Month       |         | Observed     |       | Adju     | isted              | Rupoff    | Discharge<br>in million |
|             | Maximum | Mini-<br>mum | Mean  | Mean     | Per square<br>mile | in inches | day per<br>square mile  |
| 1953-54     |         |              |       |          |                    |           |                         |
| October.    | 1.4     | 0.26         | 0.526 | 0.611    | 0.103              | 0.12      | 0.067                   |
| November    | 2.6     | .47          | .846  | .868     | .146               | . 16      | . 094                   |
| December    | 20      | . 54         | 3.41  | 3.41     | .575               | . 66      | .372                    |
| January     | 17      | .80          | 2.46  | 2.46     | .415               | .48       | .268                    |
| February    | 14      | 1.2          | 3.48  | 3.48     | . 587              | . 61      | .379                    |
| March       | 70      | 7.0          | 13.1  | 13.1     | 2.21               | 2.55      | 1.43                    |
| April       | 27      | 4.2          | 8.81  | 8.81     | 1.49               | 1.66      | .963                    |
| May         | 22      | 3.7          | 9.59  | 9.59     | 1.62               | 1.87      | 1.05                    |
| Iune        | 4.5     | 1.0          | 2.33  | 2.33     | . 393              | .44       | .254                    |
| July        | 3.2     | .34          | .841  | .841     | .142               | .16       | .092                    |
| August      | 11      | .31          | 1.12  | 1.14     | . 192              | . 22      | .124                    |
| September . | . 90    | .28          | .478  | . 543    | .092               | . 10      | . 059                   |
| The year    | 70      | .26          | 3.93  | 3.95     | . 666              | 9.03      | .430                    |
| 1954-55     |         |              |       |          |                    |           |                         |
| October     | 33      | 0.29         | 2.16  | 2.18     | 0.368              | 0.42      | 0.238                   |
| November    | 8.5     | .97          | 2.20  | 2.21     | .373               | .42       | .241                    |
| December    | 44      | 1.5          | 7.26  | 7.26     | 1.22               | 1.41      | .789                    |
| January     | 8.0     | 1.3          | 3.29  | 3.29     | . 555              | . 64      | . 359                   |
| February    | 28      | 1.4          | 8.99  | 8.99     | 1.52               | 1.58      | .982                    |
| March       | 114     | 11           | 26.9  | 26.9     | 4.54               | 5.22      | 2.93                    |
| April.      | 16      | 6.8          | 11.1  | 11.1     | 1.87               | 2.09      | 1.21                    |
| May         | 11      | 2.9          | 5.44  | 5.44     | .917               | 1.06      | . 593                   |
| lune        | 40      | 2.0          | 7.63  | 7.63     | 1.29               | 1.44      | .834                    |
| July.       | 2.7     | .80          | 1.57  | 1.57     | .265               | .31       | .171                    |
| August      | 252     | .60          | 25.1  | 25.1     | 4.23               | 4.87      | 2.73                    |
| September.  | 14      | 2.5          | 4.66  | 4.66     | .786               | . 88      | . 508                   |
| The year    | 252     | . 29         | 8.88  | 8.88     | 1.50               | 20.34     | .969                    |
| 1955-56     |         |              |       |          |                    |           |                         |
| October     | 75      | 2.2          | 7.86  | 7.86     | 1.33               | 1.53      | 0.860                   |
| November    | 10      | 3.0          | 4.20  | 4.20     | .708               | .79       | .458                    |
| December    | 3.9     | 1.6          | 2.55  | 2.55     | .430               | . 50      | .278                    |
| January     | 28      | 1.7          | 3.79  | 3.79     | . 639              | .74       | .413                    |
| February    | 31      | 9.0          | 18.0  | 18.0     | 3.04               | 3.27      | 1.96                    |
| March       | 51      | 8.4          | 17.8  | 17.8     | 3.00               | 3.46      | 1.94                    |
| April       | 59      | 9.8          | 20.2  | 20.2     | 3.41               | 3.80      | 2.20                    |
| May         | 25      | 5.8          | 12.1  | 12.1     | 2.04               | 2.34      | 1.32                    |
| June        | 11      | 2.0          | 4.69  | 4.69     | .791               | .88       | .511                    |
| July.       | 45      | 1.5          | 5.09  | 5.09     | .858               | .99       | .555                    |
| August      | 5.8     | .93          | 1.82  | 1.82     | . 307              | .35       | . 198                   |
| September   | 5.8     | .74          | 1.46  | 1.46     | .246               | .28       | . 159                   |
| The year    | 75      | .74          | 8.24  | 8.24     | 1.39               | 18.93     | .898                    |

# CARROLL AND FREDERICK COUNTIES

## Ротомас River Basin—Continued Yearly discharge of Owens Creek at Lantz (Adjusted for diversion)

|         |        | Year er               | nding Sept.  | . 30                                  |         | Calendar year         |                        |                                      |  |  |
|---------|--------|-----------------------|--------------|---------------------------------------|---------|-----------------------|------------------------|--------------------------------------|--|--|
| Year    | Discha | rge in cfs            | Runoff       | Discharge                             | Dischar | rge in cfs            |                        | Discharge                            |  |  |
|         | Mean   | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean    | Per<br>square<br>mile | Runofi<br>in<br>inches | allons per<br>day per<br>square mile |  |  |
| 1932    | 5.34   | 0.901                 | 12.25        | 0.582                                 | 8.99    | 1.52                  | 20.63                  | 0.982                                |  |  |
| 1933    | 14.0   | 2.36                  | 32.02        | 1.53                                  | 11.0    | 1.85                  | 25.23                  | 1.20                                 |  |  |
| 1934    | 6.39   | 1.08                  | 14.61        | . 698                                 | 9.38    | 1.58                  | 21.45                  | 1.02                                 |  |  |
| 1935    | 10.6   | 1.79                  | 24.33        | 1.16                                  | 8.60    | 1.45                  | 19.69                  | .937                                 |  |  |
| 1936    | 10.8   | 1.82                  | 24.78        | 1.18                                  | 10.1    | 1.70                  | 23.31                  | 1.10                                 |  |  |
| 1937    | 12.3   | 2.07                  | 28.21        | 1.34                                  | 14.2    | 2.39                  | 32.55                  | 1 54                                 |  |  |
| 1938    | 7.66   | 1.29                  | 17.51        | .834                                  | 6.29    | 1.06                  | 14.40                  | 685                                  |  |  |
| 1939    | 8.55   | 1.44                  | 19.58        | .931                                  | 7.45    | 1.26                  | 17.06                  | .814                                 |  |  |
| 1940    | 8.69   | 1.47                  | 19.97        | .950                                  | 11.0    | 1.85                  | 25.19                  | 1 20                                 |  |  |
| 1941    | 7.27   | 1.23                  | 16.63        | .795                                  | 4.72    | .796                  | 10.80                  | 514                                  |  |  |
| 1942    | 7.79   | 1.31                  | 17.78        | .847                                  | 11.2    | 1.89                  | 25.58                  | 1 22                                 |  |  |
| 1943    | 11.4   | 1.92                  | 25.99        | 1.24                                  | 8.19    | 1.38                  | 18.71                  | 892                                  |  |  |
| 1944    | 6.23   | 1.05                  | 14.32        | .679                                  | 7.06    | 1.19                  | 16.20                  | 769                                  |  |  |
| 1945    | 8.96   | 1.51                  | 20.51        | .976                                  | 9.95    | 1.68                  | 22.77                  | 1 09                                 |  |  |
| 1946    | 9.59   | 1.62                  | 21.98        | 1.05                                  | 8.03    | 1.35                  | 18 41                  | 873                                  |  |  |
| 1947    | 6.51   | 1.10                  | 14.91        | .711                                  | 6.43    | 1.08                  | 14.72                  | 698                                  |  |  |
| 1948    | 8.01   | 1.35                  | 18.38        | .873                                  | 9.96    | 1.68                  | 22.86                  | 1 09                                 |  |  |
| 1949    | 12.3   | 2.07                  | 28.04        | 1.34                                  | 11.5    | 1.94                  | 26.27                  | 1 25                                 |  |  |
| 1950    | 8.97   | 1.51                  | 20.51        | .976                                  | 11.7    | 1.97                  | 26.70                  | 1 27                                 |  |  |
| 1951    | 13.5   | 2.28                  | 31.05        | 1.47                                  | 10.0    | 1.69                  | 22.96                  | 1 09                                 |  |  |
| 1952    | 13.4   | 2.26                  | 30.78        | 1.46                                  | 15.6    | 2.63                  | 35.83                  | 1.70                                 |  |  |
| 1953    | 12.2   | 2.06                  | 27.96        | 1.33                                  | 9.30    | 1.57                  | 21.27                  | 1.01                                 |  |  |
| 1954    | 3.95   | .666                  | 9.03         | .430                                  | 4.51    | .761                  | 10.34                  | . 492                                |  |  |
| 1955    | 8.88   | 1.50                  | 20.34        | . 969                                 | 9.13    | 1.54                  | 20.91                  | .995                                 |  |  |
| 1956    | 8.24   | 1.39                  | 18.93        | .898                                  | -       |                       | -                      |                                      |  |  |
| Highest | 14.0   | 2.36                  | 32.02        | 1.53                                  | 15.6    | 2.63                  | 35.83                  | 1.70                                 |  |  |
| Average | 9.26   | 1.56                  | 21.22        | 1.01                                  | 9.35    | 1.58                  | 21.41                  | 1.02                                 |  |  |
| Lowest  | 3.95   | .666                  | 9.03         | . 430                                 | 4.51    | .761                  | 10.34                  | . 492                                |  |  |

#### POTOMAC RIVER BASIN

#### 15. Hunting Creek at Jimtown

Location.—Lat 39°35′40″, long 77°23′50″, on right bank just downstream from highway bridge, 0.4 mile southwest of Jimtown, Frederick County, about  $2\frac{1}{4}$  miles southeast of Thurmont, and  $2\frac{1}{4}$  miles upstream from Little Hunting Creek.

Drainage area.-18.4 sq mi.

Records available .- October 1949 to September 1956.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 355 ft (from topographic map).

Average discharge.-7 years, 27.6 cfs.

*Extremes.*—Maximum discharge, 1,170 cfs Sept. 1, 1952 (gage height, 4.94 ft), from rating curve extended above 500 cfs by logarithmic plotting; minimum, 1.0 cfs Aug. 1, 2, 1954.

*Remarks.*—Slight regulation at irregular intervals caused by pumpage at recreation camp near Foxville, Md.

Monthly discharge of Hunting Creek at Jimtown

|            |         | Discharg | Runoff | Discharge<br>in million |        |                        |
|------------|---------|----------|--------|-------------------------|--------|------------------------|
| Month      | Maximum | Minimum  | Mean   | Per<br>square mile      | inches | day per<br>square mile |
| 1949-50    |         |          |        |                         |        |                        |
| October    | 72      | 6.2      | 12.7   | 0.690                   | 0.80   | 0.446                  |
| November   | 33      | 11       | 16.3   | .886                    | . 99   | . 573                  |
| December   | 136     | 9.7      | 26.5   | 1.44                    | 1.66   | . 931                  |
| January    | 36      | 14       | 22.5   | 1.22                    | 1.41   | . 789                  |
| February   | 128     | 24       | 58.1   | 3.16                    | 3.29   | 2.04                   |
| March.     | 237     | 18       | 59.8   | 3.25                    | 3.75   | 2.10                   |
| April      | 62      | 21       | 34.8   | 1.89                    | 2.11   | 1.22                   |
| May        | 155     | 28       | 60.0   | 3.26                    | 3.76   | 2.11                   |
| Tune       | 68      | 7.8      | 23.0   | 1.25                    | 1.39   | . 808                  |
| July       | 28      | 3.9      | 7.85   | .427                    | . 49   | .276                   |
| August     | 21      | 2.3      | 3.95   | . 215                   | . 25   | . 139                  |
| September  | 57      | 3.5      | 10.7   | . 582                   | . 65   | . 376                  |
| The year   | 237     | 2.3      | 27.8   | 1.51                    | 20.55  | .976                   |
| 1950-51    |         |          |        |                         |        |                        |
| October    | 226     | 3.9      | 23.4   | 1.27                    | 1.46   | 0.821                  |
| November   | 270     | 9.7      | 28.9   | 1.57                    | 1.75   | 1.01                   |
| December   | 342     | 20       | 68.1   | 3.70                    | 4.27   | 2.39                   |
| January    | 81      | 19       | 37.1   | 2.02                    | 2.32   | 1.31                   |
| February   | 210     | 34       | 71.0   | 3.86                    | 4.02   | 2.49                   |
| March      | 116     | 30       | 51.7   | 2.81                    | 3.24   | 1.82                   |
| April      | 116     | 35       | 57.4   | 3.12                    | 3.48   | 2.02                   |
| May        | 46      | 11       | 24.2   | 1.32                    | 1.51   | .853                   |
| Tune       | 285     | 9.0      | 46.0   | 2.50                    | 2.79   | 1.62                   |
| July       | 24      | 5.6      | 11.2   | . 609                   | .70    | . 394                  |
| August     | 68      | 4.3      | 9.47   | . 515                   | . 59   | . 333                  |
| September. | 6.2     | 2.3      | 3.54   | . 192                   | . 21   | .124                   |
| The year   | 342     | 2.3      | 35.7   | 1.94                    | 26.34  | 1.25                   |

|           |         | Dischar | Runoff | Discharge<br>in million |              |                                       |
|-----------|---------|---------|--------|-------------------------|--------------|---------------------------------------|
| Month     | Maximum | Minimum | Mean   | Per<br>square mile      | in<br>inches | gallons per<br>day per<br>square mile |
| 1951-52   |         |         |        |                         |              |                                       |
| October.  | 5.2     | 2.6     | 3.16   | 0.172                   | 0.20         | 0.111                                 |
| November  | 88      | 4.3     | 12.2   | 663                     | 74           | .120                                  |
| December  | 192     | 5.6     | 28.5   | 1 55                    | 1 70         | 1.00                                  |
| January   | 233     | 32      | 65.8   | 3 58                    | A 13         | 1.00                                  |
| February  | 300     | 22      | 51 3   | 2 70                    | 3 01         | 1.80                                  |
| March.    | 598     | 22      | 80.7   | 1 30                    | 5.06         | 2.04                                  |
| April.    | 510     | 32      | 00.7   | 4 01                    | 5.40         | 2.04                                  |
| May       | 100     | 22      | 55.0   | 3.04                    | 3.40         | 5.17                                  |
| Tune      | 67      | 8 5     | 04.2   | 1 22                    | 3.30         | 1.90                                  |
| Inly      | 36      | 1.0     | 7 99   | 1.32                    | 1.47         | .855                                  |
| August    | 72      | 2.0     | 7.20   | . 390                   | .40          | . 250                                 |
| September | 13      | 2.0     | 75.0   | .429                    | .49          | .277                                  |
| September | 437     | 5.1     | 35.2   | 1.91                    | 2.14         | 1.23                                  |
| The year  | 598     | 1.9     | 38.5   | 2.09                    | 28.47        | 1.35                                  |
| 1952-53   |         |         |        |                         |              |                                       |
| October   | 17      | 5.3     | 7.88   | 0.428                   | 0.49         | 0 277                                 |
| November  | 513     | 5.3     | 55.0   | 2.99                    | 3.33         | 1 93                                  |
| December  | 176     | 21      | 39.8   | 2.16                    | 2 50         | 1 40                                  |
| January   | 339     | 19      | 67.2   | 3 65                    | 4 21         | 2 36                                  |
| February  | 83      | 28      | 38.6   | 2 10                    | 2 18         | 1 36                                  |
| March     | 279     | 26      | 78.3   | 4 26                    | 4 01         | 2 75                                  |
| April     | 137     | 28      | 53 5   | 2 01                    | 3 24         | 1.89                                  |
| May       | 105     | 21      | 42 1   | 2.20                    | 2 64         | 1.00                                  |
| Tune      | 80      | 8.6     | 20.8   | 1 13                    | 1 26         | 720                                   |
| [ulv      | 281     | 3 3     | 17.6   | 057                     | 1.20         | .130                                  |
| August    | 43      | 2.5     | 7 34   | 300                     | 1.10         | .019                                  |
| September | 9.0     | 2.2     | 3.40   | . 185                   | . 21         | . 120                                 |
| The year  | 513     | 2.2     | 36.0   | 1.96                    | 26.53        | 1.27                                  |
| 1953-54   |         |         |        |                         |              |                                       |
| October   | 5 7     | 2.0     | 2 90   | 0 162                   | 0.10         | 0.105                                 |
| November  | 7.8     | 2 2     | 3 60   | 106                     | 22           | 127                                   |
| December  | 61      | 2.5     | 12 4   | 674                     | . 22         | .127                                  |
| Ianuary.  | 53      | 3.4     | 0.25   | 503                     | 50           | 205                                   |
| February  | 47      | 4 4     | 11 6   | 603                     | . 30         | .323                                  |
| March     | 112     | 10      | 31 8   | 1 73                    | 1.00         | . 390                                 |
| April     | 120     | 13      | 20.2   | 1.75                    | 1.99         | 1.12                                  |
| May       | 44      | 11      | 29.2   | 1.39                    | 1.77         | 1.03                                  |
| Гире      | 10      | 3 1     | 7 10   | 301                     | 1.38         | .//0                                  |
| [ulv      | 5 2     | 1.2     | 2 50   | . 391                   | . 44         | . 255                                 |
| August    | 23      | 1.2     | 2.39   | .141                    | . 10         | .091                                  |
| September | 4.8     | 1.4     | 2,23   | . 204                   | . 24         | . 132                                 |
|           | 100     |         |        |                         | . 11         |                                       |
| Ine year  | 129     | 1.2     | 11.6   | . 630                   | 8.54         | .407                                  |

# POTOMAC RIVER BASIN—Continued Monthly discharge of Hunting Creek at Jimtown—Continued

### SURFACE-WATER RESOURCES

## POTOMAC RIVER BASIN-Continued

|           |         | Discharg | e in cfs |                    | Runoff | Discharge<br>in million               |  |
|-----------|---------|----------|----------|--------------------|--------|---------------------------------------|--|
| Month     | Maximum | Minimum  | Mean     | Per<br>square mile | inches | gallons per<br>day per<br>square mile |  |
| 1954-55   |         |          |          |                    |        |                                       |  |
| October   | 30      | 1.6      | 4.73     | 0.257              | 0.30   | 0.166                                 |  |
| November  | 20      | 3.4      | 6.43     | .349               | . 39   | . 226                                 |  |
| December  | 52      | 3.7      | 13.9     | .755               | .87    | .488                                  |  |
| Japuary   | 17      | 4.0      | 7.93     | .431               | .50    | . 279                                 |  |
| February  | 74      | 4.5      | 19.9     | 1.08               | 1.12   | . 698                                 |  |
| March     | 298     | 24       | 58.8     | 3.20               | 3.68   | 2.07                                  |  |
| April     | 56      | 19       | 32.3     | 1.76               | 1.96   | 1.14                                  |  |
| Max       | 30      | 7.0      | 13.6     | .739               | .85    | .478                                  |  |
| Iune      | 110     | 5.5      | 21.7     | 1.18               | 1.32   | .763                                  |  |
| Inly      | 50      | 2.5      | 7.34     | . 399              | .46    | .258                                  |  |
| August    | 584     | 1.6      | 56.2     | 3.05               | 3.52   | 1.97                                  |  |
| September | 38      | 7.3      | 12.5     | . 679              | .76    | . 439                                 |  |
| The year  | 584     | 1.6      | 21.3     | 1.16               | 15.73  | .750                                  |  |
| 1955-56   |         |          |          |                    |        |                                       |  |
| October   | 170     | 6.2      | 19.5     | 1.06               | 1.22   | 0.685                                 |  |
| November  | 29      | 9.6      | 12.6     | .685               | .76    | .443                                  |  |
| December  | 11      | 5.0      | 7.27     | . 395              | .46    | .255                                  |  |
| Ianuary   | 50      | 5.0      | 8.90     | .484               | . 56   | .313                                  |  |
| February  | 101     | 20       | 53.1     | 2.89               | 3.11   | 1.87                                  |  |
| March     | 191     | 22       | 53.8     | 2.92               | 3.37   | 1.89                                  |  |
| April     | 179     | 22       | 48.2     | 2.62               | 2.92   | 1.69                                  |  |
| May       | 34      | 10       | 18.8     | 1.02               | 1.18   | . 659                                 |  |
| June      | 22      | 4.4      | 9.48     | .515               | . 57   | .333                                  |  |
| July      | 226     | 4.0      | 22.4     | 1.22               | 1.40   | . 789                                 |  |
| August    | 21      | 3.4      | 6.58     | .358               | .41    | . 231                                 |  |
| September | 15      | 2.8      | 4.46     | . 242              | . 27   | .156                                  |  |
| The year  | 226     | 2.8      | 22.0     | 1.20               | 16.23  | .776                                  |  |

# Monthly discharge of Hunting Creek at Jimtown-Continued

## CARROLL AND FREDERICK COUNTIES

|         |                  | Year en               | ding Sept. | 30                                    | Calendar year    |                       |                        |                                      |  |
|---------|------------------|-----------------------|------------|---------------------------------------|------------------|-----------------------|------------------------|--------------------------------------|--|
| Year    | Discharge in cfs |                       |            | Discharge                             | Discharge in cfs |                       |                        | Discharge                            |  |
|         | Mean             | Per<br>square<br>mile | inches     | gallons per<br>day per<br>square mile | Mean             | Per<br>square<br>mile | Runoff<br>in<br>inches | allons per<br>day per<br>square mile |  |
| 1950    | 27.8             | 1.51                  | 20.55      | 0.976                                 | 33.3             | 1.81                  | 24.58                  | 1.17                                 |  |
| 1951    | 35.7             | 1.94                  | 26.34      | 1.25                                  | 29.3             | 1.59                  | 21.59                  | 1.03                                 |  |
| 1952    | 38.5             | 2.09                  | 28.47      | 1.35                                  | 43.3             | 2.35                  | 32.06                  | 1.52                                 |  |
| 1953    | 36.0             | 1.96                  | 26.53      | 1.27                                  | 29.0             | 1.58                  | 21.39                  | 1.02                                 |  |
| 1954    | 11.6             | . 630                 | 8.54       | .407                                  | 12.1             | .658                  | 8.92                   | .425                                 |  |
| 1955    | 21.3             | 1.16                  | 15.73      | .750                                  | 22.5             | 1.22                  | 16.61                  | .789                                 |  |
| 1956    | 22.0             | 1.20                  | 16.23      | .776                                  |                  |                       | Al locate              |                                      |  |
| Highest | 38.5             | 2.09                  | 28.47      | 1.35                                  | 43.3             | 2.35                  | 32.06                  | 1.52                                 |  |
| Average | 27.6             | 1.50                  | 20.34      | .969                                  | 28.2             | 1.53                  | 20.86                  | .989                                 |  |
| Lowest  | 11.6             | .630                  | 8.54       | .407                                  | 12.1             | . 658                 | 8.92                   | .425                                 |  |

### POTOMAC RIVER BASIN—Continued Yearly discharge of Hunting Creek at Jimtown

### SURFACE-WATER RESOURCES

#### POTOMAC RIVER BASIN

### 16. Fishing Creek near Lewistown

Location.—Lat 39°31'35", long 77°28'00", on left bank immediately upstream from Fishing Creek Reservoir, 50 ft downstream from Little Fishing Creek, and 4.5 miles west of Lewistown, Frederick County.

Drainage area.-7.29 sq mi.

Records available .- October 1947 to September 1956.

Gage.-Water-stage recorder and concrete control. Altitude of gage is 735 ft (from topographic map).

Average discharge.-9 years, 12.2 cfs.

*Extremes.*—Maximum discharge, 500 cfs July 12, 1949 (gage height, 3.73 ft), from rating curve extended above 100 cfs on basis of slope-area determination of peak flow; minimum 0.8 cfs Oct. 12–14, 1954.

|           |         | Discharg | Dunoff in | Discharge<br>in million |        |                                       |
|-----------|---------|----------|-----------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1947-48   |         |          |           |                         |        |                                       |
| October   | 2.9     | 1.9      | 2.10      | 0.288                   | 0.33   | 0.186                                 |
| November  | 10      | 1.9      | 5.29      | .726                    | . 81   | . 469                                 |
| December  | 6.4     | 4.4      | 5.12      | .702                    | . 81   | .454                                  |
| Ianuary   | 14      | 5.0      | 7.17      | .984                    | 1.13   | . 636                                 |
| February  | 30      | 4.8      | 11.7      | 1.60                    | 1.73   | 1.03                                  |
| March     | 22      | 15       | 18.1      | 2.48                    | 2.86   | 1.60                                  |
| April     | 30      | 15       | 20.4      | 2.80                    | 3.12   | 1.81                                  |
| May       | 40      | 14       | 20.1      | 2.76                    | 3.17   | 1.78                                  |
| Iune      | 16      | 6.4      | 10.2      | 1.40                    | 1.56   | .905                                  |
| July      | 7.1     | 3.4      | 4.45      | . 610                   | .70    | .394                                  |
| August    | 6.0     | 2.2      | 3.36      | . 461                   | . 53   | . 298                                 |
| September | 3.2     | 1.7      | 2.15      | .295                    | .33    | . 191                                 |
| The year  | -40     | 1.7      | 9.15      | 1.26                    | 17.08  | .814                                  |
| 1948-49   |         |          |           |                         |        |                                       |
| October   | 6.7     | 1.8      | 2.42      | 0.332                   | 0.38   | 0.215                                 |
| November  | 19      | 2.1      | 9.05      | 1.24                    | 1.39   | .801                                  |
| December  | 128     | 14       | 26.1      | 3.58                    | 4.13   | 2.31                                  |
| January   | 91      | 17       | 36.9      | 5.06                    | 5.84   | 3.27                                  |
| February  | 38      | 21       | 25.2      | 3.46                    | 3.60   | 2.24                                  |
| March     | 20      | 9.0      | 13.0      | 1.78                    | 2.06   | 1.15                                  |
| April     | 42      | 9.0      | 20.1      | 2.76                    | 3.07   | 1.78                                  |
| May       | 35      | 9.3      | 18.4      | 2.52                    | 2.91   | 1.63                                  |
| Iune      | 14      | 5.2      | 7.68      | 1.05                    | 1.17   | .679                                  |
| Iuly      | 143     | 4.4      | 38.6      | 5.29                    | 6.10   | 3.42                                  |
| August    | 17      | 4.6      | 7.98      | 1.09                    | 1.26   | .704                                  |
| September | 13      | 3.5      | 4.56      | .626                    | .70    | .405                                  |
| The year  | 143     | 1.8      | 17.5      | 2.40                    | 32.61  | 1.55                                  |

Monthly discharge of Fishing Creek near Lewistown

|           |         | Dischar |      | Discharge<br>in million |        |                                       |
|-----------|---------|---------|------|-------------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum | Mean | Per square<br>mile      | inches | gallons per<br>day per<br>square mile |
| 1949-50   |         |         |      |                         |        |                                       |
| October   | 11      | 33      | 4 53 | 0.621                   | 0.72   | 0.401                                 |
| November  | 10      | 5.0     | 7 36 | 1.01                    | 1 12   | 0.401                                 |
| December  | 31      | 5.1     | 10.6 | 1.01                    | 1.13   | .033                                  |
| January   | 18      | 7.0     | 11.5 | 1.40                    | 1.08   | .937                                  |
| February  | 37      | 10      | 22.1 | 2.07                    | 1.81   | 1.02                                  |
| March     | 50      | 0.6     | 22.4 | 3.07                    | 3.20   | 1.98                                  |
| April     | 20      | 9.0     | 15.0 | 2.87                    | 3.30   | 1.85                                  |
| Mov       | 30      | 10      | 15.9 | 2.18                    | 2.45   | 1.41                                  |
| June      | 47      | 13      | 25.1 | 3.44                    | 3.97   | 2.22                                  |
| June      | 23      | 5.9     | 12.0 | 1.73                    | 1.93   | 1.12                                  |
| July      | 2.0     | 3.0     | 4.48 | .615                    | .71    | . 397                                 |
| August    | 0.9     | 2.0     | 2.40 | .337                    | . 39   | . 218                                 |
| September | 21      | 2.0     | 5.03 | . 690                   | .77    | . 446                                 |
| The year  | 50      | 2.0     | 11.8 | 1.62                    | 22.04  | 1.05                                  |
| 1950-51   |         |         |      |                         |        |                                       |
| October   | 37      | 3.0     | 10.9 | 1.50                    | 1.73   | 0.969                                 |
| November  | 56      | 8.3     | 14.4 | 1.98                    | 2.20   | 1.28                                  |
| December  | 91      | 11      | 30.7 | 4.21                    | 4.86   | 2.72                                  |
| January   | 20      | 9.6     | 13.6 | 1.87                    | 2.15   | 1.21                                  |
| February  | 44      | 17      | 27.6 | 3.79                    | 3.94   | 2 45                                  |
| March     | 31      | 12      | 18.8 | 2.58                    | 2.97   | 1.67                                  |
| April     | 32      | 18      | 24.0 | 3.29                    | 3.67   | 2 13                                  |
| May       | 23      | 8.7     | 16.1 | 2.21                    | 2.54   | 1 43                                  |
| June      | 72      | 6.8     | 20.3 | 2.78                    | 3.10   | 1.80                                  |
| July      | 13      | 3.9     | 6.27 | .860                    | 00     | 556                                   |
| August    | 4.4     | 2.2     | 2 04 | 403                     | 46     | 260                                   |
| September | 3.3     | 1.5     | 1.95 | .267                    | . 30   | .173                                  |
| The year  | 91      | 1.5     | 15.5 | 2.13                    | 28.91  | 1.38                                  |
| 1951-52   |         |         |      |                         |        |                                       |
| October   | 2.0     | 1.4     | 1.52 | 0.209                   | 0.24   | 0.135                                 |
| November  | 11      | 1.5     | 2.44 | .335                    | .37    | .217                                  |
| December  | 27      | 1.7     | 5.55 | .761                    | .88    | .492                                  |
| January   | 44      | 15      | 23.2 | 3.18                    | 3.66   | 2.06                                  |
| February  | 56      | 11      | 22.1 | 3.03                    | 3.27   | 1.96                                  |
| March     | 89      | 9.6     | 28.3 | 3.88                    | 4.48   | 2.51                                  |
| April     | 150     | 20      | 40.6 | 5.57                    | 6.21   | 3.60                                  |
| May       | 110     | 16      | 35.4 | 4.86                    | 5.60   | 3.14                                  |
| June      | 31      | 5.4     | 12.6 | 1.73                    | 1.93   | 1.12                                  |
| July      | 6.5     | 2.5     | 3.70 | . 508                   | . 59   | .328                                  |
| August    | 4.3     | 1.7     | 2.47 | .339                    | .39    | .219                                  |
| September | 41      | 1.7     | 3.67 | . 503                   | .56    | .325                                  |
| The year  | 150     | 1.4     | 15.1 | 2.07                    | 28.18  | 1.34                                  |

## Ротомас River Basin—Continued Monthly discharge of Fishing Creek near Lewistown—Continued

### POTOMAC RIVER BASIN—Continued Monthly discharge of Fishing Creek near Lewistown—Continued

|           |         | Discharg | Dunoff in | Discharge<br>in million |        |                        |  |
|-----------|---------|----------|-----------|-------------------------|--------|------------------------|--|
| Month     | Maximum | Minimum  | Mean      | Per square<br>mile      | inches | day per<br>square mile |  |
| 1952-53   |         |          |           |                         |        |                        |  |
| October   | 3.9     | 1.9      | 2.21      | 0.303                   | 0.35   | 0.196                  |  |
| November  | 90      | 1.7      | 13.4      | 1.84                    | 2.05   | 1.19                   |  |
| December  | 40      | 10       | 17.2      | 2.36                    | 2.71   | 1.53                   |  |
| January   | 59      | 10       | 25.9      | 3.55                    | 4.10   | 2.29                   |  |
| February  | 22      | 12       | 16.0      | 2.19                    | 2.28   | 1.42                   |  |
| March     | 64      | 12       | 28.5      | 3.91                    | 4.50   | 2.53                   |  |
| April     | 31      | 12       | 22.0      | 3.02                    | 3.37   | 1.95                   |  |
| May       | 46      | 12       | 19.4      | 2.66                    | 3.06   | 1.72                   |  |
| lune      | 66      | 5.4      | 16.8      | 2.30                    | 2.58   | 1.49                   |  |
| Inly      | 35      | 3 2      | 5.57      | .764                    | .88    | .494                   |  |
| August    | 7.8     | 2.0      | 3.29      | .451                    | .52    | .291                   |  |
| September | 5.5     | 1.5      | 2.17      | . 298                   | . 33   | . 193                  |  |
| The year  | 90      | 1.5      | 14.4      | 1.98                    | 26.73  | 1.28                   |  |
| 1953-54   |         |          |           |                         |        |                        |  |
| October   | 3.0     | 1.5      | 1.61      | 0.221                   | 0.26   | 0.143                  |  |
| November  | 3.6     | 1.2      | 1.58      | . 217                   | .24    | .140                   |  |
| December  | 10      | 1.2      | 3.20      | . 439                   | . 51   | .284                   |  |
| January   | 6.8     | 1.8      | 2.70      | .370                    | .43    | . 239                  |  |
| February  | 6.3     | 2.5      | 3.65      | . 501                   | . 52   | . 324                  |  |
| March.    | 18      | 8.3      | 11.2      | 1.54                    | 1.77   | .995                   |  |
| April     | 42      | 7.9      | 15.3      | 2.10                    | 2.34   | 1.36                   |  |
| May       | 23      | 7.6      | 14.6      | 2.00                    | 2.31   | 1.29                   |  |
| June      | 7.6     | 3.0      | 5.03      | . 690                   | . 77   | . 446                  |  |
| July      | 6.7     | 1.6      | 2.66      | .365                    | . 42   | . 236                  |  |
| August    | 9.0     | 1.4      | 2.09      | .287                    | .33    | . 185                  |  |
| September | 2.2     | 1.0      | 1.25      | . 171                   | . 19   | . 111                  |  |
| The year  | 42      | 1.0      | 5.42      | .743                    | 10.09  | .480                   |  |
| 1954-55   |         |          |           |                         |        |                        |  |
| October   | 4.6     | 0.8      | 1.28      | 0.176                   | 0.20   | 0.114                  |  |
| November  | 2.8     | 1.1      | 1.47      | . 202                   | .23    | . 131                  |  |
| December  | 7.9     | 1.2      | 3.37      | . 462                   | . 53   | . 299                  |  |
| January   | 5.9     | 3.0      | 4.35      | . 597                   | . 69   | .386                   |  |
| February  | 11      | 3.0      | 6.79      | .931                    | .97    | . 602                  |  |
| March     | 60      | 11       | 23.7      | 3.25                    | 3.75   | 2.10                   |  |
| April     | 19      | 10       | 15.6      | 2.14                    | 2.38   | 1.38                   |  |
| May       | 16      | 5.9      | 9.79      | 1.34                    | 1.55   | .866                   |  |
| June      | 16      | 4.8      | 7.33      | 1.01                    | 1.12   | .653                   |  |
| July      | 10      | 2.8      | 4.15      | . 569                   | . 66   | .368                   |  |
| August    | 207     | 2.3      | 34.3      | 4.71                    | 5.42   | 3.04                   |  |
| September | 15      | 5.4      | 8.66      | 1.19                    | 1.33   | .769                   |  |
| The year  | 207     | .8       | 10.1      | 1.39                    | 18.83  | . 898                  |  |

### CARROLL AND FREDERICK COUNTIES

#### Discharge in cfs Discharge in million Runoff in Month gallons per inches Per square mile day per square mile Minimum Maximum Mean 1955-56 October ..... 26 4.3 8.22 1.13 1.30 0.730 November ..... 13 5.6 7.11 .975 1.09 .630 December.... 7.0 4.1 5.46 .749 .86 .484 . 593 January..... 8.2 3.3 .68 . 383 4.32 February..... 28 5.7 20.43.02 2.80 1.81 March..... 37 14 22.1 3.03 3.50 1.96 April 38 12 21.0 2.88 3.21 1.86 May..... 15 7.4 9.95 1.36 .879 1.57 10 6.99 4.8 .959 1.07.620 July..... 51 3.9 11.7 1.60 1.85 1.03 10 August..... 3.3 6.10 .837 .96 .541 September..... 5.9 2.7 3.49 .479 .53 .310 The year..... 51 2.7 10.5 1.44 19.64 .931

#### POTOMAC RIVER BASIN-Continued

#### Monthly discharge of Fishing Creek near Lewistown-Continued

Yearly discharge of Fishing Creek near Lewistown

|         |                  | Year en               | ding Sept.   | . 30                                  | Calendar year |                       |              |                                       |  |
|---------|------------------|-----------------------|--------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
| Year    | Discharge in cfs |                       | Dunoff       | Discharge                             | Dischar       | ge in cfs             | D. C         | Discharge                             |  |
|         | Mean             | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1948    | 9.15             | 1.26                  | 17.08        | 0.814                                 | 11.3          | 1.55                  | 21.03        | 1.00                                  |  |
| 1949    | 17.5             | 2.40                  | 32.61        | 1.55                                  | 16.2          | 2.22                  | 30.24        | 1.43                                  |  |
| 1950    | 11.8             | 1.62                  | 22.04        | 1.05                                  | 14.7          | 2.02                  | 27.30        | 1.31                                  |  |
| 1951    | 15.5             | 2.13                  | 28.91        | 1.38                                  | 11.6          | 1.59                  | 21.61        | 1.03                                  |  |
| 1952    | 15.1             | 2.07                  | 28.18        | 1.34                                  | 17.0          | 2.33                  | 31.80        | 1.51                                  |  |
| 1953    | 14.4             | 1.98                  | 26.73        | 1.28                                  | 12.2          | 1.67                  | 22.63        | 1.08                                  |  |
| 1954    | 5.42             | .743                  | 10.09        | . 480                                 | 5.39          | .739                  | 10.04        | .478                                  |  |
| 1955    | 10.1             | 1.39                  | 18.83        | .898                                  | 11.3          | 1.55                  | 21.12        | 1.00                                  |  |
| 1956    | 10.5             | 1.44                  | 19.64        | .931                                  | _             |                       |              |                                       |  |
| Highest | 17.5             | 2.40                  | 32.61        | 1.55                                  | 17.0          | 2.33                  | 31.80        | 1.51                                  |  |
| Average | 12.2             | 1.67                  | 22.68        | 1.08                                  | 12.5          | 1.71                  | 23.22        | 1.11                                  |  |
| Lowest  | 5.42             | .743                  | 10.09        | .480                                  | 5.39          | .739                  | 10.04        | .478                                  |  |

### SURFACE-WATER RESOURCES

#### POTOMAC RIVER BASIN

### 17. Monocacy River near Frederick

*Location.*—Lat 39°27′09", long 77°22′16", near right bank on downstream side of bridge on State Highway 26 at Ceresville, 1200 ft upstream from Israel Creek and 3.3 miles northeast of Frederick, Frederick County.

Drainage area.-665 sq mi.

Records available.—August 1896 to September 1930 (discontinued). Monthly records published in Bulletin 1 (1897–99, 1902, 1904, 1905, 1917 revised herein).

Gage.—Chain gage. Datum of gage is 242.45 ft above mean sea level (levels by Corps of Engineers). Prior to Sept. 3, 1902, wire-weight gage at same site and datum.

Average discharge.-34 years, 943 cfs.

*Extremes.*—Maximum discharge, 26,600 cfs Sept. 1, 1911 (gage height, 27.5 ft, from graph based on gage readings); from rating curve extended above 4,700 cfs on basis of curve of relation with station at Jug Bridge; minimum 15 cfs several days in October 1910 (gage height 3.54 ft).

Maximum stage known, about 35 ft in June 1889, from floodmark (discharge, about 46,000 cfs, from rating curve extended as explained above).

| Month                  |         | Discharg | e in cfs |                    | Runoff in | Discharge<br>in million<br>gallons per<br>day per<br>square mile |
|------------------------|---------|----------|----------|--------------------|-----------|------------------------------------------------------------------|
| Month                  | Maximum | Minimum  | Mean     | Per square<br>mile | inches    |                                                                  |
| 1896                   |         |          |          |                    |           |                                                                  |
| August                 | 345     | 69       | 140      | 0.211              | 0.24      | 0.136                                                            |
| September <sup>‡</sup> | 480     | 69       | 115      | . 173              | .19       | . 112                                                            |
| 1896-97                |         |          |          |                    |           |                                                                  |
| October                | 396     | 103      | 144      | 0.217              | 0.25      | 0.140                                                            |
| November               | 2,195   | 124      | 306      | .460               | . 51      | . 297                                                            |
| December               | 396     | 124      | 187      | . 281              | .32       | .182                                                             |
| January*               | 730     | 147      | 266      | .400               | .46       | . 259                                                            |
| February.              | 9,750   | 256      | 2,062    | 3.10               | 3.23      | 2.00                                                             |
| March                  | 4,400   | 575      | 1,384    | 2.08               | 2.40      | 1.34                                                             |
| April                  | 3,900   | 322      | 907      | 1.36               | 1.52      | .879                                                             |
| May                    | 10,380  | 322      | 1,650    | 2.48               | 2.86      | 1.60                                                             |
| June                   | 2,195   | 198      | 492      | .740               | . 83      | .478                                                             |
| July.                  | 4,500   | 198      | 710      | 1.07               | 1.23      | . 692                                                            |
| August                 | 11,100  | 172      | 968      | 1.46               | 1.68      | .944                                                             |
| September              | 812     | 114      | 191      | .287               | .32       | .185                                                             |
| The year               | 11,100  | 103      | 765      | 1.15               | 15.61     | .743                                                             |

Monthly discharge of Monocacy River near Frederick

1 Not previously published.

\* Revised

|           |         | Dischar |       | D                  | Discharge<br>in million |                                       |
|-----------|---------|---------|-------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum | Mean  | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1897–98   |         |         |       |                    |                         |                                       |
| October   | 241     | 94      | 137   | 0.206              | 0.24                    | 0 133                                 |
| November  | 9,592   | 185     | 1.008 | 1.52               | 1 70                    | 0.100                                 |
| December  | 9,330   | 550     | 1,980 | 2.98               | 3 44                    | 1 03                                  |
| January   | 7,020   | 416     | 2,099 | 3.16               | 3 64                    | 2 04                                  |
| February* | 9.540   | 450     | 1.335 | 2 01               | 2 00                    | 1 30                                  |
| March     | 5.350   | 437     | 1.319 | 1 98               | 2.09                    | 1.30                                  |
| April     | 1.845   | 396     | 692   | 1.04               | 1 16                    | 672                                   |
| May       | 8.070   | 322     | 1.575 | 2.37               | 2 73                    | 1 53                                  |
| June      | 730     | 256     | 408   | 614                | 68                      | 207                                   |
| July.     | 675     | 124     | 223   | 335                | 30                      | . 397                                 |
| August    | 7.020   | 147     | 026   | 1 30               | 1.60                    | . 217                                 |
| September | 198     | 103     | 128   | 1.02               | 21                      | 104                                   |
|           |         | 105     | 120   | .192               | . 41                    | .124                                  |
| The year  | 9,592   | 94      | 988   | 1.49               | 20.16                   | .963                                  |
| 1898-99   |         |         |       |                    |                         |                                       |
| October   | 6,150   | 103     | 693   | 1.04               | 1.20                    | 0.672                                 |
| November  | 6,968   | 256     | 1,132 | 1.70               | 1.90                    | 1.10                                  |
| December  | 12,850  | 480     | 1,943 | 2.92               | 3.37                    | 1 80                                  |
| January   | 9,592   | 480     | 1.971 | 2.96               | 3.41                    | 1 91                                  |
| February* | 12,690  | 500     | 2.637 | 3.97               | 4 13                    | 2 57                                  |
| March     | 12,060  | 1,370   | 3.428 | 5.16               | 5 95                    | 3 33                                  |
| April     | 7,230   | 396     | 1,179 | 1.77               | 1.98                    | 1 14                                  |
| May       | 2,375   | 322     | 680   | 1 02               | 1 18                    | 650                                   |
| June      | 5,700   | 198     | 759   | 1 14               | 1 27                    | 737                                   |
| July      | 288     | 124     | 196   | 295                | 34                      | 101                                   |
| August    | 525     | 103     | 208   | 313                | 36                      | 202                                   |
| September | 1,025   | 85      | 309   | . 465              | . 52                    | . 301                                 |
| The year  | 12,850  | 85      | 1,254 | 1.89               | 25.61                   | 1.22                                  |
| 1901-02   |         |         |       |                    |                         |                                       |
| October   | 575     | 172     | 268   | 0.403              | 0.46                    | 0.260                                 |
| November  | 4,000   | 198     | 480   | .722               | .81                     | .467                                  |
| December  | 14,740  | 358     | 2,313 | 3.48               | 4.01                    | 2.25                                  |
| January   | 12,950  | 437     | 1,924 | 2.89               | 3.33                    | 1.87                                  |
| February* | 19,200  | 650     | 3,288 | 4.94               | 5.14                    | 3,19                                  |
| March     | 20,460  | 785     | 4,677 | 7.03               | 8.10                    | 4.54                                  |
| April     | 12,800  | 480     | 2,261 | 3.40               | 3.79                    | 2.20                                  |
| May       | 575     | 226     | 339   | .510               | . 59                    | .330                                  |
| June      | 1,845   | 147     | 323   | .486               | . 54                    | .314                                  |
| July      | 1,680   | 124     | 335   | . 504              | . 58                    | .326                                  |
| August    | 575     | 69      | 143   | .215               | .25                     | .139                                  |
| September | 3,700   | 55      | 232   | . 349              | .39                     | .226                                  |
| The year  | 20,460  | 55      | 1,372 | 2.06               | 27.99                   | 1.33                                  |

# Ротомас RIVER BASIN—Continued Monthly discharge of Monocacy River near Frederick—Continued

### POTOMAC RIVER BASIN—Continued Monthly discharge of Monocacy River near Frederick—Continued

|           |         | Discharg |       | Punoff in          | Discharge<br>in million |                                       |
|-----------|---------|----------|-------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean  | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1903-04   |         |          |       |                    |                         |                                       |
| October   | 1,930   | 226      | 477   | 0.717              | 0.83                    | 0.463                                 |
| November  | 437     | 198      | 239   | .359               | .40                     | .232                                  |
| December  | 6,652   | 172      | 540   | .812               | .94                     | . 525                                 |
| Ianuary*  | 14,800  | 190      | 975   | 1.47               | 1.70                    | .950                                  |
| February  | 8.758   | 294      | 1,502 | 2.26               | 2.44                    | 1.46                                  |
| March     | 11,960  | 538      | 1,812 | 2.72               | 3.14                    | 1.76                                  |
| April     | 2,400   | 294      | 729   | 1.10               | 1.23                    | .711                                  |
| May       | 789     | 198      | 375   | . 561              | .65                     | .363                                  |
| Iune      | 4,300   | 144      | 817   | 1.23               | 1.37                    | .795                                  |
| Iuly      | 2.765   | 120      | 586   | .881               | 1.02                    | . 569                                 |
| August    | 7,130   | 80       | 436   | .656               | .76                     | . 424                                 |
| September | 734     | 80       | 251   | .377               | .42                     | .244                                  |
| The year  | 14,800  | 80       | 727   | 1.09               | 14.90                   | . 704                                 |
| 1904-05   |         |          |       |                    |                         |                                       |
| October   | 969     | 80       | 176   | 0.265              | 0.31                    | 0.171                                 |
| November  | 228     | 120      | 139   | . 209              | . 23                    | .135                                  |
| December  | 3,905   | 120      | 549   | . 826              | .95                     | .534                                  |
| January   | 12,170  | 538      | 1,503 | 2.26               | 2.61                    | 1.46                                  |
| February* | 734     | 250      | 320   | . 481              | . 50                    | .311                                  |
| March     | 9,440   | 538      | 3,056 | 4.60               | 5.30                    | 2.97                                  |
| April     | 2,220   | 368      | 790   | 1.19               | 1.33                    | .769                                  |
| May       | 450     | 170      | 279   | . 420              | . 48                    | .271                                  |
| June      | 2,860   | 144      | 748   | 1.12               | 1.25                    | .724                                  |
| July      | 6,605   | 260      | 1,296 | 1.95               | 2.25                    | 1.26                                  |
| August    | 13,640  | 228      | 1,427 | 2.15               | 2.48                    | 1.39                                  |
| September | 2,130   | 170      | 546   | .821               | .92                     | . 531                                 |
| The year  | 13,640  | 80       | 911   | 1.37               | 18.61                   | .885                                  |
| 1916-17   |         |          |       |                    |                         |                                       |
| October   | 7,010   | 122      | 440   | 0.662              | 0.76                    | 0.428                                 |
| November  | 525     | 122      | 158   | .238               | .26                     | .154                                  |
| December  | 2,610   | 158      | 576   | .860               | 1.00                    | .560                                  |
| January   | 3,290   | 405      | 1,250 | 1.88               | 2.17                    | 1.22                                  |
| February* | 1,420   | 190      | 354   | .833               | .8/                     | . 538                                 |
| March     | 9,750   | 705      | 2,380 | 3.38               | 4.13                    | 2.31                                  |
| April     | 7,550   | 434      | 1,130 | 1.70               | 1.90                    | 1.10                                  |
| May       | 2,050   | 232      | 430   | . 640              | . 14                    | .418                                  |
| June      | 4,230   | 218      | 183   | 1.18               | 1.32                    | . 103                                 |
| July      | 2,840   | 204      | 701   | 1.05               | 1.21                    | .079                                  |
| August    | 4,900   | 165      | 643   | .967               | 1.11                    | . 625                                 |
| September | 2,410   | 204      | 460   | . 692              | .77                     | .44/                                  |
| The year  | 9,750   | 122      | 796   | 1.20               | 16.24                   | .776                                  |

# Yearly discharge of Monocacy River near Frederick

|         |         | Year en               | ding Sept.   | 30                                    | Calendar year |                       |              |                                       |  |
|---------|---------|-----------------------|--------------|---------------------------------------|---------------|-----------------------|--------------|---------------------------------------|--|
| Year    | Dischar | ge in cfs             | Rupoff       | Discharge                             | Dischar       | ge in cfs             | Dunoff       | Discharge                             |  |
|         | Mean    | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile |  |
| 1897    | 765     | 1.15                  | 15.61        | 0.743                                 | 974           | 1.46                  | 19.92        | 0.944                                 |  |
| 1898    | . 988   | 1.49                  | 20.16        | .963                                  | 1,042         | 1.57                  | 21.25        | 1.01                                  |  |
| 1899    | 1,254   | 1.89                  | 25.61        | 1.22                                  | 1,020         | 1.53                  | 20.82        | .989                                  |  |
| 1900    | 699     | 1.05                  | 14.28        | .679                                  | 707           | 1.06                  | 14.44        | 685                                   |  |
| 1901    | 849     | 1.28                  | 17.34        | .827                                  | 1.018         | 1.53                  | 20.78        | 080                                   |  |
| 1902    | 1,372   | 2.06                  | 27.99        | 1.33                                  | 1.595         | 2.40                  | 32.56        | 1 55                                  |  |
| 1903    | 2,162   | 3.25                  | 44.13        | 2.10                                  | 1.786         | 2.69                  | 36 45        | 1 74                                  |  |
| 1904    | 727     | 1.09                  | 14.90        | 704                                   | 694           | 1 04                  | 14 20        | 672                                   |  |
| 1905    | 911     | 1.37                  | 18.61        | .885                                  | 1.100         | 1 65                  | 22 46        | 1.07                                  |  |
| 1906    | 1.215   | 1.83                  | 24.81        | 1 18                                  | 1.236         | 1.86                  | 25 23        | 1.07                                  |  |
| 1907    | 1.325   | 1.99                  | 27.05        | 1 29                                  | 1 436         | 2 16                  | 20.20        | 1.40                                  |  |
| 1908    | 1,573   | 2.37                  | 32.20        | 1.53                                  | 1,231         | 1.85                  | 25.20        | 1,40                                  |  |
| 1909    | 720     | 1.08                  | 14.69        | .698                                  | 739           | 1 11                  | 15.09        | 717                                   |  |
| 1910    | 725     | 1.09                  | 14.83        | 704                                   | 676           | 1 02                  | 13 83        | 650                                   |  |
| 1911    | 552     | .830                  | 11.26        | .536                                  | 769           | 1 16                  | 15.67        | 750                                   |  |
| 1912    | 1.165   | 1 75                  | 23 82        | 1 13                                  | 1 050         | 1 58                  | 21 55        | 1.02                                  |  |
| 1913    | 796     | 1.20                  | 16.25        | 776                                   | 013           | 1.37                  | 18 62        | 885                                   |  |
| 1914    | 905     | 1.36                  | 18 47        | 870                                   | 725           | 1.00                  | 14 81        | 704                                   |  |
| 1915    | 1 070   | 1 61                  | 21 80        | 1 04                                  | 1 070         | 1.61                  | 21 80        | 1.01                                  |  |
| 1916    | 987     | 1 48                  | 20.22        | 057                                   | 001           | 1 35                  | 18 45        | 072                                   |  |
| 1917    | 706     | 1 20                  | 16 24        | .937                                  | 901           | 1 2 1                 | 10.40        | .013                                  |  |
| 1918    | 035     | 1 . 11                | 10.24        | .770                                  | 091           | 1.34                  | 10.21        | .000                                  |  |
| 1919    | 786     | 1 18                  | 16.01        | 763                                   | 0.00          | 1.29                  | 16.02        | .004                                  |  |
| 1920    | 885     | 1.33                  | 18 09        | .703                                  | 807           | 1.20                  | 10.92        | .808                                  |  |
| 1921    | 703     | 1.06                  | 14.37        | 685                                   | 631           | 0.40                  | 12.33        | . 613                                 |  |
| 1922    | 663     | 997                   | 13 53        | 644                                   | 502           | 800                   | 12.09        | .013                                  |  |
| 1923    | 461     | . 693                 | 9.44         | 448                                   | 516           | 776                   | 10.55        | 502                                   |  |
| 1924    | 1.250   | 1.88                  | 25 70        | 1.22                                  | 1 290         | 1 0.1                 | 26.38        | 1 25                                  |  |
| 1925    | 513     | .771                  | 10.48        | 498                                   | 533           | 802                   | 10.87        | 518                                   |  |
| 1926    | 754     | 1.13                  | 15.36        | .730                                  | 945           | 1 42                  | 10.07        | 018                                   |  |
| 1927    | 929     | 1.40                  | 18.96        | .905                                  | 926           | 1.39                  | 18.87        | 808                                   |  |
| 1928    | 1,280   | 1.92                  | 26.11        | 1.24                                  | 1.020         | 1 53                  | 20.87        | 080                                   |  |
| 1929    | 749     | 1.13                  | 15.31        | .730                                  | 904           | 1.36                  | 18 48        | 870                                   |  |
| 1930    | 595     | .895                  | 12.15        | . 578                                 |               | _                     |              |                                       |  |
| Highest | 2,162   | 3.25                  | 44.13        | 2.10                                  | 1,786         | 2.69                  | 36.45        | 1.74                                  |  |
| Average | 943     | 1.42                  | 19.26        | .918                                  | 955           | 1.44                  | 19.51        | .931                                  |  |
| Lowest  | 461     | . 693                 | 9.44         | . 448                                 | 516           | .776                  | 10.55        | .502                                  |  |

### SURFACE-WATER RESOURCES

#### POTOMAC RIVER BASIN

#### 18. Linganore Creek near Frederick

Location.—1.at  $39^{\circ}24'55''$ , long  $77^{\circ}20'00''$ , on left bank  $2\frac{1}{4}$  miles upstream from mouth and 4 miles east of Frederick, Frederick County.

Drainage area .- 82.3 sq mi. At site used Nov. 27, 1931, to Mar. 28, 1932, 84.6 sq mi.

Records available.—December 1931 to March 1932, September 1934 to September 1956. Monthly records December 1931 to February 1932, October 1934 to September 1943 published in Bulletin 1 (March 1932, September 1934 completed herein).

Supplemental records available.—Records of water temperatures for October 1951 to September 1956 are published in reports of U. S. Geological Survey.

Gage.—Water-stage recorder. Concrete control since Sept. 23, 1946. Altitude of gage is 270 ft (from topographic map). Nov. 27, 1931, to Mar. 26, 1932, staff gage at Frederick pumping station,  $1\frac{1}{2}$  miles downstream at datum about 20 ft lower. Sept. 12, 1934, to Sept. 25, 1946, staff gage at present site and datum.

Average discharge.-22 years (1934-56), 86.5 cfs.

*Extremes.*—Maximum discharge, 4,100 cfs Apr. 27, 1952 (gage height, 11.34 ft), from rating curve extended above 1,500 cfs on basis of slope-area determination at gage height 10.01 ft; maximum gage height, 12.22 ft June 2, 1946; minimum discharge observed, 6.0 cfs Oct. 9, 1941.

Flood of Aug. 23 or 24, 1933 reached a stage of 10.5 ft, from floodmarks (discharge, 2,920 cfs).

|                    |         | Discharg | e in cfs |                    | Runoff in | Discharge<br>in million               |
|--------------------|---------|----------|----------|--------------------|-----------|---------------------------------------|
| Month              | Maximum | Minimum  | Mean     | Per square<br>mile | inches    | gallons per<br>day per<br>square mile |
| 1932<br>March‡     | 500     | 24       | 85.9     | 1.02               | 1.17      | 0.659                                 |
| 1934<br>September‡ | 780     | 10       | 87.0     | 1.06               | 1.18      | 0.685                                 |
| 1943-44            |         |          |          |                    |           |                                       |
| October            | 288     | 11       | 37.6     | 0.457              | 0.53      | 0.295                                 |
| November           | 768     | 26       | 94.8     | 1.15               | 1.28      | .743                                  |
| December           | 126     | 21       | 35.1     | .426               | . 49      | . 275                                 |
| Tanuary            | 1,350   | 25       | 128      | 1.56               | 1.79      | 1.01                                  |
| February           | 91      | 33       | 46.9     | . 570              | .61       | .368                                  |
| March              | 697     | 47       | 182      | 2.21               | 2.55      | 1.43                                  |
| April              | 320     | 90       | 137      | 1.66               | 1.86      | 1.07                                  |
| May                | 126     | 41       | 70.4     | .855               | . 99      | . 553                                 |
| Tune               | 780     | 29       | 64.6     | .785               | .88       | . 507                                 |
| Tulv               | 248     | 15       | 31.1     | .378               | .44       | .244                                  |
| August             | 43      | 9.7      | 15.4     | . 187              | .22       | . 121                                 |
| September          | 70      | 9.4      | 19.6     | . 238              | . 27      | . 154                                 |
| The year           | 1,350   | 9.4      | 72.0     | . 875              | 11.91     | . 566                                 |

Monthly discharge of Linganore Creek near Frederick

1 Not previously published; partly estimated.

|           |         | Dischar |      |                    | Discharge           |                                       |
|-----------|---------|---------|------|--------------------|---------------------|---------------------------------------|
| Month     | Maximum | Minimum | Mean | Per square<br>mile | Runoff in<br>inches | gallons per<br>day per<br>square mile |
| 1944-45   |         |         |      |                    |                     |                                       |
| October   | 134     | 16      | 26.8 | 0.326              | 0.38                | 0.211                                 |
| November  | 151     | 17      | 28.0 | 3.10               | 30                  | 0.211                                 |
| December  | 355     | 24      | 63.8 | 775                | . 30                | . 220                                 |
| January   | 355     | 26      | 55 3 | 672                | .09                 |                                       |
| February  | 519     | 25      | 133  | 1.62               | 1 69                | .434                                  |
| March     | 258     | 53      | 108  | 1.02               | 1.00                | 1.05                                  |
| April     | 227     | 49      | 80.5 | 078                | 1.00                | , 047                                 |
| May       | 126     | 38      | 61 2 | 744                | 1.09                | .032                                  |
| June      | 261     | 24      | 51 7 | . / 44             | . 80                | .481                                  |
| July      | 411     | 23      | 112  | 1 26               | .70                 | .406                                  |
| August    | 064     | 42      | 112  | 1.30               | 1.57                | .879                                  |
| September | 654     | 34      | 05 7 | 1.42               | 1.64                | .918                                  |
|           |         |         | 95.7 | 1.10               | 1.30                | .750                                  |
| The year  | 964     | 16      | 77.4 | . 940              | 12.77               | . 608                                 |
| 1945-46   |         |         |      |                    |                     |                                       |
| October   | 75      | 36      | 45 5 | 0.553              | 0.64                | 0.257                                 |
| November  | 863     | 33      | 95.2 | 1 16               | 1 20                | 750                                   |
| December  | 733     | 84      | 179  | 2 17               | 2 51                | 1.40                                  |
| January   | 296     | 81      | 135  | 1 64               | 1 80                | 1.40                                  |
| February  | 205     | 68      | 92.6 | 1 13               | 1.09                | 720                                   |
| March     | 192     | 74      | 108  | 1 31               | 1.17                | .150                                  |
| April     | 86      | 46      | 50 5 | 723                | 01                  | .041                                  |
| May       | 517     | 41      | 106  | 1 20               | 1 49                | . 407                                 |
| June      | 2.830   | 59      | 243  | 2 05               | 2 20                | 1.01                                  |
| July      | 502     | 38      | 84 5 | 1.03               | 3.29                | 1.91                                  |
| August    | 144     | 33      | 51.1 | 621                | 1.10                | .000                                  |
| September | 108     | 24      | 38.4 | 467                | .12                 | . 401                                 |
| The year  | 2 830   | 24      | 102  | 1.05               | .52                 | .302                                  |
|           | 2,000   | 27      |      | 1.25               | 17.01               | . 808                                 |
| 1946-47   |         |         |      |                    |                     |                                       |
| October   | 213     | 26      | 41.8 | 0.508              | 0.59                | 0.328                                 |
| November  | 47      | 30      | 34.1 | .414               | .46                 | .268                                  |
| December  | 154     | 25      | 41.2 | . 501              | . 58                | . 324                                 |
| January   | 344     | 44      | 87.6 | 1.06               | 1.23                | .685                                  |
| February  | 93      | 33      | 59.5 | .723               | .75                 | .467                                  |
| March     | 365     | 51      | 94.7 | 1.15               | 1.33                | .743                                  |
| April     | 68      | 38      | 49.9 | . 606              | . 68                | . 392                                 |
| May       | 722     | 42      | 102  | 1.24               | 1.44                | .801                                  |
| June      | 193     | 34      | 53.6 | .651               | .73                 | .421                                  |
| July      | 396     | 29      | 73.4 | .892               | 1.03                | . 577                                 |
| August    | 286     | 19      | 57.9 | . 704              | . 81                | .455                                  |
| September | 32      | 19      | 23.6 | . 287              | .32                 | .185                                  |
| The year  | 722     | 19      | 60.2 | .731               | 9.95                | .472                                  |

# POTOMAC RIVER BASIN-Continued Monthly discharge of Linganore Creek near Frederick-Continued

|           |         | Discharg | e in cfs |                    | Dunoff in | Discharge<br>in million               |
|-----------|---------|----------|----------|--------------------|-----------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean     | Per square<br>mile | inches    | gallons per<br>day per<br>square mile |
| 1947-48   |         |          |          |                    |           |                                       |
| October   | 46      | 15       | 18 7     | 0.227              | 0.26      | 0 147                                 |
| November  | 207     | 10       | 68.3     | 830                | 93        | 536                                   |
| December  | 69      | 26       | 34 6     | 420                | 48        | 271                                   |
| Ianuary   | 968     | 36       | 115      | 1 40               | 1 60      | 905                                   |
| February  | 682     | 40       | 145      | 1.76               | 1.90      | 1.14                                  |
| March     | 323     | 82       | 130      | 1.58               | 1.82      | 1.02                                  |
| April     | 345     | 77       | 119      | 1.45               | 1.62      | 937                                   |
| May       | 617     | 81       | 162      | 1.97               | 2.28      | 1.27                                  |
| June      | 532     | 58       | 118      | 1 43               | 1 60      | 92.4                                  |
| July      | 208     | 50       | 81.0     | 08.1               | 1 13      | 636                                   |
| August    | 212     | 41       | 81.1     | .985               | 1.14      | . 637                                 |
| September | 52      | 29       | 35.6     | .433               | .48       | .280                                  |
| The year  | 968     | 15       | 92.2     | 1.12               | 15.24     | . 724                                 |
| 1948-49   |         |          |          |                    |           |                                       |
| October   | 158     | 28       | 52.5     | 0.638              | 0.73      | 0.412                                 |
| November  | 471     | 37       | 82.4     | 1.00               | 1.12      | . 646                                 |
| December  | 1,640   | 80       | 223      | 2.71               | 3.13      | 1.75                                  |
| January   | 996     | 126      | 290      | 3.52               | 4.06      | 2.28                                  |
| February  | 395     | 161      | 227      | 2.76               | 2.87      | 1.78                                  |
| March     | 208     | 95       | 123      | 1.49               | 1.72      | . 963                                 |
| April     | 268     | 86       | 132      | 1.60               | 1.78      | 1.03                                  |
| May       | 397     | 71       | 117      | 1.42               | 1.64      | .918                                  |
| June      | 71      | 39       | 52.2     | . 634              | .71       | . 410                                 |
| July      | 525     | 31       | 88.0     | 1.07               | 1.23      | . 692                                 |
| August    | 78      | 25       | 34.3     | .417               | . 48      | . 270                                 |
| September | 59      | 20       | 28.0     | 3.40               | . 38      | . 220                                 |
| The year  | 1,640   | 20       | 120      | 1.46               | 19.85     | ,944                                  |
| 1949-50   |         |          |          |                    |           |                                       |
| October   | 100     | 20       | 30.0     | 0.365              | 0.42      | 0.236                                 |
| November  | 72      | 22       | 28.3     | .344               | .38       | . 222                                 |
| December  | 271     | 22       | 55.1     | . 670              | .77       | .433                                  |
| January   | 122     | 32       | 44.0     | . 535              | . 62      | . 346                                 |
| February  | 351     | 56       | 145      | 1.76               | 1.83      | 1.14                                  |
| March     | 1,300   | 50       | 161      | 1.96               | 2.25      | 1.27                                  |
| April     | 115     | 62       | 78.6     | .955               | 1.07      | .617                                  |
| May       | 198     | 55       | 84.1     | 1.02               | 1.18      | . 659                                 |
| June      | 171     | 31       | 57.3     | . 696              | .78       | .450                                  |
| July      | 75      | 21       | 33.1     | . 402              | .46       | .260                                  |
| August    | 84      | 14       | 21.7     | . 264              | . 30      | . 171                                 |
| September | 240     | 20       | 67.6     | .821               | .92       | . 531                                 |
| The year  | 1,300   | 14       | 66.6     | .809               | 10.98     | . 523                                 |

### Ротомас River Basin—Continued Monthly discharge of Linganore Creek near Frederick—Continued

|           |         | Dischar | ge in cfs |                    | Dura   | Discharge<br>in million               |
|-----------|---------|---------|-----------|--------------------|--------|---------------------------------------|
| Month     | Maximum | Minimum | Mean      | Per square<br>mile | inches | gallons per<br>day per<br>square mile |
| 1950-51   |         |         |           |                    |        |                                       |
| October   | 196     | 27      | 42.3      | 0.514              | 0.50   | 0 332                                 |
| November  | 1.400   | 30      | 94 2      | 1 14               | 1.28   | 737                                   |
| December  | 1.250   | 60      | 159       | 1 03               | 2 23   | 1 25                                  |
| January   | 224     | 61      | 88 5      | 1.08               | 1 24   | 608                                   |
| February  | 1.000   | 90      | 230       | 2 70               | 2 01   | 1.80                                  |
| March     | 272     | 93      | 120       | 1.46               | 1 67   | 044                                   |
| April     | 143     | 64      | 87 6      | 1.40               | 1 10   | 685                                   |
| May       | 104     | 4.1     | 61 3      | 745                | 86     | .003                                  |
| Iune      | 701     | 38      | 140       | 1 91               | 2 02   | 1 17                                  |
| July      | 108     | 37      | 64 1      | 770                | 2.02   | 5.02                                  |
| August    | 395     | 25      | 54 7      | .119               | .90    | . 303                                 |
| September | 70      | 17      | 25.0      | . 304              | .34    | . 430                                 |
| The year  | 1,400   | 17      | 97.0      | 1.18               | 16.00  | .763                                  |
| 1051-52   |         |         |           |                    |        |                                       |
| October . | 37      | 17      | 20.8      | 0.252              | 0.20   | 0 164                                 |
| November  | 102     | 21      | 46.0      | 5.255              | 62     | 0.104                                 |
| December  | 365     | 24      | 40.2      | . 301              | .03    | . 303                                 |
| January   | 386     | 05      | 181       | 2 20               | .90    | 1 40                                  |
| February  | 521     | 70      | 136       | 1.65               | 1 70   | 1.42                                  |
| March     | 831     | 82      | 178       | 2.16               | 2.50   | 1.40                                  |
| April     | 2 950   | 107     | 421       | 5 12               | 5 71   | 2 21                                  |
| May       | 1 720   | 107     | 286       | 3.12               | 4.01   | 3.31                                  |
| Inne      | 301     | 68      | 115       | 1.40               | 1 56   | 2.23                                  |
| Inly      | 340     | 45      | 02 0      | 1 13               | 1 30   | 730                                   |
| Angust    | 64      | 30      | 13 0      | 522                | 1.50   | .130                                  |
| September | 958     | 30      | 70.9      | .861               | .96    | .556                                  |
| The year  | 2,950   | 17      | 138       | 1.68               | 22.86  | 1.09                                  |
| 1952–53   |         |         |           |                    |        |                                       |
| October   | 61      | 26      | 31.4      | 0.382              | 0.44   | 0.247                                 |
| November  | 931     | 24      | 112       | 1.36               | 1.52   | .879                                  |
| December  | 553     | 60      | 118       | 1.43               | 1.66   | .924                                  |
| January   | 540     | 71      | 175       | 2.13               | 2.45   | 1.38                                  |
| February  | 280     | 88      | 116       | 1.41               | 1.46   | .911                                  |
| March     | 450     | 83      | 183       | 2.22               | 2.56   | 1.43                                  |
| April     | 300     | 99      | 153       | 1.86               | 2.08   | 1.20                                  |
| May       | 651     | 83      | 165       | 2.00               | 2.31   | 1.29                                  |
| June      | 567     | 47      | 97.2      | 1.18               | 1.32   | .763                                  |
| July      | 92      | 29      | 40.5      | . 492              | . 57   | .318                                  |
| August    | 101     | 16      | 28.9      | .351               | .40    | . 227                                 |
| September | 144     | 15      | 28.5      | .346               | . 39   | .224                                  |
| The year  | 931     | 15      | 104       | 1.26               | 17.16  | .814                                  |

# Ротомас River Basin—Continued Monthly discharge of Linganore Creek near Frederick—Continued

# POTOMAC RIVER BASIN—Continued Monthly discharge of Linganore Creek near Frederick—Continued Discharge in cfs

|           |         | Discharg |      | Dunoff in          | Discharge<br>in million |                                       |
|-----------|---------|----------|------|--------------------|-------------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean | Per square<br>mile | inches                  | gallons per<br>day per<br>square mile |
| 1953-54   |         |          |      |                    |                         |                                       |
| October   | 40      | 16       | 19.2 | 0.233              | 0.27                    | 0.151                                 |
| November  | 103     | 18       | 25.9 | . 315              | .35                     | . 204                                 |
| December  | 463     | 20       | 82.2 | .999               | 1.15                    | .646                                  |
| Tanuary   | 135     | 23       | 41.5 | . 504              | . 58                    | . 326                                 |
| February  | 62      | 24       | 37.4 | .454               | . 47                    | . 293                                 |
| March     | 368     | 49       | 77.1 | .937               | 1.08                    | . 606                                 |
| April     | 208     | 37       | 64.8 | .787               | .88                     | . 509                                 |
| May       | 650     | 39       | 107  | 1.30               | 1.49                    | . 840                                 |
| June      | 147     | 17       | 32.5 | . 395              | . 44                    | .255                                  |
| July      | 148     | 11       | 25.4 | . 309              | . 36                    | . 200                                 |
| August    | 90      | 9.5      | 26.4 | .321               | . 37                    | . 207                                 |
| September | 31      | 11       | 14.8 | . 180              | .20                     | .116                                  |
| The year  | 650     | 9.5      | 46.3 | . 563              | 7.64                    | .364                                  |
| 1954-55   |         |          |      |                    |                         |                                       |
| October   | 93      | 9.5      | 21.5 | 0.261              | 0.30                    | 0.169                                 |
| November  | 61      | 20       | 26.0 | .316               | .35                     | .204                                  |
| December  | 218     | 17       | 51.8 | . 629              | .73                     | . 407                                 |
| January   | 70      | 18       | 33.5 | .407               | .47                     | . 263                                 |
| February  | 800     | 19       | 92.9 | 1.13               | 1.18                    | .730                                  |
| March     | 1,100   | 49       | 170  | 2.07               | 2.38                    | 1.34                                  |
| April     | 99      | 57       | 68.8 | .836               | .93                     | . 540                                 |
| May       | 166     | 28       | 46.2 | . 561              | .65                     | . 363                                 |
| June      | 431     | 27       | 71.7 | .871               | .97                     | . 563                                 |
| July      | 333     | 20       | 46.6 | . 566              | .65                     | .366                                  |
| August    | 2,830   | 17       | 231  | 2.81               | 3.24                    | 1.82                                  |
| September | 133     | 46       | 70.2 | .853               | .95                     | .551                                  |
| The year  | 2,830   | 9.5      | 77.6 | .943               | 12.80                   | . 609                                 |
| 1955-56   |         |          |      |                    |                         |                                       |
| October   | 771     | 41       | 83.4 | 1.01               | 1.17                    | 0.653                                 |
| November  | 142     | 39       | 57.3 | .696               | .78                     | .450                                  |
| December  | 48      | 28       | 38.0 | . 462              | . 53                    | . 299                                 |
| January   | 240     | 26       | 50.4 | .612               | .71                     | . 396                                 |
| February  | 590     | 84       | 191  | 2.32               | 2.51                    | 1.50                                  |
| March     | 815     | 72       | 176  | 2.14               | 2.47                    | 1.38                                  |
| April     | 291     | 70       | 119  | 1.45               | 1.61                    | .937                                  |
| May       | . 79    | 43       | 56.9 | . 691              | . 80                    | . 447                                 |
| June      | 226     | 31       | 53.5 | . 650              | .72                     | .420                                  |
| July      | 1,220   | 29       | 172  | 2.09               | 2.40                    | 1.35                                  |
| August    | 79      | 32       | 46.3 | . 563              | .65                     | . 304                                 |
| September | 101     | 28       | 36.1 | . 439              | . 49                    | . 284                                 |
| The year  | 1,220   | 26       | 89.7 | 1.09               | 14.84                   | .704                                  |

# CARROLL AND FREDERICK COUNTIES

|         |         | Year en               | ding Sept           | 30                     | Calendar year |                       |                     |                                                     |
|---------|---------|-----------------------|---------------------|------------------------|---------------|-----------------------|---------------------|-----------------------------------------------------|
| Year    | Dischar | ge in cfs             |                     | Discharge              | Dischar       | ge in cfs             |                     | Discharge                                           |
|         | Mean    | Per<br>square<br>mile | Runoff<br>in inches | day per<br>square mile | Mean          | Per<br>square<br>mile | Runoff<br>in inches | in million<br>gallons per<br>day per<br>sqaure mile |
| 1935    | 78.9    | 0.959                 | 13.01               | 0.620                  | 74.6          | 0.906                 | 12.30               | 0.586                                               |
| 1936    | 96.3    | 1.17                  | 15.92               | .756                   | 98.8          | 1.20                  | 16.33               | 776                                                 |
| 1937    | 103     | 1.25                  | 17.00               | .808                   | 122           | 1.48                  | 20 14               | 057                                                 |
| 1938    | 76.8    | .933                  | 12.68               | . 603                  | 57.0          | . 693                 | 9 42                | 448                                                 |
| 1939    | 82.8    | 1.01                  | 13.66               | .653                   | 77.6          | .943                  | 12.78               | 600                                                 |
| 1940    | 76.8    | .933                  | 12.68               | .603                   | 91.7          | 1.11                  | 15.16               | 717                                                 |
| 1941    | 70.6    | .858                  | 11.66               | . 555                  | 53.1          | .645                  | 8.77                | 417                                                 |
| 1942    | 74.5    | .905                  | 12.29               | .585                   | 107           | 1.30                  | 17.58               | 840                                                 |
| 1943    | 98.8    | 1.20                  | 16.30               | .776                   | 75.9          | . 922                 | 12.52               | 596                                                 |
| 1944    | 72.0    | .875                  | 11.91               | .566                   | 68.0          | .826                  | 11.26               | 534                                                 |
| 1945    | 77.4    | .940                  | 12.77               | . 608                  | 94.3          | 1.15                  | 15 56               | 743                                                 |
| 1946    | 103     | 1.25                  | 17.01               | .808                   | 86.1          | 1 05                  | 14 20               | 670                                                 |
| 1947    | 60.2    | .731                  | 9.95                | .472                   | 60.4          | 735                   | 0.00                | 475                                                 |
| 1948    | 92.2    | 1.12                  | 15.24               | .724                   | 112           | 1.36                  | 18.55               | 879                                                 |
| 1949    | 120     | 1.46                  | 19.85               | .944                   | 99.7          | 1.21                  | 16 44               | 782                                                 |
| 1950    | 66.6    | .809                  | 10.98               | . 523                  | 81.8          | .994                  | 13 51               | 642                                                 |
| 1951    | 97.0    | 1.18                  | 16.00               | .763                   | 83.6          | 1.02                  | 13 80               | 650                                                 |
| 1952    | 138     | 1.68                  | 22.86               | 1.09                   | 149           | 1.81                  | 24.58               | 1 17                                                |
| 1953    | 104     | 1.26                  | 17.16               | .814                   | 92.8          | 1.13                  | 15.31               | 730                                                 |
| 1954    | 46.3    | . 563                 | 7.64                | . 364                  | 44.0          | . 535                 | 7.25                | 346                                                 |
| 1955    | 77.6    | .943                  | 12.80               | . 609                  | 84.2          | 1.02                  | 13.90               | 659                                                 |
| 1956    | 89.7    | 1.09                  | 14.84               | .704                   |               |                       |                     |                                                     |
| Highest | 138     | 1.68                  | 22.86               | 1.09                   | 149           | 1.81                  | 24.58               | 1.17                                                |
| Average | 86.5    | 1.05                  | 14.28               | .679                   | 86.4          | 1.05                  | 14.25               | .679                                                |
| Lowest  | 46.3    | . 563                 | 7.64                | .364                   | 44.0          | .535                  | 7.25                | .346                                                |

### POTOMAC RIVER BASIN—Continued Yearly discharge of Linganore Creek near Frederick

#### POTOMAC RIVER BASIN

#### 19. Monocacy River at Jug Bridge, near Frederick

Location.—Lat  $39^{\circ}24'13''$ , long  $77^{\circ}21'58''$ , on right bank a quarter of a mile upstream from Jug Bridge on U. S. Highway 40, 0.35 mile downstream from Linganore Creek, and  $2\frac{1}{2}$  miles east of Frederick, Frederick County.

Drainage area.-817 sq mi.

*Records available.*—October 1929 to September 1956. Monthly records December 1929 to September 1943 published in Bulletin 1 (October, November 1929 completed herein).

*Gage.*—Water-stage recorder. Datum of gage is 231.92 ft above mean sea level (Corps of Engineers benchmark).

Average discharge.-27 years, 916 cfs.

Extremes.-Maximum discharge, 51,000 cfs Aug. 24, 1933 (gage height, 28.1 ft); minimum, 35 cfs Oct. 1, 1930.

Maximum stage known, 30 ft in June 1889, from floodmarks (discharge, 56,000 cfs).

Monthly discharge of Monocacy River at Jug Bridge near Frederick

|                       |         | Dischar |       | Discharge             |                     |                                       |  |
|-----------------------|---------|---------|-------|-----------------------|---------------------|---------------------------------------|--|
| Month                 | Maximum | Minimum | Mean  | Per<br>square<br>mile | Runoff<br>in inches | gallons per<br>day per<br>square mile |  |
| 1929-30               |         |         |       |                       |                     |                                       |  |
| October‡              | 11,000  | 147     | 1,240 | 1.52                  | 1.75                | 0.982                                 |  |
| November <sup>‡</sup> | 7,160   | 350     | 1,270 | 1.55                  | 1.73                | 1.00                                  |  |
| December              | 1,620   |         | 655   | .802                  | .92                 | .518                                  |  |
| January               | 2,170   |         | 761   | .931                  | 1.07                | . 602                                 |  |
| February              | 4,430   |         | 1,430 | 1.75                  | 1.82                | 1.13                                  |  |
| March                 | 8,050   | 572     | 1,380 | 1.69                  | 1.95                | 1.09                                  |  |
| April                 | 5,090   | 440     | 878   | 1.07                  | 1.19                | . 692                                 |  |
| May                   | 530     | 177     | 297   | .364                  | .42                 | .235                                  |  |
| June                  | 1,230   | 139     | 270   | . 330                 | .37                 | .213                                  |  |
| July                  | 604     | 68      | 127   | .155                  | .18                 | . 100                                 |  |
| August                | 79      | 57      | 66.3  | .081                  | .09                 | .052                                  |  |
| September             | 142     | 39      | 70.2  | .086                  | .10                 | .056                                  |  |
| The year              | 11,000  | 39      | 699   | .856                  | 11.59               | . 553                                 |  |
| 1943-44               |         |         |       |                       |                     |                                       |  |
| October               | 4,340   | 69      | 341   | 0.417                 | 0.48                | 0.270                                 |  |
| November              | 17,100  | 233     | 1,176 | 1.44                  | 1.61                | .931                                  |  |
| December              | 2,430   | 135     | 333   | .408                  | . 47                | .264                                  |  |
| January               | 22,000  | 236     | 1,785 | 2.18                  | 2.52                | 1.41                                  |  |
| February              | 1,000   | 240     | 464   | .568                  | .61                 | .367                                  |  |
| March.                | 10,800  | 546     | 2,438 | 2.98                  | 3.44                | 1.93                                  |  |
| April                 | 4,330   | 850     | 1,442 | 1.76                  | 1.97                | 1.14                                  |  |
| May                   | 2,180   | 366     | 820   | 1.00                  | 1.16                | .646                                  |  |
| June                  | 2,500   | 185     | 360   | . 441                 | .49                 | . 285                                 |  |
| July                  | 782     | 101     | 158   | , 193                 | .22                 | . 125                                 |  |
| August                | 159     | 46      | 82.7  | . 101                 | . 12                | .065                                  |  |
| September             | 308     | 62      | 113   | . 138                 | .15                 | .089                                  |  |
| The year              | 22,000  | 46      | 795   | .973                  | 13.24               | . 629                                 |  |

<sup>‡</sup> Not previously published; October 1 to November 20 estimated.

|           |         | Dischar |       | Discharge             |                  |                                      |
|-----------|---------|---------|-------|-----------------------|------------------|--------------------------------------|
| Month     | Maximum | Minimum | Mean  | Per<br>square<br>mile | Runoff in inches | allons per<br>day per<br>square mile |
| 1944–45   |         |         |       |                       | _                |                                      |
| October   | 1,160   | 99      | 229   | 0.280                 | 0.32             | 0.181                                |
| November  | 950     | 116     | 206   | 252                   | .28              | 163                                  |
| December  | 5,900   | 203     | 1.009 | 1.24                  | 1 42             | 801                                  |
| Tanuary   | 2.650   | 270     | 508   | 622                   | 72               | 402                                  |
| February  | 6.960   | 238     | 2.010 | 2.46                  | 2 56             | 1 50                                 |
| March.    | 4.160   | 478     | 1.223 | 1.50                  | 1 73             | 969                                  |
| April     | 6.010   | 464     | 1.100 | 1 35                  | 1.50             | 873                                  |
| May.      | 3,140   | 437     | 941   | 1 15                  | 1 33             | 743                                  |
| Tune.     | 900     | 255     | 450   | 562                   | 63               | 363                                  |
| July      | 3 640   | 145     | 031   | 1 1.1                 | 1 31             | 737                                  |
| August    | 7,280   | 320     | 1 064 | 1 30                  | 1.51             | 840                                  |
| September | 10,900  | 273     | 1,358 | 1.66                  | 1.85             | 1.07                                 |
| The year  | 10,900  | 99      | 912   | 1.12                  | 15.15            | .724                                 |
| 1945-46   |         |         |       |                       |                  |                                      |
| October   | 561     | 262     | 374   | 0.458                 | 0.53             | 0.296                                |
| November  | 16,600  | 251     | 1,331 | 1.63                  | 1.82             | 1.05                                 |
| December  | 5,340   | 620     | 1,824 | 2.23                  | 2.57             | 1.44                                 |
| January   | 4,880   | 547     | 1,300 | 1.59                  | 1.83             | 1.03                                 |
| February  | 5,200   | 451     | 808   | .989                  | 1.03             | .639                                 |
| March.    | 2,840   | 720     | 1.341 | 1.64                  | 1.89             | 1.06                                 |
| April     | 746     | 341     | 466   | .570                  | .64              | .368                                 |
| May       | 6,230   | 310     | 1.012 | 1.24                  | 1.43             | .801                                 |
| June      | 17,200  | 385     | 1,905 | 2.33                  | 2.60             | 1.51                                 |
| July      | 1,910   | 190     | 426   | 521                   | .60              | 337                                  |
| August    | 3,240   | 227     | 539   | . 660                 | .76              | .427                                 |
| September | 2,520   | 138     | 407   | .498                  | . 56             | .322                                 |
| The year  | 17,200  | 138     | 979   | 1.20                  | 16.26            | .776                                 |
| 1946-47   |         |         |       |                       |                  |                                      |
| October   | 1,520   | 183     | 400   | 0.490                 | 0.57             | 0.317                                |
| November  | 386     | 239     | 277   | .339                  | . 38             | .219                                 |
| December  | 1,430   | 183     | 386   | .472                  | . 54             | . 305                                |
| January   | 4,520   | 496     | 1,171 | 1.43                  | 1.65             | .924                                 |
| February  | 2,210   | 237     | 616   | .754                  | .78              | .487                                 |
| March     | 4,280   | 360     | 1,078 | 1.32                  | 1.52             | .853                                 |
| April     | 618     | 368     | 453   | . 554                 | . 62             | .358                                 |
| May       | 6,970   | 386     | 1,098 | 1.34                  | 1.55             | .866                                 |
| June      | 2,170   | 299     | 625   | .765                  | .85              | . 494                                |
| July      | 3,690   | 246     | 787   | .963                  | 1.11             | . 622                                |
| August    | 1,320   | 166     | 331   | . 405                 | .47              | .262                                 |
| September | 236     | 111     | 147   | . 180                 | .20              | .116                                 |
| The year  | 6,970   | 111     | 617   | . 755                 | 10.24            | .488                                 |

# Monthly Discharge of Monocacy River at Jug Bridge near Frederick-Continued

| Monthly discharge | of Monocacy | River at Jug | Bridge near | Frederick—Con | ilinued |
|-------------------|-------------|--------------|-------------|---------------|---------|
|-------------------|-------------|--------------|-------------|---------------|---------|

|           |          | Discharg |       | Discharge             |                     |                                       |
|-----------|----------|----------|-------|-----------------------|---------------------|---------------------------------------|
| Month     | Maximum  | Minimum  | Mean  | Per<br>square<br>mile | Runoff<br>in inches | gallons per<br>day per<br>square mile |
| 1047-48   |          |          |       |                       |                     |                                       |
| October   | 225      | 96       | 116   | 0.142                 | 0.16                | 0.092                                 |
| Nevember  | 4.170    | 138      | 830   | 1.02                  | 1.13                | . 659                                 |
| December  | 553      | 183      | 299   | .366                  | .42                 | .237                                  |
| Japuary   | 12.800   | 270      | 1.199 | 1.47                  | 1.69                | .950                                  |
| February  | 4.590    | 280      | 1,409 | 1.72                  | 1.86                | 1.11                                  |
| March     | 3.390    | 880      | 1,628 | 1.99                  | 2.30                | 1.29                                  |
| April     | 6.010    | 760      | 1.727 | 2.11                  | 2.36                | 1.36                                  |
| Mou       | 5 580    | 602      | 1.556 | 1.90                  | 2.20                | 1.23                                  |
| Tuno      | 2 450    | 300      | 811   | .993                  | 1.11                | .642                                  |
| June      | 1 510    | 303      | 554   | .678                  | .78                 | .438                                  |
| August    | 1,880    | 232      | 548   | .671                  | .77                 | .434                                  |
| September | 239      | 143      | 180   | .220                  | .25                 | .142                                  |
| The year  | 12,800   | 96       | 902   | 1.10                  | 15.03               | .711                                  |
| 1948–49   |          |          |       |                       |                     |                                       |
| October   | 701      | 153      | 299   | 0.366                 | 0.42                | 0.237                                 |
| November  | 3,890    | 211      | 1,126 | 1.38                  | 1.54                | . 892                                 |
| December  | 13,300   | 660      | 2,243 | 2.75                  | 3.16                | 1.78                                  |
| January   | 14,100   | 1,250    | 3,166 | 3.88                  | 4.47                | 2.51                                  |
| February  | 3,600    | 1,440    | 2,181 | 2.67                  | 2.78                | 1.73                                  |
| March     | 1,440    | 607      | 890   | 1.09                  | 1.26                | .704                                  |
| April     | 4,700    | 672      | 1,376 | 1.68                  | 1.88                | 1.09                                  |
| May       | 1,800    | 421      | 819   | 1.00                  | 1.16                | .646                                  |
| June      | 546      | 246      | 331   | . 405                 | . 45                | .262                                  |
| Tuly      | 24,100   | 179      | 2,571 | 3.15                  | 3.63                | 2.04                                  |
| August    | 778      | 179      | 350   | .428                  | . 49                | . 277                                 |
| September | . 370    | 146      | 210   | . 257                 | .29                 | . 166                                 |
| The year  | 24,100   | 146      | 1,295 | 1.59                  | 21.53               | 1.03                                  |
| 1949-50   |          |          |       | 0.000                 | 0.25                | 0.105                                 |
| October   | . 581    | 156      | 247   | 0.302                 | 0.35                | 0.195                                 |
| November  | 1,150    | 192      | 296   | .302                  | .40                 | . 234                                 |
| December  | 5,000    | 204      | 745   | .912                  | 1.05                | . 309                                 |
| January   | . 1,150  | 346      | 547   | .070                  | 2.62                | 1 62                                  |
| February  | 6,930    | 500      | 2,054 | 2.51                  | 2.02                | 1.02                                  |
| March     | . 11,000 | 390      | 1,802 | 2.28                  | 1.00                | 1.47                                  |
| April     | . 1,340  | 482      | 135   | .900                  | 1.00                | 1 11                                  |
| May       | . 5,550  | 509      | 1,395 | 1.71                  | 1.97                | 514                                   |
| June      | 2,450    | 249      | 050   | . 190                 | .09                 | 222                                   |
| July      | . 698    | 152      | 280   | . 343                 | . 39                | 121                                   |
| August    | . 924    | 104      | 105   | . 202                 | . 23                | . 131                                 |
| September | . 3,610  | 138      |       | .804                  | .90                 | . 520                                 |
| The year  | . 11,000 | 104      | 795   | .973                  | 13.20               | . 629                                 |

|           |         | Discha  |       | Discharge             |                     |                                                     |
|-----------|---------|---------|-------|-----------------------|---------------------|-----------------------------------------------------|
| Month     | Maximum | Minimum | Mean  | Per<br>square<br>mile | Runoff<br>in inches | in million<br>gallons per<br>day per<br>square mile |
| 1950–51   |         |         |       | -                     |                     |                                                     |
| October   | 2,160   | 179     | 489   | 0.599                 | 0.69                | 0 387                                               |
| November  | 6,710   | 272     | 871   | 1.07                  | 1.19                | 692                                                 |
| December  | 12,800  | 450     | 1,933 | 2.37                  | 2.73                | 1 53                                                |
| January   | 3,370   | 607     | 1,281 | 1.57                  | 1.81                | 1 01                                                |
| February  | 8,060   | 985     | 2,743 | 3.36                  | 3 50                | 2 17                                                |
| March     | 4,720   | 790     | 1,389 | 1.70                  | 1.96                | 1 10                                                |
| April     | 2,360   | 731     | 1.188 | 1.45                  | 1 62                | 037                                                 |
| May       | 1,140   | 330     | 580   | .710                  | 82                  | . 50                                                |
| June      | 7,800   | 283     | 1.579 | 1.03                  | 2 16                | 1 25                                                |
| July      | 2,750   | 239     | 550   | 673                   | 2.10                | 1.23                                                |
| August    | 2,350   | 156     | 372   | 455                   | 52                  | 204                                                 |
| September | 408     | 116     | 179   | . 219                 | . 24                | . 142                                               |
| The year  | 12,800  | 116     | 1,084 | 1.33                  | 18.02               | . 860                                               |
| 1951-52   |         |         |       |                       |                     |                                                     |
| October   | 204     | 111     | 135   | 0.165                 | 0.19                | 0.107                                               |
| November  | 2,060   | 207     | 504   | 617                   | 69                  | 300                                                 |
| December  | 3,790   | 250     | 1.129 | 1.38                  | 1 59                | 802                                                 |
| January   | 7,890   | 1,060   | 2,741 | 3.35                  | 3.87                | 2.17                                                |
| February  | 7,190   | 662     | 1,591 | 1.95                  | 2.10                | 1.26                                                |
| March     | 11,200  | 677     | 2,468 | 3.02                  | 3 48                | 1.05                                                |
| April     | 18,400  | 1,060   | 3,410 | 4.17                  | 4 66                | 2 70                                                |
| May       | 10,000  | 790     | 1.986 | 2.43                  | 2.80                | 1 57                                                |
| June      | 2,000   | 408     | 810   | 991                   | 1 11                | 641                                                 |
| July      | 6,000   | 245     | 758   | 928                   | 1.07                | 600                                                 |
| August    | 1,100   | 175     | 383   | 469                   | 54                  | 303                                                 |
| September | 6,000   | 195     | 877   | 1.07                  | 1.20                | . 692                                               |
| The year  | 18,400  | 111     | 1,398 | 1.71                  | 23.30               | 1.11                                                |
| 1952–53   |         |         |       |                       |                     |                                                     |
| October   | 324     | 176     | 214   | 0.262                 | 0.30                | 0.169                                               |
| November  | 17,400  | 176     | 1,463 | 1.79                  | 2.00                | 1.16                                                |
| December  | 6,430   | 514     | 1,392 | 1.70                  | 1.96                | 1.10                                                |
| January   | 7,710   | 632     | 2,403 | 2.94                  | 3.39                | 1.90                                                |
| February  | 4,400   | 812     | 1,382 | 1.69                  | 1.76                | 1.09                                                |
| March     | 5,370   | 746     | 2,143 | 2.62                  | 3.02                | 1.69                                                |
| April     | 2,940   | 758     | 1,426 | 1.75                  | 1.95                | 1.13                                                |
| May       | 3,650   | 632     | 1,534 | 1.88                  | 2.16                | 1.22                                                |
| June      | 3,980   | 299     | 764   | .935                  | 1.04                | .604                                                |
| July      | 2,000   | 179     | 326   | . 399                 | .46                 | .258                                                |
| August    | 1,990   | 146     | 275   | .337                  | .39                 | . 218                                               |
| September | 854     | 126     | 200   | . 245                 | . 27                | .158                                                |
| The year  | 17,400  | 126     | 1,126 | 1.38                  | 18.70               | . 892                                               |

# Monthly discharge of Monocacy River at Jug Bridge near Frederick-Continued

|           |         | Dischar |       | Discharge             |                     |                                      |  |
|-----------|---------|---------|-------|-----------------------|---------------------|--------------------------------------|--|
| Month     | Maximum | Minimum | Mean  | Per<br>square<br>mile | Runoff<br>in inches | allons per<br>day per<br>square mile |  |
| 1953-54   |         |         |       |                       |                     |                                      |  |
| October   | 272     | 101     | 123   | 0.151                 | 0.17                | 0.098                                |  |
| November  | 346     | 118     | 168   | .206                  | .23                 | .133                                 |  |
| December  | 3,980   | 132     | 807   | .988                  | 1.14                | .639                                 |  |
| Ianuary   | 1,260   | 185     | 414   | . 507                 | . 58                | .328                                 |  |
| February  | 1,890   | 175     | 440   | . 539                 | .56                 | .348                                 |  |
| March     | 4.880   | 541     | 1.031 | 1.26                  | 1.45                | .814                                 |  |
| April     | 2.840   | 324     | 718   | .879                  | .98                 | 568                                  |  |
| May       | 4 510   | 202     | 825   | 1 01                  | 1 16                | 653                                  |  |
| June      | 365     | 138     | 205   | 251                   | 28                  | 162                                  |  |
| June      | 306     | 67      | 126   | 151                   | 18                  | 100                                  |  |
| Angust    | 872     | 51      | 178   | 218                   | 25                  | 1.11                                 |  |
| September | 365     | 88      | 120   | 158                   | 18                  | 102                                  |  |
| September |         |         | 147   | . 150                 | .10                 | . 102                                |  |
| The year  | 4,880   | 51      | 432   | . 529                 | 7.16                | .342                                 |  |
| 1954-55   |         |         |       |                       |                     |                                      |  |
| October   | 694     | 80      | 156   | 0.191                 | 0.22                | 0.123                                |  |
| November  | 527     | 149     | 251   | .307                  | .34                 | . 198                                |  |
| December  | 3,110   | 130     | 686   | .840                  | .97                 | . 543                                |  |
| January   | 1,170   | 160     | 375   | .459                  | . 53                | . 297                                |  |
| February  | 4,790   | 160     | 990   | 1.21                  | 1.26                | .782                                 |  |
| March     | 11,100  | 710     | 2,317 | 2.84                  | 3.27                | 1.84                                 |  |
| April     | 1,300   | 505     | 823   | 1.01                  | 1.12                | .653                                 |  |
| May       | 978     | 243     | 407   | .498                  | .57                 | . 322                                |  |
| Iune      | 3,900   | 190     | 678   | .830                  | .93                 | . 536                                |  |
| July      | 1.230   | 108     | 296   | .362                  | .42                 | 234                                  |  |
| August    | 14,400  | 96      | 2.045 | 2.50                  | 2.89                | 1.62                                 |  |
| September | 1,560   | 243     | 484   | .592                  | .66                 | .383                                 |  |
| The year  | 14,400  | 80      | 793   | .971                  | 13.18               | . 628                                |  |
| 1955-56   |         |         |       |                       |                     |                                      |  |
| October   | 8,120   | 254     | 907   | 1.11                  | 1.28                | 0.717                                |  |
| November  | 1,180   | 300     | 499   | .611                  | .68                 | . 395                                |  |
| December  | 360     | 170     | 245   | .300                  | .35                 | .194                                 |  |
| January   | 1,760   | 160     | 282   | .345                  | . 40                | .223                                 |  |
| February  | 7,660   | 985     | 2,304 | 2.82                  | 3.04                | 1.82                                 |  |
| March     | 7,550   | 632     | 2,051 | 2.51                  | 2.89                | 1.62                                 |  |
| April.    | 5,520   | 587     | 1,434 | 1.76                  | 1.96                | 1.14                                 |  |
| May       | 999     | 314     | 536   | .656                  | .76                 | .424                                 |  |
| June      | 957     | 156     | 342   | .419                  | .47                 | . 271                                |  |
| July.     | 9,900   | 146     | 1.052 | 1.29                  | 1.48                | .834                                 |  |
| August    | 632     | 162     | 280   | .343                  | .40                 | .222                                 |  |
| September | 708     | 138     | 220   | . 269                 | . 30                | .174                                 |  |
| The year  | 9 900   | 138     | 841   | 1.03                  | 14 01               | 666                                  |  |

## Monthly discharge of Monocacy River at Jug Bridge near Frederick-Continued

## CARROLL AND FREDERICK COUNTIES

|         |         | Year er               | nding Sept.         | 30                                    | Calendar year |                       |                     |                        |
|---------|---------|-----------------------|---------------------|---------------------------------------|---------------|-----------------------|---------------------|------------------------|
| Year    | Dischar | ge in cfs             |                     | Discharge                             | Dischar       | ge in cfs             |                     | Discharge              |
|         | Mean    | Per<br>square<br>mile | Runoff in<br>inches | gallons per<br>day per<br>square mile | Mean          | Per<br>square<br>mile | Runoff in<br>inches | day per<br>square mile |
| 1930    | 699     | 0.856                 | 11.59               | 0.553                                 | 462           | 0.565                 | 7.67                | 0.365                  |
| 1931    | 329     | . 403                 | 5.46                | .260                                  | 322           | .394                  | 5.35                | .255                   |
| 1932    | 523     | . 640                 | 8.72                | .414                                  | 876           | 1.07                  | 14.60               | . 692                  |
| 1933    | 1,590   | 1.95                  | 26.37               | 1.26                                  | 1,310         | 1.60                  | 21.74               | 1.03                   |
| 1934    | 761     | .931                  | 12.66               | . 602                                 | 918           | 1.12                  | 15.27               | .724                   |
| 1935    | 842     | 1.03                  | 14.04               | .666                                  | 723           | .885                  | 12.04               | .572                   |
| 1936    | 1,079   | 1.32                  | 17.97               | .853                                  | 1,127         | 1.38                  | 18.77               | .892                   |
| 1937    | 1,249   | 1.53                  | 20.73               | .989                                  | 1,471         | 1.80                  | 24.42               | 1.16                   |
| 1938    | 872     | 1.07                  | 14.48               | . 692                                 | 624           | .764                  | 10.36               | . 494                  |
| 1939    | 907     | 1.11                  | 15.07               | .717                                  | 829           | 1.01                  | 13.79               | .653                   |
| 1940    | 1,041   | 1.27                  | 17.34               | .821                                  | 1,316         | 1.61                  | 21.92               | 1.04                   |
| 1941    | 855     | 1.05                  | 14.20               | .679                                  | 539           | . 660                 | 8.95                | .427                   |
| 1942    | 874     | 1.07                  | 14.54               | .692                                  | 1,256         | 1.54                  | 20.87               | .995                   |
| 1943    | 1,139   | 1.39                  | 18.92               | .898                                  | 873           | 1.07                  | 14.50               | . 692                  |
| 1944    | 795     | .973                  | 13.24               | . 629                                 | 763           | .934                  | 12.70               | .604                   |
| 1945    | 912     | 1.12                  | 15.15               | .724                                  | 1,086         | 1.33                  | 18.05               | .860                   |
| 1946    | 979     | 1.20                  | 16.26               | .776                                  | 772           | . 945                 | 12.83               | . 611                  |
| 1947    | 617     | .755                  | 10.24               | .488                                  | 631           | .772                  | 10.46               | . 499                  |
| 1948    | 902     | 1.10                  | 15.03               | .711                                  | 1,106         | 1.35                  | 18.44               | .873                   |
| 1949    | 1,295   | 1.59                  | 21.53               | 1.03                                  | 1,096         | 1.34                  | 18.21               | .866                   |
| 1950    | 795     | .973                  | 13.20               | . 629                                 | 964           | 1.18                  | 16.01               | .763                   |
| 1951    | 1,084   | 1.33                  | 18.02               | .860                                  | 956           | 1.17                  | 15.88               | .756                   |
| 1952    | 1,398   | 1.71                  | 23.30               | 1.11                                  | 1,506         | 1.84                  | 25.09               | 1.19                   |
| 1953    | 1,126   | 1.38                  | 18.70               | . 892                                 | 963           | 1.18                  | 15.98               | .763                   |
| 1954    | 432     | . 529                 | 7.16                | .342                                  | 431           | . 528                 | 7.15                | .341                   |
| 1955    | 793     | .971                  | 13.18               | .628                                  | 840           | 1.03                  | 13.96               | . 666                  |
| 1956    | 841     | 1.03                  | 14.01               | . 666                                 | -             |                       | -                   |                        |
| Highest | 1,590   | 1.95                  | 26.37               | 1.26                                  | 1,506         | 1.84                  | 25.09               | 1.19                   |
| Average | 916     | 1.12                  | 15.23               | .724                                  | 914           | 1.12                  | 15.19               | .724                   |
| Lowest  | 329     | .403                  | 5.46                | .260                                  | 322           | .394                  | 5.35                | .255                   |

POTOMAC RIVER BASIN—Continued Yearly discharge of Monocacy River at Jug Bridge near Frederick

#### POTOMAC RIVER BASIN

#### 20. Bennett Creek at Park Mills

Location.—Lat 39°17'40", long 77°24'30", on left bank 75 ft downstream from highway bridge, 0.2 mile south of Park Mills, Frederick County, 1.8 miles upstream from mouth, and 3.7 miles southwest of Urbana.

Drainage area. - 62.8 sq mi.

Records available .- August 1948 to September 1956.

Gage.—Water-stage recorder and concrete control. Altitude of gage is 240 ft (from topographic map).

Average discharge.- 8 years, 65.7 cfs.

*Extremes.*—Maximum discharge, 3,230 cfs Nov. 21, 1952 (gage height, 10.34 ft), from rating curve extended above 1,500 cfs on basis of slope-area determination at gage height 8.12 ft; minimum, 4.8 cfs Aug. 1, 2, 1954.

Monthly discharge of Bennett Creek at Park Mills

|           |         | Discharg |      | Discharge             |                     |                                       |
|-----------|---------|----------|------|-----------------------|---------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mean | Per<br>square<br>mile | Runoff in<br>inches | gallons per<br>day per<br>square mile |
| 1948      |         |          |      |                       |                     |                                       |
| August    | 179     | 22       | 50.6 | 0.806                 | 0.93                | 0.521                                 |
| September | 58      | 16       | 21.9 | . 349                 | .39                 | . 226                                 |
| 1948-49   |         |          |      |                       |                     |                                       |
| October   | 200     | 16       | 42.3 | 0.674                 | 0.78                | 0.436                                 |
| November  | 521     | 27       | 75.9 | 1.21                  | 1.35                | .782                                  |
| December  | 1,070   | 61       | 180  | 2.87                  | 3.31                | 1.85                                  |
| January   | 700     | 96       | 211  | 3.36                  | 3.88                | 2.17                                  |
| February  | 300     | 120      | 169  | 2.69                  | 2.81                | 1.74                                  |
| March.    | 321     | 68       | 102  | 1.62                  | 1.87                | 1.05                                  |
| April     | 199     | 58       | 84.7 | 1.35                  | 1.50                | .873                                  |
| May       | 245     | 44       | 75.5 | 1.20                  | 1.39                | .776                                  |
| June      | 48      | 25       | 34.2 | . 545                 | . 61                | .352                                  |
| July      | 330     | 19       | 62.5 | . 995                 | 1.15                | . 643                                 |
| August    | 154     | 19       | 30.1 | . 479                 | .55                 | .310                                  |
| September | 53      | 15       | 23.0 | . 366                 | .41                 | . 237                                 |
| The year  | 1,070   | 15       | 90.7 | 1.44                  | 19.61               | . 931                                 |
| 1949-50   |         |          |      |                       |                     |                                       |
| October   | 107     | 16       | 25.2 | 0.401                 | 0.46                | 0.259                                 |
| November  | 59      | 20       | 25.2 | . 401                 | .45                 | . 259                                 |
| December  | 233     | 20       | 54.6 | .869                  | 1.00                | . 562                                 |
| January   | 145     | 27       | 39.7 | . 632                 | .73                 | .408                                  |
| February  | 408     | 50       | 129  | 2.05                  | 2.14                | 1.32                                  |
| March     | 900     | 40       | 120  | 1.91                  | 2.21                | 1.23                                  |
| April     | 84      | 44       | 56.7 | . 903                 | 1.01                | . 584                                 |
| May       | 150     | 44       | 65.4 | 1.04                  | 1.20                | .672                                  |
| June      | 100     | 19       | 38.1 | .607                  | .68                 | . 392                                 |
| July      | 107     | 15       | 25.7 | . 409                 | .47                 | .264                                  |
| August    | 36      | 10       | 14.1 | .225                  | . 26                | . 145                                 |
| September | 64      | 11       | 22.4 | .357                  | . 40                | .231                                  |
| The year  | 900     | 10       | 50.9 | .811                  | 11.01               | . 524                                 |

|           |         | Dischar |      | Discharge             |                     |                                      |
|-----------|---------|---------|------|-----------------------|---------------------|--------------------------------------|
| Month     | Maximum | Minimum | Mean | Per<br>square<br>mile | Runoff in<br>inches | allons per<br>day per<br>square mile |
| 1950–51   |         |         |      |                       |                     |                                      |
| October   | 134     | 13      | 24.5 | 0.390                 | 0.45                | 0.252                                |
| November  | 592     | 19      | 49.6 | .790                  | .88                 | .511                                 |
| December  | 830     | 38      | 101  | 1.61                  | 1.85                | 1.04                                 |
| January   | 100     | 40      | 54.1 | .861                  | .99                 | .556                                 |
| February  | 671     | 60      | 153  | 2.44                  | 2.54                | 1.58                                 |
| March     | 215     | 65      | 88.3 | 1.41                  | 1.62                | .911                                 |
| April     | 139     | 48      | 70.8 | 1.13                  | 1.26                | 730                                  |
| May       | 149     | 35      | 55.9 | . 890                 | 1.03                | .575                                 |
| June      | 672     | 30      | 140  | 2.23                  | 2.49                | 1 44                                 |
| July      | 152     | 27      | 47.6 | .758                  | 87                  | 490                                  |
| August    | 31      | 14      | 21.0 | .334                  | .39                 | 216                                  |
| September | 20      | 9.5     | 12.9 | .205                  | .23                 | .132                                 |
| The year  | 830     | 9.5     | 67.5 | 1.07                  | 14.60               | . 692                                |
| 1951-52   |         |         |      |                       |                     |                                      |
| October   | 24      | 9.0     | 13.6 | 0.217                 | 0.25                | 0.140                                |
| November  | 105     | 17      | 28.5 | .454                  | . 51                | .293                                 |
| December  | 216     | 15      | 49.1 | .782                  | .90                 | . 505                                |
| January   | 277     | 53      | 107  | 1.70                  | 1.96                | 1.10                                 |
| February  | 383     | 50      | 90.2 | 1.44                  | 1.55                | .931                                 |
| March     | 297     | 52      | 102  | 1.62                  | 1.87                | 1.05                                 |
| April     | 1,570   | 70      | 263  | 4.19                  | 4.67                | 2.71                                 |
| May       | 560     | 78      | 166  | 2.64                  | 3.05                | 1.71                                 |
| June      | 213     | 39      | 69.2 | 1.10                  | 1.23                | .711                                 |
| July      | 248     | 24      | 47.9 | .763                  | . 88                | . 493                                |
| August    | 648     | 25      | 61.3 | .976                  | 1.13                | .631                                 |
| September | 886     | 28      | 67.1 | 1.07                  | 1.19                | . 692                                |
| The year  | 1,570   | 9.0     | 88.5 | 1.41                  | 19.19               | .911                                 |
| 1952-53   |         |         |      |                       |                     |                                      |
| October   | 40      | 20      | 24.6 | 0.392                 | 0.45                | 0.253                                |
| November  | 1,050   | 19      | 114  | 1.82                  | 2.03                | 1.18                                 |
| December  | 440     | 58      | 107  | 1.70                  | 1.97                | 1.10                                 |
| January   | 542     | 68      | 149  | 2.37                  | 2.73                | 1.53                                 |
| February  | 258     | 66      | 90.0 | 1.43                  | 1.49                | . 924                                |
| March     | 613     | 63      | 173  | 2.75                  | 3.18                | 1.78                                 |
| April     | 216     | 74      | 116  | 1.85                  | 2.05                | 1.20                                 |
| May       | 371     | 58      | 122  | 1.94                  | 2.23                | 1.25                                 |
| June      | 194     | 32      | 58.9 | .938                  | 1.05                | . 606                                |
| July      | 112     | 19      | 28.9 | . 460                 | . 53                | .297                                 |
| August    | 474     | 15      | 46.9 | .747                  | .86                 | .483                                 |
| September | 134     | 13      | 22.7 | .361                  | . 40                | .233                                 |
| The year  | 1,050   | 13      | 87.8 | 1.40                  | 18.97               | . 905                                |

## POTOMAC RIVER BASIN—Continued Monthly discharge of Bennett Creek at Park Mills—Continued

|           |         | Discharg |      | Discharge             |                     |                                       |
|-----------|---------|----------|------|-----------------------|---------------------|---------------------------------------|
| Month     | Maximum | Minimum  | Mcan | Per<br>square<br>mile | Runoff in<br>inches | gallons per<br>day per<br>square mile |
| 1953-54   |         |          |      |                       |                     |                                       |
| October   | 49      | 12       | 15.5 | 0.247                 | 0.28                | 0.160                                 |
| November  | 59      | 15       | 21.3 | . 339                 | .38                 | .219                                  |
| December  | 390     | 18       | 65.7 | 1.05                  | 1.21                | .679                                  |
| Ianuary.  | 120     | 21       | 39.6 | .631                  | .73                 | .408                                  |
| February  | 78      | 25       | 38.9 | . 619                 | . 65                | .400                                  |
| March     | 250     | 38       | 59.8 | .952                  | 1.10                | .615                                  |
| April     | 226     | 30       | 59.4 | 946                   | 1.06                | 611                                   |
| May       | 225     | 2.4      | 54.8 | .873                  | 1.01                | 564                                   |
| Iune      | 156     | 11       | 23.0 | .366                  | .41                 | 237                                   |
| Tuly      | 85      | 5.8      | 15.5 | .247                  | .28                 | . 160                                 |
| August    | 243     | 5.2      | 19.2 | .306                  | .35                 | . 198                                 |
| September | 16      | 6.6      | 9.26 | .147                  | .16                 | .095                                  |
| The year  | 390     | 5.2      | 35.2 | .561                  | 7.62                | .363                                  |
| 1954–55   |         |          |      |                       |                     |                                       |
| October   | 45      | 5.8      | 13.3 | 0.212                 | 0.24                | 0.137                                 |
| November  | 39      | 13       | 16.6 | .264                  | . 29                | .171                                  |
| December  | 158     | 10       | 35.4 | .564                  | .65                 | .365                                  |
| January   | 48      | 11       | 21.6 | .344                  | .40                 | .222                                  |
| February. | 563     | 13       | 74.4 | 1.18                  | 1.23                | .763                                  |
| March     | 723     | 41       | 122  | 1.94                  | 2.23                | 1.25                                  |
| April     | 94      | 36       | 48.0 | .764                  | .85                 | . 494                                 |
| May.      | 100     | 17       | 30.5 | .486                  | .56                 | .314                                  |
| Tune      | 230     | 13       | 33.8 | . 538                 | . 60                | .348                                  |
| Iuly.     | 106     | 6.6      | 14.9 | .237                  | .27                 | .153                                  |
| August    | 1,580   | 5.5      | 148  | 2.36                  | 2.72                | 1.53                                  |
| September | 58      | 22       | 31.6 | . 503                 | . 56                | . 325                                 |
| The year  | 1,580   | 5.5      | 49.1 | .782                  | 10.60               | . 505                                 |
| 1955-56   |         |          | - 7  |                       |                     |                                       |
| October   | 257     | 21       | 38.9 | 0.619                 | 0.71                | 0.400                                 |
| November  | 72      | 26       | 32.6 | . 519                 | . 58                | . 335                                 |
| December  | 30      | 17       | 22.4 | .357                  | . 41                | . 231                                 |
| January   | 150     | 16       | 35.7 | . 568                 | .66                 | .367                                  |
| February  | 382     | 60       | 131  | 2.09                  | 2.24                | 1.35                                  |
| March.    | 636     | 50       | 128  | 2.04                  | 2.35                | 1.32                                  |
| April     | 168     | 45       | 73.0 | 1.16                  | 1.30                | .750                                  |
| May       | 52      | 27       | 36.9 | . 588                 | .68                 | .380                                  |
| June      | 69      | 17       | 27.5 | .438                  | .49                 | . 283                                 |
| July      | 680     | 16       | 106  | 1.69                  | 1.94                | 1.09                                  |
| August    | 41      | 16       | 23.9 | .381                  | . 44                | . 246                                 |
| September | 73      | 13       | 21.8 | .347                  | .39                 | . 224                                 |
| The year  | 680     | 13       | 56.2 | . 895                 | 12.19               | . 578                                 |

### POTOMAC RIVER BASIN—Continued Monthly discharge of Bennett Creek at Park Mills—Continued

# CARROLL AND FREDERICK COUNTIES

| Year    |                  | Year ending Sept. 30  |              |                                       |                  | Calendar year         |              |                        |  |  |
|---------|------------------|-----------------------|--------------|---------------------------------------|------------------|-----------------------|--------------|------------------------|--|--|
|         | Discharge in cfs |                       | Durat        | Discharge                             | Discharge in cfs |                       | Dent         | Discharge              |  |  |
|         | Mean             | Per<br>square<br>mile | in<br>inches | gallons per<br>day per<br>square mile | Mean             | Per<br>square<br>mile | in<br>inches | day per<br>square mile |  |  |
| 1949    | 90.7             | 1.44                  | 19.61        | 0.931                                 | 74.4             | 1.18                  | 16.08        | 0.763                  |  |  |
| 1950    | 50.9             | .811                  | 11.01        | . 524                                 | 56.8             | .904                  | 12.28        | . 584                  |  |  |
| 1951    | 67.5             | 1.07                  | 14.60        | . 692                                 | 60.5             | .963                  | 13.08        | .622                   |  |  |
| 1952    | 88.5             | 1.41                  | 19.19        | .911                                  | 101              | 1.61                  | 21.98        | 1.04                   |  |  |
| 1953    | 87.8             | 1.40                  | 18.97        | .905                                  | 75.9             | 1.21                  | 16.39        | .782                   |  |  |
| 1954    | 35.2             | . 561                 | 7.62         | .363                                  | 32.1             | . 511                 | 6.93         | .330                   |  |  |
| 1955    | 49.1             | .782                  | 10,60        | . 505                                 | 51.5             | . 820                 | 11.12        | . 530                  |  |  |
| 1956    | 56.2             | .895                  | 12.19        | . 578                                 |                  |                       |              |                        |  |  |
| Highest | 90.7             | 1.44                  | 19.61        | 0.931                                 | 101              | 1.61                  | 21.98        | 1.04                   |  |  |
| Average | 65.7             | 1.05                  | 14.22        | .679                                  | 64.6             | 1.03                  | 13.98        | .666                   |  |  |
| Lowest  | 35.2             | . 561                 | 7.62         | . 363                                 | 32.1             | .511                  | 6.93         | . 330                  |  |  |

### POTOMAC RIVER BASIN—Continued Yearly discharge of Bennett Creek at Park Mills

#### SURFACE-WATER RESOURCES

### References

Bennett, R. R., 1946. Ground-water resources, in The physical features of Carroll County and Frederick County: Maryland Dept. Geology, Mines and Water Resources, p. 165– 187.

Blair, B. E., 1955. Physical properties of mine rock: U. S. Bur. Mines Rept. Inv. 5130, pt. III.

- Bohanan, L. B., 1955. Trends and developments in irrigation in Maryland: Dept. of Agricultural Economics and Marketing, Maryland Agricultural Experiment Station, Misc. Pub. 244, Contr. 2643.
- Brown, R. H., 1953. Selected procedures for analyzing aquifer test data: Am. Water Works Assoc. Jour., v. 45, p. 844-866.
- Brvan, Kirk, 1919. Classification of springs: Jour. Geology, v. 27, p. 522-561.
- Carter, G. F., and Sokoloff, V. P., 1951. A study of soils and land forms of the Chesapeake Bay margins: Johns Hopkins Univ., Isaiah Bowman School Geography, mimeographed report.
- Clark, W. B., Mathews, E. B., and Berry, E. W., 1918. The surface and underground water resources of Maryland, including Delaware and the District of Columbia: Maryland Geol. Survey, v. 10, pt. 2.
- Cloos, Ernst, 1950. The geology of the South Mountain anticlinorium: The Johns Hopkins University, Studies in Geology, No. 16, Guidebook 1.
- ----, 1951. Stratigraphy of sedimentary rocks of Washington County, in The physical features of Washington County: Maryland Dept. Geology, Mines and Water Resources.
- Cooper, H. II., Jr., and Jacob, C. E., 1946. A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, p. 526-534.
- Davies, W. E., 1950. The caves of Maryland: Maryland Dept. Geology, Mines and Water Resources Bull. 7.
- Davis, S. N., and Carlson, W. A., 1952. Geology and ground-water resources of the Kansas River valley between Lawrence and Topeka, Kansas: Kansas Geol. Survey Bull. 96, pt. 5.
- Dingman, R. J. and Ferguson, H. F., 1956. The ground-water resources of the Piedmont part, in The water resources of Baltimore and Harford Counties: Maryland Dept. Geology, Mines and Water Resources Bull. 17.
- Dingman, R. J., and Meyer, Gerald, 1954. The ground-water resources, in The water resources of Howard and Montgomery Counties: Maryland Dept. Geology, Mines and Water Resources Bull. 14.
- Ferris, J. B., 1948. Ground-water hydraulics as a geophysical aid: Michigan Dept. Conserv. Tech. Rept. No. 1.
- Griffith, J. H., 1937. Physical properties of typical American rocks: Iowa Eng. Exper. Sta. Bull. 131.
- Gumbel, E. J., 1954. Statistical theory of extreme values and some practical applications: Natl. Bur. Stds. Appl. Math. Series 33.
- Hantush, M. S., 1956. Analysis of data from pumping tests in leaky aquifers: Am. Geophys. Union Trans., v. 37, p. 702-714.
- -----, 1957. Preliminary quantitative study of the Roswell ground-water reservoir, New Mexico: New Mexico Inst. Mining and Technology.
- Hantush, M. S., and Jacob, C. E., 1955. Non-steady radial flow in an infinite leaky aquifer: Am. Geophys. Union Trans., v. 36, p. 95-100.
- Houk, I. E., 1921. Rainfall and runoff in the Miami valley, State of Ohio: Miami Conservancy Dist. Tech. Repts., pt. 8.

Hoy, R. B., and Schumacher, R. L., 1956. Fault in Paleozoic rocks near Frederick, Md.: Geol. Soc. America Bull., v. 67, p. 1521–1528.

Jacob, C. E., 1946. Radial flow in a leaky artesian aquifer: Am. Geophys. Union Trans., v. 27, p. 206-208.

Jonas, A. I., 1928. Map of Carroll County showing the geological formations: Maryland Geol, Survey.

Jonas, A. I., and Stose, G. W., 1938. Geologic map of Frederick County and adjacent parts of Washington and Carroll Counties: Maryland Geol. Survey.

-----, 1939. Age relation of the pre-Cambrian rocks in the Catoctin Mountain-Blue Ridge and Mount Rogers anticlinoria in Virginia: Am. Jour. Sci., v. 237, p. 575-593.

Mackin, W. F., 1956. The external relations of Frederick, Maryland: Univ. of Maryland, Geography Dept. Libr., unpublished M. S. thesis.

Maryland State Planning Commission, 1951. A program for the Monocacy watershed: Pub. 70.

Meinzer, O. E., and Stearns, N. C., 1929. A study of ground water in the Pomperaug basin, Connecticut: U. S. Geol. Survey Water-Supply Paper 597-B.

Meyer, Gerald, 1955. Test drilling and aquifer test in the Marburg schist near Mount Airy, Frederick County, Maryland: U. S. Geol. Survey, open-file memorandum.

Mitchell, W. D., 1957. Flow duration of Illinois streams: Ill. Dept. Public Works and Bldgs. Div. of Waterways.

Muskat, Morris, 1937. The flow of homogeneous fluids through porous media: McGraw-Hill Book Co., Inc., New York.

Scotford, D. M., 1951. A structural study of the Sugarloaf Mountain area, Maryland, as a key to Piedmont stratigraphy: Geol. Soc. America Bull., v. 62, p. 45-76.

Singer, Irving A., and Brown, Robert M., 1956. The annual variations of sub-soil temperatures about a 600-foot circle: Am. Geophys. Union Trans., v. 37, p. 743-748.

Stallman, R. W., 1952. Nonequilibrium type curves modified for two-well systems: U. S. Geol. Survey, open-file chart (Ground Water Notes No. 3).

Stose, A. J., and Stose, G. W., 1946. Geology of Carroll and Frederick Counties, in The physical features of Carroll County and Frederick County: Maryland Dept. Geology, Mines and Water Resources.

- Theis, C. V., 1935. The relation between the lowering of the piezometric surface and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., v. 16, p. 519-524.
- —, 1953. The effect of a well on the flow of a nearby stream: Am. Geophys. Union Trans., v. 34, p. 734-738.
- Thomas, Byron K., 1952. Structural geology and stratigraphy of Sugarloaf anticlinorium and adjacent Piedmont area, Maryland: Johns Hopkins Univ., Dept. Geology, doctoral dissertation.
- U. S. Public Health Service, 1946. Drinking water standards: Public Health Repts., v. 61, p. 371–384.
- Wenzel, L. K. 1942. Methods of determining permeability of water-bearing materials, with special reference to discharging-well methods: U. S. Geol. Survey Water-Supply Paper 887.
- Whitaker, John C., 1955. Geology of Catoctin Mountain, Maryland and Virginia: Geol. Soc. America Bull., v. 66, p. 435-462.

# INDEX

Baltimore gneiss 10, 84; Pl. 3

Abstract 1, 229 Acknowledgments 5 Adamstown, Aquifer and well-performance tests at 78; Fig. 17; Tables 17, 18 Agriculture in area 5 Alluvial cones 128 Aluminum in ground water 54; Fig. 12; Tables 11, 12 Ammonium oxide in ground water 48; Tables 11, 12 Analyses of ground water; See Chemical analyses Means of distinguishing geologic contacts 48 Radioanalyses 57; Table 13 Analyses of rainwater 47; Table 10 Analyses of surface water, Chemical 241; Tables 30, 31 Analyses of well data 39 Antietam quartzite 74; Pl. 3 Aporhyolite 67; Pl. 3 Aquifer Definition 13 Evaluation by pumping tests 33 Influence of characteristics on yield of wells 27 'unifer tests 17, 33, 37, 65; Fig. 15; Table 6 in aporhvolite 68; Fig. 16 In Frederick limestone 78; Fig. 17; Tables 17.18 In Marburg schist 93; Figs. 20-22 In New Oxford formation 122; Fig. 29 In Wakefield marble 115; Fig. 27; Table 21 In Weverton formation 72 In Wissahickon formation 104; Figs. 23-26 Aquifers Artesian 23 Water-table 23 Aquifers of area 13 Characteristics of 39 Arkose, Newark group 118 Artesian aquifer 23 Artesian springs 29 Avondale, Discharge records at 304

Barometric efficiency of well 24 Beall, R. M. 229 Base-flow discharge (Definition) 246 Bennett, R. R. 4 Bennett Creek, Discharge records of 339 Berry, E. W. 4 Bircarbonate in ground water 54; Fig. 12; Tables 11, 12 Big Pipe Creek, Discharge records of 300 Black and Decker Mfg. Co. 5 Well-performance tests at wells of 104; Figs. 23-26 Blair, B. E. 65 Blue Ridge province 8; Figs. 1, 3 Bohanan, L. B. 240 Bridgeport, Discharge records at 294 Brown, R. H. 38 Brown, R. M. 59 Bruceville, Discharge records at 300 Bryan, Kirk 29 Burkittsville, Aquifer Tests at 65; Fig. 15 Cable tool method of drilling wells 27, 31 Calcium in ground water 48, 53; Fig. 12; Tables 11, 12 Cambrian rocks 10, 70; Pl. 3 Canning As industry 5 Use of ground water in industry 31 Carbon dioxide in ground water 47, 56; Tables 11, 12 Carbonate in ground water 48, 54; Fig. 12; Tables 11, 12 Carbonate rocks of Piedmont 112; Table 20 Carlson, W. A. 55 Carter, G. F. 47 Casing of wells 27 Catoctin Creek 10; Fig. 32 Discharge records of 278, 282 Catoctin metabasalt 64; Pl. 3; Table 27 Cedarhurst, Discharge records at 260 Cement as commercial product 5 cfs (Definition) 230 cfsm (Definition) 230

#### INDEX

Chemical analyses of ground water 4; Fig. 12; Tables 11, 12 Catoctin basalt 67 Frederick limestone 82 Gettysburg shale 126 Gneiss 64 Granodiorite 64 Grove limestone 84 Harpers phyllite 74 Ijamsville phyllite 90 Libertytown metarhyolite 89 Marburg schist 103 New Oxford formation 124 Peters Creek quartzite 87 Sams Creek metabasalt 89 Urbana phyllite 91 Weverton quartzite 73 Chemical analyses of surface water 241; Tables 30, 31 Chemical quality of ground water; See Quality Relation to use 53 Chlorine in ground water 48, 55; Fig. 12, Tables 11, 12 Clark, W. B. 4 Classification of springs 29 Climate 6 Cloos, Ernest 4, 71 Cockeysville marble 113; Pl. 3 Coefficient of leakage 17 Coefficient of permeability 17 Coefficient of storage 19; Table 6 Coefficient of transmissibility 17; Table 6 Cone of depression 25 Construction of well Effect on yield 27 Methods 27 Contact springs 29 Contaminants in ground water 53; Tables 11.12 Contamination in surface water 229 Control (Definition) 231 Cooper, H. H., Jr. 38, 102 Copper in ground water 54; Fig. 12; Tables 11.12 Cranberry Branch, Discharge records of 256 Crystalline rocks 10, 84, 92; Pl. 3 Current meter 233; Pls. 4, 5 Dairying in area 5 Davies, W. E. 77, 83, 114 Davis, S. N. 55

Definitions Aquifer 13 Artesian aquifer 23 Barometric efficiency 24 cfs 230 cfsm 230 Coefficient of storage 19 Coefficient of transmissibility 17 Cone of depression 25 Control 231 Discharge 19 Drainage area 231 Drawdown 27 Gage height 231 Infiltration galleries 32 mgdsm 230 Permeability 16 Porosity 13 Recharge 19 Runoff 230 Specific capacity 28 Specific yield 16 Spring 28 Stage 231 Stage-discharge relation 231 Transmissiblity 16 Water-table aquifer 23 Water year 231 Yield 28 Depression springs 29 Depth of well, Relation to yield Figs 9. 10; Table 7 Diabase 127; Pl. 3 Dingman, R. J. 22, 42, 86, 113, 127 Discharge 19; Figs. 4, 5 Measurement of 233; Pls. 4, 5 Records 255 Discharge of ground water by springs and wells 28 Discharge of surface water by streams 247; Table 35 Dissolved solids in ground water 55; Tables 11, 12 Dolomites, Paleozoic 75 Drainage area (Definition) 231 Drainage of area 10, 235; Fig. 32; Table 28 Drawdown (Definition) 27 Drillers' acceptance tests 33 Drought conditions, Frequency of 253; Fig. 35; Table 37

Economy of area 5


FIGURE 1. Gaging Station on Linganore Creek near Frederick



FIGURE 2. Price Standard Current Meter and Pygmy Meter suspended on Wading Rods, used to measure discharge



FIGURE 1. Engineer making measurement by wading



FIGURE 2. Highway Bridge Equipment Used to Measure Discharge at Stages Higher than Wading

Evaluation of aquifer by pumping tests 33 Factors determining site of gaging station 233 Ferguson, H. F. 22, 42, 86, 113 Ferris, J. B. 38 Fishing Creek, Discharge records of 319 Flood, Damage by and contributing causes 230 Floods in area 246; Fig. 33; Table 34 Flow of streams as determinant of use 230 Flow-duration studies 247; Fig. 34; Table 36 Fluctuations in water level caused by changes in pressure 24 Fluoride in ground water 55; Fig. 12; Tables 11.12 Foxville, Aquifer and well-performance tests at 68; Fig. 16 Frederick, Discharge records near 323, 327, 333 Frederick limestone 77; Pl. 3 Frequency of floods 247; Fig. 33; Table 34 Fussell, M. B. 240 Future development of ground water 131 Gage height (Definition) 231 Gaging stations 231, 244; Fig. 32; Table 33 Selection of sites 233 Geologic formations, Description and waterbearing properties of 62 Gettysburg shale 124; Pl. 3 Glenarm series 10; Pl. 3 Goldfish industry, Use of surface water for 240 Gneiss 63; Pl. 3; Tables 14, 27 Granodiorite 63; Pl. 3; Tables 14, 27 Griffith, J. H. 16 Gravity springs 29 Ground water Chemical analyses 4; Fig. 12; Tables 11, 12 Hydrology 12 Movement 12 Quality 47, 53; Fig. 12; Tables 8, 11, 12 Radioanalyses 57; Table 13 **Resources** 1 Temperature 58; Figs. 13, 14; Tables 25, 26 Use 30; Table 5 Grove limestone 82; Pl. 3 Gumbel, E. J. 247 Hampstead, Aquifer and well-performance tests at 104; Figs. 23-26 Hantush, M. S. 17, 81

Hardness of ground water 56; Tables 11, 12 Harmony, Discharge records at 273 Harpers phyllite 73; Pl. 3 Henryton, Discharge records at 268 History of stream-flow records 244 Houk, I. E. 21 Hoy, R. B. 76 Hunting Creek, Discharge records of 315 Hydraulics, Well 27 Hydrogen sulfide in ground water 48; Tables 11, 12 Hydrologic cycle 11 Hydrologic properties of aquifers 13; Table 3 Hydrology 11 Igneous rocks 126 Ijamsville phyllite 89; Pl. 3 Industry in area 5 Early 236 Use of surface water by 230 Infiltration galleries 32 Interference between wells 26, 66 Intrusive rocks 126 Iron in ground water 53; Fig. 12; Tables 11, 12 Irrigation Use of ground water for 31, 132 Use of surface water for 230, 240 Jacob, C. E. 17, 38, 81, 102 Jefferson, Discharge records near 282 Jimtown, Discharge records at 315 Jointing, Importance in ground water 17 Jonas, A. I. 4, 63, 113 Jug Bridge, Discharge records at 333 Junge, C. E. 47 Koontz Creamery, Aquifer and well-performance tests at 115; Fig. 27; Table 21 Lantz, Discharge records at 309 Laughlin, W. F. 236, 240 Leakage, Coefficient of 17 Lewistown, Discharge records at 319 Libertytown metarhyolite 45, 89; Pl. 3 Lime as commercial product 5 Limestone, Silver Run 117 Limestones, Paleozoic 75 Linganore Creek Analyses of water 241; Table 30 Discharge records of 327 Temperatures of 242; Table 32 Lithium in ground water 54; Fig. 12; Tables 11, 12

Lithology and structure of formations Pl. 3 Alluvial cones 128 Antietam quartzite 74 Aporhyolite 67 Baltimore gneiss 84 Cambrian formations 69 Catoctin metabasalt 64 Cockeysville marble 113 Diabase 127 Frederick limestone 77 Gettysburg shale 124 Gneiss 63 Granodiorite 64 Grove limestone 82 Harpers phyllite 73 Ijamsville phyllite 89 Libertytown metarhyolite 89 Loudoun formation 70 Marburg schist 92 Metagabbro 126 New Oxford formation 120 Newark group 118 Pegmatite 127 Peters Creek quartzite 87 Precambrian formations 63, 64 Quaternary deposits 128 Sams Creek metabasalt 87 Serpentine 126 Setters formation 86 Silver Run limestone 117 Sugarloaf Mountain quartzite 92 Swift Run formation 64 Sykesville formation 126 Terrace deposits 129; Table 23 Tomstown dolomite 76 Triassic system 117 Urbana phyllite 90 Wakefield marble 113 Weverton formation 71 Wissahickon formation 86, 103 Lithology, Relation to yield of well 40; Fig. 8; Table 7 Little Catoctin Creek, Drainage records of 273 Little Pipe Creek, Discharge records of 304 Location of area 2; Fig. 1 Logs of wells Table 27 Antietam guartzite 75 Aporhyolite 67 Catoctin formation 65 Frederick limestone 77, 78

Logs of wells (Continued) Gettysburg shale 125 Grove limestone 83 Harpers phyllite 73 Ijamsville phyllite 90 Libertytown metarhyolite 89 Loudoun formation 71 Marburg schist 92 New Oxford formation 121; Fig. 28 Peters Creek quartzite 87 Sams Creek basalt 88 Terrace deposits 129 Triassic system 120; Fig. 28 Wakefield marble 114 Wissahickon formation 103 Loudoun formation 70; Pl. 3 Low-flow frequency 253; Fig. 35; Table 37 Mackin, W. F. 236, 240 Magnesium in ground water 48, 53; Fig. 12; Tables 11, 12 Manganese in ground water 53; Fig. 12; Tables 11, 12 Manufacture (Clothing) as industry 5 Marble Cockeysville 113 Wakefield 113 Marburg schist 92; Pl. 3 Marriottsville, Discharge records near 264 Martic overthrust 10; Pl. 3 Maryland Department of Geology, Mines, and Water Resources 4, 33, 231 Maryland Department of Research and Education 242 Maryland State Planning Commission 244 Mathews, E. B. 4 Measurement of discharge 233; Pls. 4, 5 Measurement of stream flow, History of 244 Measurement stations, Streamflow 11, 231, 244; Fig. 32; Table 33 Meinzer, O. E. 21 Mesozoic rocks 118 Metabasalt, Sams Creek 87 Metagabbro 126 Metamorphosed Paleozoic rocks 69 Metamorphosed volcanic rocks 87 Metarhyolite, Libertytown 89 Methods of drilling wells 27 Methods of investigation 2 Meyer, Gerald 1, 22, 42, 86, 93, 127 mgdsm (Definition) 230 Middletown, Discharge records near 278

#### 350

| Source of 48Bf 35104Mitchell, W. D. 247Cb1115Monocacy Kiver 10; Fig. 32Cb221; Fig. 4As main drainageway of area 235; Table 28Cb3114, 117Chemical analyses of water 242; Table 31Cb8115Discharge records of 294, 323, 33Cb21118Flow-duration data Fig. 34; Table 36Cc 4118Frequency of floods 247; Fig. 33; Table 34Cc 588Low-flow frequency data 255; Fig. 35;Cd 16117Monzonite 126Cd 18117Mount Airy, Aquifer and well-performanceCd 23117tests at 93; Figs. 18–22Ce 4114, 115, 116Mourtain wash 128Ce 3114, 115, 116Movement of ground water 12Ce 5104Mustat, Morris 38Ce 45104Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 1521; Fig. 5Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12Ee 13127North Branch Patapsco River, DischargeEe 14127records of 260Ae 471Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,Ef 1485Car-Af 858Ae 28Car-Fr-Ad 490Ae 4Ad 590Ae 9125Af 858                                                                                          | Minerals in ground water 47                  | Observation wells and springs (Continued) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|
| Mitchell, W. D. 247Cb 1115Monocacy River 10; Fig. 32Cb 221; Fig. 4As main drainageway of area 235; Table 28Cb 3114, 117Chemical analyses of water 242; Table 31Cb 8115Discharge records of 294, 323, 333Cb 21118Flow-duration data Fig. 34; Table 36Cc 4118Low-flow frequency of floods 247; Fig. 33; Table 34Cc 588Low-flow frequency data 255; Fig. 35;Cd 2117Table 37Cd 16117Mount Airy, Aquifer and well-performanceCc 3114, 115, 116Mosement of ground water 12Cc 5104Movement of ground water 12Cc 4118Mostat, Morris 38Cc 45104Natisat, Morris 38Cc 45104Natisata, Morris 38Cc 45104New Oxford formation 120; Pl. 3Dc 1521; Fig. 5Newark group 118; Pl. 3Dd 103Nitrate in ground water 48; TablesEc 121; Fig. 511, 12Dc 187North Branch Patapsco River, DischargeEc 14127records 0260Ac 471Numbering system for wells 5; Pls. 1, 2Ec 16126Observation wells and springs 5, 11; Pls. 1,Ef 1485Car-Fr-Ad 490Ac 471Ad 590Ac 9125Af 858Bb 112; Fig. 4Ac 316514Bb 3122Af 11125155Bb 4122 <td>Source of 48</td> <td>Bf 35 104</td>                                                         | Source of 48                                 | Bf 35 104                                 |
| Monocacy River 10; Fig. 32Cb 221; Fig. 4As main drainageway of area 235; Table 28Cb 3114, 117Chemical analyses of water 242; Table 31Cb 8115Discharge records of 294, 323, 333Cb 21118Froquency of floods 247; Fig. 33; Table 34Cc 588Low-flow frequency data 255; Fig. 35;Cd 2117Table 37Cd 16117Monzonic 126Cd 18117Mountain wash 128Ce 5104Mountain wash 128Ce 5104Mouskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793Nitrogen oxifer in ground water 55; Fig. 12; TablesDd 110311, 12Notal mound water 55; Fig. 12; TablesDd 1103Nitrogen oxifer in ground water 48; TablesEe 121; Fig. 511, 12El 13127El 13North Branch Patapsco River, Discharge<br>records of 260Fr-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 1122Af 4125Bb 3122Af 4125Bb 4122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1169Bb                                                                                                                                                                                         | Mitchell, W. D. 247                          | Cb 1 115                                  |
| As main drainageway of area 235; Table 28   Cb 3   114, 117     Chemical analyses of water 242; Table 31   Cb 8   115     Discharge records of 294, 323, 333   Cb 21   118     Flow-duration data Fig. 34; Table 36   Cc 4   118     Low-flow frequency data 255; Fig. 35;   Cd 2   117     Table 37   Cd 16   117     Mount Airy, Aquifer and well-performance   Cd 23   114, 115, 116     Mount Airy, Aquifer and well-performance   Ce 3   114, 115, 116     Mount Airy, Aquifer and well-performance   Ce 4   104     Mostement 12   Ce 5   104     Movement of ground water 12   Ce 5   104     Muskat, Morris 38   Ce 45   104     National Bureau of Standards 247   Cf 11   87     Navigation, Use of surface waters for 230   Dc 7   93     New Oxford formation 120; Pl. 3   Dc 25   21; Fig. 5     Nitrate in ground water 48; Tables   Ee 1   12; Fig. 5     11, 12   north Branch Patapsco River, Discharge   Ee 14   127     North Branch Patapsco River, Discharge   Ee 14   127   Ere 15   127 <tr< td=""><td>Monocacy River 10; Fig. 32</td><td>Cb 2 21; Fig. 4</td></tr<> | Monocacy River 10; Fig. 32                   | Cb 2 21; Fig. 4                           |
| Chemical analyses of water 242; Table 31Cb8115Discharge records of 294, 323, 333Cb21118Flow-duration data Fig. 34; Table 36Cc 4118Frequency of floods 247; Fig. 33; Table 34Cc 588Low-flow frequency data 255; Fig. 35;Cd 10117Table 37Cd 16117Monzonite 126Cd 18117Mount Airy, Aquifer and well-performanceCd 23117tests at 93; Figs. 18–22Ce 288, 114, 115, 116Movement of ground water 12Ce 45104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793Nitrate in ground water 55; Fig. 12; TablesDd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12Le 13127Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12Ee 16126Observation wells and springs 5, 11; Fls. 1,Ef 1385CarFr-Ad 490Ae 4Ad 490Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 4125Bb 4122Bc 1068Bb 5122Bc 1068Bb 5122Bc 1068Bb 5122Bc 1068 </td <td>As main drainageway of area 235; Table 28</td> <td>Cb 3 114, 117</td>                                                                                              | As main drainageway of area 235; Table 28    | Cb 3 114, 117                             |
| Discharge records of 294, 323, 333Cb 21118Flow-duration data Fig. 34; Table 36Cc 4118Frequency of floods 247; Fig. 33; Table 37Cd 16117Monzonite 126Cd 18117Mount Airy, Aquifer and well-performanceCd 23117tests at 93; Figs. 18–22Ce 228, 114, 115, 116Mountai wash 128Ce 4118Movement of ground water 12Ce 3114, 115, 116Mustain wash 128Ce 45104Mustain wash 28Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; PL 3Dc 2521; Fig. 5Newark group 118; PL 3Dd 1103Nitrate in ground water 48; TablesEe 121; Fig. 511, 12De 187North Branch Patapsco River, DischargeEe 14127records of 260Ce 4126Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Ef 1485Car-Fr-Ad 490Ae 4Ad 490Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 31Af 858Ae 28Bb 5122Bc 1Bb 4122Ag 1Bb 5122Bc 1Bb 5122Bc 1Bb 4122Bd 3Bb 5122<                                                                                                                                                     | Chemical analyses of water 242; Table 31     | Cb 8 115                                  |
| Flow-duration data Fig. 34; Table 36Cc 4118Frequency of floods 247; Fig. 33; Table 34Cc 588Low-flow frequency data 255; Fig. 35;Cd 2117Table 37Cd 16117Monzonite 126Cd 18117Mount Airy, Aquifer and well-performanceCd 23117tests at 93; Figs. 18-22Ce 288, 114, 115, 116Movement of ground water 12Ce 5104Movement of ground water 12Ce 45104Muskat, Morris 38Ce 45104Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 2521; Fig. 5New Oxford formation 120; Pl. 3Dd 39311, 12De 187Nitragen oxide in ground water 48; TablesFe 121; Fig. 511, 12De 187North Branch Patapsco River, Discharge<br>records of 260Fe 15127Numbering system for wells 5; Pis. 1, 2Ee 16126Observation wells and springs 5, 11; Pis. 1,<br>Ad 490Ae 471Ad 490Ae 411Ad 593122Af 4Bb 5122Bc 1068Bb 7122Bc 1068Bb 7122Bc 11Bb 4122Bc 10Bb 5122Bc 10Bb 6122Bc 10Bb 7122Bc 10Bb 6122Bc 10Bb 7122Bc 10Bb 6122B                                                                                                                                                                        | Discharge records of 294, 323, 333           | Cb 21 118                                 |
| Frequency of floods 247; Fig. 33; Table 34Cc 588Low-flow frequency data 255; Fig. 35;Cd 2117Table 37Cd 16117Monzonite 126Cd 18117Mount Airy, Aquifer and well-performanceCd 23117tests at 93; Figs. 18–22Ce 288, 114, 115, 116Mountain wash 128Ce 45104Movement of ground water 12Ce 5104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nords dring system for wells 5; Pls. 1, 2Dd 39311, 12Ee 13127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,Ef 1485Car-Fr-Ad 490Af 858Ac 2872Bb 121; Fig. 4Ac 3165Bb 2122Af 4125Bb 3122Bc 1068Bb 5122Bc 1068Bb 5122Bc 1068Bb 5122Bc 1068Bb 6122Bc 1068Bb 7122Bc 1168Bb 6122Bc 1068Bb 7122Bc 11Bb 6122<                                                                                                                                                                                                                               | Flow-duration data Fig. 34; Table 36         | Cc 4 118                                  |
| Low-flowfrequencydata255;Fig.35;Cd2117Table 37Cd16117Cd18117Monzonite 126Cd18117Cd18117Mount Airy, Aquifer and well-performanceCd23117116tests at 93; Figs. 18-22Ce288, 114, 115, 116116Mountain wash 128Ce5104117Morement of ground water 12Ce5104117Muskat, Morris 38Ce45104116Navigation, Use of surface waters for 230Dc793New Oxford formation 120; Pl. 3Dd1103Nitrate in ground water 55; Fig. 12; TablesDd99311, 12Dd1393Nitrate in ground water 48; TablesEe121; Fig. 511, 12De187North Branch Patapsco River, DischargeEe14127records of 260Ee15127Numbering system for wells 5; Pls. 1, 2Ef1385Car-Fr-Ad90Ae7Ad 490Ae71485Car-Fr-Ad40Ae9Af 858Ae2872Bb 121; Fig. 4Ae125Bb 3122Af11125Bb 4122Ag125Bb 5122Bc                                                                                                                                                                                                                                                                                                                                                                        | Frequency of floods 247; Fig. 33; Table 34   | Cc 5 88                                   |
| Table 37Cd 16117Monzonite 126Cd 18117Mount Airy, Aquifer and well-performance<br>tests at 93; Figs. 18–22Ce 288, 114, 115, 116Mountain wash 128Ce 3114, 115, 116Movement of ground water 12Ce 45104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12De 187North Branch Patapsco River, Discharge<br>records of 260Ee 14127Vambering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Fr71Ad 490Ae 471Ad 590Ae 2872Bb 121; Fig. 4Ae 2872Bb 3122Af 4125Bb 4122Be 12Bb 5122Bc 10Bb 6122Bc 10Bb 7122Bc 10Bb 3122Bd 3Bb 4132Bd 3Bb 4132Bb 5122Bc 10Bb 6122Bb 7122Bc 6122Bc 7124Bc 836Bc 7104 </td <td>Low-flow frequency data 255; Fig. 35;</td> <td>Cd 2 117</td>                                                                                                                                              | Low-flow frequency data 255; Fig. 35;        | Cd 2 117                                  |
| Monzonite 126Cd 18117Mount Airy, Aquifer and well-performance<br>tests at 93; Figs. 18–22Cd 23117Mountain wash 128Ce 288, 114, 115, 116Mountain wash 128Ce 3114, 115, 116Movement of ground water 12Ce 5104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; PI. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrate in ground water 48; TablesEc 13127North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>Ad 5Ef 1485CarFrAd 490Ae 4Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 31Af 858Ae 28Bb 4122Ag 1Bb 5122Bc 10Bb 6122Bc 11Bb 7122Bc 11Bb 6122Bc 10Bb 7124Bd 7Bb 6122Bc 10Bb 7124Bd 7Bb 6122Bc 10Bb 7124Bd 973Bf 8104Bd 760, 61Bf 7104                                                                                                                                                                                                                      | Table 37                                     | Cd 16 117                                 |
| Mount Airy, Aquifer and well-performance<br>tests at 93; Figs. 18–22Cd 23117Mountain wash 128Ce 288, 114, 115, 116Movement of ground water 12Ce 3114, 115, 116Movement of ground water 12Ce 5104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 187Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12Dc 187North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pis. 1, 2Ee 16126Observation wells and springs 5, 11; Pis. 1,<br>2; Tables 25–27Ef 1485Car-Fr-Ad 490Ae 4Ad 490Ae 471Ad 590Ae 471Ad 550Af 11125Bb 121; Fig. 4Ae 31Bb 121; Fig. 4Ae 31Bb 3122Bc 10Bb 4122Bc 10Bb 5122Bc 10Bb 6122Bc 10Bb 7122Bc 10Bd 13103Bd 4Bd 1415128Bd 15122Bc 10Bb 6122Bc 10Bb 7122Bc 10Bb 6122Bc 10Bb 7122Bc 10Bd 667, 68; Fig. 16B                                                                                                                                                                                                                      | Monzonite 126                                | Cd 18 117                                 |
| tests at 93; Figs. 18–22Ce 288, 114, 115, 116Mournatin wash 128Ce 5104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 1222New Row ford formation 120; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187North Branch Patapsco River, Discharge<br>records of 260Ee 121; Fig. 5Numbering system for wells 5; Pls. 1, 2De 185Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Ef 1385Car-Fr-Ad 490Ae 4Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 4122Bc 1068Bb 7122Bc 1165Bb 4122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1166Bb 7122Bc 1167Bb 6122Bc 1166Bb 7122Bc 10Bb 6122Bc 10Bb 7122Bc 11Bb 66768; Fig. 16Bb 7104Bd 9Bb 13103Bd 4Bb 61                                                                                                                                                                                                                                                                                    | Mount Airy, Aquifer and well-performance     | Cd 23 117                                 |
| Mountain wash 128Ce 3114, 115, 116Movement of ground water 12Ce 5104Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 2521; Fig. 5Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187North Branch Patapsco River, Discharge<br>records of 260Ee 13127North Branch Patapsco River, Discharge<br>records of 260Ee 15127Numbering system for wells 5; Pls. 1, 2De 10260Observation wells and springs 5, 11; Pls. 1,<br>Ad 490Ae 471Ad 490Ae 471Ad 490Ae 471Af 858Ac 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1061Bb 6122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068<                                                                                                                                                                                                                                                                    | tests at 93; Figs. 18-22                     | Ce 2 88, 114, 115, 116                    |
| Movement of ground water 12Ce5104Muskat, Morris 38Ce45104Muskat, Morris 38Ce45104National Bureau of Standards 247Cf1187Navigation, Use of surface waters for 230Dc793New Oxford formation 120; Pl. 3Dc2521; Fig. 5Newark group 118; Pl. 3Dd1103Nitrate in ground water 55; Fig. 12; TablesDd39311, 12De187North Branch Patapsco River, DischargeEe14127records of 260Ee15127Numbering system for wells 5; Pls. 1, 2Ee16126Observation wells and springs 5, 11; Pls. 1,Ef1385Car-Fr-Ad90Ae4Ad 490Ae471Ad 590Ae9125Af 858Ac<28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mountain wash 128                            | Ce 3 114, 115, 116                        |
| Muskat, Morris 38Ce 45104National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 2521; Fig. 5Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12Ee 13127North Branch Patapsco River, DischargeEe 14127records of 260Ee 15127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,Ef 13852; Tables 25-27Fr44Ad 490Ae 471Ad 590Ae 9125Af 858Ac 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 11125Bb 4122Bc 269, 74Bb 5122Bc 1068Bb 7122Bc 1168Bb 3122Bc 1168Bb 3122Bc 1168Bb 4122Bc 1068Bb 3122Bc 1168Bb 4122Bc 1068Bb 5122Bc 1068Bb 6122Bc 1068Bb 7122Bc 1165Bb 831E2Bd 6Bb 6 </td <td>Movement of ground water 12</td> <td>Ce 5 104</td>                                                                                                                                                                                                                                                   | Movement of ground water 12                  | Ce 5 104                                  |
| National Bureau of Standards 247Cf 1187Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 2521; Fig. 5Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187North Branch Patapsco River, Discharge<br>records of 260Ee 14127North Branch Patapsco River, Discharge<br>records of 260Ee 15127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Ef 1485Car-Fr-Ad 490Ae 4Ad 490Ae 471Ad 590Ae 9125Af 858Ac 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1168Bb 33122Bc 1168Bb 4122Bc 1068Bb 7122Bc 1168Bb 6122Bc 1068Bb 7122Bc 1183Bb 6122Bc 1069Bd 13103Bd 469Bd 14Bd 760, 61Bf 2104Bd 860, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16 </td <td>Muskat, Morris 38</td> <td>Ce 45 104</td>                                                                                                                                                                                                                                             | Muskat, Morris 38                            | Ce 45 104                                 |
| Navigation, Use of surface waters for 230Dc 793New Oxford formation 120; Pl. 3Dc 2521; Fig. 5Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12De 187North Branch Patapsco River, DischargeEe 14127records of 260Ee 15127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,Ef 13852; Tables 25-27FrAd 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 41125Bb 4122Ag 1125Bb 5122Bc 269, 74Bb 6122Bc 1068Bb 7122Bc 1068Bb 7122Bd 369Bd 31103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 2104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 16105; Fig. 7Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                          | National Bureau of Standards 247             | Cf 11 87                                  |
| New Oxford formation 120; Pl. 3Dc 2521; Fig. 5Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12Ee 13127North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25-27Ef 1385Car-Fr-Ad 490Ae 4Ad 490Ae 471Ad 590Ae 9125Af 858Ac 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 41125Bb 4122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1068Bb 3122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 2104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 16105; Fig. 7Bc 1091Bf 29104; Fig. 7Bc 1091                                                                                                                                                                                                                                                                                                                                              | Navigation, Use of surface waters for 230    | Dc 7 93                                   |
| Newark group 118; Pl. 3Dd 1103Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12Ee 13127North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25-27Ef 1485Car-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 1068Bb 5122Bc 1168Bb 3122Bc 1168Bb 413103Bd 4Bb 3122Bc 11Bb 4122Bc 10Bb 413103Bd 469Bd 13103Bd 4Bd 21118Bd 667, 68; Fig. 16Bd 7104Bd 8104Bf 16105; Fig. 25Bf 16105; Fig. 25Bf 16105; Fig. 7Bf 29104; Fig. 7Bf 29104; Fig. 7Bf 29104; Fig. 7                                                                                                                                                                                                                                                                                                                                                                                   | New Oxford formation 120; Pl. 3              | Dc 25 21; Fig. 5                          |
| Nitrate in ground water 55; Fig. 12; TablesDd 39311, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12Ee 13127North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Ef 1485Car-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 1068Bb 5122Bc 1068Bb 6122Bc 1168Bb 33122Bc 1168Bb 33122Bc 1168Bb 412Bd 369Bd 13103Bd 469Bd 22118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 2104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104, 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                  | Newark group 118; Pl. 3                      | Dd 1 103                                  |
| 11, 12De 187Nitrogen oxide in ground water 48; TablesEe 121; Fig. 511, 12Ee 13127North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25-27Ef 1385Car-Fr-Ad 490Ae 4Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 1068Bb 7122Bc 1068Bb 7122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104, 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrate in ground water 55; Fig. 12; Tables  | Dd 3 93                                   |
| Nitrogen oxide in ground water 48; TablesEe1 $21$ ; Fig. 511, 12Ee13127North Branch Patapsco River, DischargeEe14127records of 260Ee15127Numbering system for wells 5; Pls. 1, 2Ee16126Observation wells and springs 5, 11; Pls. 1,Ef1385 $2$ ; Tables $25-27$ Ef1485Car-Fr-Ad 490Ae4Ad 590Ae9125Af858Bb 121; Fig. 4Ae31Bb 2122Af4Bb 3122Af11Bb 4122Bc10Bb 5122Bc10Bb 6122Bc10Bb 7122Bd3Bb 6122Bd6Bd 13103Bd4Bd 21118Bd6Bd 22118Bd7Bd 369Bd15Bd 46061Bf 7104BdBf 8104BdBf 7104BdBf 8104BdBf 16105; Fig. 25BdBf 17104, 105, 109BeBf 29104; Fig. 7Be15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11, 12                                       | De 1 87                                   |
| 11, 12Ee13127North Branch Patapsco River, Discharge<br>records of 260Ee14127Numbering system for wells 5; Pls. 1, 2Ee16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25-27Ef1385Car-Fr-Ad 490Ae471Ad 590Ae9125Af858Ae2872Bb121; Fig. 4Ae3165Bb 2122Af4125Bb 3122Af4125Bb 4122Bc269, 74Bb 5122Bc1068Bb 7122Bc1068Bb 7122Bc1068Bb 3122Bd369Bd 13103Bd469Bd 21118Bd667, 68; Fig. 16Bd 22118Bd760, 61Bf 2104Bd860, 61Bf 2104Bd973Bf 8104Bd15128Bf 16105; Fig. 25Bd2872Bf 17104, 105, 109Be1091Bf 29104; Fig. 7Be15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nitrogen oxide in ground water 48; Tables    | Ee 1 21; Fig. 5                           |
| North Branch Patapsco River, Discharge<br>records of 260Ee 14127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Ef 1385Car-Fr-KAd 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 1068Bb 7122Bc 1068Bb 7122Bc 1168Bb 3122Bc 1168Bb 7122Bc 1168Bb 7122Bc 1168Bb 7122Bc 1168Bb 13103Bd 469Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104, 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11, 12                                       | Ee 13 127                                 |
| records of 260Ee 15127Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,Ef 13852; Tables 25–27Ef 1485Car-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ac 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 5122Bc 1068Bb 7122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 2104Bd 860, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104, 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | North Branch Patapsco River, Discharge       | Ee 14 127                                 |
| Numbering system for wells 5; Pls. 1, 2Ee 16126Observation wells and springs 5, 11; Pls. 1,Ef 13852; Tables 25–27Ef 1485Car-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 5122Bc 1068Bb 7122Bc 1068Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bf 2104Bd 860, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104, 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | records of 260                               | Ee 15 127                                 |
| Observation wells and springs 5, 11; Pls. 1,<br>2; Tables 25–27Ef 1385 $2;$ Tables 25–27Ef 1485Car-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Ag 1125Bb 5122Bc 269, 74Bb 6122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bf 2104Bd 860, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104, 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Numbering system for wells 5; Pls. 1, 2      | Ee 16 126                                 |
| 2; Tables 25–27Ef 1485Car- $Fr-$ Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 6122Bc 1068Bb 7122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observation wells and springs 5, 11; Pls. 1, | Ef 13 85                                  |
| Car-Fr-Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 6122Bc 1068Bb 7122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104; N05, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2; Tables 25–27                              | Ef 14 85                                  |
| Ad 490Ae 471Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 6122Bc 1068Bb 7122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104; 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Car-                                         | Fr-                                       |
| Ad 590Ae 9125Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 6122Bc 1068Bb 7122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bd 22118Bd 760, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104; Hig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ad 4 90                                      | Ae 4 71                                   |
| Af 858Ae 2872Bb 121; Fig. 4Ae 3165Bb 2122Af 4125Bb 3122Af 11125Bb 4122Bc 269, 74Bb 6122Bc 1068Bb 7122Bc 1168Bb 33122Bd 369Bd 13103Bd 469Bd 21118Bd 667, 68; Fig. 16Bf 2104Bd 860, 61Bf 7104Bd 973Bf 8104Bd 15128Bf 16105; Fig. 25Bd 2872Bf 17104; 105, 109Be 1091Bf 29104; Fig. 7Be 15128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ad 5 90                                      | Ae 9 125                                  |
| Bb 1 $21$ ; Fig. 4Ae $31$ $65$ Bb 2 $122$ Af $4$ $125$ Bb 3 $122$ Af $11$ $125$ Bb 4 $122$ Bc $2$ $69$ , $74$ Bb 5 $122$ Bc $2$ $69$ , $74$ Bb 6 $122$ Bc $10$ $68$ Bb 7 $122$ Bc $11$ $68$ Bb 33 $122$ Bd $3$ $69$ Bd 13 $103$ Bd $4$ $69$ Bd 21 $118$ Bd $6$ $67, 68; Fig. 16$ Bd $22$ $118$ Bd $7$ $60, 61$ Bf $2$ $104$ Bd $8$ $60, 61$ Bf $7$ $104$ Bd $9$ $73$ Bf $8$ $104$ Bd $15$ $128$ Bf $16$ $105; Fig. 25$ Bd $28$ $72$ Bf $17$ $104; 105, 109$ Be $10$ $91$ Bf $29$ $104; Fig. 7$ Be $15$ $128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Af 8 58                                      | Ae 28 72                                  |
| Bb 2 $122$ Af 4 $125$ Bb 3 $122$ Af 11 $125$ Bb 4 $122$ Ag 1 $125$ Bb 5 $122$ Bc 2 $69, 74$ Bb 6 $122$ Bc 10 $68$ Bb 7 $122$ Bc 11 $68$ Bb 33 $122$ Bd 3 $69$ Bd 13 $103$ Bd 4 $69$ Bd 21 $118$ Bd 6 $67, 68; Fig. 16$ Bd 22 $118$ Bd 7 $60, 61$ Bf 2 $104$ Bd 8 $60, 61$ Bf 7 $104$ Bd 9 $73$ Bf 8 $104$ Bd 15 $128$ Bf 16 $105; Fig. 25$ Bd 28 $72$ Bf 17 $104; 105, 109$ Be 10 $91$ Bf 29 $104; Fig. 7$ Be 15 $128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bb 1 21; Fig. 4                              | Ae 31 65                                  |
| Bb 3 $122$ Af $11$ $125$ Bb 4 $122$ Ag $1$ $125$ Bb 5 $122$ Bc $2$ $69$ , $74$ Bb 6 $122$ Bc $10$ $68$ Bb 7 $122$ Bc $11$ $68$ Bb 33 $122$ Bd $3$ $69$ Bd 13 $103$ Bd $4$ $69$ Bd 21 $118$ Bd $6$ $67, 68; Fig. 16$ Bd 22 $118$ Bd $6$ $60, 61$ Bf 2 $104$ Bd $8$ $60, 61$ Bf 7 $104$ Bd $9$ $73$ Bf 8 $104$ Bd $15$ $128$ Bf 16 $105; Fig. 25$ Bd $28$ $72$ Bf 17 $104, 105, 109$ Be $10$ $91$ Bf 29 $104; Fig. 7$ Be $15$ $128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bb 2 122                                     | Af 4 125                                  |
| Bb 4 $122$ Ag 1 $125$ Bb 5 $122$ Bc 2 $69, 74$ Bb 6 $122$ Bc 10 $68$ Bb 7 $122$ Bc 11 $68$ Bb 33 $122$ Bd 3 $69$ Bd 13 $103$ Bd 4 $69$ Bd 21 $118$ Bd 6 $67, 68; Fig. 16$ Bd 22 $118$ Bd 7 $60, 61$ Bf 2 $104$ Bd 8 $60, 61$ Bf 7 $104$ Bd 9 $73$ Bf 8 $104$ Bd 15 $128$ Bf 16 $105; Fig. 25$ Bd 28 $72$ Bf 17 $104, 105, 109$ Be 10 $91$ Bf 29 $104; Fig. 7$ Be 15 $128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bb 3 122                                     | Af 11 125                                 |
| Bb 5 $122$ Bc 2 $69, 74$ Bb 6 $122$ Bc 10 $68$ Bb 7 $122$ Bc 11 $68$ Bb 33 $122$ Bd 3 $69$ Bd 13 $103$ Bd 4 $69$ Bd 21 $118$ Bd 6 $67, 68; Fig. 16$ Bd 22 $118$ Bd 7 $60, 61$ Bf 2 $104$ Bd 8 $60, 61$ Bf 7 $104$ Bd 9 $73$ Bf 8 $104$ Bd 15 $128$ Bf 16 $105; Fig. 25$ Bd 28 $72$ Bf 17 $104, 105, 109$ Be 10 $91$ Bf 29 $104; Fig. 7$ Be 15 $128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bb 4 122                                     | Ag 1 125                                  |
| Bb 6   122   Bc 10   68     Bb 7   122   Bc 11   68     Bb 33   122   Bd 3   69     Bd 13   103   Bd 4   69     Bd 21   118   Bd 6   67, 68; Fig. 16     Bd 22   118   Bd 7   60, 61     Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 9   73     Bf 8   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bb 5 122                                     | Bc 2 69, 74                               |
| Bb 7   122   Bc 11   68     Bb 33   122   Bd 3   69     Bd 13   103   Bd 4   69     Bd 21   118   Bd 6   67, 68; Fig. 16     Bd 22   118   Bd 7   60, 61     Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bb 6 122                                     | Bc 10 68                                  |
| Bb 33   122   Bd 3   69     Bd 13   103   Bd 4   69     Bd 21   118   Bd 6   67, 68; Fig. 16     Bd 22   118   Bd 7   60, 61     Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 9   73     Bf 8   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bb 7 122                                     | Bc 11 68                                  |
| Bd 13   103   Bd 4   69     Bd 21   118   Bd 6   67, 68; Fig. 16     Bd 22   118   Bd 7   60, 61     Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 9   73     Bf 8   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bb 33 122                                    | Bd 3 69                                   |
| Bd 21   118   Bd 6   67, 68; Fig. 16     Bd 22   118   Bd 7   60, 61     Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 9   73     Bf 8   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bd 13 103                                    | Bd 4 69                                   |
| Bd 22   118   Bd 7   60, 61     Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 9   73     Bf 8   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bd 21 118                                    | Bd 6 67, 68; Fig. 16                      |
| Bf 2   104   Bd 8   60, 61     Bf 7   104   Bd 9   73     Bf 8   104   Bd 15   128     Bf 16   105; Fig. 25   Bd 28   72     Bf 17   104, 105, 109   Be 10   91     Bf 29   104; Fig. 7   Be 15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bd 22 118                                    | Bd 7 60, 61                               |
| Bf   7   104   Bd   9   73     Bf   8   104   Bd   15   128     Bf   16   105; Fig. 25   Bd   28   72     Bf   17   104, 105, 109   Be   10   91     Bf   29   104; Fig. 7   Be   15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bf 2 104                                     | Bd 8 60, 61                               |
| Bf   8   104   Bd   15   128     Bf   16   105; Fig. 25   Bd   28   72     Bf   17   104, 105, 109   Be   10   91     Bf   29   104; Fig. 7   Be   15   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bf 7 104                                     | Bd 9 73                                   |
| Bf 16 105; Fig. 25 Bd 28 72   Bf 17 104, 105, 109 Be 10 91   Bf 29 104; Fig. 7 Be 15 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bf 8 104                                     | Bd 15 128                                 |
| Bf     17     104, 105, 109     Be     10     91       Bf     29     104; Fig. 7     Be     15     128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bf 16 105; Fig. 25                           | Bd 28 72                                  |
| Bf 29 104; Fig. 7 Be 15 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bf 17 104, 105, 109                          | Be 10 91                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bf 29 104; Fig. 7                            | Be 15 128                                 |

| Observation     | wells and springs (Continued) |
|-----------------|-------------------------------|
| Be 19           | 71                            |
| Cb 7            | 69                            |
| Ce 7            | 52                            |
| Ce 8            | 52                            |
| Cf 1            | 83                            |
| Cf 17           | 90                            |
| Cf 24           | 75                            |
| Cg 1            | 90                            |
| Ch 1            | 90                            |
| Dc 21           | 64                            |
| Dd 5            | 74                            |
| Dd 6            | 74                            |
| Dd 13           | 65                            |
| Dd 44           | 74                            |
| Dd 46           | 77                            |
| Dd 74           | 72                            |
| Dd 77           | 74                            |
| De 3            | 122                           |
| De 9            | 83                            |
| De 16           | 77                            |
| Df 2            | 89                            |
| Df 15           | 89                            |
| Dg 11           | 90                            |
| Eb 4            | 63                            |
| Eb 7            | 65; Fig. 15                   |
| Eb 8            | 65; Fig. 15                   |
| Ed 58           | 75                            |
| Ee 2            | 83, 89                        |
| Ee 3            | 83                            |
| Ee 4            | 78                            |
| Ef 8            | 91                            |
| Ef 14           | 91                            |
| Ef 22           | 88                            |
| Eg 13           | 93                            |
| Eh 1            | 93, 98, 99, 103               |
| Eh 2            | 93, 98, 99, 102               |
| Fa 49           | 80                            |
| Fb 1            | 64                            |
| Fc 1            | 124                           |
| Fc 6            | 77                            |
| FdI             | 60, 79, 80, 81; Fig. 17       |
| Fd Z            | 79<br>20. E <sup>*</sup> 17   |
| rd 3<br>Ed E    | ou; rig. 17                   |
| ra 5<br>Ed 6    | 80                            |
| FO U<br>EA 7    | 70 80                         |
| FG /            | (2, 00<br>00                  |
| FG 41           | 01                            |
| re 11<br>Ec. 12 | 01                            |
| Fe 13           | 91<br>01                      |
| LG 19           | 71                            |

Observation wells and springs (Continued) Wa-Dj 1 72 Ordovician system 82 Organic material in ground water 55; Fig. 12; Tables 11, 12 Otton, E. G. 5 Owens Creek, Discharge records of 309 Oxygen in ground water 48; Tables 11, 12 Paleozoic rocks 69, 75, 84 Park Mills, Discharge records at 339 Patapsco River 10; Fig. 32 As main drainageway of area 235; Table 28 Patapsco River Basin, Discharge records of 256 Pearson, J. 241 Pegmatite 127; Pl. 3 Pennsylvania Department of Forests and Waters 242 Permeability, Coefficient of 16 Peters Creek quartzite 87; Pl. 3 pH of ground water 56; Tables 11, 12 Phosphate in ground water 55; Fig. 12; Tables 11, 12 Phyllite Harpers 73 Ijamsville 89 Urbana 90 Physiography 8; Figs. 1, 3 Piedmont province 8; Figs. 1, 3 Carbonate rocks of 112; Table 20 Metamorphosed volcanic rocks of 87 Silicate crystalline rocks of 84 Piney Run, Discharge records of 270 Point of Rocks, Discharge records at 283 Pollution of surface water 229 Population of area 5 Porosity of rocks of area 13; Table 4 Potassium in ground water 54; Fig. 12; Tables 11, 12 Potential productive formations 131 Potomac River 10; Fig. 32 As main drainageway of area 235; Table 28 Discharge records of 283 Potomac River Basin, Discharge records of 273 "Potomac marble" See New Oxford formation

Precambrian rocks 10, 63, 84; Pl. 3; Tables 14.27 Precipitation 6; Fig. 2; Table 1 Pressure, Water-level fluctuations caused by change in 24 Previous investigations 4 Price current meter 233; Pl. 4 Pumping, Relation to cone of depression 25 Pumping tests 33 Purpose of report 2 Pygmy current meter 233; Pl. 4 Pyroxenite 126 Quality of ground water 47, 53; Fig. 12; Tables 8, 11, 12 Antietam quartzite 75 Aporhyolite 69 Cambrian rocks 69 Catoctin metabasalt 67 Frederick limestone 82 Gettysburg shale 126 Gneiss 64 Granodiorite 64 Grove limestone 84 Harper phyllite 74 Ijamsville phyllite 90 Libertytown metarhyolite 89 Loudoun formation 71 Marburg schist 103 New Oxford formation 124 Peters Creek quartzite 87 Sams Creek metabasalt 89 Silver Run limestone 118 Urbana phyllite 91 Wakefield marble 117 Weverton formation 72 Wissahickon formation 111 Quality of surface water 241; Tables 30, 31 Quarrying as industry 5 Quartzite Antietam 75 Peters Creek 87 Sugarloaf Mountain 92 Quaternary deposits 10, 128; Pl. 3 Radiochemical analyses of ground water 57; Table 13 Radioelements in ground water 57; Table 13 Rainwater analyses 47; Table 10 Rating curve 233; Fig. 31 Recharge 19; Figs. 4, 5 Records Discharge 253

Records (Continued) Wells and springs 132; Pls. 1, 2; Tables 25, 26, 37, 38 Recorder, Water-temperature 242 Recorder charts, Water-stage 231; Fig. 30 References 343 Reistertown, Discharge records near 262 Relation of chemical quality of ground water to use 53 Relation of yield of wells to depth 40; Figs. 9, 14; Tables 8, 10 Relation of yield of wells to depth of weathering 45; Table 9 Relation of yield of wells to rock type 40; Fig. 8: Table 7 Relation of yield of wells to topography 42; Fig. 11; Table 8 Resources Ground-water 1 Surface-water 229 Rock type, Relation to yield of well 40; Fig. 8: Table 7 Role of surface water in early history of area 236 Rotary method of drilling wells 27, 31 Runoff 22, 230 Characteristics of 246 Sams Creek metabasalt 87; Pl. 3 Sandstone, Newark group 118 Sayre, A. N. 5 Schists 84, 92, 126 Marburg 92 Wissahickon 86, 103 Scope of report 2 Scotford, D. M. 4, 73, 92 Schumacher, R. L. 76 Sedimentary rocks, Metamorphosed 69 Selection of site for gaging station 233 Serpentine 126; Pl. 3 Setters formation 86; Pl. 3 Shale Gettysburg 124 Newark group 118 Silica in ground water 53; Tables 11, 12 Silicate crystalline rocks 84 Siltstone, Newark group 118 Silver Run limestone 117; Pl. 3 Singer, I. A. 59 Smith, G. K. 241 Sodium in ground water 54; Fig. 12; Tables

11.12

Sokoloff, V. P. 47 Source of ground water 25 Source of water discharged from springs 28 Sources of minerals in ground water 47 South Branch Patapsco River, Discharge records of 268 Specific capacity of well 28 Specific vield 16 Specific-capacity tests 33, 34; Fig. 7 Springs Observation See Observation wells and springs Records of 132; Pls. 1, 2; Tables 25, 26, 37, 38 Source of water discharged from 28 Stage of stream (Definition) 231 Stage-discharge relation (Definition) 231 Stallman, R. W. 123 State Water Resources Law 33 Stations, Streamflow measurement 11, 231, 244; Fig. 32; Table 33 Stearns, N. C. 21 Step tests 36; Fig. 7 Stone (Crushed) as commercial product 5 Storage 19 Coefficient of 19; Table 6 Stose, A. J., and Stose, G. W. 4, 63, 70, 71, 73, 74, 82, 87, 88, 89, 92, 113, 117, 126 Stratigraphy 10; Pl. 3 Streamflow measurement, History of 244 Streamflow measurement stations 11, 231, 244; Fig. 32; Table 33 Structure 10; Pl. 3 Relation to yield of wells Table 7 Structure of formations See Lithology and structure Studies of flow duration 247; Fig. 34; Table 36 Sugarloaf Mountain quartzite 92; Pl. 3 Sulfates in ground water 48, 55; Fig. 12; Tables 11, 12 Sulfur dioxide in ground water 48; Tables 11, 12 Surface water Quality 241; Tables 30, 31 Resources 229 Role in early history of area 236 Temperatures 242; Table 32 Utilization 236 Susquehanna River as main drainageway of area 235 Swift Run formation 64; Pl. 3

Sykesville, Discharge records near 270 Sykesville formation 126; Pl. 3 System of numbering wells 5; Pls. 1, 2 Taneytown, Aquifer and well-performance tests at 122; Fig. 29 Temperature of area 6; Fig. 2; Table 2 Temperature of ground water 58; Figs. 13, 14; Tables 25, 26 Relation to use 53 Temperature of rocks 48 Temperature of surface water 242; Table 32 Terrace deposits 129 Test holes Mount Airy 93; Figs. 18-22 Taneytown 122; Fig. 29 Testing for interference between wells 26 Tests on temperature of ground water 48 Tests to determine yield of wells 33 Theis, C. V. 17, 37, 39, 102 Theis formula 37 Thickness of formations See Lithology and structure Thomas, B. K. 4, 73, 92, 95 Thomas and Co. 5 Aquifer and well-performance tests at well of 79 Tomstown dolomite 76; Pl. 3 Topography of area 235; Fig. 3 Relation to yield of wells 42; Fig. 11; Table 8 Transmissibility, Coefficient of 16; Table 6 Triassic rocks 10, 118; Pl. 3 Types of wells 31 U. S. Geological Survey 4, 5, 8, 48, 57, 231, 241, 242, 255 U. S. Public Health Service 54 U. S. Soil Conservation Service 11 U. S. Weather Bureau 11 Urbana phyllite 90; Pl. 3 Use of ground water 30; Table 5 For cooling 58 Relation to chemical quality 53 Use of ground water analyses to distinguish geologic contacts 48 Utilization of surface water 236 Valleys as favorable locations for wells 44; Fig. 11 Volcanic rocks, Metamorphosed 87 Wakefield marble 45, 113; Pl. 3 Water-bearing properties of formations Fig. 8; Tables 3, 7, 9, 14, 16, 19, 27 Alluvial cones 128 Antietam quartzite 75

### 354

Water-bearing properties of formations (Continued) Aporhyolite 67 Baltimore gneiss 85 Cambrian formations 69 Catoctin metabasalt 65 Cockeysville marble 113; Table 20 Diabase 128 Frederick limestone 78 Gettysburg shale 125 Gneiss 63 Granodiorite 63 Grove limestone 83 Harpers phyllite 73 Ijamsville phyllite 90 Libertytown metarhyolite 89 Loudoun formation 71 Marburg schist 92 Metagabbro 126 New Oxford formation 121 Newark group 119 Paleozoic rocks 69 Pegmatite 127 Peters Creek quartzite 87 Precambrian rocks 62 Quaternary deposits 128 Sams Creek metabasalt 88 Serpentine 126 Setters formation 86 Silver Run limestone 118 Sugarloaf Mountain quartzite 92 Swift Run formation 64 Sykesville formation 127 Terrace deposits 131 Tomstown dolomite 77 Triassic system 118; Table 22 Urbana phyllite 91 Wakefield marble 114 Weverton formation 72 Wissahickon formation 86, 103 Water-level fluctuations caused by change in pressure 24 Water-stage recorder charts 231; Fig. 30 Water-supply systems in area 238; Table 29 Water table, Effect of pumping on 105 Water-table aquifer (Definition) 23 Water-temperature recorder 242 Water-year (Definition) 231 Weathering of formations See Lithology and structure Relation of yield of well to depth of 45; Table 9

Well construction As factor in yield 27 Methods 27 Well data, Analyses of 39 Well evaluation by pumping tests 33 Well hydraulics 27 Well Law 33 Well-completion report 33; Fig. 6 Well-performance test Aporhyolite 68; Fig. 16 Frederick limestone 78; Fig. 17; Tables 17, 18 Marburg schist 93; Figs. 18, 19 New Oxford formation 122; Fig. 29 Wakefield marble 115; Fig. 27; Table 21 Weverton 72 Wissahickon formation 104; Figs. 23-26 Wells Control of yield by characteristics of aquifer 27 Interference between 26 Logs of Table 27; see also Water-bearing properties and logs Numbering system of 5; Pls. 1, 2 Observation See Observation wells Records of 132; Pls. 1, 2; Tables 25, 26 Types of 31 Yields of See Water-bearing properties and Yield Wenzel, L. K. 38 Westminster Aquifer and well-performance tests at 115; Fig. 27; Table 21 Discharge records near 256 Weverton quartzite 71 Whitaker, J. C. 4, 71, 72, 73 Wissahickon formation 86, 103; Pl. 3 Yellow Springs, Aquifer and well-performance tests at 72 Yield of wells 28; Tables 14, 21; see also Water-bearing properties Influence of type of aquifer on 27 Relation to depth of weathering 45; Table Relation to depth of well 40; Figs. 9, 14; Tables 8, 10 Relation to rock type 40; Table 7 Relation to topography 42; Fig. 11; Table 8 Zinc in ground water 54; Fig. 12; Tables 11, 12











