

STATE OF MARYLAND BOARD OF NATURAL RESOURCES DEPARTMENT OF GEOLOGY, MINES AND WATER RESOURCES JOSEPH T. SINGEWALD, JR., Director Bulletin 5

THE WATER RESOURCES OF ANNE ARUNDEL COUNTY

THE SURFACE-WATER RESOURCES By V. R. Bennion

THE GROUND-WATER RESOURCES By J. W. Brookhart

BALTIMORE, MARYLAND 1949

COMPOSED AND PRINTED AT THE WAVERLY PRESS, INC. BALTIMORE, MD., U. S. A.

COMMISSION ON GEOLOGY, MINES AND WATER RESOURCES

ARTHUR B. STEWART,	Cha	irma	п.	 	 		Baltimore
HOLMES D. BAKER.				 	 		Frederick
HARRY R. HALL				 	 	• •	Hyattsville
JOSEPH C. LORE, JR.				 	 		Solomons Island
MERVIN A. PENTZ .				 	 		Denton

PREFACE

The Anne Arundel County report in the series of county reports was published in 1916, long before a systematic study of the water resources of the State had been started. In 1945, investigations of the ground-water resources of Southern Maryland were initiated. The first report on the results of these investigations covered Charles County and was published in 1948 as a part of the Charles County report. This bulletin on the Water Resources of Anne Arundel County serves to supplement the 1916 Anne Arundel County report.

The bulletin is based on investigations conducted jointly by the Maryland Department of Geology, Mines and Water Resources and the United States Geological Survey.

Stream-flow measurements were first made in Anne Arundel County in 1931. There are now 5 stream gaging stations in the county. The section on the Surface-Water Resources tabulates the stream-flow measurements that have been made in Anne Arundel County. This part of the report was prepared by Mr. V. R. Bennion, District Engineer of the United States Geological Survey.

The major part of the report presents the results of the ground-water investigation in the County and was prepared by Mr. J. W. Brookhart of the cooperative ground-water staff. It lists and gives the locations of about 600 water wells in Anne Arundel County. Data on the sub-surface formations and the waterbearing beds are presented in the drillers' logs of 153 wells and in the descriptions of well cuttings of 8 wells. The depths of the two principal water-bearing sands are given on county contour maps. The quality of the water in the various water-bearing sands is shown in 103 water analyses.

The physical character of the sub-surface formations is described in the text. These descriptions may be supplemented by the fuller descriptions of these formations in the systematic reports previously published. These are, in descending order of the formations, the Pliocene and Pleistocene (1906), the Miocene (1904), the Eocene (1901), the Upper Cretaceous (1916), and the Lower Cretaceous (1911). Additional information on the Eocene is contained in Bulletin 3 (1948), Eocene Stratigraphy and Aquia Foraminifera.

The areal distribution of the formations is shown on the geologic map of Anne Arundel County published in 1916. Surface elevations are shown on the county topographic map published in 1948.

The data presented in this report enable a well driller and prospective well owner to determine the depths at which ground-water may be obtained, the quantity of water obtainable, and the probable quality of the water. However, the Department of Geology, Mines and Water Resources can be called upon at any time for such information.

v

JOSEPH T. SINGEWALD, JR., Director.

CONTENTS

PREFACE.	V
THE SURFACE-WATER RESOURCES. By V. R. Bennion	
General	
Stream flow measurement stations	
Establishment and construction	
Operation and maintenance	
Computation and preparation of records for publication	
Surface-water resources of Anne Arundel County.	
Gaging stations	
Surface-water records	12
THE GROUND-WATER RESOURCES. By J. W. Brookhart	28
Abstract.	
Introduction	
Location of the area.	
Purpose, scope, and methods of the investigation.	
Physical features	
Previous investigations.	31
Acknowledgments	
Source of maps	31
General principles of the occurrence of ground water	32
Porosity of rocks	32
Permeability of rocks	32
Zone of saturation and water table.	32
Zone of aeration and recharge of ground water	
Artesian conditions	
Natural discharge of ground water	
Discharge by seepage and springs	34
Discharge by evaporation and transpiration	
Artificial discharge of ground water	
Discharge by artesian flow	35
Discharge by pumping	
Pumping tests	37
Geologic formations and their water-bearing properties	38
Pre-Cambrian Crystalline rocks	
Cretaceous system.	38
Lower Cretaceous series (Potomac group)	
Patuxent formation	
Quality of water	
Arundel formation	
Patapsco formation	
Quality of water	
Possibility of salt-water contamination	
Pumping tests	44

Contents

Upper Cretaceous series
Raritan formation
Magothy formation
Quality of water
Matawan formation
Monmouth formation
Tertiary system
Eocene series.
Aquia formation
Quality of water
Nanjemoy formation
Miocene series
Calvert formation
Choptank formation
Quaternary system
Pleistocene series.
Terrace deposits
Quality of water
Water-level fluctuations.
References cited

LIST OF TABLES

Table

1.	Geologic formations in Anne Arundel County, Maryland	39
2.	Records of wells in Anne Arundel County	56
3.	Drillers' logs of wells in Anne Arundel County	86
4.	Logs of wells in Anne Arundel County from which well-cuttings samples were	
	obtained	137
5.	Chemical analyses of ground water in Anne Arundel County	140

LIST OF FIGURES

ligu	re	
1.	The Hydrologic Cycle and How It is Measured	2
2.	Graphs of River Stage Produced by a Water Stage Recorder	6
3.	Typical Rating Curve Showing Relation between Stage and Discharge at a	
	Stream-gaging Station	7
4.	Extremes of Discharge in North River Near Annapolis.	10
5.	Location of the Area and Physiographic Provinces of Maryland	30
6.	Graph Showing Daily Water-level fluctuation in Well Ce 49 Due to Tide	36
7.	Section A-A' across Anne Arundel County Showing Approximate Positions of	
	Geologic Formations.	40
8.	Graph Showing Theoretical Drawdown by Pumping	45
9.	Graph Showing Water-level Fluctuation in Patapsco Formation	53
10.	Graph Showing Water-Level Fluctuation in Aquia Formation	54

LIST OF PLATES

1.	Fig. 1Stream Flow Measurement Station on Antietam Creek near Sharpsburg, Md.	4
	Fig. 2.—Automatic Water-Stage Recorder and Engineer Making Inspection	4
2.	Fig. 1Standard Price Current Meter and Pygmy Meter, Suspended on Wading	
	Rods Used to Measure Discharge	5

Contents

	Fig. 2 Equipment Used in Making Discharge Measurements from Bridge 5
3.	Map of Anne Arundel County showing location of water wells and section A-A' In pocket
4.	Road cut in the Patapsco formation near Linthicum, Baltimore County 42
5.	Map of Anne Arundel County showing by contours the approximate altitude of the
	top of the water-bearing sand in the Magothy formation In pocket
6.	Map of Anne Arundel County showing by contours the approximate altitude of the
	Aquia formation In pocket
7.	Contact between the Marlboro clay member and glauconitic sand of the Nanjemoy
	formation near Collinsons Corner 51

THE WATER RESOURCES OF ANNE ARUNDEL COUNTY

THE SURFACE-WATER RESOURCES

ΒY

V. R. BENNION

GENERAL

Water is the natural resource most vital to man's existence. It determines those places on the face of the earth where he can live. If there is insufficient water, as in the desert, he cannot live, or if there is too much water or a continual threat of it, as in the flood plains of the streams, he cannot live except in fear of his life. Without water the average man would live but a few days, and most of the modern industrial processes would cease operation immediately.

Many of the people of this country, and especially those in the eastern section, seem to assume that the water supply is inexhaustible. As a matter of fact, the water supply is definitely limited, and already in many places its scarcity has become an acute problem and it has been necessary to establish laws governing the use and conservation of this valuable resource. The quantity of available water in any region varies from year to year, month to month, and day to day, and it cannot be adequately determined by measurements covering a period of only a few months or even of a few years. The immediate source of nearly all water is precipitation from the clouds, and the wide variations in this factor are known to all. The relation between rainfall and the resulting surface-water and ground water supplies is also variable and complex; therefore, the records of rainfall alone do not serve as a measure of the water supply available for use.

The earth has a fixed amount of water which circulates in an endless cycle maintained in approximate balance by processes, the principal of which are precipitation, evaporation, transpiration from vegetation, and runoff in streams. This vast movement of water from the atmosphere to the land, from the land to the ocean, and from land and ocean back to the atmosphere is known as the hydrologic cycle. Figure 1 illustrates the operation of the hydrologic cycle and the methods used in measuring some of its factors.

The water resources of principal concern to man as sources of supply may be classified as surface water and ground water. Surface water is the water resting on the earth's solid surface, such as streams, lakes and ponds. Ground water is the water that accumulates in the ground below the water table. Although both

WATER RESOURCES OF ANNE ARUNDEL COUNTY

surface water and ground water originate from precipitation, there is a distinct difference in their occurrence and behavior and the methods and science involved in their investigation and utilization are also distinctive. Ground-water investigation and utilization are discussed in another section of this report.

Surface water is easily accessible and has a wide variety of uses including potentialities for producing power. The force of gravity causes surface water to flow along the path of least resistance, as long as the ground surface is sloping or until it is halted by some barrier to form a lake or pond. Essential to consider-

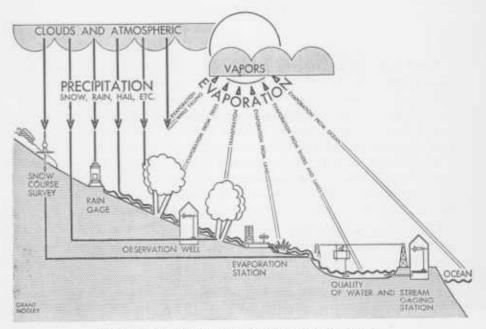


FIGURE 1. The Hydrologic Cycle and How It Is Measured

ing the utilization of surface water is a knowledge of the quantity and quality of the water, the topography of drainage basin, the type of soil, and the land use practices.

The development of any region is directly dependent upon the availability of an adequate water supply. The history of any country or community has shown the importance of water resources, and the future development and expansion will depend to a great extent on the wise use of these resources. Generally, as a community develops in density of population and scope of industry, little thought is given to the prospect that there may not be sufficient water in nearby stream sources to satisfy the demands. There comes a time when it is found necessary to extend its water supply system to more distant streams.

2

SURFACE-WATER RESOURCES

Many of the larger cities of the country are faced with an acute water problem today that threatens to stall their future development.

Streams may serve a community in several ways. Many streams are used as a municipal water supply, as a source of water for industrial uses, and for sewage disposal. Streams have an important role in the conservation of fish and wildlife. A recreational area would not be complete unless there was a good lake, pond, or stream for boating, fishing and swimming. Improvement of streams and adjacent areas and the construction of artificial ponds and pools contribute importantly to the program of recreation and to the conservation of fish and wildlife. In recent years greater attention has been directed to this improvement and the efforts of conservationists have produced good results. However many of our scenic streams are laden with waste and pollution which have resulted in the killing of vegetable and fish life. Under favorable conditions streams purify themselves in a relatively short distance, but when they become overloaded with pollution, the bacteria supplied by nature for purification are killed, the natural oxygen content of the water is depleted, and a so-called dead river results.

Streams are subject to great fluctuation of flow, depending upon the amount and intensity of the precipitation, and during floods a large portion of the water runs off without serving any useful purpose. In addition, the periodic flood damage to cities, highways, and other developments is tremendous. Much of this damage can be averted if there is proper planning and adequate knowledge of stream flow at the time the developments are made. In the early days, cities and municipalities were nearly all located along a stream so as to have a readily accessible water supply or means of transportation. As the towns grew into cities, the flood plains of the stream were encroached upon by structures of all kinds. The stream was crowded into a narrow channel of insufficient size to carry the flood flows, with resulting large flood damages in each major flood. In order to reduce or eliminate these damages, it is necessary to build flood control works, and these cannot be properly designed unless a record of the stream flow is available for a sufficient number of years to determine the flood-flow characteristics of the stream.

STREAM-FLOW MEASUREMENT STATIONS

The collection of systematic records of stream flow may be classified or divided into three major units: (1) establishment and construction of stream-flow measurement stations; (2) operating and maintaining those stations; and (3) computing, compiling and preparing stream-flow data for publication.

Establishment and Construction

Before a stream-flow measurement station is established or constructed, a general reconnaissance is made of the stream, in the reach where such records

WATER RESOURCES OF ANNE ARUNDEL COUNTY

are needed, to determine the most suitable site. This survey is facilitated by an examination of topographic maps and all other maps of the area to determine the accessibility of the stream in all kinds of weather and for all stages of the stream. Tentative sites are generally indicated on the maps prior to an actual field survey. When the field reconnaissance is made the various sites indicated on the maps are examined in detail to determine the best one. Consideration should be given to the channel characteristics in the vicinity of each proposed site with particular reference to the hydraulic conditions necessary for maintaining a fixed relation between stage and discharge at the gage. The selection of a suitable cross section of the stream for making discharge measurements at various elevations of the stream and the proper placing of gages with respect to the measuring section and to that part of the channel which controls the stagedischarge relation are some of the factors to be considered in selecting the best site for a stream-measurement station.

The construction of a stream-measurement station includes all the work pertaining to the installation of some type of gage to determine the fluctuations of the stream. If the gage is to be read by a local resident once or twice daily, and more often during periods of rapidly changing stage, generally a staff gage or wire-weight gage is installed so that it will register the height of the water at all stages and be readily accessible to the observer. If the record of the stage is to be obtained automatically by a recording instrument, it is necessary to construct a gage well and shelter. The structure is either located on the bank or attached to a bridge pier. It must be deep enough in the ground to be below the lowest possible stage and high enough to be above the highest expected stage and must be accessible for all stages of the stream. The gage well is connected to the stream by one or more pipes, and the water in the well fluctuates the same as the stream. The type of instrument generally used to record the stage is designed to produce a graphic record of the rise and fall of the stream with respect to time and is called a water-stage recorder. In order to check elevation of gages and to be able to reset them to the correct datum in case they are disturbed by floods, ice, or vandals, reference marks are established on some permanent object, such as rock outcrops, bridge abutments, or specially constructed concrete monument.

In addition to installing a device to obtain a record of stage, it is necessary to have suitable facilities from which to make measurements of the amount of water in the stream for all stages. If there is a suitable bridge available near the gage, it may often be utilized. In the event such a structure is not available, it is the usual practice to construct a cableway across the stream sufficiently high so that all the flood flow will pass under the cable. On this cable is installed a small car to carry the engineer and the necessary measuring equipment. For low stages, stream-flow measurements are often made by wading at a favorable section of the stream near the gage.

GEOLOGY, MINES AND WATER RESOURCES

PLATE 1-Fig. 1. Stream Flow Measurement Station on Antietam Creek near Sharpsburg, Md.

PLATE 1-Fig. 2. Automatic Water-stage Recorder and Engineer Making Inspection

GEOLOGY, MINES AND WATER RESOURCES

BULLETIN 5 PLATE 2

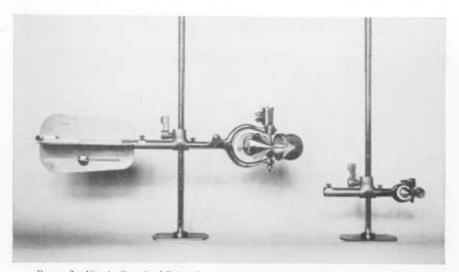


PLATE 2—Fig. 1. Standard Price Current Meter and Pygmy Meter, Suspended on Wading Rods, Used to Measure Discharge

PLATE 2-Fig. 2. Equipment Used in Making Discharge Measurements from Bridge

SURFACE-WATER RESOURCES

For smaller streams it is often desirable to improve the channel condition in the vicinity of the gage by removing logs or other debris. Quite often a weir or dam is built just below the gage to stabilize the stage-discharge so that it remains constant or nearly so. A concrete shelter for a water-stage recorder over a 5-foot square well, a cableway, and a concrete control at the gaging station on Antietam Creek near Sharpsburg, Md., are shown in Plate 1, fig. 1.

Operation and Maintenance

If the stream flow measurement station is not equipped with an automatic water-stage recorder, the elevation of the water on the gage is generally read twice a day by a person living near the station. His readings are recorded in a special notebook. He not only records the stage reading, but also the time the reading was made and any unusual conditions. These books hold readings for a three-month period and are transmitted to the central office after they have been filled. This constitutes the stage record, one of the basic components of stream-flow records. At times a reliable gage reader cannot be located or the stream may fluctuate, as by regulation by a mill, so that two readings a day are not sufficient to define the stage. The factor of personal or human errors is one of the large problems that is encountered in obtaining a reliable record by this type of installation. Automatic recording instruments have the advantage that they record an accurate and continuous record of the stage and result in a higher degree of accuracy. The recorder graphs are removed from the machine at regular intervals, usually about once a month. Plate 1, fig. 2, shows an automatic recorder in operation. The instrument is periodically checked by an engineer to see that everything is in good condition.

An engineer makes an actual determination of the amount of water flowing in the stream at each periodic visit. The measurement is made by the areavelocity method by means of an instrument called a current meter which is used to obtain the velocity of the stream at numerous selected points in the cross section. At each point he observes the velocity, obtains the depth, and records the distance of the point from some fixed point or edge of the stream. These flow measurements are made by wading if the stage is low or from bridge cableway, boat, or ice. Plate 2, figs. 1 and 2, show the type of current meters commonly used and equipment used to make a discharge measurement from a bridge. The purpose of making flow measurements is to define the stage-discharge relation. These measurements are distributed from the lowest to the highest stages of the stream. During periods of critical stream flow, either flood or drought, the gaging stations are visited to assure a satisfactory record.

Computation and Preparation of Records for Publication

A few technical terms are commonly used in the presentation of stream-flow records. As some of these terms may be unfamiliar, brief explanations follow:

Second-foot.—A measure of rate of flow of water—20 second-feet is 20 cubic feet of water flowing past a given point in every second.

Acre-foot.—A measure of volume—the quantity of water necessary to cover an acre to a depth of one foot.

Discharge.—Rate of flow of water, usually expressed in second-feet, gallons per minute, or gallons per day. One second-foot flowing for one day equals 86,400 cubic feet, equals 646,317 gallons, equals about 2.0 acre-feet.

Runoff.-The portion of precipitation that appears as flow in the stream,

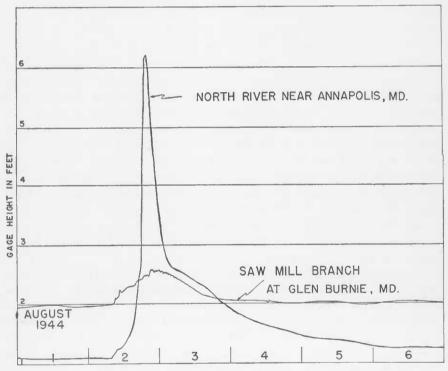


FIGURE 2. Graphs of River Stage Produced by a Water Stage Recorder

usually expressed in inches of water depth. For example, one inch of runoff means that if all the water draining from an area were uniformly distributed over the area, the layer of water would be one inch deep.

Second-foot-day .- One second-foot flowing continuously for one day.

Water year.—A special annual period selected to facilitate water studies, usually October 1 to September 30.

Watershed or drainage basin.—The area drained by a stream or stream system, usually expressed in square miles.

At periodic intervals, generally at the end of each water year, the field data

6

SURFACE-WATER RESOURCES

collected during that year are analyzed and prepared for publication. The daily gage heights are computed by averaging the gage heights for each day. For a stream-flow station not equipped with automatic recorder, this is generally done by computing the arithmetical average of daily readings for days when stage of the stream did not fluctuate too widely. For days of rapidly changing stage a graph is drawn through the readings to approximate the shape of the hydrograph, and the mean stage is obtained from the graph. For stations

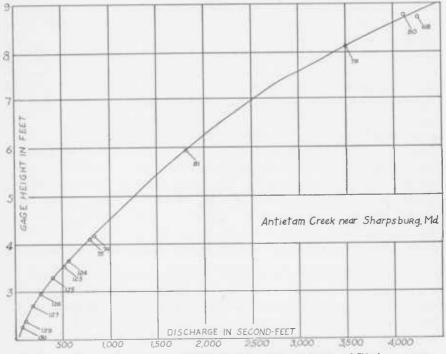


FIGURE 3. Typical Rating Curve Showing Relation between Stage and Discharge at a Stream-gaging Station

equipped with an automatic recorder, the mean daily gage heights are computed direct from the recorder graph. Figure 2 shows a typical graph made by a water-stage recorder at two gaging stations in Anne Arundel County during the same period. Note the difference in the magnitude of each graph for the same storm.

The data of the discharge measurements are tabulated on suitable cross section paper. The gage heights or stages of the measurement are plotted against the respective discharges, and a smooth curve averaging all the points is drawn. This is known as the rating curve and defines the stage-discharge relation (Figure 3). A table of stage and corresponding discharge is prepared from the

WATER RESOURCES OF ANNE ARUNDEL COUNTY

curve. This table is called the rating table. If the stage-discharge relation changes it is necessary to develop additional rating curves and rating tables for each change. These new curves are based on additional groups of discharge measurements.

The daily gage heights are listed on a form and the daily discharge is computed for each day by entering the gage height in the rating table. The daily discharge is computed in second-feet or occasionally in gallons per day.

Stream-flow records are published annually in the series of Water Supply Papers of the U.S. Geological Survey. These data consist of a short description (giving location of gaging station, drainage area, records available, extremes of discharge during water year and period of record, remarks giving the accuracy of the records and explaining any unusual conditions), table of daily discharge and table of monthly discharge. The table of monthly discharge includes secondfoot days, maximum and minimum daily discharge, average discharge, discharge per square mile, and runoff in inches or acre-feet. These publications make available, in statistical form, a permanent record of the stream flow for a given year. Many states issue bulletins containing compilation of records; for example, a bulletin may be published every ten years containing a concise summary of stream-flow records and related data during that period. Maryland has two such compilation reports; "Flow data and draft storage curves for major streams in Maryland-1927-39" published by the State Planning Commission and the Water Resources Commission and "Bulletin 1, Summary of Records of Surface Waters of Maryland and Potomac River Basin-1892-1943" published by the Department of Geology, Mines and Water Resources.

SURFACE WATER RESOURCES OF ANNE ARUNDEL COUNTY

The principal streams of this county are the Patuxent River along most of the western boundary; Patapsco River along part of the northern boundary; Magothy River, which drains the northeastern section; Severn River, which drains the northcentral section; and South River, which drains the central section. The southern part of the county is mainly drained by Rockhole Creek, West River, and Lyons Creek. The entire county is part of the west Chesapeake Bay drainage. The more important streams and their drainage areas in Anne Arundel County are:

Streams in Anne Arundel County

Stream	Drainage area (sq. mi.)
Curtis Creek.	35.7
Little Patuxent River.	161.0
Lyons Creek	19.5
Magothy River	39.9
Rockhole Creek	
Severn River	68.9
South River	66.1
West River	32.4

8

SURFACE-WATER RESOURCES

Practically all of the streams are tidal for several miles above their mouths. There are no large streams flowing through the county. All of the streams are small and in general only a few miles in length, that is, even the larger streams are composed of numerous small streams generally flowing into a common drainage basin in the tidal section of the main stream. The slopes of the drainage basins are flat and many of the streams flow through swamp areas. During periods of medium and high flows the streams overtop the low banks and flow over a wide flood plain. This general characteristic tends to reduce the peak discharges and increase the low water flow.

The county is divided into two general drainage areas; the western portion drains directly into the Patuxent River, which in turn drains into the Chesapeake Bay nearly 30 miles further south, at the south end of Calvert County. The eastern portion drains directly into the Chesapeake Bay through several small river basins.

The topography of Anne Arundel County consists of low rolling hills in the western part, which gradually become flatter from west to east. For several miles inland from the Chesapeake Bay the land is flat with poor drainage. Practically no attempts have been made to drain the swamp areas.

Gaging Stations

Five gaging stations are being maintained in this county. All of the gaging stations are on small streams which might be used for domestic or industrial water supplies. The following is a list of the gaging stations operated in Anne Arundel County by the U. S. Geological Survey in cooperation with the Maryland Department of Geology, Mines and Water Resources and Maryland municipalities.

Station	Drainage area	Records
Bacon Ridge Branch at Chesterfield	6.9	1942
Dorsey Run at Annapolis Junction		1948
Little Patuxent River at Savage	98.4	1939
North River near Annapolis	8.5	1931
Sawmill Branch at Glenburnie	5.1	1944

Only the North River gaging station has been in operation long enough to use as an index for other streams in Anne Arundel County. This record is continuous since 1931. Using it as an index, the mean annual runoff for streams in this county would be about 1.4 second-feet per square mile or about 900,000 gallons per day per square mile. The minimum annual runoff is about 0.9 and the maximum about 1.9 second-feet per square mile or 580,000 and 1,200,000 gallons per day per square mile, respectively. The maximum instantaneous discharge at the gaging station on North River since 1931 occurred Aug. 2, 1944, with a dis-

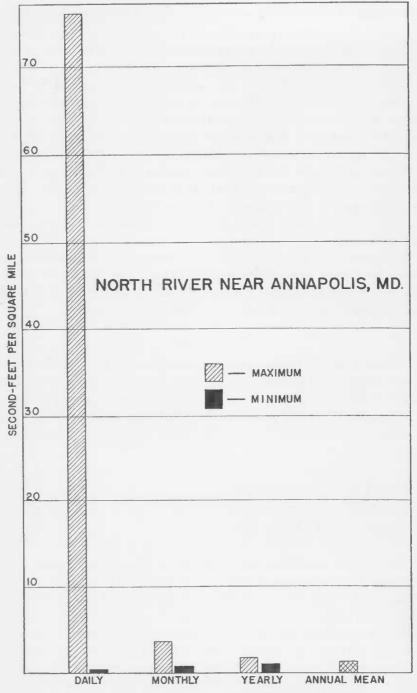


FIGURE 4. Extremes of Discharge in North River near Annapolis

10

SURFACE-WATER RESOURCES

charge of about 590 second-feet per square mile or 4,400 gallons per second per square mile; and the minimum instantaneous discharge occurred Sept. 1, 2, 4, 1932 in the amount of about 0.2 second-foot per square mile, or about 1.5 gallons per second per square mile. The records for this station do not include the great drought of 1930. The minimum annual discharge and instantaneous minimum discharge records would be lower had that period been included.

The records obtained at the gaging stations on Sawmill Creek at Glenburnie and Bacon Ridge Branch at Chesterfield are too short to attempt to determine the safe yield of these two streams. No records have yet been computed for the station on Dorsey Run at Annapolis Junction. For the station on Little Patuxent River at Savage, there are continuous records since 1939, which is too short a period to use for safe design of hydraulic projects. Also, the drainage area above this station is all outside Anne Arundel County and has a different type of topography and soil. However, for comparison, the mean annual discharge for the Little Patuxent River at Savage is about 0.9 second-feet per square mile or about 580,000 gallons per day per square mile. The minimum annual runoff is about 0.6 and the maximum about 1.2 second-feet per square mile, or 380,000 and 740,000 gallons per day per square mile. The yield of this stream is considerably different, therefore, than for North River. The records for the station on Little Patuxent River do not include any of the drought years, which occurred between 1930 and 1934. It would be very risky to use the records for the Little Patuxent River to help solve many of the supply or other hydraulic problems in Anne Arundel County, due to the short period of record and different type of drainage basin.

It must be borne in mind that the data given are annual averages. The minimum and maximum daily, weekly, or monthly will vary much more widely. Figure 4 indicates this variation. This rough computation indicates, however, that if sufficient reservoir capacity can be provided for storage over extended periods, there is ample supply of surface water for domestic and small industrial uses in this county. Due to the small size of the streams there would not be sufficient water in any one stream to supply sufficient surface water to a large industrial development unless such an industry could utilize the salt water in the tidal reaches of the streams. Swamps act as a natural reservoir, and they tend to reduce the peak flows and increase the low water flow. In other words, the swamps act as a flow-stabilizing agent, which should be taken into consideration when water supplies are investigated in this county. There are no factual data on the chemical quality of these waters such as are desirable prior to any domestic or industrial development.

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY

PATAPSCO RIVER BASIN

Sawmill Creek at Glenburnie, Md.

Location.—Water-stage recorder and concrete control, lat. 39°10'12", long. 76°37'51", 300 feet upstream from bridge on State Highway 301 and 0.5 mile northeast of Glenburnie, Anne Arundel County.

Drainage area. - 5.1 square miles.

Records available.- May 1944 to September 1948.

Extremes.—Maximum discharge, 47 second-feet Sept. 13, 1944 (gage height, 2.70 feet); minimum, 2.7 second-feet Feb. 20, 1947 (gage height, 1.85 feet). Flood of August 1933 reached a stage of about 4 feet.

Monthly discharge of Sawmill Creek at Glenburnie, Md.

N	I	Discharge in	Runoff in	Discharge in million gallons			
Month	Maximum	Minimum	Mean	Per square mile	inches	per day per square mile	
1944							
May 11-31	7.5	6.0	6.45	1.26	0.99	0.814	
June.	15	5.4	6.28	1.23	1.37	. 795	
July	7.5	4.9	5.49	1.08	1.24	. 698	
August	19	4.5	5.79	1.14	1.31	.736	
September	26	4.3	6.26	1.23	1.37	. 795	
1944–45							
October	16	5.4	6.95	1.36	1.57	.879	
November	13	5.7	6.84	1.34	1.50	.866	
December	15	6.5	7.33	1.44	1.66	.930	
January	18	7.2	8.58	1.68	1.94	1.09	
February	11	6.8	7.98	1.56	1.63	1.01	
March.	9.4	7.5	8.17	1.60	1.85	1.03	
April	12	7.5	8.45	1.66	1.85	1.07	
May.	9.0	5.7	7.00	1.37	1.58	.885	
June	14	5.2	6.44	1.26	1.41	.814	
July	29	5.2	9.16	1.80	2.07	1.16	
August.	12	6.8	8.15	1.60	1.84	1.03	
September	21	6.5	9.10	1.78	1.99	1.15	
The year	29	5.2	7.85	1.54	20.89	. 995	
1945-46							
October	8.0	6.5	7.06	1.38	1.60	.891	
November	14	6.5	7.66	1.50	1.68	.969	
December	20	7.5	9.36	1.84	2.12	1.19	
January	11	7.8	8.91	1.75	2.01	1.13	
February	14	7.5	8.85	1.74	1.81	1.12	
March	12	7.8	9.12	1.79	2.06	1.16	
April	9.8	7.2	7.63	1.50	1.67	.969	
May	14	6.5	8.17	1.60	1.85	1.03	
June	16	6.0	7.45	1.46	1.63	.943	
July	16	5.4	6.75	1.32	1.53	.853	
August	8.8	5.4	6.22	1.22	1.41	.788	
September	16	4.9	6.19	1.21	1.35	. 782	
The year	20	4.9	7.78	1.53	20.72	. 988	

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued PATAPSCO RIVER BASIN—Continued

	I	Discharge in	Runoff in	Discharge in million gallons		
Month	Maximum	Minimum	Mean	Per square mile	inches	per day per square mile
1946-47						
October	9.9	5.5	6.31	1.24	1.43	. 801
November	7.9	5.5	6.11	1.20	1.34	.775
December	12	5.2	5.77	1.13	1.31	.730
January	9.1	5.5	6.58	1.29	1.49	. 833
February	6.4	4.4	5.34	1.05	1.09	.678
March	7.2	4.9	5.89	1.15	1.33	.743
April		4.9	5.64	1.11	1.23	.717
May		5.2	6.48	1.27	1.47	. 820
June	18	4.6	7.04	1.38	1.54	. 891
July	9.5	4.9	6.25	1.23	1.41	. 795
August	14	4.6	5.98	1.17	1.35	.756
September	9.1	4.6	5.35	1.05	1.17	.678
The year	18	4.4	6.07	1.19	16.16	. 769
1947-48						
October	7.9	4.6	5.09	.998	1.15	. 645
November	17	4.6	7.52	1.47	1.64	.950
December	9.9	5.5	6.27	1.23	1.42	.795
January	23	6.0	8.15	1.60	1.84	1.03
February	13	5.8	7.29	1.43	1.54	.924
March	13	7.2	8.46	1.66	1.91	1.07
April	16	7.9	8.76	1.72	1.92	1.11
May	21	7.9	10.5	2.06	2.37	1.33
June	22	8.3	11.4	2.24	2.48	1.45
July	20	7.4	8.94	1.75	2.02	1.13
August	27	9.4	12.4	2.43	2.80	1.57
September	14	9.0	9.87	1.94	2.16	1.25
The year	27	4.6	8.71	1.71	23.25	1.10

Monthly discharge of Sawmill Creek at Glenburnie, Md.-Continued

Yearly discharge of Sawmill Creek at Glenburnie, Md.

Year		Year e	nding Sept.	. 30	Calendar year				
	Discharge in second-feet		Rupoff	Discharge in million gallons		arge in d-feet	Runoff	Discharge in million gallons	
	Mean	Per square mile	in inches	per day per square mile	Mean	Per square mile	in inches		
1945.	7.85	1.54	20.89	0.995	8.10	1.59	21.56	1.03	
1946.	7.78	1.53	20.72	.988	7.28	1.43	19.40	.924	
1947	6.07	1.19	16.16	.769	6.12	1.20	16.29	.775	
1948	8.71	1.71	23.25	1.10	_	_	-	-	

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued Patuxent River Basin

TATUXENT RIVER DASIN

Dorsey Run at Annapolis Junction, Md.

Location.—Water-stage recorder and concrete coatrol, lat. 39°07'15", long. 76°47'00", at bridge on State Route 647, 0.6 mile southeast of Annapolis Junction, Anne Arundel County and 1.0 mile upstream from mouth.

Drainage area.—11.6 square miles

Records available .- July to September 1948.

Extremes.—Maximum discharge, 497 second-feet Aug. 3 (gage height, 6.49 feet); minimum, 3.4 second-feet Sept. 17, 18, 21, 27, 28.

Month]	Discharge in	second-fe	et	Runoff in	Discharge in million gallons	
	Maximum	Minimum	Mean	Per square mile	inches	per day per square mile	
1948							
July	13	4.9	8.12	0.700	0.81	0.452	
August	84	4.9	17.0	1.47	1.69	.950	
September	11	3.6	4.80	.414	.46	.267	

Monthly discharge of Dorsey Run at Annapolis Junction, Md.

Little Patuxent River at Savage, Md.

Location.—Water-stage recorder and improved natural control, lat. 39°08'00", long. 76°48'58", 400 feet downstream from highway bridge, half a mile southeast of Savage, Howard County, and 1 mile downstream from Middle Patuxent River.

Drainage agea.-98.4 square miles.

Records available .- November 1939 to September 1948.

Extremes.—Maximum discharge, 5,080 second-feet July 18, 1945 (gage height, 12.14 feet); minimum daily, 7.0 second-feet (regulated) Sept. 19, 1943.

Maximum stage known, about 17 feet in August 1933, from information by local residents. *Remarks.*—Regulation caused by power plant of Savage Manufacturing Company 1 mile above station.

	1	Discharge in	second-fee	et	Runoff in	Discharge in million gallon		
Month	Maximum	Minimum	Mean	Per square mile	inches	per day per square mile		
1939-40								
December	89	35	43.5	0.442	0.51	0.286		
January	462	27	56.7	.576	.66	.372		
February	727	33	118	1.20	1.29	.776		
March	602	66	127	1.29	1.49	.834		
April	1,740	55	234	2.38	2.66	1.54		
May	439	79	122	1.24	1.43	.801		
June	168	41	65.2	. 663	.74	.429		
July	166	31	48.0	.488	.56	.315		
August	257	9.1	43.2	. 439	.51	.284		
September	685	22	60.7	.617	. 69	.399		

Monthly discharge of Little Patuxent River at Savage, Md.

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued PATUXENT RIVER BASIN—Continued

Monthly discharge of Little Patuxent River at Savage, Md.-Continued

]	Discharge in	second-fe	et	Runoff in	Discharge in million gallon:
Month	Maximum	Minimum	Mean	Per square mile	inches	per day per square mile
1940-41						
October.	70	25	36.4	.370	.43	. 239
November	666	38	117	1.19	1.33	.769
December	324	52	97.7	.993	1.14	. 642
	308	59	116	1.18	1.36	.763
January	212	76	109	1.11	1.16	.717
February	268	64	117	1.11	1.37	. 769
March	584	67	124	1.19	1.40	.814
April		34	50.1	. 509	.59	.329
May	81		65.0		. 74	. 427
June	309	32		.661	. 74	. 427
July	221	22 13	54.3 28.3	. 332	. 33	. 186
August	114				. 18	. 100
September	26	9.4	15.7	. 160	, 10	. 105
The year	666	9.4	77.3	. 786	10.67	. 508
1941-42						
October	24	9.0	14.7	. 149	. 17	.096
November	45	14	22.5	. 229	.25	. 148
December	141	17	35.8	.364	.42	. 235
January	96	21	34.0	.346	.40	. 224
v *	0.11	30	57.7	.586	. 61	.379
February	381	35	87.8	.892	1.03	.577
March	512	52	121	1.23	1.37	.795
April	270	32 41	65.2	.663	.76	.429
May	657	26	76.0	.772	.86	.499
June		19	70.0	.725	.83	. 469
July	784					. 625
August	507	24	95.2	.967	1.12	. 02.5
September	104	14	31.2	.317	. 35	. 205
The year	784	9.0	59.3	. 603	8.17	. 390
1942-43						
October	940	23	133	1.35	1.56	.873
November.	180	60	77.5	. 788	. 88	. 509
December	885	46	122	1.24	1.43	. 801
January	156	74	94.9	.964	1.11	. 623
February.		85	162	1.65	1.72	1.07
March		80	163	1.66	1.91	1.07
April	359	90	127	1.29	1.44	.834
May		84	162	1.65	1.89	1.07
Iune		45	70.0	.711	.79	.460
July		26	41.9	. 426	. 49	.275
August	0.	7.8	19.0	.193	.22	. 125
September.		7.0	16.9	.172	.19	. 111
The year.	1,220	7.0	98.8	1.00	13.63	. 646

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued PATUXENT RIVER BASIN—Continued

	1	Discharge in	second-fe	et	Runoff in	Discharge in million gallons
Month	Maximum	Minimum	Mean	Per square mile	· · · · · · · · · · · · · · · · · · ·	per day per square mile
1943-44						
October.	344	14	45.5	.462	. 53	.298
November.	1,670	34	118	1.20	1.34	.775
December.	432	25	57.0	.579	.67	.374
January	1,710	40	152	1.54	1.79	.995
February	102	40	60.8	.618	.67	. 399
March.	600	57	157	1.60	1.84	1.03
April	398	76	123	1.25	1.40	. 808
May	228	45	73.4	.746	.86	. 482
June	402	32	59.2	. 602	.67	. 402
July	33	15	22.9	. 233	.07	
	186	15				. 151
August			27.1	.275	.32	. 178
September	362	14	43.0	. 437	.49	. 282
The year	1,710	11	78.3	. 796	10.85	. 514
1944-45						
October	167	26	40.5	.412	.47	.266
November.	256	29	49.2	. 500	.56	.323
December	793	42	93.2	.947	1.09	.612
January	1,280	52	171	1.74	2.01	1.12
February	537	50	164	1.67	1.74	1.08
March	240	64	105	1.07	1.23	.691
April.	242	56	80.8	.821	.92	.530
May	150	39	67.1	. 682	.79	.441
June	556	34	75.5	.767	.86	.495
July	2,660	27	312	3.17	3.65	2.05
August	487	53	99.5	1.01	1.17	.652
September	812	47	106	1.08	1.20	. 698
The year	2,660	26	114	1.16	15.69	. 749
1945-46						
October	96	50	59.5	. 605	.70	.391
November	662	47	105	1.07	1.19	. 691
December	1,300	86	204	2.07	2.39	1.34
January	271	90	133	1.35	1.55	.872
February	487	94	166	1.69	1.76	1.09
March	258	101	133	1.35	1.55	.872
April	120	73	87.2	. 886	.99	.572
May	340	66	113	1.15	1.33	. 743
June	1,180	50	124	1.15	1.33	.814
July	570	33	69.2	.703	.81	. 454
August	382	32	55.3	. 562	.65	. 363
September	191	22	41.5	. 302	.03	. 303
The year	1,300	22	107	1.09	14.79	.704

Monthly discharge of Little Patuxent River at Savage, Md.-Continued

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued

PATUXENT RIVER BASIN-Continued

	1	Discharge in	second-fee	et	Runoff in	Discharge in million gallons
Month	Maximum	Minimum	Mean	Per square mile	inches	per day per square mile
1946-47						
October	94	- 30	41.6	.423	. 49	. 273
November	84	36	41.5	. 422	.47	. 273
December	238	35	54.7	. 556	.64	. 359
January	199	52	93.1	.946	1.09	.611
February	77	23	58.5	. 595	.62	.384
March	192	52	85.3	.867	1.00	. 560
April	108	-46	60.0	. 610	.68	. 394
May	863	52	109	1.11	1.28	.717
June	634	31	87.6	. 890	.99	. 575
July	181	29	54.3	. 552	. 64	.357
August	316	24	43.3	.440	.51	. 284
September	189	23	42.3	. 430	.48	. 278
The year.	863	23	64.4	.654	8.89	. 422
1947-48						
October	142	22	28.5	. 290	. 33	.187
November	869	28	145	1.47	1.65	.950
December	173	43	57.5	. 584	.67	.377
January	1,210	58	175	1.78	2.05	1.15
February	1,400	70	208	2.11	2.28	1.36
March	302	75	118	1.20	1.39	.775
April	211	64	91.9	.934	1.04	. 603
May	443	60	128	1.30	1.50	.840
June.	685	56	131	1.33	1.49	.859
July	218	40	62.6	. 636	.73	.411
August	218	35	69.0	.701	. 81	. 453
September.	86	28	37.8	. 384	.43	. 248
The year	1,400	22	104	1.06	14.37	. 685

Monthly discharge of Little Patuxent River at Savage, Md.-Continued

Yearly discharge of Little Patuxent River at Savage, Md.

		Year e	nding Sept	. 30		Ca	lendar year		
Year	Discha	irge in d-feet	Runoff in	Discharge in million gallons		Discharge in second-feet Runoff in		Discharge in million gallons	
Mean squar		Per square mile	inches	per day per square mile	Mean	Per square mile	inch es		
1940					93.4	0.949	12.93	0.613	
1941	77.3	0.786	10.67	0.508	62.4	.634	8.61	.410	
1942	59.3	.603	8.17	. 390	81.2	.825	11.20	. 533	
1943	98.8	1.00	13.63	. 646	89.2	.907	12.30	. 586	
1944	78.3	. 796	10.85	. 514	75.3	. 765	10.43	.494	
1945	114	1.16	15.69	.749	129	1.31	17.85	.846	
1946	107	1.09	14.79	. 704	87.8	.892	12.11	.576	
1947	64.4	. 654	8.89	.422	72.0	.732	9.94	. 473	
1948	104	1.06	14.37	. 685		_			

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin

Bacon Ridge Branch at Chesterfield, Md.

Location.—Water-stage recorder and concrete control, lat. 39°00'07", long. 76°36'53", 0.5 mile east of Chesterfield, Anne Arundel County, 1.4 miles upstream from confluence with North River, and 6.8 miles northwest of Annapolis.

Drainage area.-6.92 square miles.

Records available .- November 1942 to September 1948.

Extremes.—Maximum discharge, 2,100 second-feet Aug. 2, 1944 (gage height, 5.49 feet); minimum, 3.0 second-feet Aug. 4, 16, 19–27, 1943, July 13, 1944.

Remarks.—Figures of discharge include sewage from Crownsville State Hospital, which obtains its water supply from wells.

	:	Discharge in	second-fee	t	Runoff	Discharge in million		
Month	Maximum	Minimum	Mean	Per square mile	in inches	gallons per day per square mile		
1942-43								
November 5–30	11	5.6	7.10	1.03	0.99	0.665		
December	28	5.6	9.88	1.43	1.65	.924		
January	14	7.0	9.13	1.32	1.52	.853		
February	25	7.5	13.1	1.89	1.97	1.22		
March	29	7.5	12.5	1.81	2.09	1.17		
April	29	8.5	10.9	1.58	1.76	1.02		
May	23	7.0	9.62	1.39	1.60	. 898		
June	14	3.8	6.15	. 889	.99	. 574		
July	9.4	3.2	4.83	. 698	. 80	.451		
August	3.8	3.0	3.25	.470	.54	.304		
September	12	3.2	4.28	. 618	. 69	. 399		
1943-44								
October	74	3.4	8.92	1.29	1.49	.833		
November.	26	5.3	7.81	1.13	1.26	.730		
December	17	3.6	5.52	.798	.92	. 516		
January	120	4.4	12.9	1.86	2.15	1.20		
February	14	5.3	7.73	1.12	1.21	. 724		
March	33	7.7	12.9	1.86	2.15	1.20		
April	18	8.2	10.8	1.56	1.74	1.01		
May	12	4.9	6.98	1.01	1.16	.652		
June	26	3.6	5.41	.782	.87	. 505		
July	12	3.2	4.76	.688	. 79	. 444		
August	430	3.4	27.3	3.95	4.54	2.55		
September	44	3.4	7.16	1.03	1.15	. 665		
The year	430	3.2	9.88	1.43	19.43	.924		

Monthly discharge of Bacon Ridge Branch at Chesterfield, Md.

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

Discharge in second-feet Discharge Runoff in million gallons per Month in inches Per day per square mile Maximum Minimum Mean square mile 1944-45 .782 50 4.5 8.40 1.21 1.40 October..... November 8.48 .795 35 5.2 1.23 1.37 6.5 10.3 1.49 1.72 963 35 2.5 6.5 11.3 1.63 1.88 1.05 January..... 9.99 1.44 1.50 .930 February..... 18 5.6 7.5 9.58 1.38 . 891 March.... 15 1.60 6.5 9.45 1.52 885 21 1.37 185 4.5 14.02.02 2.33 1.30 May..... 4.8 10.1 1.46 1.63 June..... 71 943 4.3 21.4 3.09 3.57 2.00 245 July..... .749 5.2 8.01 1.16 1.33 18 August.... 5.2 12.3 1.78 1.98 1.15 61 September..... 21.83 1.03 245 4.3 11.1 1.60The year.... 1945-46 7.42 1.07 1.24 691 October 12 6.6 10.0 1.45 1.61 937 22 7.1 November..... 79 16.02.31 2.66 1.49 December..... 7.6 1.72 1.98 7.6 11.9 1.11 January..... 21 1.79 1.86 1.16 26 8.1 12.4 February..... 10.5 1.52 1.75 982 March 16 9.2 7.1 8.98 1.30 1.45 840 18 April.... 17.1 2.47 2.85 1.60 80 7.6 May..... .859 1.48 Iune..... 24 5.2 9.18 1.33 20 4.3 6.10 882 1.02 570 6.90 997 1.15 644 36 4.3 August..... 20 4.1 6.00 867 .97 .560 September..... .950 80 4.1 10.21.47 20.02 The year..... 1946-47 929 1.07 .600 October 12 4.6 6.43 6.47 .935 1.04 604 12 5.2 November..... 4.8 7.06 1.02 1.18 659 December..... 20 1.76 .988 16 6.6 10.6 1.53 January..... 9.5 3.5 6.90 .997 1.04 . 644 February..... 13 6.2 8.23 1.19 1.37. .769 March 8.57 1.24 1.38 .801 April..... 13 6.2 2.34 1.30 50 6.6 14.0 2.02 May..... 5.7 10.7 1.55 1.73 1.00 46 June..... 12 5.2 6.62 .957 1.10 .618 5.12 85 .478 .740 4.1 August 12 .94 .547 3.8 5.86 .847 31 September.... 50 8.06 1.16 15.80 .749 The year.... 3.5

Monthly discharge of Bacon Ridge Branch at Chesterfield, Md.-Continued

WATER RESOURCES OF ANNE ARUNDEL COUNTY

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

Monthly discharge of Bacon Ridge Branch at Chesterfield, Md.-Continued

		Discharge in	second-fee	t	Runoff	Discharge in million
Month	Maximum	Minimum	Mean	Per square mile	in inches	gallons per day per square mile
1947-48						
October.	24	3.6	5.10	.737	.85	.476
November.	207	5.5	18.8	2.72	3.03	1.76
December	20	5.5	7.48	1.08	1.25	. 698
January.	40	6.5	11.7	1.69	1.95	1.09
February	35	6.0	12.3	1.78	1.91	1.15
March.	23	9.1	12.9	1.86	2.15	1.20
April	25	9.1	11.6	1.68	1.87	1.09
May.	42	9.1	17.6	2.54	2.94	1.64
June	88	7.0	15.5	2.24	2.50	1.45
July	21	5.5	7.99	1.15	1.33	.743
August	74	6.5	18.0	2.60	3.00	1.68
September	13	5.5	6.84	.988	1.10	. 638
The year	207	3.6	12.1	1.75	23.88	1.13

Yearly discharge of Bacon Ridge Branch at Chesterfield, Md.

		Year e	nding Sept	. 30		second-feetDischarge in million gallons per square milePer square mileRunoff inchesDischarge in million gallons per square mile.971.1515.630.743.31.4920.25.963.71.6922.851.09		
Year second-		scharge in cond-feet Runoff		Discharge in million	Discharge in second-feet		Runoff	Discharge in million
	Per square mile	in inches	gallons per day per square mile	Mean	square		in million gallons per day per square mile 0.743 .963	
1943.					7.97	1.15	15.63	0.743
1944	9.88	1.43	19.43	0.924	10.3	1.49	20.25	.963
1945.	11.1	1.60	21.83	1.03	11.7	1.69	22.85	1.09
1946.	10.2	1.47	20.02	.950	9.07	1.31	17.80	.846
1947	8.06	1.16	15.80	.749	9.00	1.30	17.64	.840
1948	12.1	1.75	23.88	1.13	_		_	

North River near Annapolis, Md.

Location.—Water-stage recorder and concrete control, lat. 38°59'09", long. 76°37'21", 500 feet downstfeam from bridge on U. S. Hghway 50, 0.8 mile upstream from mouth, and 7 miles west of Annapolis, Anne Arundel County. Prior to Nov. 2, 1933, staff gage at same site and datum.

Drainage area.-8.5 square miles.

Records available.- December 1931 to September 1948.

Extremes.—Maximum discharge, about 5,000 second-feet Aug. 2, 1944 (gage height, 6.22 feet); minimum, 1.5 second-feet Sept. 1, 2, 4, 1932.

20

SURFACE-WATER RESOURCES

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

Monthly discharge of North River near Annapolis, Md.

		Discharge in	second-fee	t	Runofí	Discharge in million
Month	Maximum	Minimum	Mean	Per square mile	in inches	gallons per day per square mile
1931-32						
December 15–31	13	4.2	5.39	0.634	0.40	0.410
January	23	3.9	8.99	1.06	1.22	. 685
February	22	4.7	7.51	.884	.95	.571
March	31	5.5	10.5	1.24	1.43	.801
April	28	6.0	9.90	1.16	1.29	.750
May	39	5.0	9.92	1.17	1.35	.756
June	14	3.2	5.38	. 633	.71	. 409
, [uly	18	2.8	5.02	. 591	. 68	.382
August	6	1.8	2.95	.347	. 40	. 224
September.	9.5	1.5	2.55	.300	.33	.194
1932-33						
October.	45	2.0	7.21	.848	.98	. 548
November	27	5.5	10.6	1.25	1.40	.808
December	28	5.5	9.45	1.11	1.28	.717
January.	62	7.0	11.6	1.36	1.57	.879
February	19	7.5	10.3	1.21	1.26	.782
March	26	7.0	11.1	1.30	1.50	.840
April	71	9.0	18.0	2.12	2.36	1.37
Mav	20	8.0	11.6	1.36	1.57	.879
June	24	5.0	7.38	.868	.97	. 561
[uly	48	4.8	9.32	1.10	1.27	.711
August	115	4.8	14.2	1.67	1.92	1.08
September	18	6.0	9.78	1.15	1.28	.743
The year	115	2.0	10.9	1.28	17.36	. 827
1933-34						
October	19	7.2	9.40	1.11	1.28	.717
November	20	6.8	8.77	1.03	1.15	. 666
December	24	6.2	9.64	1.13	1.30	.730
January	23	5.3	11.1	1.31	1.51	. 847
ebruary	14	5.6	8.20	.965	1.00	. 624
March	106	8.0	22.5	2.65	3.06	1.71
\pril	28	10	14.9	1.75	1.95	1.13
Mav	31	8.4	13.1	1.54	1.78	.995
[une	27	5.9	8.30	.976	1.09	.631
[ulv	24	4.0	6.51	.766	. 88	.495
August	17	4.0	5.45	. 641	.74	.414
September	151	4.0	22.2	2.61	2.91	1.69
The year.	151	4.0	11.7	1.38	18.65	. 892

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

		Discharge in	second-fee	t	Runoff	Discharge in million
Month	Maximum	Minimum	Mean	Per square mile	in inches	day per square mile
1934-35						
October	17	7.5	8.91	1.05	1.21	.679
November	30	7.5	9.87	1.16	1.29	.750
December	26	7.8	11.4	1.34	1.54	.866
January	34	7.8	13.6	1.60	1.84	1.03
February	29	9.2	14.8	1.74	1.81	1.12
March	36	10 .	13.5	1.59	1.83	1.03
April	143	11	22.1	2.60	2.90	1.68
May	25	7.8	11.8	1.39	1.60	. 898
[une	25	6.4	8.90	1.05	1.17	.679
[uly		5.6	8.82	1.04	1.20	.672
	26	4.7	7.39	.869	1.00	. 562
August	80	6.0	12.4	1.46	1.63	. 944
September		0.0	12.4	1.40	1.05	. 944
The year	143	4.7	11.9	1.40	19.02	. 905
1935-36						
October	20	6.4	8.13	.956	1.10	. 618
November	48	8.3	14.6	1.72	1.92	1.11
December	18	6.7	9.97	1.17	1.35	. 756
January	46	8.0	19.2	2.26	2.61	1.46
February	70	8.5	22.6	2.66	2.87	1.72
March	46	14	21.9	2.58	2.97	1.67
April	28	11	16.7	1.96	2.19	1.27
May	49	8.3	13.8	1.62	1.87	1.05
[une	19	6.0	8.10	.953	1.06	.616
July		6.0	10.1	1.19	1.37	.769
August	32	5.4	8.29	.975	1.12	. 630
September	11	4.9	5.99	. 705	. 79	. 456
The year	70	4.9	13.2	1.55	21.22	1.00
1936–37						
October	30	6.0	8.67	1.02	1.18	0.659
November		6.0	7.24	.852	.95	. 551
December	32	5.7	11.5	1.35	1.56	.873
January	55	11	18.9	2.22	2.56	1.43
February	42	11	15.8	1.86	1.94	1.20
March	17	9.2	11.9	1.40	1.61	.905
April	307	9.2	30.4	3.58	3.99	2.31
Mav	23	9.7	14.8	1.74	2.01	1.12
June		6.7	10.0	1.18	1.32	.763
Jule	1	5.4	8.38	.986	1.14	.637
August		4.9	17.6	2.07	2.39	1.34
September		5.7	7.23	.851	.95	. 550
The year		4.9	13.5	1.59	21.60	1.03

Monthly discharge of North River near Annapolis, Md.-Continued

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

		Discharge in	t	Runoff	Discharge	
Month	Maximum	Minimum	Mean	Per square mile	in inches	in million gallons per day per square mile
1937–38						
October	108	6.0	17.9	2.11	2.43	1.36
November.	342	8.7	26.4	3.11	3.47	2.01
December	19	8.5	11.9	1.40	1.61	.905
anuary	23	8.2	12.2	1.44	1.66	.931
February	26	9.4	13.1	1.54	1.60	. 995
March	18	9.8	12.2	1.44	1.66	.931
April	21	9.0	10.9	1.28	1.43	.827
May	28	7.4	10.9	1.28	1.48	.827
lune	20	6.0	8.20	.965	1.08	. 624
uly	24	4.4	8.25	.971	1.12	. 628
August	11	4.4	5.74	.675	. 78	. 436
September	42	4.7	9.00	1.06	1.18	.685
The year	342	4.4	12.2	1.44	19.50	.931
1938-39						
October	16	5.4	7.26	.854	. 98	. 552
November	15	6.4	7.63	. 898	1.00	. 580
December	26	6.0	9.38	1.10	1.27	.711
anuary	71	5.7	10.4	1.22	1.41	.789
February	35	9.7	17.2	2.02	2.10	1.31
March	63	11	16.6	1.95	2.25	1.26
April	30	11	16.8	1.98	2.21	1.28
May	15	6.0	9.65	1.14	1.31	.737
[une	68	5.3	9.25	1.09	1.22	.704
July	14	5.3	7.07	.832	.96	. 538
August	46	4.5	7.36	. 866	1.00	. 560
September	35	5.1	7.06	. 831	. 93	. 537
The year	71	4.5	10.4	1.22	16.64	. 789
1939-40						
October	45	6.1	10.2	1.20	1.38	.776
November	23	6.4	8.41	.989	1.10	. 639
December	12	6.0	7.45	.876	1.01	. 566
anuary	25	4.5	6.19	.728	.84	.471
February	55	4.5	12.5	1.47	1.58	.950
March	42	7.2	11.7	1.38	1.59	. 892
April	96	8.0	18.9	2.22	2.48	1.43
May		7.5	13.4	1.58	1.82	1.02
une		4.9	6.83	.804	.90	. 520
uly		4.3	8.41	.989	1.14	.639
August		4.0	6.42	.755	.87	.488
September	61	5.1	8.18	.962	1.07	. 622
The year	96	4.0	9.86	1.16	15.78	.750

Monthly discharge of North River near Annapolis, Md.-Continued

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

		Discharge in	Runoff	Discharge in million		
Month	Maximum	Minimum	Mean	Per square mile	in inches	gallons per day per square mile
1940-41						
October	14	5.6	6.49	. 764	. 88	. 494
November	46	6.4	12.4	1.46	1.62	.944
December	25	6.8	9.33	1.10	1.27	.711
January	23	6.4	10.3	1.21	1.40	.782
February	15	6.0	8.27	.973	1.01	. 629
March	21	6.0	10.4	1.22	1.41	.789
April	37	7.2	12.3	1.45	1.61	.937
May	9.5	4.7	6.03	.709	.82	.458
June	30	4.7	8.95	1.05	1.17	. 679
July	24	4.0	7.95	.935	1.08	. 604
August	12	3.5	4.98	. 586	. 68	. 379
September	4.2	2.8	3.15	.371	. 41	. 240
The year	46	2.8	8.37	. 985	13.36	. 637
1941-42						
October.	5.2	2.8	3.84	0.452	0.52	0.292
November	8.3	4.2	4.96	. 584	.65	.377
December	28	4.5	7.22	. 849	.98	. 549
January	24	3.1	7.49	.881	1.02	. 569
February	36	4.3	8.47	. 996	1.04	. 644
March	34	6.1	11.6	1.36	1.57	.879
April	36	6.1	11.5	1.35	1.50	.873
May	13	4.0	6.47	.761	.88	. 492
June	35	2.7	5.06	. 595	.66	. 385
July	21	2.9	5.47	. 644	.00	. 305
August	241	4.0	20.4	2.40	2.77	1.55
September	32	3.8	6.79	. 799	.89	.516
The year	241	2.7	8.28	.974	13.22	. 630
1942-43						
October	111	4.5	17.0	2.00	2.31	1.29
November	13	6.5	8.20	.965	1.08	. 624
December	30	6.4	12.6	1.48	1.71	.957
anuary	16	7.2	10.2	1.20	1.38	.776
February	28	8.5	15.1	1.78	1.85	1.15
March.	30	8.5	15.0	1.76	2.04	1.14
April	30	10	13.2	1.55	1.74	1.00
May	24	8.5	11.7	1.38	1.59	. 892
[une	16	4.9	7.84	.922	1.03	. 596
[uly	8.0	3.7	5.09	. 599	. 69	. 387
August	4.0	2.9	3.33	.392	.45	.253
September	24	3.3	5.42	. 638	.71	.412
The year	111	2.9	10.4	1.22	16.58	.789

Monthly discharge of North River near Annapolis, Md.-Continued

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

		Discha rg e in	Runoff	Discharge			
Month	Maximum	Minimum	Mean	Per square mile	in inches	in million gallons per day per square mile	
1943-44							
October.	71	4.6	10.3	1.21	1.40	. 782	
November	29	6.4	9.82	1.16	1.29	. 749	
December	21	4.3	7.08	.833	.96	. 538	
January	100	6.0	14.1	1.66	1.91	1.07	
February.	16	6.0	8.88	1.04	1.13	.672	
March	34	9.0	15.4	1.81	2.09	1.17	
April	23	10	13.2	1.55	1.74	1.00	
May	14	5.2	8.24	.969	1.12	. 626	
June	21	4.0	5.62	.661	.74	. 427	
July	21	2.9	5.85	. 688	.79	. 444	
August	652	4.3	34.9	4.11	4.73	2.66	
September	53	4.3	9.36	1.10	1.23	.711	
The year	652	2.9	11.9	1.40	19.13	. 904	
1944-45							
October.	46	6.4	10.3	1.21	1.39	.782	
November	36	7.2	10.9	1.28	1.43	.827	
December		9.0	13.4	1.58	1.81	1.02	
January	29	8.0	13.6	1.60	1.85	1.03	
February	22	7.0	12.0	1.41	1.47	.911	
March.		9.5	11.1	1.31	1.50	.846	
April		8.5	11.4	1.34	1.49	. 866	
May	(2)	5.6	11.6	1.36	1.57	.879	
June		6.0	12.7	1.49	1.66	.963	
July		5.6	19.8	2.33	2.69	1.51	
		6.4	10.3	1.21	1.39	.782	
August September		6.4	16.7	1.96	2.19	1.27	
The year	110	5.6	12.8	1.51	20.44	.975	
1945-46							
October	15	8.0	9.34	1.10	1.27	.711	
November	26	9.0	12.4	1.46	1.63	.943	
December	71	9.5	18.8	2.21	2.55	1.43	
January		10	14.6	1.72	1.98	1.11	
February		9.5	14.8	1.74	1.81	1.12	
March	1.0	12	13.4	1.58	1.81	1.02	
April		7.6	10.5	1.24	1.37	. 801	
May		7.2	17.2	2.02	2.33	1.30	
June		5.9	11.4	1.34	1.50	.866	
July		4.2	8.30	.976	1.13	. 630	
August	0.4	5.5	8.06	.948	1.09	.612	
September.		4.6	7.19	. 846	.94	. 547	
The year	71	4.2	12.2	1.44	19.41	.930	

Monthly discharge of North River near Annapolis, Md.-Continued

SURFACE WATER RECORDS OE ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

		Disch <mark>arge</mark> in	second-fee	t	Runoff	Discharge in million
Month	Maximum	Minimum	Mean	Per square mile	in inches	gallons per day per square mile
1946-47						
October	15	5.6	8.27	.973	1.12	. 629
November	15	6.5	7.99	.940	1.05	. 607
December	26	5.6	8.18	.962	1.11	. 621
January	19	7.4	12.3	1.45	1.67	.937
February	11	3.6	8.12	.955	. 99	.617
March.	15	6.0	9.51	1.12	1.29	.724
April	14	6.4	8.97	1.06	1.18	. 685
May	48	6.8	13.4	1.58	1.82	1.02
June	53	5.6	11.7	1.38	1.54	.891
July	15	4.3	6.84	. 805	.93	. 520
August	15	3.2	4.65	. 547	.63	.353
September	38	3.7	6.95	. 818	.91	. 528
The year	53	3.2	8.92	1.05	14.24	.678
1947–48						
October	26	4.6	6.04	.711	. 82	. 459
November	77	5.9	16.6	1.95	2.18	1.26
December	24	6.3	8.76	1.03	1.19	.665
January	59	7.1	15.7	1.85	2.13	1.20
February	44	8.6	15.7	1.85	1.99	1.20
March	28	10	14.4	1.69	1.95	1.09
April	32	8.6	12.0	1.41	1.58	.911
May	42	8.6	16.9	1.99	2.29	1.29
June	76	7.1	14.9	1.75	1.95	1.13
July	28	5.5	8.93	1.05	1.21	.678
August	57	6.7	18.1	2.13	2.45	1.38
September	16	5.5	7.59	. 893	1.00	. 577
The year	77	4.6	12.9	1.52	20.74	.982

Monthly discharge of North River near Annapolis, Md.-Continued

Yearly discharge of North River near Annapolis, Md.

		Year en	nding Sept.	30	Calendar year			
Year	Discharge in second-feet		Runoff	Discharge in million	Discharge in second-feet		Runoff	Discharge in million
	Mean	Per square mile	in inches	gallons per day per square mile	Mean	Per square mile	in inches	galions per day per square mile
1932	_				7.50	0.882	12.02	0.570
1933	10.9	1.28	17.36	0.827	10.9	1.28	17.43	. 827

SURFACE-WATER RESOURCES

SURFACE WATER RECORDS OF ANNE ARUNDEL COUNTY—Continued South River Basin—Continued

		Year ei	nding Sept.	30	Calendar year			
Year	Discha		Runoff	Discharge in million	Dischasecon		Runoff	Discharge in million
	Mean	Per square mile	in inches	gallons per day per square mile	Mean	Per square mile	in inches	gallons per day per square mile
1934	11.7	1.38	18.65	.892	11.9	1.40	18.96	.905
1935.	11.9	1.40	19.02	.905	12.1	1.42	19.35	.918
1936	13.2	1.55	21.22	1.00	12.8	1.51	20.54	.976
1937	13.5	1.59	21.60	1.03	15.9	1.87	25.42	1.21
1938.	12.2	1.44	19.50	.931	9.55	1.12	15.24	. 724
1939.	10.4	1.22	16.64	. 789	10.6	1.25	16.88	.808
1940	9.86	1.16	15.78	.750	10.0	1.18	16.06	.763
1941	8.37	.985	13.36	. 637	7.36	. 866	11.74	.560
1942	8.28	.974	13.22	.630	10.1	1.19	16.17	. 769
1943	10.4	1.22	16.58	.789	9.47	1.11	15.13	.717
1944	11.9	1.40	19.13	.904	12.6	1.48	20.11	.956
1945	12.8	1.51	20.44	.975	13.3	1.56	21.26	1.01
1946	12.2	1.44	19.41	.930	10.8	1.27	17.24	.820
1947	8.92	1.05	14.24	.678	9.49	1.12	15.15	.724
1948	12.9	1.52	20.74	.982	-	—	- 1	
Highest	13.5	1.59	21.60	1.03	15.9	1.87	25.42	1.21
Average	11.2	1.32	17.93	.853	10.9	1.28	17.42	,829
Lowest	8.28	.974	13.22	. 630	7.36	. 866	11.74	. 560

Yearly discharge of North River near Annapolis, Md.-Continued

BY

J. W. BROOKHART

ABSTRACT

This report gives the basic data obtained during an investigation of the ground-water resources of Anne Arundel County, Maryland. Anne Arundel County is in the central part of Maryland adjoining the western shore of Chesapeake Bay. The county may be considered to lie wholly within the Coastal Plain, although the area near the northwestern edge of the county contains crystalline rocks that characterize the Piedmont Plateau. The Coastal Plain formations in Anne Arundel County are of Lower and Upper Cretaceous, Eocene, Miocene, and Pleistocene age, and all are sediments consisting chiefly of sand, gravel and clay. All the formations, except the Pleistocene deposits, strike northeast and dip gently to the southeast. The Pleistocene deposits are essentially flat-lying and form terraces.

The coastal plain sediments contain several water-bearing formations of which the Patuxent, Patapsco, Raritan, Magothy, and Aquia are the most important. About 35,000,000 gallons of water a day are pumped from the Patuxent formation in the Baltimore area, which adjoins Anne Arundel County on the north; however, this formation is not utilized extensively in Anne Arundel County because, in general, it lies at a relatively great depth. The Patapsco formation probably is utilized more than any other formation for ground-water supplies in the County. It yields as much as 1,000 gallons a minute to largediameter wells in the Annapolis area. The Raritan formation yields adequate supplies of water for domestic and farm use and probably furnishes a part of the water for the Naval establishments and public supply at Annapolis. The Magothy formation yields as much as 1,000 gallons a minute to wells in the Annapolis area. However, a part of the water from these wells may be derived from the Raritan formation. It also yields adequate supplies of water to many domestic and farm wells. The Aquia formation is present in the southern part of the County where it yields adequate supplies of water for domestic and farm use. One well ending in the Aquia formation yields about 150 gallons a minute.

All of the aquifers yield water of a quality that is satisfactory for most uses, but, in a large part of the area, treatment is required for removal of iron.

Water-level measurements obtained during a $3\frac{1}{2}$ -year period show no appreciable change. Available hydrologic data indicate that pumpage from the important aquifers could be increased considerably without serious depletion of the supply.

INTRODUCTION

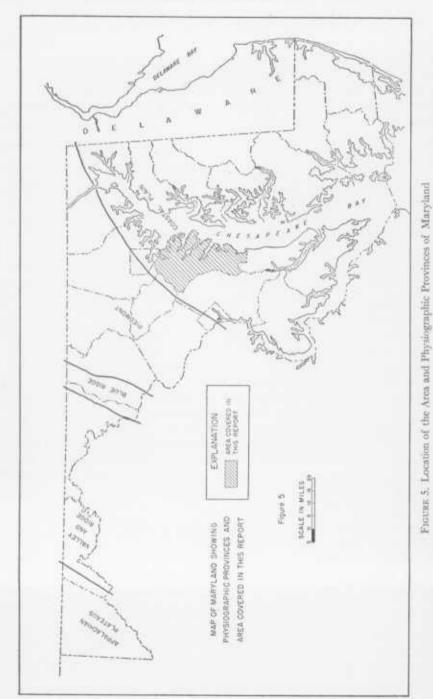
LOCATION OF THE AREA

Anne Arundel County is in the central part of Maryland, bordered on the north by Baltimore County and Baltimore City, on the west by Howard and Prince Georges Counties, on the south by Calvert County, and on the east by Chesapeake Bay (Figure 5).

PURPOSE, SCOPE, AND METHODS OF THE INVESTIGATION

The investigation of the ground-water resources of Anne Arundel County was conducted under the cooperation of the Maryland Department of Geology, Mines and Water Resources and the Geological Survey, United States Department of the Interior. The work was started late in 1945 and carried on for about 9 months. The investigation was resumed in June, 1948, and field work was completed in May, 1949.

The purpose of this report is to compile all the existing basic data on the ground-water resources of Anne Arundel County, to show on structure-contour maps the approximate altitude of certain water-bearing formations, and to give the available data on the chemical properties of the water and the general hydrologic characteristics of the aquifers. These data were obtained from an inventory of about 600 wells, the sampling of water for chemical analysis, the contacting of drillers, the study of well cuttings, and the well records in the files of the Maryland Department of Geology, Mines and Water Resources. Much of the well information was obtained from well-completion reports submitted by the drillers to the Maryland Department of Geology, Mines, and Water Resources in accordance with the State law.


The wells inventoried during this investigation are plotted on a county map (Plate 3), which is divided into 5-minute quadrants. Each quadrant is lettered from north to south by upper-case letters and from west to east by lower-case letters. The wells are numbered in each 5-minute quadrant in the order in which they were inventoried.

The investigation was made under the general supervision of A. N. Sayre, Geologist in Charge of the Ground Water Branch of the U. S. Geological Survey, and under the immediate supervision of R. R. Bennett, District Geologist of the U. S. Geological Survey in charge of the cooperative ground-water investigations in Maryland.

PHYSICAL FEATURES

Maryland has been divided into five physiographic provinces $(15)^*$: the Appalachian Plateaus, the Valley and Ridge, the Blue Ridge, the Piedmont and the Coastal Plain (Figure 5). Anne Arundel County may be considered to lie

* Numbers in parentheses refer to the references cited.

wholly within the Coastal Plain province, though crystalline rocks that characterize the Piedmont province are exposed in some of the stream valleys in the northwestern part of the county.

Coastal Plain is a term applied to an area extending along the Atlantic and Gulf coasts from Martha's Vineyard, Massachusetts, southwestward to Texas. In Anne Arundel County, Coastal Plain sediments are made up largely of unconsolidated gravels, sands and clays. Most of the ground-water supplies of Anne Arundel County are derived from the sands and gravels of the Coastal Plain.

Stream erosion has dissected much of the county to give it a rolling to hilly topography, except for the easternmost part where Recent and Pleistocene deposits form a low, flat surface.

PREVIOUS INVESTIGATIONS

The ground-water resources of Anne Arundel County have been discussed by several geologists. One of the first was Miller (20, p. 8), who gave a brief discussion of the wells in the Annapolis area. Little (17) gave a brief description of a few water wells. Clark, Mathews, and Berry (9), in a report on the water resources of Maryland, Delaware, and the District of Columbia, devoted eight pages to the county in which they include information on 92 wells. Since 1918 there have been no publications discussing the ground-water resources of Anne Arundel County.

ACKNOWLEDGMENTS

The initial field work for this investigation was done by C. W. Merrels during 9 months in 1945–46. Field work was resumed by the writer during June, 1948, and continued through May, 1949. The drillers of the county collected samples and furnished well information. Mr. W. C. Munroe, Chief Engineer of the Anne Arundel Sanitary Commission, furnished data on the Commission's wells and pumpage records and permitted the writer to make a pumping test in the Glen Burnie well field. Mr. E. G. Otton prepared the sample logs (Table 4) from a microscopic examination of well cuttings. Dr. R. M. Overbeck, of the Maryland Department of Geology, Mines and Water Resources, accompanied the writer on several field trips and gave many helpful suggestions in the writing of the report.

SOURCE OF MAPS

The base maps for this report are drawn from a topographic map of Anne Arundel County (scale 1:62,500) published in 1940 by the Maryland Geological Survey (now the Maryland Department of Geology, Mines and Water Resources). Basic field data were plotted on maps to a scale of 1:31,680 published by the Corps of Engineers, U. S. Army, and the U. S. Geological Survey. The

geologic map used in this investigation was that compiled by Little (17) to accompany his 1916 report.

GENERAL PRINCIPLES OF THE OCCURRENCE OF GROUND WATER

POROSITY OF ROCKS

Ground water occurs in the pore spaces and cavities of rocks. Porosity may be expressed quantitatively as the percentage of the total volume of rock that is occupied by voids. In the Coastal Plain sediments the porosity is controlled by the size, shape, degree of assortment, compaction, and cementation of the particles. In the crystalline rocks underlying these sediments the porosity is controlled by the degree of weathering and fracturing. For a more complete discussion of porosity see Meinzer's work on the occurrence of ground water (18, p. 3).

PERMEABILITY OF ROCKS

Hydraulic permeability may be defined as the ability of a rock to transmit water under pressure. A coefficient of permeability has been established by the U. S. Geological Survey to express quantitatively the hydraulic permeability of an aquifer. This coefficient, for field use, may be defined as the number of gallons of water a day that percolates through each mile of water-bearing bed for each foot of thickness of the bed and for each foot per mile of hydraulic gradient at existing ground-water temperatures (24, p. 7).

The size of the pore spaces and other openings in rocks and the degree to which they are interconnected largely govern the permeability. In fine-grained material, such as a clay, the water is held between the grains by molecular attraction, and the material is said to be impermeable. Materials of this type are usually regarded as non-water-bearing, although the total quantity of water entrapped in the clay may be as great as or greater than the amount of water in loose sand or gravel where the voids are many times larger. In sand or gravel only a small percentage of the water is held by molecular attraction, and the rest is free to move under the influence of gravity or hydrostatic pressure.

ZONE OF SATURATION AND WATER TABLE

When rain falls or snow melts, some of the water is absorbed into the ground and percolates downward under the force of gravity until it reaches the zone where the pore spaces and cavities of the rocks are saturated. The water-filled portion of the rocks is known as the zone of saturation. The upper surface of the zone of saturation is called the water table. The water table fluctuates, generally rising rather quickly when recharge occurs and then declining, quickly at first and then more slowly, between periods of recharge as the water drains out of the rocks. Wells drilled or dug into the zone of saturation will fill up to the level of the water table.

ZONE OF AERATION AND RECHARGE OF GROUND WATER

The zone of aeration is the zone of unsaturated material between the water table and the land surface. In this zone the pore spaces are filled partly with air and partly with water. Some of the water, especially that in the smaller pores, is held by capillary force and is not free to move downward. When sufficient water has entered the ground to satisfy the capillary requirements, addition of more water will result in downward movement of water to the zone of saturation. Much of the water that enters the upper part of the zone of aeration is drawn back to the surface by the roots of plants and evaporated from their leaves (transpiration), or is evaporated directly. Thus it is apparent that the amount of recharge depends not only on the total amount of precipitation, but on the rate at which it occurs and the extent to which it runs off directly into streams or is diverted by vegetation or evaporated before it can reach the water table.

ARTESIAN CONDITIONS

Artesian conditions occur where water moving along a water-bearing bed passes under a relatively impermeable bed and becomes confined there under hydrostatic pressure. The amount of this pressure depends on the elevation of the water table in the unconfined area, and on the amount of energy lost by friction as the water moves through the aquifer away from the unconfined area. Part of the precipitation enters the water-bearing bed where it is exposed at the surface and percolates down dip to replenish water that has been discharged either through wells or at points of natural discharge. In a well drilled through the confining bed the water will rise in the well above the base of the confining bed, the height to which it will rise depending on the hydrostatic pressure. The imaginary plane defined by the height to which the water will rise in wells is known as the piezometric surface. Because some pressure is lost by friction when the water moves through the aquifer, the altitude of the water surface in an artesian well must be lower than the altitude of the water table at the outcrop of the aquifer. If the mouth of the well is at a lower altitude than that of the pressure surface the well will flow. Artesian conditions are more fully explained by Meinzer in Water-Supply Paper 489 (18, p. 166).

In the Coastal Plain sediments of Anne Arundel County important artesian aquifers exist in the Patuxent, Patapsco, Raritan, Magothy, and Aquia formations.

NATURAL DISCHARGE OF GROUND WATER

Water is being added periodically to the zone of saturation. This increment of water would cause a rise of the water table to the land surface were it not that the water flows away underground from areas of recharge to areas where water is discharged naturally by springs, the transpiration of plants, and evapo-

ration from the soil. Under artesian conditions natural discharge occurs chiefly by slow percolation through the confining bed.

Discharge by Seepage and Springs

Springs occur at points of intersection between the water table and the land surface. The commonest types occur where a stream has cut down below the water table, or where an impermeable bed, that prevents the water from moving downward, causes the ground water to issue at the surface. Springs differ greatly in the size and number of the openings through which the water issues, the areas over which the openings are distributed, and the rate at which the water flows out of them. Seepage areas occur where the water oozes from the aquifer in small quantities; where the quantities are still smaller there may be no moist ground at all, but simply a relatively dense growth of vegetation. Springs which are partly the result of water discharging at the contact of an impervious bed and an overlying water-bearing bed may be observed along U.S. Highway 50 between Annapolis and U. S. Highway 301. In some of the road cuts along this route dense dark sandy clays are overlain by more permeable sand and gravel. Another type of spring may occur as a result of artesian conditions where water under pressure comes to the surface through openings in the confining bed. However, in Anne Arundel County no springs of this type are known.

Discharge from seeps and springs maintains the flow of streams during periods of no rainfall. Although no quantitative measurements have been made in Anne Arundel County, data compiled from similar areas indicate that this type of discharge may range between 15 and 30 per cent of the total annual precipitation. For example, in the Salisbury area, Maryland, where conditions for recharge are good, the ground-water discharge into Beaverdam Creek, above the gaging station at Schumaker's dam, averages about 600,000 gallons a day per square mile of drainage area (2, p. 14). Inasmuch as the annual precipitation averages about 44 inches, the average rate of ground-water discharge into Beaverdam Creek represents about 30 per cent of the precipitation.

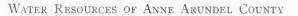
Discharge by Evaporation and Transpiration

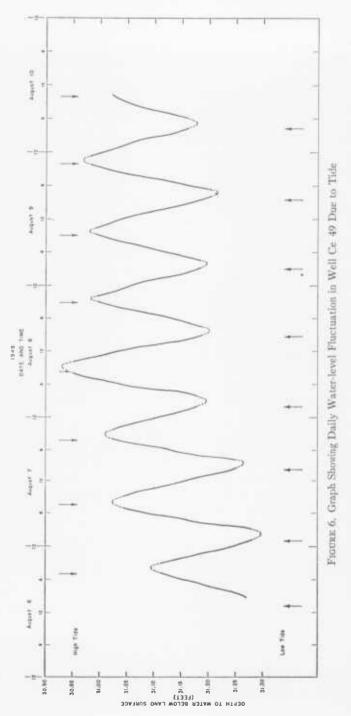
A significant quantity of natural discharge occurs as a result of evaporation, either directly from the soil or by plant transpiration. White (25), in a study of evaporation in the Escalante Valley in Utah, found that the shallow water table was lowered by plant use in a daily cycle during the growing season, and that a large amount of ground water was returned to the atmosphere in the form of water vapor. Climatic conditions in Maryland and Utah are quite different, but in both states large amounts of water are discharged by evaporation and transpiration where the water table is at shallow depth. Meinzer and Stearns (19, p. 142) found that in the Pomeraug River Basin in Connecticut, where the

average annual precipitation is approximately the same as in Anne Arundel County, the evaporation (including transpiration) is equal to approximately 15 per cent of the precipitation.

ARTIFICIAL DISCHARGE OF GROUND WATER

Discharge by Artesian Flow


Where a water-bearing formation occurs under artesian conditions and the artesian head is above the land surface, water may be discharged from the formation through flowing wells. The continual or intermittent flow from such wells, or leakage into shallower aquifers through defective casings, may discharge appreciable quantities of ground water. There are a large number of flowing wells in Anne Arundel County, most of which are found near the shore of Chesapeake Bay or in the river valleys where the altitude is near sea level. Well Ad 3, however, flows at an altitude of about 50 feet above sea level. It is illegal in Maryland to permit wells to discharge water that runs to waste and not put to useful service. Some of the wells near the bay which formerly flowed constantly now flow only at high tide. The artesian head has been lowered by the long-continued discharge of flowing wells, but at high tide the head rises above the surface because the added weight of the bay water compresses the aquifer and increases the hydrostatic pressure.


Figure 6 shows the change in water level in well Ce 49 caused by tide, as recorded by an automatic water-stage recorder. The well is about half a mile from the Severn River and is approximately 450 feet deep.

Discharge by Pumping

In the northern part of Anne Arundel County the estimated daily pumpage by industrial and municipal users is about 750,000 gallons of which nearly all is pumped from the public-supply well field at Glen Burnie. In the Annapolis area the U. S. Naval installations pump about 2,250,000 gallons a day. The city of Annapolis normally depends on surface water for all of its supply, but in dry periods some of the supply is obtained from ground water. During 1948 the average daily water consumption is estimated to have been about 2,250,000 gallons. It is not known accurately how much of this average daily consumption is derived from ground water, but from the few data available it would not seem to average more than 10 per cent or about 225,000 gallons a day. At times, however, ground water is utilized for nearly all of the supply. In the central and western parts of the county, the Crownsville Hospital, the U. S. Naval Academy Dairy, and the National Plastics Corporation pump an estimated 500,000 gallons a day.

In Anne Arundel County about 25,000 people depend on small domestic or farm wells for their water supply. Assuming that water is used at an average

rate of 50 gallons a day per person, the total quantity of water pumped daily from these wells would be 1,250,000 gallons. During the summer, however, the increased population from the influx of thousands of people to summer homes along the Chesapeake Bay, and the Patapsco, Magothy, Severn, and South Rivers, increases the ground-water consumption for domestic purposes. Although no accurate data are available, it seems likely that the average daily pumpage of ground water, during the year, for domestic and farm use is about 2,000,000 gallons a day.

From estimated and known values of pumpage, and other data, the total average daily discharge of ground water from wells in Anne Arundel County is estimated to be about 5,000,000 to 7,000,000 gallons a day.

PUMPING TESTS

When a well is pumped the water table or piezometric surface in the vicinity of the well declines and forms an inverted cone with the apex of the cone at the pumped well. By measuring the water levels in the pumped well and in observation wells at known distances from the pumped well, the size, shape, and rate of growth of this cone (cone of depression) can be determined. These data provide a means by which the ability of the aquifer to store and transmit water can be determined. The ability of an aquifer to store water is expressed by the coefficient of storage, which may be defined as the amount of water, in cubic feet, discharged from each column of the aquifer with a basal area of 1 square foot as the water level falls 1 foot. The ability of an aquifer to transmit water may be expressed by means of the coefficient of transmissibility which may be defined as the amount of water, in gallons a day, at the existing ground-water temperature, that will percolate through a section of the aquifer 1 mile wide, at right angles to the direction of flow, for each foot per mile of slope of the water table or piezometric surface (24, p. 87). The coefficients of storage and transmissibility of an aquifer can be used to predict the effect of pumping given quantities of water on the water levels in the pumped wells themselves, or on the levels in other wells in the same aquifer. In other words, the data can be used to determine the availability of given quantities of water and the effect of the withdrawal at any time and place. Comprehensive pumping tests made under favorable conditions can determine also the amount of decrease in natural discharge or increase in recharge, if any, due to pumping, and the areal extent and structure of the water-bearing formation.

The formulas are based on a set of ideal conditions that are rarely found in nature. For example, it is assumed that the water-bearing formation is of constant thickness, and unlimited areal extent, the material is the same throughout, and natural recharge and discharge remain the same during the test. Since these conditions are rarely found in nature, it is necessary that the geologic conditions be fully understood in order to evaluate the results of a pumping test.

In this report the results of a pumping test in the Patapsco formation are given in the discussion of the hydrology of this formation.

GEOLOGIC FORMATIONS AND THEIR WATER-BEARING PROPERTIES

The geologic formations in Anne Arundel County present a nearly complete Coastal Plain section. The exposures of the type sections of the Arundel, Magothy, and Patapsco formations lie wholly or in part within the county, and all the other formations are exposed at the surface in different parts of the county. Table 1 lists the geologic sequence and briefly describes the lithology and waterbearing properties of the formations. Figure 7 shows a cross section of the geologic formations in the northern and central parts of Anne Arundel County. The location of the section (A-A') is shown on Plate 3.

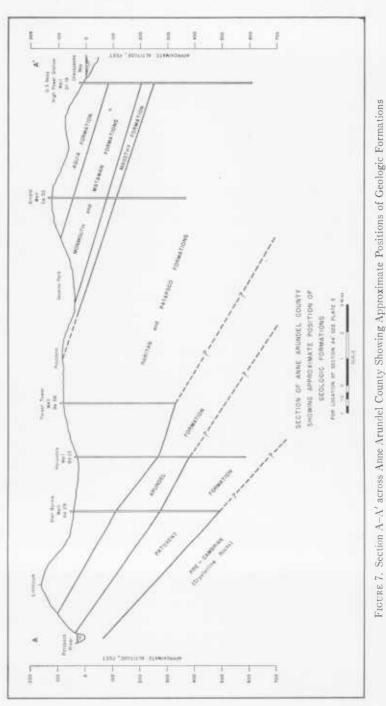
PRE-CAMBRIAN CRYSTALLINE ROCKS

In Anne Arundel County the only area where crystalline rocks or "bedrock" are exposed is the northwestern part in the valleys of the Patuxent River and its tributaries. Near the county line at Laurel and Savage, exposures of gabbro and metagabbro are found in the valley bottoms. Gneiss, granite, pegmatite, diorite, and serpentine are exposed in the Piedmont plateau not far west of Anne Arundel County. These rocks underlie the Coastal Plain sediments and may be encountered in wells drilled through those sediments near the Fall Line.

In most places fractures have been formed in the crystalline rocks by earth movements. They may extend for some distance, both vertically and laterally, but generally they narrow and become fewer with depth. Weathering of the crystalline rocks may occur along fracture openings, thereby increasing the porosity and permeability of the rocks. Ground water accumulates in the fractures and weathered zones, where it may be tapped by drilled wells. Most wells drilled into crystalline rocks in or near Anne Arundel County yield less than 10 gallons a minute; however, two wells (Bb 7 and 8) are reported to yield about 50 gallons a minute each, and well Bc 8, now abandoned, had a yield of 100 gallons a minute. Where bedrock occurs at or near the land surface, users of large quantities of water have been forced to develop surface-water supplies.

CRETACEOUS SYSTEM

Lower Cretaceous Series (Potomac group)


Paluxent Formation. The Patuxent formation is named from the type area, in the valleys of the Little and Big Patuxent Rivers, and is the basal formation of the Coastal Plain sediments in Anne Arundel County. The formation lies directly upon the crystalline rocks. The Patuxent formation crops out in a narrow belt in the north and northwest parts of the county.

The formation consists of lenticular beds of sand, gravel, and clay; and in some places clay balls are present in the sand and gravel. The color ranges from

System	Series		Formation	Thickness (feet)	General Character	Water-Bearing Properties				
Quaternary	Pleistocene	Talbot Wicomico Sunderland Brandywine		0-100(?)	Gravel, sand, silt, and clay	Yields water to dug wells in Anne Arundel County.				
	ene		Choptank	0- 50(?)	Sandy clay	Not a water-bearing for mation in Anne Arunde County.				
ary	Miocene		Calvert	100-150	Diatomaceous earth with shell beds and some sand lenses	Sand lenses yield small sup plies to dug wells in south ern part of county.				
Tertiary Eocene	ocene	Pamunkey group	Nanjemoy	75-120	Green glauconitic sand mixed with clay in upper part of formation. Dense pink or gray clay in lower part	Poor water-bearing forma- tion in Anne Arundel Coun- ty. May yield moderate supplies in a few places.				
	Eo	Pamunl	Aquia	75-150	Green glauconitic sand. Sand brown to green in color and fine- to medium-grained	Main aquifer used in southerr part of county. Yields as much as 150 g.p.m.				
			Monmoutb	50- 80	Dark gray or black, sandy clay with some glauconitic sand	Not an important water-bear ing formation in Anne Arun del County.				
Upper	I	Matawan		50±	Similar to Monmouth forma- tion but contains less glau- conite	Not an important water-bear ing formation in Anne Arun del County.				
	Uppe		Magothy	25- 60	Brown clay underlain by coarse light-gray sand con- taining lignite and pyrite	Excellent water-bearing for mation, some wells yielding up to 1,000 g.p.m. Water usually high in iron.				
Cretaceous							Raritan	100±	Variegated sand and clay. Sand may become case- hardened at outcrop	Excellent water-bearing for mation.
Crets			Patapsco	200-300	Variegated sand and clay with some thin lenses of iron oxides	Chief water-bearing forma tion in central part of coun ty. Large-diameter drillec wells yield up to 1,000 g.p.m				
Lower	Lower	Potomac group	Arundel	30-150	Tough red to brown clay. In some places contains nod- ules of iron oxides, and plant remains	Not a water-bearing forma- tion in Anne Arundel Co.				
		Pc	Patuxent	100-300+	Sand, gravel, and variegated clay	Excellent water-bearing for mation. Few wells tap this formation because water is generally available from Patapsco formation above.				
Pre-	Cambrian(?)				Gabbro, metagabbro, gneiss, granite, pegmatite, diorite and serpentine	Poor water-bearing forma tion. Some water occurs in fractured and weathered zones. Maximum reported yield 50 g.p.m.				

TABLE 1

Geologic Formations in Anne Arundel County

dark red and brown to a very light gray. At some localities in the outcrop the formation contains coarse sand with numerous clay balls. These clay balls are mixed with sand in the process of drilling and may give the impression that the material is a sandy clay rather than a water-bearing sand.

The sediments of the Patuxent formation are lenticular, grading laterally from sand to clay, and because of this lenticularity sands are probably continuous hydrologically only over relatively short distances. Because of lithologic similarity and scarcity of fossils, the Patuxent formation is difficult to distinguish from the Patapsco formation, except where the tough clay of the Arundel formation, which separates the Patuxent and Patapsco, is present.

In the Baltimore area about 35,000,000 gallons of water a day are pumped from the Patuxent formation (1). In Anne Arundel County the southeastward dip of the Patuxent formation carries the water-bearing sand to progressively greater depths, and the shallower formations are the main source of ground water.

In the Patuxent formation highly mineralized water has been encountered in some deep oil-test wells drilled on the Eastern Shore of Maryland. The southeasternmost well known to penetrate the Patuxent formation in Anne Arundel County is well Bd 23, a test well, about $1\frac{1}{2}$ miles southeast of Glen Burnie. The driller's log and chemical analysis of the water (see tables 3 and 5) of this well show that the Patuxent contains several water-bearing sands with water of excellent quality, none of which are tapped in this part of the area by producing wells. Since in Anne Arundel County no wells draw water from the Patuxent formation southeast of well Bd 23, the position of the salt-water front in the formation is not known. Nevertheless it seems probable that the formation may contain potable water as far southeast as Annapolis. However, before drilling production wells to this formation in any part of the county as far southeast of the outcrop as Annapolis, it would be desirable to drill a test well to determine the character of the water-bearing material and the quality of the water contained in it.

In general the Patuxent formation strikes northeast and dips about 80 feet to the mile to the southeast. The thickness ranges from about 100 to 300 feet in the northern part of the county and probably increases considerably down dip.

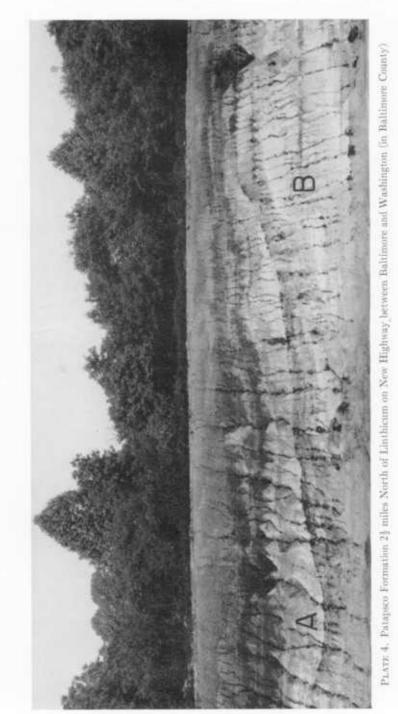
Quality of Water: Samples of water from six wells ending in the Patuxent formation were analyzed for their mineral content (see table 5). These show that the total dissolved solids range from 18 to 56 parts per million, and the total hardness from 3.3 to 20 parts per million. The iron content, which ranges from 1 to 11 parts per million, is sufficiently high to require treatment of the water for some uses.

Arundel Formation. The Arundel formation is named for the type area in northern Anne Arundel County where the formation is well developed and exposed. This formation lies unconformably upon the Patuxent formation and consists essentially of a tough red to brown clay that locally contains small lenses of "ironstone."

In a few scattered places the Arundel formation may contain thin sand lenses that may be water-bearing, but none of the wells inventoried in this report obtain water from such lenses.

The Arundel formation is hydrologically important because the dense clay is practically impervious and is effective in confining the water in the underlying Patuxent formation.

The Arundel formation ranges from about 25 to 200 feet in thickness but averages about 100 feet thick. The strike is generally northeast, and the dip is about 60 feet to the mile to the southeast.


Patapsco Formation. The Patapsco formation is named from the Patapsco River Valley, where it is typically developed. Much of the type area lies within Anne Arundel County. The Patapsco formation is bounded unconformably by the overlying Raritan and underlying Arundel formations. It is composed chiefly of clay and sand that range from red and brown to light gray. In general the sediments in the Patapsco and Patuxent formations are lithologically similar. Thin layers of "ironstone" are common in some localities. Most of the individual beds of clay or sand probably are not continuous for any great distance, and in most localities they cannot be correlated between wells, even those relatively close together. The rapid changes in facies of the Patapsco formation are illustrated by Plate 4, showing an exposure of the Patapsco formation in a road cut. Point "A" and point "B" in the picture are approximately 100 feet apart.

A description of the 40-foot section at point "A" is:

	Depth [#] below top of section	Thickness
Pleistocene		
Sand and gravel	. 0 -10	10
Lower Cretaceous		
Patapsco formation		
Red clay	. 10 -20	10
Gray clay	. 20 -30	10
"Ironstone" layer	. 30 -30.1	0.1
Gray sand		9.9

At point "B" the section is:

Pleistocene	Depth below top of section	Thickness
Sand and gravel	. 0 -10	10
Lower Cretaceous		
Patapsco formation		
Red and gray clay	. 10 -12	2
"Ironstone" layer	. 12 -12.1	0.1
Gray sand	12.1-40	27.9

GEOLOGY, MINES AND WATER RESOURCES BULLETIN 5 PLATE 4

Other examples of facies changes over short distances can be found in the drillers' logs of wells drilled in the Patapsco formation in the Glen Burnie and Annapolis areas. Although the sand beds of the formation cannot be correlated by well logs or drill cuttings, water-level information indicates that many of them are connected and act as a hydrologic unit. Because of changes in lithology over such short distances, it is impossible to predict with accuracy the exact depth a well must be drilled to reach the water-bearing sands of the Patapsco formation in Anne Arundel County. However, in most places a yield of at least 100 gallons a minute may be obtained from a properly constructed and developed well screened opposite a large part of the water-bearing material in the formation; in some localities large diameter wells may have yields of several hundred gallons a minute.

In the northern part of the county, where the entire formation is exposed, the Patapsco ranges in thickness from 200 to 300 feet, and it probably thickens considerably down dip. The general strike of the formation is northeast, and the dip is about 45 feet to the mile to the southeast.

The Patapsco is one of the most productive water-yielding formations in the State and the most extensively developed in Anne Arundel County. In the Baltimore area the estimated daily pumpage from the Patapsco formation during 1945 was about 5,000,000 gallons a day; in the Glen Burnie area the Anne Arundel County Sanitary Commission takes all its water for local municipalities from wells drilled into the Patapsco formation. The average daily pumpage in the Glen Burnie area, in 1948, was about 600,000 gallons a day; and it was reported that it will be increased to about 1,000,000 gallons a day in 1949 when large real estate developments in the area are completed.

In the Annapolis area 17 of 21 wells that supply or have supplied the U. S. Naval Academy, Engineering Experiment Station, and High Power Radio Station take their water from the Patapsco formation. The estimated daily pumpage from these wells is about 1,500,000 gallons. Near Odenton the pumpage from this formation by the U. S. Naval Academy Dairy and the National Plastics Corporation is estimated to be about 500,000 gallons a day. In addition to these developments hundreds of farm and domestic wells in the northern and central parts of the county take their water from sands of the Patapsco.

Quality of Water: The Patapsco water is generally low in dissolved solids in the northern part of the county in and near the outcrop area. Analyses of water from 25 wells in this area have a range, in total dissolved solids, of 12 to 58 parts per million; and a range, in total hardnesss, of 2 to 87 parts per million (see table 5). The mineral content increases to the southeast. Analyses of water from 5 wells in the Annapolis area have a range, in total dissolved solids, of 66 to 111 parts per million; and a range, in total hardness, of 25 to 42 parts per million.

The analyses show that, in the outcrop area, the iron content ranges from

0.04 to 4.0 parts per million; but in the Annapolis area it ranges from 18 to 26 parts per million. Consequently, in many places, the water is treated to remove the iron.

Possibility of Salt-Water Contamination: Heavy pumping from the Patapsco formation in the Baltimore area has caused a decline in water level sufficient to permit brackish water from the Patapsco River to enter the aquifer (1, p. 11). At present there is no evidence of such contamination in Anne Arundel County. However, the hydrologic conditions are similar to those in the Baltimore area, and heavy pumping may result in contamination by brackish water, particularly in the upper part of the formation where it is exposed to the brackish water in the Patapsco River.

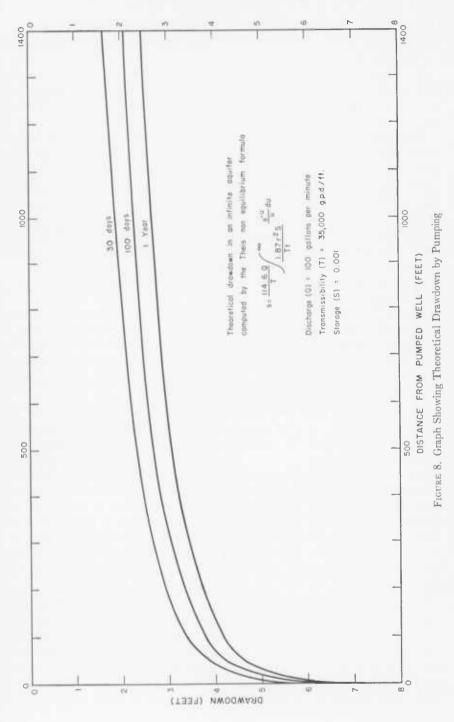

Pumping Tests: In the spring of 1948 a pumping test was made in the well field of the Anne Arundel County Sanitary Commission at Glen Burnie. Three wells equipped with pumps were used in an interference test, and two wells without pumps were equipped with recorders to record changes in water level. The test lasted 4 days. One well was started, and after 24 hours a second well was started, and after 24 more hours the third well was started and the three pumped together for 24 hours. At the end of the third 24 hour period two of the pumps were cut off for 24 hours in order that the recovery of the water levels in the well field could be measured. The results of the test, analyzed by the Theis nonequilibrium formula, show that the aquifer in the Glen Burnie well field has a coefficient of transmissibility of about 35,000 gallons a day per foot, and a coefficient of storage of about 0.001. The average specific capacity of the three wells, which is the yield per unit of drawdown, was about 10 gallons per minute per foot of drawdown after 12 hours of pumping.

Figure 8 shows the theoretical drawdown in an aquifer, having the coefficients of transmissibility and storage determined at the Glen Burnie well field at various distances from a pumped well for different periods of time (30, 100, and 365 days) after pumping is started at the rate of 100 gallons per minute. The theoretical drawdowns for other rates of pumping may be computed from this graph, as the drawdown is directly proportional to the discharge; for example, doubling the pumping rate would double the drawdown shown in Figure 8.

The wells used in this test range in depth from 60 to 95 feet and do not penetrate the full thickness of the Patapsco formation, therefore, the transmissibility and storage coefficients for the entire formation are greater than determined by this test.

Upper Cretaceous Series

Raritan Formation. The Raritan formation was named by Clark (4, pp. 181-186) for excellent exposures along the Raritan River in New Jersey. In Anne Arundel County the formation is exposed in a belt about 5 miles wide from the mouth of the Patapsco River to the Pataxent River above Priest

Bridge. In some localities the gray sand in the Raritan becomes case-hardened upon exposure to form resistant rock masses. A typical exposure of this sort is on the hills southeast of Lipins Corner. The hard phase of the Raritan is apparently confined to the surface, because at depth the material is penetrated easily by drilling. Owing to the similarity in lithology, it is difficult to distinguish the Raritan from the Patapsco and Magothy formations. Moreover, in some places, the three formations probably form a single ill-defined hydrologic unit.

The Raritan strikes northeastward and dips to the southeast at about 35 feet to the mile. Little (17, p. 71) reports the average thickness in the county to be about 100 feet.

The Raritan sands form good aquifers, and the water is similar in quality to that of the Patapsco formation. A large number of wells in the central part of the county develop water supplies from strata of the Raritan.

Magothy Formation. The term Magothy was introduced by Darton (12) in 1893 for a series of transition beds above the Raritan formation and below the Matawan formation. The formation is well exposed along the Magothy River, where it consists essentially of a coarse light gray sand containing lignite and pyrite, overlain by a chocolate-brown clay.

The top of the coarse sand is an excellent marker horizon, both at the outcrop and in well samples. It is on the top of this sand that the contours in Plate 5 are drawn. The base of the Magothy generally cannot be determined accurately from drillers' logs or drill cuttings. The top of the Magothy formation can usually be identified by means of the brown clay which underlies the glauconitic sand and dark-gray clay of the Matawan formation.

The Magothy formation is usually about 40 to 60 feet thick. The strike in the central part of the county is northeast but trends to a more easterly direction near the Chesapeake Bay (Plate 5). The formation dips to the southeast at about 30 feet to the mile.

The coarse sand of the Magothy formation is an excellent aquifer. The wells at the Annapolis Water Works take their water from the Magothy, and two of them, De 45 and De 46, yield about 1,000 gallons per minute each and have an average specific capacity of 10 gallons per minute per foot of drawdown. Two wells, Df 15 and Df 9, at the U. S. Naval installations at Annapolis, are pumped at rates of 200 and 900 gallons per minute, respectively; and two wells at the Crownsville State Hospital, Cd 11 and Cd 12, yield about 200 gallons per minute each.

Quality of Water: The water from the Magothy formation is generally more highly mineralized than the water from the Patapsco or Raritan formations. Analyses of water from 8 wells ending in the Magothy show a range of 62 to 209 parts per million of total dissolved solids, 26 to 164 parts per million total hardness, and 1.2 to 30 parts per million of iron. Public supplies deriving their water from the Magothy formation treat the water to remove the iron.

Matawan Formation. The Matawan formation was named by Clark (5, pp.

163–164) for exposures along Raritan Bay and Matawan Creek in New Jersey. In Anne Arundel County this unit crops out in an irregular northeast-trending belt from Sillery Bay on the Magothy River to Conaways near the Prince Georges County line.

The Matawan formation is strikingly different in appearance from the underlying Magothy. Where the formation is unweathered, it consists of a very uniform black sandy clay with mica and glauconite. At the outcrop the Matawan formation may weather into buff sandy clay.

Because of its high percentage of clay, the Matawan formation is of little importance as an aquifer, and its chief hydrologic importance is that it confines the water in the underlying Magothy formation.

The Matawan formation is about 50 feet thick. The unit strikes northeast and has a dip of about 20 feet to the mile to the southeast.

Monmouth Formation. The Monmouth formation was named by Clark (7, p. 331) for Monmouth County, New Jersey, where the formation is well exposed. In Anne Arundel County the Monmouth formation is exposed in an irregular belt that increases in width from Gibson Island southwestward to Governor Bridge on the Patuxent River.

The lithology of the formation in Anne Arundel County is similar to that of the Matawan formation, the only great difference being an increase in the amount of glauconite in the Monmouth formation. In the drill cuttings it is difficult to distinguish between the two formations, and they are considered as one unit in the sample studies (table 4).

Although the Monmouth contains more glauconitic sand than the Matawan, the large amount of associated clay makes the Monmouth formation of little importance as a source of ground-water supply.

In Anne Arundel County the Monmouth ranges in thickness from 50 to 80 feet. The unit has a northeast strike, and dips to the southeast at about 20 feet to the mile.

TERTIARY SYSTEM

Eocene Series

Aquia Formation. The Aquia formation was named by Clark (6, p. 3) for Aquia Creek, a stream in Virginia which flows into the Potomac River. Along Aquia Creek the formation is particularly well exposed. In Anne Arundel County the formation is exposed over a large area, the most striking exposures being along the Severn River where the Aquia formation forms the high bluffs across the river from Annapolis. These bluffs extend up the river several miles and in some places attain a height of about 100 feet. The Aquia formation is composed chiefly of a green glauconitic, argillaceous sand that grades in texture from fine to coarse. In the southeastern part of the county, in the Shadyside, Deale, and Fairhaven areas, the Aquia formation changes in color and texture from a fine green glauconitic sand at the top to a coarse brown glauconitic sand

near the base. The log of well Ge 4 shows this size and color gradation. However, the size and color gradation does not hold throughout the county, as illustrated by the log of the Southern High School well, Fd 13, where 145 feet of the Aquia formation is present, and the entire formation is a fine green glauconitic sand with included clay. The Aquia formation has a good microfossil fauna (23).

The top of the Aquia formation is shown by contours on Plate 6 which indicate that the strike is northeast in the southern part of the county and east in the eastern part of the county. The formation dips to the southeast at about 20 feet to the mile. Where the entire thickness of the Aquia formation is present, the range in thickness is 75 to 150 feet. Plate 6 may be used to determine at any point the approximate depth to the top of the Aquia formation, if the surface altitude at the well site is known.

The Aquia is a good water-bearing formation, and in general a yield of at least 20 gallons a minute can be expected from small diameter wells drilled to its sands. Most of the wells tapping the Aquia formation in Anne Arundel County are domestic or farm wells with pumps having capacities of 5 to 10 gallons a minute, but one well (Ge 2) in the southeastern part of the county supplies more than 100 houses and is reported to yield 150 gallons a minute.

Quality of Water: Water from the Aquia formation is usually more satisfactory for domestic use than water from the older Coastal-Plain formations, chiefly because it contains less iron.

Analyses of water from seven wells show that the total dissolved solids ranges from 121 to 285 parts per million and averages 228 parts per million. The total hardness, based on analyses of water from fifteen wells, ranges from 15 to 225 parts per million and averages 120 parts per million. Analyses of water from sixteen wells shows that the iron content ranges from 0.1 to 4.0 parts per million and averages 1.2 parts per million.

Nanjemoy Formation. The Nanjemoy formation is named for exposures in the vicinity of Nanjemoy Creek, a tributary of the Potomac River in Maryland. The unit was named by Clark and Martin (8, p. 64) in 1901. The Nanjemoy formation is exposed in an irregular belt across Anne Arundel County westward from Glebe Creek to the Patuxent River south of Davidsonville.

The upper part of the Nanjemoy formation consists largely of green glauconitic sand with some gray clay. The basal part consists of a dense, eventextured clay, pink to gray, which is known as the Marlboro clay member. The Nanjemoy formation ranges in thickness from 75 to 120 feet. The formation strikes northeast in the southern part of the county and swings to a more easterly direction in the eastern part. The formation dips generally southesast at 15 to 20 feet per mile.

Although the Marlboro clay member is a relatively thin unit $(20 \pm \text{feet})$ it is sufficiently persistent that Darton (13) was able to map it from the Potomac River in Prince Georges County to the Chesapeake Bay in Anne Arundel County. In Anne Arundel County the clay is exposed at Upper Marlboro,

Central Avenue and U. S. Route 301 in Prince Georges County, 2 miles east of Davidsonville along Beards Creek, $1\frac{1}{4}$ miles south of Woodland Beach in a road cut 0.1 mile northwest of Collinsons Corner, in an excavation 1 mile southeast of Collinsons Corner, and at the bluff on the north side of Turkey Point. The exposure of the Marlboro clay member at Turkey Point is light to medium gray, in contrast to most other exposures which are light pink. Hand-augering at Turkey Point revealed a total thickness of 16 feet of clay. Below the clay the auger penetrated 1 foot of greensand, representing the upper most part of the Aquia formation. Because of the color change in this area from the characteristic pink to a dull gray, it is possible that additional exposures may be located in areas where the Marlboro clay member has not previously been recognized. The clay has been identified in samples from wells Fd 13, Fd 16, Ge 3, and Ge 4.

Because of the distinctive color and texture of the Marlboro clay member, its wide areal extent, the relative thinness of the bed, and the sharp contact between it and the greensand of the Aquia formation, the Marlboro clay member makes an excellent marker horizon for the base of the Nanjemoy formation. Plate 6 is based on the contact of the Marlboro clay member and the underlying Aquia formation.

The Marlboro clay member is not a water-bearing formation, but it confines the water in the underlying Aquia.

The upper part of the Nanjemoy is a green glauconitic sand containing varying amounts of clay. At the exposure 0.1 mile north of Collinsons Corner, the Marlboro clay member grades into the upper greensand of the Nanjemoy, gray clay being mixed with the glauconitic sand, but 1 mile southeast of Collinsons Corner the contact is a sharp break as seen in Plate 7.

Because of the varying amounts of clay the upper part of the Nanjemoy is not a persistent water-bearing formation in Anne Arundel County, but Overbeck (21) has found that the formation becomes more sandy to the south and is water bearing throughout southern Calvert County.

Because the underlying Aquia formation is a more persistent and permeable aquifer in Anne Arundel County, most of the wells have been drilled through the Nanjemoy formation into the Aquia. However, local sand lenses probably do occur in the Nanjemoy which will supply enough water for domestic use. No chemical analyses are available from wells known to obtain water from sands of the Nanjemoy.

Miocene Series

Calvert Formation. The Calvert formation is named for exposures along Calvert Cliffs in Calvert County. These cliffs extend for about 30 miles along the bay and in some places reach a height of 100 feet. The Calvert formation unconformably overlies the Nanjemoy formation and extends across the southern part of Anne Arundel County into Prince Georges County and southward to the Potomac River.

The Calvert formation is a sandy clay with associated diatomaceous earth. The upper part of the Calvert is usually a brown sandy clay containing shell beds that range from a few inches to 4 feet in thickness. The shell beds are made up primarily of pelecypods but contain well-preserved *Pectens* and species of barnacles. Diatoms occur throughout the formation, but are more abundant in the lower part. The basal unit of the formation, known as the Fairhaven diatomaceous earth member, is a diatomaceous earth containing a few shells or shell fragments. Some sand lenses up to a foot thick are present. In a fresh cut or in drill samples, the Fairhaven member is greenish blue and is often described by well drillers as a marl, but in many outcrops it is bleached to a light ash gray. Nearly all drill samples from the Calvert formation contain shell fragments.

The Calvert formation strikes northeast and dips to the southeast at about 10 feet to the mile. In Anne Arundel County the formation ranges in thickness from about 100 to about 150 feet; it thickens progressively down dip from the outcrop area.

The Calvert formation is not considered an important water-bearing formation in Anne Arundel County (9, p. 367), but the well inventory (see table 2) shows that a large number of dug wells derive water for domestic and farm supply from sand lenses in the Calvert formation. Nearly all the wells in the Calvert formation are reported not to have failed during the dry years of the early 1930's.

No samples of water from the Calvert formation in Anne Arundel County have been analyzed, but the water is reported by users to be of satisfactory chemical quality.

Choptank Formation. The Choptank formation, composed essentially of sandy clay, is named for exposures along the Choptank River in Talbot County, Maryland. It lies unconformably on the Calvert formation and in places is overlain by sediments of Pleistocene age.

Little (17, p. 94) mapped only a small outlier of the Choptank formation in Anne Arundel County. This outlier, less than a square mile in areal extent, is at Marriott Hill in the central part of the county and about 6 miles from the southern border. Future paleontologic study, particularly of microfossils, may show that the Choptank formation has a larger areal extent in Anne Arundel County than mapped by Little. Owing to its small areal extent this formation is of no importance as a water bearer in the county. No wells inventoried for this report derive water from the Choptank formation.

QUATERNARY SYSTEM

Pleistocene Series

Terrace Deposits. In Maryland the Pleistocene terrace deposits have been mapped as four formations, the Brandywine, Sunderland, Wicomico, and

GEOLOGY, MINES AND WATER RESOURCES

PLATE 7. Contact between the Mariboro Clay Member (below) and Glauconitic Saud (above) of the Nanjemoy Formation, 1 Mile Southeast of Collinsons Corner on Maryland Highway 253

Talbot. The formations, composed of sand, gravel, silt, and clay, form terraces which are distinguished by their differences in altitude. These terrace deposits cannot be separated by lithology or faunal content. For detailed reports on the geology of the Pleistocene of the Coastal Plain see Shattuck (22), Cooke (10, 11) Campbell (3), Dryden (14, p. 67–72) and Flint (16).

The Pleistocene deposits range from a few feet of gravel and sand that cap some of the highest hills in the county to more than 100 feet of sediments in the valley fill of the Patapsco River. The Pleistocene deposits in Anne Arundel County are of minor importance as aquifers, as only a few shallow dug wells produce water from these deposits.

Quality of Water: Chemical analyses have been made on water from a number of shallow wells in the county, but only one of these, Cc 15, appears to obtain water only from material of Pleistocene age. The results of the latter analysis show that the total hardness is 15 parts per million and the iron content 0.4 part per million. The total dissolved solid content probably is low as the chloride is 4.0 parts per million and the sulfate is 1.0 part per million. It is not known if this analysis is representative of water from the Pleistocene, but, in general, it is reported that wells ending in the Pleistocene yield water of satisfactory chemical quality for domestic use.

WATER-LEVEL FLUCTUATIONS

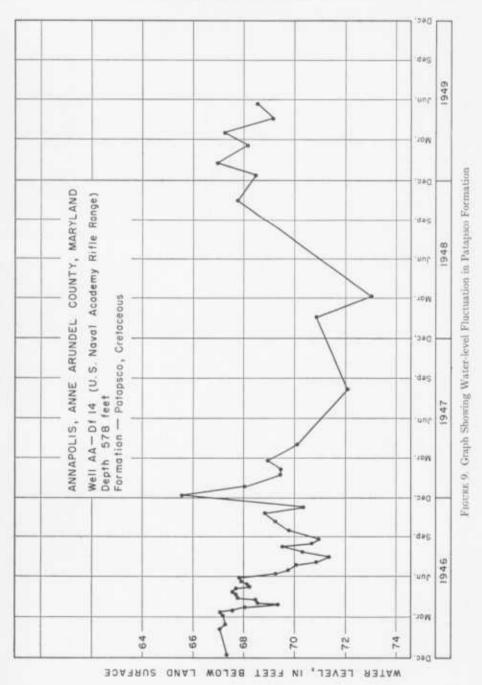
During this investigation 20 observation wells were established in which the depth to water was measured periodically by means of a chalked steel tape, or continuously by means of an automatic water-stage recorder. Wells were selected that would provide water-level data on artesian aquifers and on shallow nonartesian aquifers. Some water-level measurements were made in wells in areas of heavy ground-water pumpage, chiefly to determine the effect of pumping on the artesian head. The periods of measurement for different wells range from 4 to 46 months between January 1946 and June 1949.

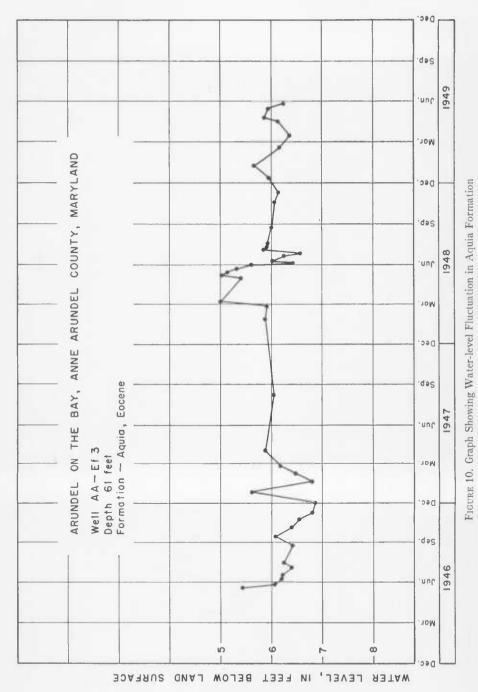
The observation wells and their approximate locations are:

Well number	Location
Ad 10	3 mi. north of Marley
Ad 24	In Linthicum
Ad 27	1 ¹ / ₂ mi. northeast of Glen Burnie
Ad 29	North part of Glen Burnie
Ad 30	North part of Glen Burnie
Ac 4	Northeast of Arundel Cove
Bb 17	1 mi. north of Benfield
Bb 18	21 mi. north of Gambrills
Be 13	At Riviera Beach
Be 54	At Riviera Beach
Cc 2	At Gambrills
Cd 8	1 mi. southwest of Crownsville
Cd 10	$\frac{1}{2}$ mi. southwest of Crownsville
Cd 21	$\frac{3}{4}$ mi. south of Severn Crossroads

Well number	Location
Ce 24	¹ / ₂ mi. north of Crownsville
Ce 49	1 mi. northwest of West Annapolis
Df 14	$\frac{1}{2}$ mi. north of Carrs Point on the Severn River
Df 17	U. S. Navy Radio Station
Ee 14	$\frac{1}{2}$ mi. southwest of Selby Beach
Ef 3	$\frac{1}{2}$ mi. south of Arundel on the Bay

The fluctuations of water levels in wells reflect the changes in hydrostatic head in artesian aquifers, or the changes in the height of the water table in nonartesian aquifers. In areas of little or no pumpage the fluctuation of the water table generally follows a seasonal pattern, being high in the spring when recharge is relatively high, and low in late summer and fall. In Anne Arundel County the water levels in artesian wells, situated a long distance from the outcrop, are not affected materially by seasonal differences in the rate of recharge. Where unaffected by pumpage, the amplitude of the fluctuations is generally much less in these wells. In areas of heavy pumpage, the artesian head or water table fluctuates in accordance with the rate of withdrawal.


Although there is little pumpage from the Patuxent formation in Anne Arundel County, the heavy withdrawal from this formation in the nearby Baltimore area has an effect on the artesian head in the Patuxent formation in the northern part of the county. For example, the water-level record of well Ad 29 (at Glen Burnie), which ends in the Patuxent formation, shows a net decline of about 2.5 feet between October 1948 and July 1949. This decline probably was caused by a relatively small increase in pumpage in the Baltimore area. However, the water level in well Bb 18 (near Fort Meade Junction), a Patuxent well near the outcrop of the formation where recharge occurs, showed a net rise of about 2 feet between April 1946 and July 1949. In general, there probably was no appreciable change in artesian head of the Patuxent formation in Anne Arundel County between 1946 and 1949, the period of record.


Water-level records of 12 observation wells ending in the Patapsco formation show that in some areas the artesian head declined about 1 to 2 feet but rose about 1 to 4 feet in other areas. Although some of these observation wells are near centers of heavy pumpage, there does not seem to be a persistent decline in head. (See Figure 9.)

Water-level measurements in wells Ee 14 and Ef 3, which end in the Aquia formation, show no appreciable net change during the period of record. (See Figure 10.)

In summation, the water-level measurements in most of the observation wells in Anne Arundel County show no appreciable change during the period of record, 1946 to 1949. Thus there is no reason to believe that the aquifers are being seriously depleted by the present rate of pumpage.

As a part of the observation-well program periodic water-level measurements will be continued in 8 wells in the county. These are wells Ad 10, Ad 29, Ad 30, Bb 18, Be 59, Cd 10, Df 14, and Ef 3.

References Cited

- 1. Bennett, Robert R., Ground water in the Baltimore area, Maryland: Maryland Dept. of Research and Education, Educational Series, No. 13, 1946.
- Bennett, Robert R., and Meyer, Rex R., Preliminary report on the occurrence of ground water in the Salisbury area, Maryland: Maryland Dept. of Geol., Mines and Water Resources, mimeographed report, June 1948.
- Campbell, M. R., Alluvial fan of Potomae River: Bull. Geol. Soc. America, vol. 42, 1931, pp. 825–852.
- 4. Clark, W. B., New Jersey State Geologist, Ann. Rept. for 1892, 1893.
- Clark, W. B., Origin and Classification of the Greensands of New Jersey: Jour. Geology, vol. 2,, 1894, pp. 161–177.
- Clark, W. B., Contributions to the Eocene Fauna of the Middle Atlantic Slope: Johns Hopkins Univ. Circ., vol. 15, 1895, pp. 3-6.
- Clark, W. B., Upper Cretaceous Formations of New Jersey, Delaware, and Maryland: Bull. Geol. Soc. America, vol. 8, 1897, pp. 315–358.
- 8. Clark, W. B., and Martin, G. C., Eocene: Maryland Geol. Survey, 1901.
- Clark, W. B., Mathews, E. B., and Berry, E. W., The Surface and Underground Water Resources of Maryland, including Delaware and the District of Columbia: Maryland Geol. Survey, vol. 10, pt. 2, 1918.
- Cooke, C. W., Pleistocene seashores: Jour. Washington Acad. Sci., vol. 20, 1930, pp. 389-395.
- 11. Cooke, C. W., Correlation of coastal terraces: Jour. Geology, vol. 38, 1930, pp. 577-589.
- Darton, N. H., The Magothy Formation of Northeastern Maryland: Am. Jour. Sci., 3rd ser., vol. 45, 1893, pp. 407–419.
- 13. Darton, N. H., The Marlboro clay: Econ. Geology, vol. 43, no. 2, 1948, pp. 154-155.
- Dryden, L., The physical features of Charles County: Maryland Dept. Geol., Mines and Water Resources, 1948.
- Fenneman, N. M., Physiography of the Eastern United States: McGraw-Hill Book Co., Inc., 1938.
- Flint, R. F., Pleistocene features of the Atlantic Coastal Plain: Am. Jour. Sei., vol. 238, 1940, pp. 752-787.
- 17. Little, H. P., Physical Features of Anne Arundel County: Maryland Geol. Survey, 1916.
- Meinzer, O. E., Occurrence of ground water in the United States: U. S. Geol. Survey, Water-Supply Paper 489, 1923.
- Meinzer, O. E., and Stearns, N. D., A study of ground water in the Pomeraug Basin, Conn.: U. S. Geol. Survey, Water Supply Paper 597-B, 1929.
- 20. Miller, B. L., U. S. Goel. Survey Geol. Atlas, Choptank Folio, No. 182, 1912.
- Overbeck, R. M., Ground-water Resources of Calvert County: Maryland Dept., Geol., Mines and Water Resources, Bull. 7 (in press).
- 22. Shattuck, G. B., and others, Pliocene and Pleistocene: Maryland Geol. Survey, 1907.
- Shifflett, E., Eocene Stratigraphy and Aquia Foraminifera: Maryland Dept. Geol., Mines and Water Resources, Bull. 3, 1948.
- Wenzel, L. K., Methods for determining permeability of water-bearing materials: U. S. Geol. Survey Water-Supply Paper 887, 1942.
- White, W. N., A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: U. S. Geol. Survey Water-Supply Paper 659-A, 1932.

TABLE

Records of Wells in Anne

Pumping equipment: A, air lift; B, bucket; C, cylinder; E, electric motor; G, gasoline or oil engine; H, hand; I, impeller, either Use of water: C, commercial; D, domestic; F, farming; N, not used; P, public supply; S, school. Static Water Level: reported depths are designated by a.

We1l	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diame- ter of well (inches)	Water-bearing formation
Ac 1	John Mathai	_	About 1845	130	Dug	90	_	Patuxent
Ac 2	Board of Education		—	90	do	16.3		Pleistocene
Ac 3	Old Oak Dairy	Bunker (?)	About 1933	190	Drilled	290	6	Patuxent
Ac 4	Do	Washington Pump & Well Co.	1945	190	do	165	6	Patapsco
Ac 5	James Pitzinger	- 1	1941	70	Dug	61	48	Pleistocene or Patapsco
Ac 6	Eddie Sacks	_	1916	140	Drilled	196	4	Patuxent
Ac 7	Slater	Slater	About 1916	160	do	110	-	Patapsco
Ac 8	C. E. Duckworth	Randallstown Pump & Well Co.	1945	180	do	128	6-53-43	Patuxent
Ac 9	John Wosk	-	-	170	do	88	5	Patapsco
Ac 10	C. E. Giles	Rogers	1947	120	do	153.5	6	Patuxent
Ad 1	County Sanitary Commission	Layne-Atlantic	1926	45	Drilled	65	18	Patapsco
Ad 2	Do	do	1941	40	do	95	18-8	do
Ad 3	Do		1927	50	do	62.5	18	do
Ad 4	Chas. S. Walton Co.	Hoshall	1919	45	do	94-126	6	do
Ad 5	Do	do	1919	45	do	127	6	do
Ad 6	Do	do	1919	45	do	157	6	do
Ad 7	Do	do	1923	45	do	312	6	do
Ad 8	U. S. Army Ordnance Depot	_	1918	49.1	do	390.5	8-6	Patuxent
Ad 9	Do	-	1918	46.1	do	149.5	8-6	Patapsco
Ad 10	Do		1918	44.9	do	108.5	8-6	do
Ad 11	Do	—	1918	39.9	do	300(?)	10-8	Patuxent
Ad 12	Royland M. Phelps	-	1879	60	Dug	32	48	Pleistocene or Patapsco
Ad 13	D. L. Topping	—		65	Drilled	80	6	Patapsco
Ad 14	Baltimore City	Underground Explora- tion Co.	_	0	do	35.5	-	do
Ad 15	Do	do	— /	0	do	41		do
Ad 16	U. S. Army Ordnance Depot	92		35.3	do	83	8	do
Ad 17	E. Linthicum Hts.	-	1909	160	do	80-90	6	do
Ad 18	Do W. Linchtum Ilte	-	1909	160	do	108	6	do
Ad 19 Ad 20	W. Linthicum Hts. Kavanaugh Products, Inc.	Washington Pump & Well Co.	1944	40	do do	392	8	Patuxent
Ad 21	Board of Education	well Co.		35	Drilled	160	6	Patuxent
Ad 21 Ad 22	Board of Education	-		35 180	—	100		Patuxent
Ad 23	County Sanitary Commission	Layne-Atlantic	1945	45	do	78	18 or 20	Patapsco

....

Arundel County, Maryland

2

turbine or centrifugal; N, none; W, windmill.

Static w	ater level		of pump. min.)	Y	ield		e F.	
Below land suiface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a mi	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
72ª	10 -44	C, E	15	_		D		
7	12 -45		-	_		S		
145-160 ^a	1946	I.E	12	_		С	55	
70 th	-	I, E	55	50		С	52.5	See well log.
57	1 -9 -46	1, E				D		
25-30 ^a		N	-			D, F	-	Well dug to 110 feet about 1896; deepened to 196 feet about 1916.
45 ^a	1- 9-46	C, 11	- 1	- 1		F		
39,4	1-14-46	Ι, Έ		_	-	F		Well drilled to 115 feet in 1939; deepened to 128 feet in 1945. See chemical analysis
		C, E	_			D		
105	11- 3-48	C, E	-	10	11 -48	D	1 -	See well log.
-		I, E		220-225	1943	Р	55	Flowing well. Flowed 75 G.P.M. on 6-43 See well log and chemical analysis.
228		I, E	320	280	_	P	1 55	See well log and chemical analysis.
44		I, E		175	1943	Р	54.5	Flowing well. See chemical analysis
		1, 1. A		28	1942	C		See chemical analysis.
		A	- 2 -	32	1942	C		Do.
	1.02		_	46	1942	C	_	Do.
		A		40	1942	C	_	Do.
50 ^a	11 -18	A N		100	1942	N	-	See well log.
48 ⁿ	11 -18	N		75	1918	N	-	Do.
34.19	1-10-40							
36.56	8-21-44	N	-	50	1918	N		Do.
24.70	8-21-44	N				N		Do.
26.83	0.21 41	C, E				D	_	
20-		0, 1,				N		
-			-	-	-	N	-	Test well. See well log.
						N		
41ª	11 -18			30	1918	N	-	Well drilled to 182 feet. Plugged back t 83 feet. See well log.
		W		45		N		See chemical analysis.
50 ^a		G	- 1	12	-	N		
30-	_		_			N	_	
76.13	8 -44	I, E	300		—	С	1 -	See well log and chemical analysis.
-		C, E	_	_	100	S	_	
		-	-	-	-	N	1	Formerly supplied several houses in Ship ley Hgts. and Linthicum Hgts.; we now abandoned and covered.
	1 0-	I, E	_	150	1945	Р	- 1	now abandoned and covered.

Well	Owner or name	Drilleı	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diame- ter of well (inches)	Water-bearing formation
Ad 24	Seth II. Linthicum	_	About 1920	170	drilled	225	6	Patuxent
Ad 25	Lillian Williams	Cunningham	-	140	do	1.30	4	Patapsco
Ad 26	Thomas Martin	McCarthy	1945	2	Driven	63	2	do
Ad 27	S. S. Tracey	Craig	About 1916	30	Bored	73	4	do
Ad 28	Mrs. Wm. G. Lehr		Before 1920	165	Drilled	170(?)	6	do
Ad 29	County Sanitary Commission	Layne-Atlantic	1945	40	do	530	3-2	Patuxent
Ad 30	Do	U.S.G.S.	1948	40	do	13.2	4	Patapsco
Ad 31	Layne-Atlantic Co.	Layne-Atlantic	1946	60	do	155	6	do
Ad 32	Lillian Miller	G. E. Crouse	1947	40	Driven	80	4	do
Ad 33	Adrian Hall	do	1947	140	do	147	4	do
Ad 34	John A. Evans	do	1948	105	do	30	4	do
Ad 35	F. Ludwig	-	About 1857	45	Dug	41	48	do
Ad 36	Frank Haberkorn			20	do		36	Pleistocene
Ad 37	L. Strauss		About 1928	45	Drilled	52	4	Patapsco
Ad 38	Paul Haberkorn		About 1929	50	Dug	13	36	Pleistocene (?)
Ae 1	Armour Fertilizer Co.	-	1918	10	Drilled	350	8	Patapsco
Ae 2	Cooperative Fertilizer Co.	Cooperative Fertilizer Co.	1936	10	Dug	23	48	Pleistocene or Patapsco
Ae 3	Do	do	1936	10	do	65	48-6	do
Ae 4	U. S. Coast Guard	-	1934	22	Drilled	195	12-10-8	Patapsco
Ae 5	Do	-	-	15	do	189	6	do
Ae 6	Do	Downin	1901	20	do	216	6	do
Ae 7	Do		-	20	do	100		do
Ae 8	Solley's Grocery		About 1893	50	Dug	43		do
Ae 9	Do U.S. Assar Osciones		About 1883	50	do	45	48	Pleistocene or Patapsco
Ae 10	U. S. Army Ordnance Depot	-	1917	16	Drilled	75.5	10	Patapsco
Ae 11 Ae 12	Do Baltimora City	-	1918	16.8	do	75	8-6	do
	Baltimore City	Underground Explora- tion Co.	—	0	do	38.5	_	do
Ae 13	Do	do	- 1	0	do	39		do
Ae 14	Do	do		0	do	52		do
Ae 15	Do	do	-	0	do	51.5	-	do
Ae 16 Ae 17	Do U.S. Coast Cuard	do	-	0	do(?)	40		do
Ae 17 Ae 18	U. S. Coast Guard Do		-	22	Drilled	192	-	do
Ae 18 Ae 19	Do			20	do	190		do
Ae 20	Do			20	do	195		do
Ae 20 Ae 21	C. L. Larkin			20	do	400(?)		do
Ae 22	Zamostmy's Amoco Station	Deitz	1940 About 1937	2 5 50	Dug Drilled	31.4 150	36 6	Pleistocene or Patapsco Patapsco
Ae 23	Henry Schriver			25	1.	252/22		
Ae 24	Ciordano Bros.		About 1936	25	do do	250(?) 84	6	. do
Ae 25	Mrs. Lillian Smith		ADOUT 1900	20	do J	84 150	4-11 31	do
Ae 26	John L. Feddon	Eiler	1946	10	do do	150 55	34	do
	Geo. J. Reinhardt	do	1946	10	do	55 54	3	do do
Ae 28	Harry M. Clark	do	1946	10	do	238	3-2	do do

Static w	ater level		r of pump min.)	· ·	Yield		E.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a mir	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
98	1- 7-46			-	_	N		Measured depth of well 175 feet.
96 ⁿ	_	С, Е	- 1			D	_	
		N	—			D	_	Flowing well.
20.53	1-15-46	С, Н	_	_		D, F	1	
-		С, Е		-		N		
-	6- 4-48	N	-	12	6- 3-48	N	59	Static water level 10.93 feet above lar surface. See well log and chemic analysis.
8.78	6-17-48	N	100	-		N		
42ª	_		50			С	-	
33ª	7-28-47	I, E	—	-	-	D		See well log.
23ª	10-31-47	С	5	8	10-31-47	D	-	Do.
20 ⁿ	3-20-48	H	3	5	3-20-48	D	-	Do.
	—	N			_	N		
14.42	11- 5-48	C, H		_		D	-	
9.46	11- 5-48	C, E		-	-	D	-	
7.62	11- 5-48	С, Н	-		_	D		
41.96	8-24-43	Α	_			С	56.5	See chemical analysis.
14.46	8-24-43	С, Е	9	9	8-24-43	С		Do.
6.8	8-24-43	С, Е	P-9-4		- 1	С	-	Do,
24 ⁿ	1941	C, E	- 1	-	- 1	N		See well log and chemical analysis.
-	_	- I	150	150		N		See well log.
10 ^a		1 <u> </u>	_	20+	_	N	-	
			-			N	_	
	-	11	- 1	-		D	_	
-		Н	- 1			D	_	
13 ^a	1918			35	1918	N	-	
15.5 ⁸	1918	=	_	20	11-22-18	N	_	Do.
Pader		- 7			-	N	-	Test boring. See well log.
						N	_	1)0.
				-	_	N		Do.
3		. – .	_	_	_	N	_	Do,
				- 1	_	N	_	Do,
24 ⁸	_					_		
-			_				_	See well log.
			-					Do.
	- 1		_	- 1		_	- 1	Do.
26.5	1-14-46	1, E			_	D	_	
60 ^a	- 1	C,E		- 1	-	D		See chemical analysis.
30 ⁿ		C, H			_	D		
-	_	-		3	1-15-46	D		Flowing at high tide.
25.80	1-15-46	I,E	_	100	_	D	_	
1.3 ⁿ	3 -46	1, E	15	10	1946	D		
11 ^a	5-23-46	C, H	5	10	5-23-46	D	_	See well log.
19 ⁿ	6-7-46	C, II	6	6	6-7-46	D		Do,

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Bb 1	District Training School	Hagmann	1927	150	Drilled	135		Patuxent
3b 2	Do	Do Sydnor Pump & Well Co.			do	222	8-6	do
3b 3	Do	Virginia Machinery & Well Co.	1930	1 50	do	240	10	do
Bb 4	Do	Layne-Atlantic	1932	110	do	195	30-24	do
Bb 5	Do	Washington Pump & Well Co,	1944	115	do	199	12	do
Bb 6	James Lewald	Mitchell	1930	220	do	186	6	do
Bb 7	Maryland House of Correction	Downing	1907	225	do	675	6	Pre-Cambrian
Bb 8	Do	do	1907	225	do	675	6	do
3b 9	Fort Meade	_	1917	160	do	96	_	
3b 10	Do		1917	183.08	do	186	_	Patuxent
3b 11	Do		1917	296	do	352		do
Bb 12	Do	Sydnor Pump & Well Co.	1917	200.82	do	188	10-8-6	do
Bb 13	Do	do	1917	158.33	do	166	10-8	do
3b 14	Paul Barber	Hagmann	1943	225	do	174	6	do
3b 15	Do	do	—	240	do	182	6-4	do
Bb 16	Do	Washington Pump & Well Co.	About 1905	160	do	80	8	do
Bb 17	Board of Education	do	1932-33	170	do	46.25	6	do
Bb 18	Wm. J. Harris	_		170	Dug and drilled	108	6	do
Bb 19	Do	Washington Pump & Well Co.	1946	170	Drilled	72	6	do
Bb 20	District Training School	Shannahan	-	210	do	208	5	do
Bb 21	Edward Hall	Smith	1946	180	do	160	6	do
вь22	Maryland State Fair	Layne-Atlantic	1947	150	do	60.5	12-6	do
Bc 1	Nat. Plastic Products Co.	Shannahan	1944	120	do	174.5	10-8	Patapsco
Bc 2	Do	do	1908	120	do	165	4	do
Rc 3	Board of Education	Washington Pump & Well Co.	1932-33	150	do	105	6	do
Bc 4	Fort Meade	Sydnor Pump & Well Co.	1917	114.12	do	43	-	do
Bc 5	Do	do	1917	124.16	do	253	~~~~	Patuxent
Bc 6	Do		1917	149.98	do	138	_	Patapsco
Bc 7	Do	_	1917	183.21	do	292		Patuxent
Bc 8	Do	Sydnor Pump & Well Co,	1917	138.92	do	593	10-8-6	Pre-Cambrian
Bc 9	Do		1917	147.83	do	245	-	Patuxent
Bc 10	Do		1917	164.25	do	243	-	do
Bc 11	Meadaway Restaurant	Washington Pump & Well Co.	1942	170	do	127	6	Patapsco
Bc 12	Louis Barattini	Leatherbury	1942	170	do	125	3	do
Bc 13	I. E. Stevenson		1943	190	Dug	87	48	do
Bc 14	G. H. Clark		1932	150	Driven	132	4(?)	do
Bc 15	H. E. Wagner	Washington Pump & Well Co.	1930	170	Drilled	118	6	do

Static w	ater level		pump (.n	Ŋ	rield		°F.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of pump (gal. a min.)	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
	-	 I, E	-	7	1944	N S	-	Pumping level 58 ft. below land surface
24 ⁿ	1943	C, E	50	4.3	9 -44	S		
		0,2	00	-1+7	7 - 14	5		
20 ^a 13.07	1932 9-29-44	I, E I, E	100 ¹ 	110 5369	1944	S S		See well log.
36 ⁸	_	C.E		10		D		
60 ^a		N	-	50		N		
608		N		50		N	i	Rock at 180 feet. See chemical analys
-		iner, i	-			N		Nock at 180 feet. See chemical analys
		-	-	0		N		Not in water-bearing strata.
-	-		- 1		-	N		Do,
85 ⁿ	_	N	- [115		N	-	
50 ⁿ	_	G	50	100		N	_	
98.20	2- 8-46	C, E	_]	3-10		D	-	
	1000	C, E	I	21		D		
24.10	12-17-45	1, E	- 1	40		D	-	
44.07	12-17-45			15+		N	14	
-		Ν			-	N	-	
20,70	2-19-46	N	-	8	2-16-46	D	-	See well log.
80.07	2- 8-46	N	-	-		S	-	Measured depth of well 123.12 feet.
51ª	4-10-46			19	4-10-46	D		See well log.
1ª	5- 9-47	I, E	60	60	5- 9-47	С		Do.
41 ^a		I,E	250	280	-	С	_	See well log and chemical analysis.
-		I,E	80	80	1944	С	_	
-	-	C, E	15	15			—	
18#		N	-	20	1917	N		
50 ^a	1917	N	115	115	1917	N		
38 ^a	1917	N	- 1	50	1917	N		
80 ^a	1917	N	- 1	65	1917	N		
70 ^a	1917	N	-	100	1917	N		
			-	-		N		
80 ^a	1917	N	-	100	1917	N		
		C, E	-	15	1942	С		See well log.
	-	C, E		3		C, F	-	
84.5ª	-	C, E	2	_	- 11	D,F	-	
77ª	1932	C, E		5	1932	D,F	1	
70 ⁸		C, E		5		D,F		

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Bc 16	W. Bussey	Cunningham	About 1933	1933 200	Dug and drilled		4	Patapsco
Bc 17	George Weber			150	Dug	49.8	48	do
Bc 18	Harold Fisher	Crouse	1945	125	Drilled	86	4	do
Bc 19	W. Rose	Crouse	1944	130	Drilled	150	4	do
Bc 20	Nat. Plastic Products Co.	Shannahan	1945	125	do	180	10-8	do
Bc 21	Louis Barattini	Bunker	1946	170	do	96	6	do
Bc 22	Odenton Volunteer Fire Co.		1946	165	Dug	25	36	Raritan and Patapsco
Bc 23	Lester L Disney	Washington Pump & Well Co.	1942	165	Drilled	175	4	Patapsco
Bc 24	Murray F. O'Malley	Cunningham	-	150	do	315	6-41	Patuxent (?)
Bc 25	Mrs. J. Irving Waters	Stone & Crouse		150	do	10.3	4	Patapsco
Bc 26	James Shaw		1883	230	Dug	100 32	36 48	Raritan and Patapsco do
Bc 27	John Habel	10 11 11	1946	t05 200	do Drilled	32 210.5	48	Patuxent
Bc 28	Steve Kowatski	Smith Bunker	1940	280	do	140.1	4	Patapsco (?)
Bc 29	John O'Lexey's Restaurant	Bunker	1347	200	QU	140.1	T	
Bc 30	J. H. Otto	Crouse	1946	180	do	176	-1	do
Bc 31	A. D. Riden and Co.	Washington Pump & Well Co.	1947	145	do	91	6	Raritan and Patapsco
Bd 1	Anne Arundel Sand Corp.	Layne-Atlantic	1927	140	Drilled	65	48	Patapsco
Bd 2	Maryland Training School	Shannahan	1932	90	do	91	10	do
Bd 3	John Palberg	Novak	1941	60	do	147.4	4	do
Bd 4	J. W. Meyer		About 1934	10	do	110		do
Bd 5	Howard Della	Novak	1945	40	do	136	4	do
Bd 6	Rae	Bunker	t945	2 20	do	84 80	2	do do
Bd 7	George B. Furman		1945	10	do	81		do
Bd 8	Robert Kamsch	Novak	[345	70	Drilled	29	4	Patapsco
Bd 9 Bd 10	John A. Scherer Herbert Wolf			130	Dug	36	36	Raritan and Patapsco
Bd 11	J. C. Stevenson		1927	100	do	25	48	do
Bd 12	Geroge B. Furman		About 1918	80	Drilled	100(?)	4	do
Bd 13	H. Pumphrey	Crouse	1942	100	do	125(?)	4	Patapsco
Bd 14	Adam Neidert	_	1915	130	Bored	100	6	Raritan and Patapsco
Bd 15	Do		1926	130	Dug	25	36	Raritan
Bd 16	Wm. P. Manning	_		70	do	80	48	Raritan and Patapsco
Bd 17	Albert Franklin	Stone & Crouse		160	Drilled	145	6	Patapsco
Bd 18	George Crouse	Crouse	1941	100	do	106 52(?)	4	do Raritan and Patapsco
Bd 19	Gilbert Pumphrey	Pumphrey	1946	110 70	Driven do	52(r) 75	4	Patapsco
Bd 20	Mrs. E. W. Anderson Old Glen Theatre	Crouse Bunker	1940	45	Drilled	108	6-4	do
Bd 21 Bd 22	New Glen Theatre	do	1939	45	do	110	6	do
Bd 23	County Sanitary Commission	Layne-Atlantic	1948	30	do	617	2	Patuxent
Bd 24	Agnes W. Payne	Campbell	1947	85	do	120	4	Patapsco
Bd 24	William Fisher	Crouse	1947	85	Driven	76(?)	4	do
Bd 26	M. F. Dicus	do	1946	115	do	73	4	do
Bd 27	Wm, G. Churchill	do	1946	120	do	105	4	do
Bd 28	Bernard G. Kiersey	Campbell	1946	140	Drilled	68	4	Raritan and Patapsco

Static wa	ater level		of pump min.)	3	field		e F.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a mir	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
-	_	I,E	_	-		F	-	
		a. 11	_			25		
33	3-27-46	C, E I, E		-		D D	_	
75ª	_	1, E 1, E	_			D		
38.10	3-27-46	I,E I,E	300	307		C		
38.10	3-27-40	1,14	300	201		C		
30 ⁿ	2 -46	C, E	8	35	-22	C, F	_	See well log.
178	_ 10	I,E			-	D	_	bee wen togi
84	4-23-46	C, E	-	10		D	-	
_		N		50	1	N		
_		N	-	50	-	N		
53	4-23-46	N	-			D	_	Measured depth of well 56 feet.
24ª		If				D	_	
106.31	7-24-46					D,F		See well log.
120 ^a	_	C, E	5	-	1.000	C, D, F	_	
113 ^a	12- 4-46	C, E	-		-	D	-	Do.
30ª	11-25-47	C, E	25	15		D	-	Do.
						AT		0 11 1
		-		178	1927	N	-	See well log.
5*	1932			96	1932	N	_	Do.
0								
48 ⁿ		I, E	_	6	_	D	_	
-		I,E	-	—	-	D		Flowing well.
24.8	1-17-46			10			-	See well log.
	-	I,E		6	3- 6-46	D	56.5	Flowing well. See chemical analysis.
-	-	N	-	20		D	-	Do. Do.
-		C, E	-	10		D	-	See well log.
9,40	3-27-46	C, E	-			D	-	
30 ⁿ		ŦŦ	100		_	D	-	
17 ^a	-	I,E			_	D	-	
-	_	I, E		—		N	_	
-	_	N		_	-	N	-	
—		N				N	-	
-		C, E	- 1	-	_	D	-	
_	-	I, E				D,F	-	
—		C, E	-	-	-	D	-	
43.03	5- 1-46	C, E	-	-		D	-	
_		I, E	-	_	_	D		
29 ⁿ	6-21-46	I,E	5	-		D	- I	See well log.
-	-	I,E	-	-		C	—	
8 ^a	-	I,E	-	100		C	-	
-	1948	N				Р	-	Flowing well. See well log and chemic analysis.
33 ^B	8- 1-47	I,E	5	5	8- 1-47	D	_	See well log.
5 5 ª	8- 1-47	I, E I, E	5		4-24-47	D		Do.
47,25	4-24-47	I, E		3	1948	D	_	Do.
47,23 33ª	8- 7-48	N			1710	D	_	Do.
51ª	12-27-46	C, H	4		12-27-46		_	Do.
31	12-21-20	0,11			Am mr 10			

TABLE-2

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Be 1	Walter F. Gardner	Bunker	1941	30	Drilled	70(?)	2	Patapsco
Be 2	Hillman's Store		Before 1900	110	Dug	22	48	Raritan
Be 3	Board of Education	Washington Pump & Well Co.	1932	115	Drilled	38.5	4	Patapsco
Be 4	N. H. Mathews	Novak	1944	50	do	125	$4\frac{1}{2}$	do
Be 5	Do	do	1944	50	do	120	4	do
Be 6	Board of Education	do	1944	40	do	134	6	do
Be 7	Williams	Eiler	1945	20	do	99	2	Raritan and Patapsco
Be 8	Earl R. Cristy	do	1945	20	do	157	3	Patapsco
Be 9	John Power Greene	do	1945	20	do	146	3	do
Be 10	Culotta	do	1945	20	do	Over 90	2	do
Be 11	Andrew and Roselle Katoski	do	1945	50	do	96	4-3	do
Be 12	Conway	Novak	1941	40	do	106.5	4	do
Be 13	R. LeMoine	do	1940	20	do	231.6	4	do
Be 14	Znramirowsky	do	1938	20	do	122	4	do
Be 15	Joseph Kue	do	1938	20	do	121.5	4	do
Be 16	Ben Miksinski	do	1938	20	do	109	4	do
Be 17	Alger	do	1940	70	do	145	4	Raritan and Patapse
Be 18	Frank Klimer	do	1945	15	do	77	4	Patapsco
Be 19	Mrs. Dolow	Eiler	1944	10	do	42	2 or 3	Raritan and Patapse
Be 20	O. C. Robinson	Bunker	1946	30	do	118	3-2	Patapsco
Be 21	G. Bryce	Bryce	1943	0	do	150	3	do
Be 22	Bill Clements	Novak	1942	30	do	122	4	do
Be 23	C. & P. Telephone Co.	do	1945	60	do	45	4-1	Raritan
Be 24	Reamers Store	—	-	40		51		Raritan and Patapsco
Be 25	Thomas R Burger	Bunker	1942	20	Drilled	113	2	do
Be 26	Realty Corp.		1926	-9	do	480	4	Patapsco
Be 27	Do		1926	-9	do	510	4	do
Be 28	Klingelhoefer Wolfa's Tausan			80	Dug	60	48	Raritan
Be 29	Wolfe's Tavern			100	Drilled	52.73	4	Patapsco
Be 30	B.B.L. Research Farm	Novak	1938	50	do	82	4	Raritan and Patapsco
Be 31	E. Jubb Webster Crisbal	-		65	Dug	34	-	do
Be 32	Webster Griebel	Garvan	1925	3	Drilled	160-210	3	do
Be 33	George H. Mank	do	1928	2	do	180	4	do
Be 34	Joseph Booker		-	0	do	350	4	Raritan and Patapsee
Be 35	Charles Boyer	Eiler	1946	23	do	100	$4-2\frac{1}{2}$	Patapsco
Be 36	Board of Education	Leatherbury	1932-33	80	do	120	6	Patapsco
Be 37	Wolle	Bunker	1942-43	5	do	50	4	Raritan and Patapsco
Be 38	Van Metre		1934	15	do	35	4	Raritan
Be 39	Earl M. Banks		1944	60	Dug	35	48	do
Be 40	Harold E. West	Crouse & Stone	About 1930	30	Drilled	140	4	Raritan and Patapsco
Be 41	Do	Bunker	1942	30	do	61.6	4	Raritan
Be 42	W. R. Young	Young		5	do	110(?)		Raritan and Patapsco
Be 43	Mrs. J. I. Garcelon	Dill	1925	40	do	29	6	Raritan
Be 44	Rosella Katoski	Eiler	1946	45	do	29	4-3-2	Patapsco
Be 45	Harold Bunker	Bunker	1945	80	do	67		Raritan and Patapsco
Be 46	Mrs. Appleton	_	1939	65	Dug	24.2	48	Raritan
					0	147	48	Patapsco
Be 47	Harry J. Klasmeier	Eiler	1946	20	Drilled			

Continued

Static w	ater level		of pump min.)	7	lield		с °F.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a mir	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
34ª	_	C, E		8	1941	D		
		C, E		_	_	D		
	—	C, E	-	15	-	S	-	See chemical analysis.
28.06	9-25-44	_		15	1944	D		See well log.
28(?) ⁸	9 -44	I,E	6-8	10	9 -44	D	-	
39,08	11-22-44			10	1945	S	-	Do.
14	1945	-	-	5	1945	D		Do.
17.5	1945	I,E	5	5	11 -45	D	-	Do.
13	11 -45	I,E	6	10	11 -45	D	-	Do.
	_	-	-	-		D	-	Do.
38,72	12- 3-45	I,E	8	8	-	D	-	Do.
30 ^a	-	н	-	8	_	D	=	
18.47	2- 8-46	I,E	10(?)	7	1940	D	-	
19 ^a	******			6	_	D	-	
11 ⁿ		II	-	6		D		
10 ^a		_	-	6	_	D	-	
29 ^a		C, E	-	7	_	D	-	
10 ^a	81-10	C, E		8	-	D	-	
		-	-	-	-	D	-	See well log.
32ª	-	I,E	-	7	_	D	-	THE READ AND A LEAD
	-	C,E	-	10	1-15-46	D	-	Flowing well, 10 G.P.M. See chemics analysis.
12.5				7		D		
12.5 17ª		C, E			_	D		
1/~		C, E	_		_	D		
1.68	_	CF		5	1	D		
16 ^a	_	C, E N				N		Flowing well.
	_	N				N		Do.
	_					D.F		50.
50(?) ^a			_			N		
23.35	2-15-46	N I.E		6		D		
18ª		1, E		0		D		
32(?) ^a	2 -46			3	2-15-46	D	56.5	Flowing well. See chemical analysis.
—		I,E	4		2-15-46	D	53(?)	-
	_	I,E N	-	-	2-13 40	Ň	56	Flowing well. Measured depth of well 64 feet.
18 ⁸	2 -46	I	6	6	2 -46	D	_	See well log.
10		1, E	-	15	-	S	-	See chemical analysis.
3.89	2-26-46	1.E	-	_	_	D	_	Measured depth of well 42.27 feet.
-		E			_	D	-	
28ª	_	I.E	_	i _		D	53	
12.33	2-26-46			_	_	N	-	Measured depth of well 19.70 feet.
28.45	2-26-46	I,E	_	_	_	D		
20, 10	2-20	C, E	_	_	_	D	56	Flowing well. See chemical analysis.
_		E		-	_	D	_	
40 ⁸	3 -46	I.E		5 6	_	D		See well log.
32ª	3 -40	C, E		25	_	P	56	See chemical analysis.
		C, E		23	_	P	56	Do.
18,67	4-16-46		-	8	4-25-46	D		See well log.
14ª	4-25-46	I,E		8	4-17-46	D	-	Do.
18 ^a	4-17-46	I,E	_	0	3.11-10	D		

		1						
Well	Owner or name	Drilleı	Date	(feet)	Type of well	Depth of well	Diameter of well	Water-Dearing
_			comprotes	Altitude (feet)	WCA	(feet)	(inches)	formation
Be 49	A. Neirenburg		-	100	Dug	51	48	Raritan
Be 50	Richard J. Foster	Eiler	1946	25	0	97	48	Patapsco
Be 51	Charles T. Corrigan	Novak	1946	20		57	4	
Be 52	Russell Wallace	Eiler	1946	20		158	3-2	Raritan and Patapsco Patapsco
Be 53	Charles Shriver	Campbell	1946	100		138	3-2	
Be 54	R. LeMoine			20	GIU	145	4 36	do Raritan
Be 55	Frank E. Graham	Bunker	1947	70	Dug	63	30 4	
Be 56	Irvin	do	1947	115	do	03 108	4 4-2	Raritan and Patapsco
Be 57	James B. Stallings	Campbell	1948	65	do do	108	4-2	do
Be 58	Maryland Department	Layne-Atlantic	1947	160	do	128		Patapsco
	of Forests and Parks	Lought Louise		100	du	494	4	do
Be 59	Whiting Turner Con- tracting Co.	Sherman	1946	0	do	90	-	do
Bf 1	Fort Smallwood	Hoshall and Shannahan	-	10	Drilled	376.5	6-41	Patapsco
Bf 2	Do	Shannahan		10	do	378.1	8-6	do
Bf 3 Bf 4	Do Do	-	-	10	Dug	21.8	48	Raritan
	Rogers Townsend Boat Co.		1936	5	Drilled	140	5	Raritan and Patapsco
Bf 5	E. E. Robinson	Shannahan	1926	10	do	173	6	do
Bf 6	Do	do	1926	10	do	276	8-6-41	Patapsco
Bf 7	Charles Pumphrey	_	About 1906	20	do	365		do
Bf 8	Meagher	Novak	1941	15	do	75.5	4	Raritan
Bf 9	Wilson	do	1941	10	do	172.5	4	do
Bf 10	Southern Products Co.	Shannahan	1908	10	Drilled	431	8	Patapsco
Bf 11	Do	do	1908	10	do	431	8	do
Bf 12	Do	do	1908	10	do	431	8	do
Bf 13	Montillaro	Novak	1941	5	do	56	4	Raritan
Bf 14	R. B. Hancock		About 1866-76	20	Dug	32	- T	do
Bf 15	N. J. Utterback		About 1846	30	do	36	48	Magothy and Raritan
Bf 16	W. K. Horton		-	50	do	25.7	48	do
Bf 17	Mrs. Wenger			30	do	85	_	Raritan
Bf 18	R. P. Milldurn	Eiler	1946	2	Drilled	85	4	do
Bf 19	Wm. L. Musch	do	1946	15	do	56	3	do
Cc 1	U. S. Naval Academy Dairy	Layne-Atlantic	1941	200	Drilled	408	10	Patapsco
Cc 2	Do	Shannahan	1914	200	do	397	10	do
Cc 3	Do	do	1914	200	do	241	8	do
Cc 4	Do	_	_	200	Dug	60		Raritan
Cc 5	Board of Education	Washington Pump & Well Co.	1932-33	160	Drilled	210		Patapsco
Cc 6	Irving Turner	do	1945	140	do	171	6	Raritan
Cc 7	A. D. Riden Co.		1910	80	do	300		Patuxent (?)
Cc 8	Mary B. Myers		1908	160	do	100		Raritan and Patapsco
Cc 9	C. W. Clutz		1941	200	Dug	63	7	do
Cc 10	Dallas Higgins			210	do	30	42-18	do Pleistocene and Raritan
Cc 11	C. L. Miller	—	1900		Dug and drilled	72		Raritan
Cc 12	J. W. Wagner		About 1910	210	Drilled	92	4	do
	Alan E. Barton			65	Dug	14		do Pleistocene
	Richard Gant	Bunker	1941	125	Drilled	71		Magothy and Raritan
-	I				Dimes	TA	4	Magority and Karitan

Static w	ater level		y of pump t min.)	1	lield	6	4.		
Below land Surface (feet)	Date of nieasure- ment	Pumping equipment	Capacity of (gal. a min	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks	
42.7	5- 1-46	в	_	_		D	-		
15 ^a	3-23-46	C, E	15	10		D	_	See well log	
17 ^a	4 -46	1, E	7	10	4 -46	D		Do.	
13 ^a	6-25-46	I,G	6		6-25-46	D	_	Do.	
76ª	7-15-46	H		5	7-15-46	D	_	Do.	
14.22	9-26-46	N				N	-		
31ª	11- 6-47	C, H	4	_	-	D	-	Do.	
63ª	2-26-48	1, E	4	4	1948	D	_	Do.	
41 ^m	4- 7-47	1. E	3	.3	1947	D	_	Do.	
165ª	10-15-47	C, E	10		-	D		Do.	
ie i	1.27	N	-	12	11 -46	D		Flowing well.	
-		C, E	-	50	221	Р	57	See chemical analysis.	
88	8- 3-43	I,E	-	84	1.1	P	60	See well log and chemical analysis.	
14.1	1-27-44	C, H	-	_	-	N	_	over went tog and chemical analysis.	
0	8- 3-43	G		3	1-18-46	Ð	58	Flowing well. See chemical analysis.	
	-			50		N	-		
15 ⁿ	-	I, E	50	90		Р	_	See well log.	
-		N	- 1			N		0.	
23ª	_	I,E	-	6	_	Ð	-		
7.5ª		C, E	-	6	-	D			
4 ⁿ 4 ⁿ	_	—	-	10	-	N		See well log.	
4" 4ª				10		N			
4.5		C, E	-	10		N			
6ª		I,E	- E	6	-	D		Do.	
32ª		H H	12			D	-		
21.0		1.E				D D			
	_	H	_			D			
		I,E	10	10		C	_	Constant In the TPI and the state	
1.3ª	7- 3-46	I, E	15	15	-	D		See well log. Flows at high tide. Do.	
108.64	3- 7-46	I, E	-	260	1941	С	55.5	Filled back to 245 feet.See chemical anal	
08.66	3- 7-46	A		42		N	-	sis.	
		A	1	10		N			
_		Н	_			C	-		
-		C,E		15		S	-		
92ª		C, E	75	_		F	_	See well log.	
7.15	4-23-46	C, E		40-50	-	D	55.5	See chemical analysis.	
45ª	_	11	1.	_		D	0010	see encontent analy 313.	
60 ^a		C, E	-		110.08	D	-		
wanter	****	C, E	-	_		D			
62 *	1210	C, E	-	-	12.1	D	-		
- 9	_	C, E		- 1	-	D	-	Do.	
11.03	5- 6-46	C, E				D	-		
		C, E		_		D	-		

TABLE 2-

Well	Owner or name	Drillet	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Cc 15	Joseph Chowanetz	_	_	90	Dug	21	30	Pleistocene
Cc 16	Rudy Walch	-		60	do	19.2	48	do
Cc 17	S. W. Duckett	-	-	145	Drilled	100	4	Magothy and Raritan
Cc 18	L. J. Shaw	Bunker	1939	130	do	86	6	do
Cc 19	J F. Lloyd	Smith	1946	220	do	136.5	6	Raritan
Cc 20	Allen C. Barton	Washington Pump & Well Co.	1947	70	do	143	6	Patapsco
Cc 21	Levi C. Beck	Raynor Heights Drill- ing Co.	1948	2.30	do	200	6	do
Cc 22	Board of Education	Layne-Atlantic	1948	120	do	166	1	Raritan and Patapsco
Cd 1	Summerfield Baldwin Estate		About 1914	100	do	195(?)		Raritan
Cd 2	Do	-		100	Dug and drilled		48-6	Magothy and Raritan
Cd 3	Board of Education	Washington Pump & Well Co.	1943	110	Drilled	146	6-21	do
Cd 4	Do	Leatherbury	About 1938	125	do	130(?)		do
Cd 5	S. H. Wilhelm	Smith	1945	100	do	142	6	Patapsco Magothy and Raritan
Cd 6	M. W. Schaul	Washington Pump & Well Co.	1946	180	do	153	6	Raritau
Cd 7	Baldwin Memorial Church Crownowille State	do	1946	100	do do	97 380.5	6 41	Patapsco
Cd 8	Crownsville State Hospital Do	Shannahan	1915	130	do	400	+3	do
Cd 9	Do	do	1915	130	do	668	8-6	do
Cd 10 Cd 11	Do	do	1915	110	do	232	20-16-10	Raritan
Cd 12	do	do	1936	110	do	230	108	Magothy and Raritan
Cd 13	George Baum	Campbell		70	do	142	4	do
Cd 14	Samuel D. Hecht	_	-	120	do	90(?)	· · · ·	do
Cd 15	Dorr's Restaurant	Cunningham	1928	125	do	96	4	Raritan
Cd 16	Edwin P. Jones	_	-	170	Dug	30	48	Pleistocene or Mon moutli
Cd 17	Wm. A. Boehm, Jr.	-	1945	140	do	32	48	Matawan (?)
Cd 18	Mrs. A. G. Cook	Washington Pump & Well Co.	1944	140	Drilled	179	6	Magothy and Raritan
Cd 19	Mrs. Richard Whitall	Hagmann	1931	180	do	208	6	do
Cd 20	Do	do	1931	100	do	49.5	4	Magothy (?)
Cd 21	Do	do	1931	100	do	55.3	6	do
Cd 22	Mrs. Raney	Crouse and Stone	1020	40	do	55 107	4	Raritan do
Cd 23	Frank Kaczynski	Crouse	1939	65 140	do Dug	107	60	Magothy
Cd 24	J. D. Ogden Gertrude Erdman	Campbell	1910 1946	140	Drilled	126	4	Patapsco
Cd 25 Cd 26	Isaac W. Machin	do	1946	80	do	1120	4	do
Cd 20	G. C. Chance	Crouse	1940	170	do	67.8	4	Raritan
Cd 27	Stephen Pawlik	do	1947	100	do	125	4	Raritan and Patapsco
Cd 28 Cd 29	W. J. O'Hara	Stone	1948	150	do	95	6	Raritan
Ce 1	County Sanitary Commission	Bunker	1933	12.83	Drilled	213	8	Raritan and Patapsco

Static wa	ater level		("	3	lield		[24 0	
Below land urface (feet)	Date of measure- ment	Pumping equipment	Capacity of pump (gal. a min.)	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
17ª		C, H				D		See chemical analysis.
12.38	5- 6-46	H.E	_			C, D	_	See enclinear analysis.
50(?)ª		C, H		_	_	N	_	
_	_	C, E	_			D,F	_	
04.12	5-16-46	_				D,F	_	
	8-11-48	С	10	10	7-15-47	D		Well flowing 3 gal. a min. See well log.
28.72	8-10-48	N	_	_	_	D	_	
75ª	9-13-48	_	150	150	9-13-48	S		See well log.
1(?) ^a	1943	C, E	_	5-10	_	D	-	
68 ⁿ	1944	н	_			N		
	1733						_	
-	_	E	-	-	i →	S	-	See chemical analysis.
-	_	Е	_	_	_	S	_	Depth 80(?) feet, according to driller.
84 ^a	1945	C, E	4	4		D	_	See well log.
19 ^a	2 -46	C, E	-	15	2 -46	D	-	See chemical analysis and well log.
38ª	3-21-46	с	50	25	3-21-46	D	-	See well log.
86.94	4-10-46	N	-	_	- 1	N	-	
		A		175	_	N		
09.64	3- 3-49	A		175	_	N	-	Do.
79 ⁸	1930	I,E	_	175	_		55.5	Well supplies hospital. See well log a
78ª	1936	I.E	200	175	_	_		chemical analysis. Well supplies hospital. See well log.
								their suppriss nonprease see their top.
68ª		N	_	7	—	D	-	
-		C,E		_	_	D	-	
-	_	C, E		-	—	C, D	-	
21 ^a		I,E	-	-		D	-	
27.5ª		п	_	_		D	-	
05.24	5- 6-46	C,E	-	—	-	D	-	
- 1	-	I, E	_	_	-	D	56	See chemical analysis.
47.80	5- 6-46	N	-		—	N	-	
45.72	5- 6-46	H	-	-		N	-	
	_	E	-		-	D	-	
-	_	H	-		-	D,F	57	Do.
00 ^a		С	-	—		D,F	-	
75.14	7- 9-46	I,E	-	5		D	-	Well sanded up to 108 feet. See well log
77ª	7- 2-46	C,E	-	—	—	D		See well log
60.63	7- 9-46	N	-		-	D	-	Do.
78ª	9-12-47	1		10	-	D	-	Do.
82 ⁿ	5-13-48	-	-	3	5-13-48	D	-	Do.
9 ⁸	1933	L.E		50	_	Р	-	See chemical analysis.

-			1	1		1 1		1
Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth ot well (feet)	Diameter of well (inches)	Water-bearing formation
*****				Al			_	
Ce 2	County Sanitary Com- mission	Bunker	1933	12.38	drilled	200	4	Raritan and Patapsco
Ce 3	Burnett	do		6	do	210	4	do
Ce 4	Charles A. Ernest	Smith	1945	5	do	106	6	do
Ce 5	J. J. Jessa	Washington Pump & Well Co.	_	65	do	92	6	Magothy
Ce 6	Peter J. Dalton	Eiler		32	do	170	3-2	Raritan and Patapsco
Ce 7	11. F. Hilgenberg	Edmonston	1945	15	do	350(?)	6-4	Patapsco
Ce 8	Do		-	15	Dug	11.75	-	Pleistocene
Ce 9	Forman		1945	15	do	13.22	48	ob
Ce 10	J. H. Jacobs		1943	10	Drilled	150-200		Magothy and Raritan
Ce ff	Do		1932	10	Dug	130-200	4 60	Matawan and Magoth
Ce 12	Zepp	Novak	1944	10	Drilled	130	4	Magothy and Raritan
Ce 12 Ce 13	Goska	INUVAK	1923	50	Dug	24	48	do
Ce 14	Folger McKinsey		About 1920	2	Drilled	140	40	do
Ce 14 Ce 15	I. L. Jennings		About 1920	3	do	140	4	do
Ce 16	Raymond Wolf	Wolf	1923	40	do	40	5	Pleistocene and Mag
Ce 17	H. B. Little	Garvan	1928	ſ	do	2.20	2	thy
Ce 17	John Heinstadt	do	1928	-	do do		-	Raritan and Patapsco
Ce 18 Ce 19	Robert J. Stewart	Washington Pump &	1933	1 120	do do	90 171	2	Magothy and Raritan do
CC 17	Robert J. Stewart	Well Co.	1955	120	đo	171	0	do
Ce 20	Salmon	Novak	1939	140	do	255	6-4	Raritan and Patapsco
Ce 21	Mrs. N. P. Chapman	Garvan (?)	About 1923	3	do	164-166	-	Raritan
Ce 22	Do	do	do	3	do	do	_	do
Ce 23	Do	do	do	3	do	do		do
Ce 24	Mrs. Alfred Thompson		1925	60	do	211	6	Raritan and Patapsco
Ce 25	Morris	Novak	1942	45	do	159	4	do
Ce 26	Rugby Hall	Bunker	1940	10	do	266	6	do
Ce 27	D. Preston	Dowin	1905	140	do	150	6	Magothy
Ce 28	Mrs. Weisman		1921	140	Dug	103	48	Magothy (?)
Ce 29	C. E. Pulsefer			70	do	65.1	48	Magothy
Ce 30	Joyce Lane Community Water Supply	Bunker	_	60	Dritted	183	51	Magothy and Raritan
Ce 31	Lottie Dorsey		_	65	Dug	30.3	48	Matawan (?)
Ce 32	Elinor Clifford	Bunker	-	13	Drilled	512	10	Patapsco (?)
Ce 33	Do	do	_	5	do	200	_	Patapsco
Ce 34	County Sanitary Commission	Layne-Atlantic	1944	5	do	165	3	Raritan and Patapsco
Ce 35	Do	do	1944	5	do	160	3	do
Ce 36	L. S. Zimmerman		1920	3	do	100	_	Raritan
Ce 37	Elizabeth Fulton	Bunker	1941	40	do	160	4	Raritan and Patapscu
Ce 38	W. Mentzeli		1926	3	do	208	3	do
Ce 39	Wm. C. Rogers	_	1920	170	Dug	85.5	48	Monmouth or Mat
Ce 40	Otto Kubitz		_	165	do	104	72	wan do
Ce 41	Sherwood Forest Co.		1920	5	Drilled	337	6	Patapsco
Ce 42	Margaret W. Stewart	Washington Pump & Well Co.	1930-34	100	do	175	6	Magothy (?)

Static w	ater level		pump n.)	λ	lield		e °F	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of pump (gal. a min.)	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
9ª		I,E	-	150	1942	Р	_	Test well; seldom used.
	-	I,E	- 8	10 5	1- 7-46 1-17-46	D D		Flowing well. Flowing well. See well logs and chemi analysis.
52ª	h10	C, H	-	20		D		See well log.
26 ^a	1 -46	I,E	5	5	1 -46	D	-	Do,
10.33	2-18-40	N H	-	_	-	N D		Driven well inside dug well. Depth well.
11.44	2-18-46	Ν		_		D		
	-	N		4	2-18-46	N	57	Flowing well. See chemical analysis.
15 ^a		I,E	-	33	1944	D,F	-	
4.3	2-27-46	I,E	-	10		-	-	Measured depth of well 132.60 feet.
19 ⁿ		I,E	-	-	_	D		
-			-			D	57	Flowing well. See chemical analysis.
		I, E		4	2-28-46	D	57	Flowing well.
34(?)8	_	1, E		-	_	D	-	
		C, E	_	4	2-28-46	D	57.5	Flowing well. See chemical analysis.
_	_		_	4	2-28-46	N	58	Do. See chemical analysis.
		C, E	_	65	_	D		Yield 10 g.p.m.
133.49	6-10-46	C, E	40	20		N P		Three flowing wells, two of which are
		C, E	40			P		use.
	_	C, E	40			P		
73.08	3- 1-46	C, L		_	_	N	_	
448		I.E		9		D	_	
5,79	3- 6-46	C, E		50	1940	S	_	
-		_	- 1	15	_	N	-	
92.4	3- 6-46	H	-			D	_	Measured depth of well 96.5 feet.
62	3- 8-46	I,E	-	-	-	D		
11.44	3- 8-46	C,E	-	17		P	-	Measured depth of well 149.3 feet.
22.30	4-10-46	C.E	_ 1			D	_	
	1 10 10	Water	_	100		D	62	Flowing well. See chemical analysis.
		wheel						
		N	-	20	_	D	59	Do. Do.
-	-	С		43		Р	-	Do, Do,
								D.
-	_	CE	12	-	_	P	57	Do. Do. Do.
70ª		C, E I, E	17	5	_	D D	57	Do. Do. See chemical analysis.
10.		C, E		3	5- 7-46	D	57	Flowing well. See chemical analysis.
77	5- 7-46	C, E C, E	_		5- 1-40	D,F		rioning went oce chemical analysis.
81	5- 8-46	C, E	- 1		—	D		Measured depth of well 89.5 feet.
		N	—	-	—	N		Flowed; abandoned & plugged.
-	_	H, E	· – ·	5		D		

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Ce 43	Epping Forest Water Co.	Leatherbury	1928	3	Drilled	96	112	Magothy
Ce 44	Do	do	1928	4	do	96	11	do
Ce 45	Do	do	1929	5	do	96	11	do
Ce 46	Do	do	1931	3	do	96	8	do
Ce 47	G. G. Ridgley	Hoshall	1909	20	do	135	6	do
Ce 48	Do		1934	40	do	175	4	do
Ce 49	Do		1938	50	do	450(?)	8	Raritan and Patapsco
Ce 50	W. F. Hilgenberg	Eiler	_	10	do	68.5	3	Magothy
Ce 51	Mathais J. Reckenwald		1947	40	do	60	4-2	Magothy
Ce 52	Board of Education	do	1947	125	do	492.5	6-2	Raritan and Patapsco
Cí 1	Gibson Island Corp.	Shannahan	1923	25	do	319	10-8	Raritan and Patapsco
Cf 2	Do	do	1929	25	do	324	10-8-6	do
Cf 3	II. L. Grymes	Harr	1942	25	do	630	6	Patapsco (?)
Cf 4	L. V. 11are	do	1932	10	do	205	6	Raritan and Patapsco
Cf 5	De Grucy		1933	10	do	-	31	-
Cf 6	F. P. Chelton	Leatherbury	1945	15	do	93	4	Magothy (?)
Cf 7	B. J. Fishpole			146	Dug	78.3	60	Aquia
Cf 8	Charles B. Lynch	_	-	15	do	18	120	Pleistocene
Cf 9	Henry Haneke		1924	115	do	77	48	Aquia
Cf 10	Sam Fertitta	Bunker	1925	0	do	200300	2	Raritan and Patapsco
Cf 11	Frank Dipaula	do	1933	5	do	95	2	Magothy
Cf 12	W. Thompson	Leatherbury	1945	15	do	421	2	Aquia
Cf 13	Leonard Ruck	Bunker (?)	1938	10	do	190(?)	4	Magothy
Cf 14	Durm's Boat Yard	_	1945	10	Dug	12	36	Pleistocene
Cf 15	William Labrot	Leatherbury	1945	3	Drilled	280	2	Magothy and Raritan
Cf 16	Do	_	1914	15	do	704	3	Patapsco
Cf 17	Manresa on the Severn	Bunker (?)	1939	5	do	85	4	Monmouth or Mataway
Cf 18 Cf 19	O. K. Hirschfeld		10.20	80	Dug	72	60	Aquia
Cf 19 Cf 20	Weems R. Duvall	Bunker Novak	1932	100	Drilled	107	4	do
CI 20	John Ritterbusch	Novak	1941	10	do	54.1	4	do
Cg 1	State Roads Commis- sion	Leatherbury	About 1941	9	do	270	3-2-14	Magothy and Raritan
Cg 2	Do	do	About 1941	9	do	138	6	Monmouth and Mata wan
Cg 3	William Labrot			15	do	400(?)	_	Raritan and Patapsco
Cg 4	Do	-	About 1938	10	do	700(?)	_	Patapsco
Cg 5	Do	Leatherbury	1936	10	do	300(?)		Raritan
Dc 1	1H. M. O'Dell		1942	130	Dug	27	24	Pleistocene (?)
Dc 2	Rosbeck		_	110	do	30	48	Aquia
1)c 3	Howard D. Lerch	_	_	85	do	25	48	do
Dc 4	B. A. King	Bunker	1937	170	Drilled	46	6	do
Dc 5	E. S. Barber	Layne-Atlantic	1949	165	do	263	4 to 146' 2 to 244'	Raritan
Dd 1	Joseph Bottner		1928	200	Dug	98	72	Aquia
1)d 2	Stanton Nutwell		1937	180	do	36.5	48	Calvert

Static v	vater level		pump		Yield		E.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of pump (gal. a min.)	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
_		N	_	_	-	N	-	Flowed; abandoned and covered over.
		N	_	_	-	N	l	Do.
	matery.	40000				N	-	Do.
	1.	1, E	-	- 1	_	Р	57	Flowing well. See chemical analysis.
		N			-	N	11-14	Small flow; formerly flowed 120 gal. a m
		N	- 1	_		N		
31.98	6-13-46	N				N	-	
9ª	1946	1, E	11	11	1946	D		See well log.
44 ^a	9-11-47	1, E	5	20	9-11-47	D		See well log.
128ª	9-24-47	I, E	20	90	9-24-47	S		Do.
32	1941	С, Е	-	130	1941	Р	=	See well log and chemical analysis.
100		C, E	230	100		P		
		C,E				D		
15ª		LE		25		D	56	See chemical analysis.
8.45	1-25-46	C, E		7	-	D	-	
12.35 72.80	2-18-46	H C.E		1		D D		
16.08	4-10-40	C, E C, E				D,F		
68.8	4-10-40	C, E C, E				D,r D		Measured depth of well 74 feet.
00.0		N N				N	57	Flowing well,
	-	C, E	= 1	-		D		Flowing well; depth about 60 feet; report by driller.
		C,E			100	D		
	1.000			2	4-18-46	D	58	Flowing well. See chemical analysis.
8ª		C, E			- 22	C		
		N		12		F	58.5	Do.
10.07	4-17-46	N	******			N		Measured depth of well 123 feet.
	-	С, Е	-	-	-	S		
66	4-26-46	W				D		
75		C, G	-	-		D,F	1 - 1	
-	-	С, Е	6	б		D		Pumping level 16.5 feet at 5.5 g.p.m.
8.58	5-21-45	I,E		4	1943	D	-	See chemical analysis.
5.80	5-21-45	21			1010		1-	
6.82	1- 8-46	N		20	1943	N		Measured depth of well 135 feet. See che ical analysis.
	-	N				F	55	Flowing well, Cl 16 ppm. Field test, 6-11-
_	-	N	_			F	58.5	Do. Cl 14 ppm, 100.
	_	N				F	56	Do. Cl 16 ppm. Do.
11.30	6- 3-46	C, E	_			D	_	Measured depth of well 11.5 feet.
22*	-	I,E				D,F	-	
20ª		С, Е	- 1	_		D,F		
22ª	-	C, E	-	-		D	—	
1.30 ^a	3-22-49	(?)	10	15	3-22-49	D		See well log.
10.00		0.5						
69.80 27ª	6 346	C, E	-	-	_	F		Measured depth of well 87.8 feet.
21-	_	C,E	_		_	D,F		

Well	Owner or name	Driller	Datc completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Dd 3	C. E. Hopkins	_	1925	150	Dug	65	36	Aquia (?)
Dd 4	Mrs. St. Geo.Barbour	Bunker	1934	140	Drilled	285	4	Raritan
Dd 5	M. Burch Beard		—	120	Dug	58	48	Aquia (?)
Dd 6	J. E. Wood		1946	110	do	21	48	Pleistocene (?)
Dd 7	Board of Education	1.00		140	Drilled	100		100
Dd 8	George King	-		150	Dug	6.5	48	Aquia
Dd 9	Mrs. St. Geo. Barbour		-	100	do	65	48	Monmouth or Matawar
Dd 10	Robert Nevin		-	100	Dug	60	48	Aquia
Dd 11	Frank Mueller		1933	80	do	110	36	do
Dd 12	Kenneth Hauer	Miller	-	40	Drilled	45	21/2	Monmouth and Mata- wan
Dd 13	R. E. Dickerson	Leatherbury		100	do	60(?)	3	Aquia
Dd 14	Richard Williams		1946	110	Dug	14.0	4	Calvert
Dd 15	Benjamin Carr		1943	120	Drilled	136	4-2	Aquia
Dd 16	Board of Education	Layne-Atlantic	1947	145	do	3.31	4-2	Raritan
Dd 17	H. B. Winant	Leatherbury	1948	40	do	78	3	Aquia
De 1	Annapolis Water Co.	Layne-Atlantic	1939	20	do		6(?)	Magothy and Raritan
De 2	Do	do	1939	20	do		8(?)	do
De 3	Do	-	1930	40	do	244	-	do
De 4	Leroy Meyette		_	100	Dug	48	60	Aquia
De 5	Harbonim Camp	-	_	40	do	48.3	60	do
De 6	David R. Lehman	1-1	-	60	do	67	36	do
De 7	W. T. Shawn		-	40	do	41	48	do
De 8	Harry Krouse	Leatherbury	1939	40	Drilled	35	3	do
De 9	Howard Tucker	Bunker	1926	35	do	29.4	6	do
De 10	Fred Shaw, Sr.		—	45	Dug	53		do
De 11	P. A. Donald	Leatherbury	1943	100 70	Drilled do	85 65	2	do do
De 12 De 13	A. J. Daniels L. M. Nims	McKnight Leatherbury		15	do	75	11	do
De 13 De 14	J. D. Stenchcomb	Purner		40	Drilled	60-65	14	Aquia
De 14 De 15	L. C. Davis	Bunker	1946	10	Dug and drilled	52	36-4	do
De 16	State Roads Commis- tion Garage	do	1931	85	Drilled	43	6	do
De 17	R. C. Giffen			40	do	60	4	do
De 18	Annapolis Dairy		1928	40	do	80	4	do
De 19	Do		1929	40	do	160	4	Magothy
De 20	W. M. Vickers			35	do	31.2	2	Aquia
De 21	J. E. Glose	Leatherbury	1945	1.5	do	60	2	do
De 22	J. S. Falck	Atwell	1924	15	do	45-60	13	do
De 23	J. R. Easterday			10	Driven	85	4	do
De 24	Clarence M. White	1.	1910	40	Dug	30	36	do
De 25	Robert Bass		1920	35	do	30 55	36 48	do do
De 26	Wm. J. Vanous	T as the shures	A hout 1031	52 2	do Drilled	55	48 6	do
De 27	Carl W. Riddick	Leatherbury do	About 1931 About 1931	2	do	55	6	do
De 28	Do	do	About 1931 About 1931	2	do	55	6	do
De 29	Do	Halleck	1930	2	do	55	6	do
De 30 De 31	Do	Leatherbury	About 1931	2	do	55	6	do

Static w	ater level		r of pump min.)	Y	ield		e °F.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a mir	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
47.0	6- 4-46	В	1	_		D		Measured depth of well 53.3 feet.
50(?) ^a		_	—	-		N		
49 ^a	_	I, E	-		-	D,F		
12.0	6- 5-46	N	-			D		Measured depth of well 15.5 feet.
		11		- 1		S		
54 ^a	_	C, E			0.0	D,F	-	
57.0	6- 4-46	C, H	-		-	D,F		Measured depth of well 64 feet.
57.0	6-10-46	C, E	-			D,F	1 -	
		C, E				D	_	Can alaminal analamia
36 ^a	-	C, E				D	-	See chemical analysis.
		14	-			D	-	
10.52	6-25-46	N	-		_	D		
90 ^a	_	C, E	3		_	D		
105 [®]	8-16-47	I,E	8	20		S		0 111
52ª	3-22-48	С, Е		3	3-22-48	D		See well log.
-		I,E		400	4 -42	Р		Flowing well.
	2-15-43	I,E		2,000(?)	1942	Р		Do.
	2-15-43	-	-	-	—	N	-	Flowing well. Measured depth of well 15 feet. See well log and chemical analysis
41 ^a		Е			_	D,F	-	
42.0	6-11-46	C,E	# the		—	D	_	
61	6-11-46	C,E		-		D	_	
30ª	_	C,E				D		
22.33	6-11-46	C, E		-	_	D,F	-	
21.96	6-11-46	C, E		~	_	D	- I	
42.0	6-11-46	H		-		N	1 -	
_		C,E		-		D		Flowing well. See chemical analysis.
40 ^a		C, E	10 - I		_	D	1 -	See chemical analysis.
-		I, E				D		
_	-	Н		-		N		
-	_	C,E	-			D		
-	-	С, Е		4	-	-	=	
_		C, E			-	D	- 1	
—		-	-	- 1		N		
-				15	1929(?)	N		
24.63	6-14-46	C, E				D	57	See chemical analysis.
	_	C,E				D		
		I,E			-	D	-	
	-	C, E		-	-	D		
_	-	N	-	-		_		Used for sewage disposal since 1946.
-	-			1.00	-	-		Do.
32.95	0-25-46	C, E		-		D		Measured depth of well 42 feet.
—		C,E	11-1			P		Measured depth of well 19 feet.
3,04	6-24-46	C, E	-	-		P	-	
-		C, E		—		P		Probably less than 20 feet deep.
		N	1			N		Measured depth of well 22 feet.
24		С, Е			1.000	I'		
		C, E				Р	-	Measured depth of well 13 feet.

				~				
Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
De 33	James M. Adams	Phipps	1935	30	Drilled	90	3	Aquia
De 34	A. Gordon Fleet	Bunker	1941	20	do	60	3	do
De 35	George C. Meeks	Phipps	1937	10	do	81	11	do
De 36	E. B. McCord		1929	20	do	65		do
De 37	C. A. Duval	Bunker	-	80	do	100	2	do
De 38	Do	Purner	-	7	do	100	4	Monmouth (?)
De 39	Arundel Gas Co.	Leatherbury	1945	30	do	50	3-15	Aquia
De 40	Robert A. Hale	Bunker	1935	5	Driven	20	11	do
De 41	N. C. Hines	Leatherbury	1942	5	Drilled	60-70	-	do
De 42	J. B. Semple, Jr.	Bunker	1941	14	do	230	6	Magothy
De 43	Mrs. Pearl Addison		About 1910	40	Dug	48	36	Aquia
De 44	Annapolis Water Co.	Layne-Atlantic	1947	20	Drilled	793	4	Patapsco
De 45	Do	do	1947	20	do	300	20-10	Magothy and Raritan
De 46	Do	do	1947	20	do	300	20-10	do
De 47	Do	do	1931	20	do	258		do
Df 1	U.S. Naval Academy	Conlon	1000					
Df 2	Do	Shannahan	1902	10	do	587	8	Patapsco
Df 3	Do	do	1904	10	do	601	12-10-8	do
Df 4	Do	do	1910 1912	13 10	do	602	12-10-8-6	do
Df 5	Do	0	1912	10	do	602.7	12-10-8-6	do
Df 6	Do		1918	10	do do	587.7	15-12-10	do
Df 7	Do		1918	10	do	601	12-10-8	do
Df 8	Do		1925	10	do do	585.5	121-10-8	do
Df 9	Do		1923	9.3	do	588 306,5	123-10-8	do Manatha I D
Df 10	Do	Bunker	1933	10	do	300.5	16-12-10	Magothy and Raritan do
Df 11	Do	Dunker	1936	10	do	588	16-12	Patapsco
Df 12	Do	Layne-Atlantic	1939	10	do	600	18	do
Df 13	Do	do	1945	13.6	do	606.1	18-8	do
Df 14	Do Rifle Range		1920	60	do	578	8-6-4	do
Df 15	Do Exp. Sta.	Bunker	1932	20	do	210	6	Magothy and Raritan
Df 16	Do	Layne-Atlantic	1944	10	do	597	12-8	Patapsco
Df 17	Do High Power Radio Station			23	do	600(?)	3	do
Df 18	Do			15	do	587		do
Df 19	Do		1931	13	do	626.5	10-8-6	do
Df 20	Do	Washington Pump & Well Co.	1933	23	do	680	10-8-6	do
Df 21	Sylvester Labrot	nen co.		3		_	1	
Df 22	Do			10		88		Aquia
Df 23	Do			10	do	88 500+	3	Aquia Patapsco
Df 24	Do			15	Dug	21	36	Pleistocene
Df 25	Severn Restaurant	Bunker	1938	5	Drilled	48	4	Aquia
Df 26	Gus Diamond	do	1940	25	do	75		do
Df 27	Irving Hall		1945	80	Dug	86	36	do
Df 28	Irene Hall	Leatherbury	1942	80	Drilled	135	4	do
Df 29	Snador	do	1946	55	do	70	4	do
4 · 5 80 /								

Static w	ater level		r of pump min.)	Y	ïeld		E.	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a min	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
18 ^a	6-25-46	C,E				C, D		Well probably 40-60 feet deep.
34.70	6-25-46	I,E		-		D		Measured depth of well 57.4 feet. Se chemical analysis.
10 ^a	6-25-46	C,E				D	56	See chemical analysis.
		C,E		-		D		
		C, E				D	-	
38	1.00	I.E		-		D		
18 [#]		I.E				C, D	-	
48		I,E		-		D	-	
-		I,E		-		1)		
		I,E	-	22	-	N	61	Flows at 14 feet above sea level. See chemical analysis.
42.6	3-27-47	C,E		-		D	53.5	See chemical analysis.
	-	N				N		See well log.
8 ^a	8- 1-47	I, E	1,000	1.000	8- 1-47	Р		Test Hole.
12 ⁿ	7-7-47	1, 15	1,200		7- 7-47	p	-	See well log.
-		Ň	-			N		Flowing well. See well log and chemic analysis.
		N		2.50	1903	N	_	
		N		50-75	1205	N		See well log.
		N		478	5-27-10	N		Do.
		N		300	1912	N		Do.
							11	100.
0 ^a	9-11-18	N		750	9-11-18	N	61	
4.7ª	8- 8-18	N		375		N		0 111
14 ⁿ	3-26-25	N		501	3-26-25	N	56	See well log.
2 ^a	6-15-25	N		499	6-15-25	N		Do.
7.5 ^a	19.33	1, E		1.00		S	-	Do. See chemical analysis.
						N		Do. Flowing well; test hole now plugged
-		N				N		See well log.
2ª	1- 4-39	I,E	1.000	1,000	2-27-46	S		See chemical analysis.
		1, E	35.	920	11-10-45	S		See well log and chemical analysis.
67.57	1- 7-46	N		20-30		N		
		I, E	200	170	-	S		Flowing well, reported 25 g.p.m. Schemical analysis.
-		I,E	600	620	1944	S	55-56	Flowing well. See well log and chemic analysis.
13.54	2 28-46		-			N		
3,40	2-28-46		-			N		
0.30	N 20 30	A		79	3-11-31	S		See well log.
8 ⁿ	1933	I,E		28	1933	S	-	Do.
_		1000				F	59	Flowing well.
		N		_		F	_	Well reported to flow.
15.45	4-17-46	N				N		Well not used.
18		C,E				D	-	in cir nov usuit
10	4-17-46					C.D		
		C, E	12	100	_	D D		
202		I,E						
79 ^a		I,E				D	E	
-	-	C,E	-			D		C 11.1
30 ^a	4-16-46	(?)	4	8	4-16-46	C	-	See well log.
36 ^a	4 -46			5	4 -46	D		Do.

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Df 31	Mrs. E. II. Paulson	Bunker	1946	20	Drilled	70	2	Aquia
Df 32	Dr. Herbert Gates	do	1946	20	do	65	2	do
Df 23	George Hane	do	1946	20	do	100	2	do
Df 34	Dixon	do	1946	15	do	100	2	do
Df 35	K. W. Kingsbury	do	1946	20	do	100	21	do
Df 36	Witt	do	1946	30	do	75	21	do
Df 37	Robert Trullinger	do	1946	25	do	100	3-2	do
Df 38	Louis II. Towbes	do	1946	15	do	95	4	do
Df 39	I. S. Burka	do	1946	15	do	90	4	do
Df 40	J. L. B. Murray	do	1946	10	do	73	2	do
Df 41	Braun Packing Co.	Downin or Hoshall	1908	10	do	218	6	Magothy
Df 42	Annapolis Ice Manufac- turing Co.	Star Drilling Co.	_	5	do	285	2	Magothy and Raritan
Df 43	A. G. Newmyer	Turner	1943	3	do	52	I 1	Aquia
Df 44	Charles Smith	Boucher	1900	3	do	202	11	Magothy
Df 45	John L. Boucher	do	191 I	3	do	20.3	I 1/2	do
Df 46	Do	Halleck	1927	4	do	25	2	Aquia
Df 47	County S.P.C.A. Shelter	Bunker	1936	25	do	_	_	-
Df 48	Do	do	1946	1.5	do	56.7	2	Aquia
Df 49	Mrs. M. H. Smith	-	1916	35	Dug and drilled	35	36(?)-6	Pleistocene or Aquia
Df 50	Do			35	Drilled	48.3	6	Aquia
Df 51	Annapolis Roads Club	Columbia Pump & Well Co.	1926-29	40	do	700-750	8	Patapsco
Df 52	Do	Bunker		20	do	110	3	Aquia
Df 53	Do	do	-	20	do	100	3	do
1)f 54	Do	đo		20	do	60	3	do
Df 55	Do	do		20	do	70	3	do
Df 56	Do	do	19.30	20	do	90	3	do
Df 57	Do	do	1930	20	do	100 207	3	do
Df 58 Df 59	Star Theatre U.S. Navy Experiment Station	do American Drilling Co.	1940 1948	20 36	do do	1,000	8	Magothy Patapsco
Ec 1	Jerry Giles	100	1945	55	Dug	48	48	Pleistocene or Aquia
Ed 1	J. C. Puiles	146		120	Dug	66.2	48	Aquia
Ed 2	Grymes		-	160	do	47.2	48	Nanjemoy or Aquia
Ed 3	Mrs. F. L. Hanly	Leatherbury		120	Drilled	300	11	Magothy
Ed 4	R. B. Tucker		1945	170	Dug	54.8	48	Nanjemoy (?)
Ed 5	Hollis Hardesty		1910	180	do	40	36	Calvert or Nanjemoy
Ed 6	Mrs. Floyd Lankford		1931	160	Drilled		3	_
Ed 7	Floyd Lankford, Jr.	Leatherbury	1941	1 50	do	265	2	Magothy
Ed 8	Do	do	1945	125	do	265	2	do
Ed 9	W. Thomas Jones	do	1925	120	Dug	44	48	Nanjemoy
Ed 10	Dr. J. C. Giddings		1740	175	Drilled	168.8	2	Aquia
Ed II	Roland Hall		1938	170	Dug	42.5	48	Calvert
Ed 12	Board of Education	Leatherbury	1932-33	160	Drilled	325	6	Magothy (?)
Ed 12	Christ Church Rectory	do	1940	160	do	300-400	2	Aquia
Ed 13 Ed 14	Thomas Moreland	0	1940	130	Dug	62	36	Calvert
Ed 15	T. Clyde Collinson	Leatherbury	1946	140	Drilled	274	2	Aquia (?)

Static w	at er level		dund ('''		Yield			
Below Iand surface (feet)	Date of measure- ment	Pumping equipment	Capacity of 1 (gal. a min.	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
6ª	4 -46		_	4	4 -46	D	_	See well log.
68	4 -46			4	4 -46	D	-	Do.
12ª	4 -46	-		4	4 -46	D		Do.
12 ^a	4 -46	-		4	4 -46	D		Do.
18 ^a	4-12-46			4	4 -46	D		Do.
20ª	4 -46			4	4 -46	D		Do.
24 ⁸	4-16-46	11		4	4-16-46	D		Do.
2.5ª	4 -46			12	4 -46	D		Do.
24 ^a	4 -46			12	4 -46	D		Do.
58	4 ~46		-	4	4 -46	D		Do.
1		-		50	_	N		Flowing well, abandoned
20(?) ^a				-		Ν	\sim	a room g o on, abandonen
2.04	6-18-46	I, E	-			D	-	
	-	N	-	39	-	N	-	Flowing well.
		N	-	1	-	N	59	Flowing well.
19 ^a		II	-	-		N		
-		С, Е	-	-	-	С		
5.57	6-21-46	H	-	-	-	С	—	
22 ⁿ		C, E	-	_		D,F	0-1	
29.26	6-24-46	H		-		N	-	
3	-	С, Е	-	-		N		
	-	I,E	w	_	_	С	- 1	
-		Ĩ,E			-	С	1.000	
		I,E	-	-	-	С	-	
-		I,E				С		
-		N	- 1			N		
	-	N	-	-		N	-	
19 ^a	_	I, E	—	100		С	-	
-		N	-	-		Ν	-	Test well. See well log.
44 ⁿ		H	-	-	_	D	_	
23.4	6- 5-46	II			_	N	1	
34.6	6- 5-46	C, E	-	_		D	_	
		C, L				D		
40.2 ⁿ	6-26-46	I.E		-	_	D		
		II				D		
_		C, E			_	D	-	
	-	C, E				D		
100	-	C, E	-			F	-	See chemical analysis.
30 ⁿ		Н	-	-		D		
160.29	7-12-46	C, E				D		
35	7-16-46	I,E				D		
143.68	6-16-46	C,E		15		S		
-	-	C, E	-		-	D		
28.8	7-16-46	11		_		N		
140 ⁿ		C, E		-		D		Do.
		C,E	3	5	3-24-47	D,F		See well log.

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (fect)	Diameter of well (inches)	Water-bearing formation
Ee 1	Leatherbury Bros.	Leatherbury		4	Drilled	200	2	Aquia (?)
Ee 2	Do	do	1939	- 4	do	150	6	Aquia
Ee 3	A. Cysinger	do	1946	20	do	110	$1\frac{1}{2}$	do
Ee 4	James Stewart	Washington Pump & Well Co.	1946	40	do	140	6	do
Ee 5	George Ford	-	1931	1.30	Dug	32-36	36-48	Calvert or Nanjemoy
Ee 6	Robert L. Forest	Layne-Atlantic	1933	10	Drilled	138	8	Aquia (?)
Ee 7	Winterson Hardesty		1.1.0	60	Dug	30	48	Nanjemoy
Ee 8	Arthur Owens	-	-	100	do	35	48	do
Ee 9	Camp Letts	Bunker	1928	10	Drilled	105	4	Aquia
Ee 10	Do	do	1934	5	do	72	4	do
Ee 11	Do	do	1934	3	do	75	4	do
Ee 12	H. R. Robey	Purner	1931	5	do	104	11	do
Ee 13	Mrs. Ann Hauxhurst	do	1941	35	do	60-65		do
Ee 14	A. B. Smith	Leatherbury	1941	40	do	101	2	do
Ee 15	Board of Education	Washington Pump & Well Co.	1939	40	do	107	6	do
Ee 16	Beverly Beach Club	Leatherbury		4	do	50	2	do
Ee 17	Do	do		4	do	60	2	do
Ee 18	Do	do		4	do	80	5	do
Ee 19	Do	do		10	do	103	2	do
Ee 20	St. Joseph's Summer Normal School	_		10	Dug	30	-	Nanjemoy
Ee 21	Do	Washington Pump & Well Co.	1941	10	Drilled	95		Aquia
Ee 22	Murray Estate	Rude		5	do	329	2 1/2	Magothy and Raritan
Ee 23	Douglas Connolly	Leatherbury	1943	60	do	125	4	Aquía
Ee 24	E. Churchill Murray		1894	40	Dug	34.1	36	Nanjemoy
Ee 25	A. B. Menefee	Windsor	About 1930	5	Drilled			-
Ee 26	J. B. Skinner	T	1005	105 5	Dug	99	.36	Nanjemoy
Ee 27	Woodfield Fish & Oyster Co.	Leatherbury	1926		Drilled	180(?)	2	Aquia
Ee 28	Do	do	1936	5	do	180(?)	2	do
Ee 29	Andrews Hotel Do	do do	1906 1923	9	do do	120(?)	2	do
Ee 30 Ee 31	Do	do	1923	9	do	1.39	1 ½ 1 ½	Aquia
Ee 31	Hartge's Boatyard	Purner	1940	1	do	150	2	do
Ee 32	St. Johns Church	Wilde	1932	10	do	156	11	do
Ee 34	J. D. Williams	Leatherbury	1947	10	do	160	3	do
Ee 35	R. May	do	1947	5	do	160	2	do
Ee 36	F. Thomas	do	1947	5	do	140	11	do
Ee 37	R. Hartge	Purner	1947	5	do	140	11	do
Ee 38	John Owens	Leatherbury	1947	110	do	180	2	do
Ee 39	Norman Carr	do	1947	10	do	160	11	do
Ef 1	Dr. A. E. Goldstein	Atwell	1926	15	Drilled	40	11	Aquia
Ef 2	E. L. Rudd		1928	5	do	65	11	do
Ef 3	C. L. Meredith	-	1928	5	do	61	11	do
Ef 4	H. B. Stonebraker			10	do	_		_
Ef 5	Do			20	Dug	44	48	Pleistocene or Aquia

Static w	ater level		/ of pump min.)	3	Yield		e °F.	
Below Iand surface (feet)	Date of measurc- ment	Pumping cquipment	Capacity of (gal. a min	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
2ª	_	C, E	16	20	_	С		
4.24	4-24-46	C,E	-	30	_	C	J	
9ª	2-27-46	I,E	4	6	1946	D	_	See well log.
40 ⁿ	4-20-46	C,E	75	20	4-20-46		-	Do.
28 ^a		11		-		D		
13 ⁸		I,E	210	210		D,F	55	See chemical analysis,
14	6-28-46	I,E	-			D		Measured depth of well 22.6 feet.
		I, E				D	m-1	
15 ^a		II	- 1	25				Used as a stand-by well.
5ª	-	Ι,Ε	-	50			58.5	Used to supply camp. See chemical anal sis.
3ª		I,E	_	50			58.5	Used to supply camp.
	_	C, E and II				D	57	See chemical analysis.
		C,E				D	_	oce enemical analysis.
23.95	6-29-46	Н				N	_	
39 ⁸	1939	C, E	-	20	_	S	_	See well log.
4 ⁸		C, E	8		_	С		
4 ⁸		C.E	8			C	_	
4 ⁿ	-	C, E				С	_	
10 ^a	- 1	C, E	8			D	-	
11	7- 1-46	C, E and H	-			S	-	
12.80	7- 1-46	I,E	-	27		N		Do,
		N		15		N	60	Flowing well. See chemical analysis.
		C,E				D		
21.0	7-17-46	В	-	-	-)	N		
		I, E				D		
77.67	7-17-46	H	-	-	_	D	-	Measured depth of well 87 feet.
10 ⁸		I,E	_	_	-	С		
10 ⁿ	-	I, E	-	-	-	С	—	
7.29	7-19-46	N				N		Measured depth of well 19.5 feet.
	-	N			_	N		
		I, E	4			С	-	
	_	C, E		1.5	7-29-46	С	59	Flowing well. Scc chemical analysis.
6 ^в		H	-			D	-	
6.43	7-12-48			6	4- 7-47	D		See well log.
6.31	7-28-48	H		6	-	D		Do.
9.42	7-28-48	H	-	8	-	D	-	Do.
4 ^B	10 17 17	E	5	8		D	-	2
80 ^a 9.43	10-15-47 8-18-48	C, E II		4	10-15-47 5- 6-47	D D		Do. Do.
			_	U	5- 0-4/			
15.11	6-18-46	C,E				D	_	
5ª		1, E and H	-	-		1)	57	See chemical analysis.
5.43	6-20-46	N			—	N		
	—	C,E			_		11-1	Do.
18	6-29-46	I, E	_			D	-	Measured depth of well 39.2 feet. S chemical analysis.

Well	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Ef 6	Charles B. Eckloff	Leatherbury	1938	10	Drilled	22	2	Pleistocene (?)
Ef 7	Triton Beach Club	do	1941	5	do	40	2	Nanjemoy (?)
Ef 8	Do	do	1941	5	do	40	2	do
Ef 9	Do	do	1941	5	do	40	2	do
Ef 10	Do	do	1941	5	do	130	8	Aquia
Ef 11	Idlewilde Hotel	Wilde	1945	5	do	180	2	do
Ef 12	Idlewilde Develop- ment Co.	Leatherbury	1935	10	do	175	112	do
Fc 1	Morgan B. Wayson	Leatherbury	1939-40	45	Drilled	120	6	Aquia
Fc 2	G. A. Prout	_	1942	150	Dug	40	48	Calvert
Fc 3	T. H. Welch	++	1941	160	do	87	60	Nanjemoy (?)
Fc 4	F. C. Krauss	Purner	1940	3	Drilled	327	2	Magothy and Raritan
Fc 5	J. W. Crosby		1932	90	Dug	36.5	48	Nanjemoy
Fc 6	A. L. Shepherd	Leatherbury	1947	45	Drilled	105	3	Aquia
IFc 7	Walter Hunter	do	1948	30	do	125	4	do
Fd 1	T. H. Watts	-	-	150	Dug	50-60		Calvert
Fd 2	C. R. Moreland	-	1880	160	do	65	60	do
Fd 3	William O'Neil		1940	155	do	50	48	do
Fd 4	Charles Griffith		1944	145	do	66.3	36	do
Fd 5	Amos Moore	14 DE 1	1941	145	do	45	48	do
Fd 6	Do	1.00	-	125	do	22	-	do
Fd 7	James F. Faust	-	1920	90	do	72	48	Nanjemoy
Fd 8	Moody Paddy			120	do	54	48	Calvert
Fd 9	J. J. Paddy	1.22	-	178	Dug	60	36	Calvert
Fd 10	Board of Education	Washington Pump & Well Co.	1932	165	do	3.30	. 6	Aquia
1 ⁻ d 11	Morris Powers			140	Drilled	65	48	Calvert
Fd 12	Board of Education	Leatherbury	1939-40	130	do	280	-	Aquia
Fd 13	Do	Layne-Atlantic	1949	175	do	585	8	Magothy
Fe 1	Leatherbury Bros.	Leatherbury	1940	20	Drilled	160	2	Aquia
Fe 2	W. M. Thomas Lumber Co.		1940	10	do	120	112	Nanjemoy or Aquia
Fe 3	Camp Kahlert	Crandall (?)	1925	7	do	150(?)	11	Aquia
Fe 4	Do		1925	5	do	150(?)	1	do
Fe 5	Artivous Thompson	Leatherbury	1925	20	do	96.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pleistocene or Nanje moy
Fe 6	Francis Medley			130	Dug	62	48	Calvert or Nanjemoy
Fe 7	Leroy Ward	Phipps	1935	3	Drilled	160	11	Aquia (?)
Fe 8	Franklin Thomas	Leatherbury	1935	5	do	400(?)		Magothy (?)
Fe 9	W. W. Oliff	Wilde	1926	10	do	195	11	Aquia
Fe 10	Mrs. Julius A. Hobson	do	1923	3	do	190	2	do
Fe 11	Do	-	1922	3	do	130,4	11	do
Fe 12	George R. Taylor	Leatherbury	1939	10	do	260	11	do
Fe 13	James II. Rogers	Johnson	About 1900	3	do	147	11	do
Fe 14	R. T. Brooke	Wilde	1926	4	do	156	2	do
Fe 15	Tacaro Farm	Leatherbury (?)	1937	23	do	222(?)	2	do

Static w	ater level		v of pump min.)	Υ	ield		1	
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a min	Rate (gal. a min.)	Date of measure- ment	Use of water	Temperature	Remarks
	_	I, E & H	_	_		D		See chemical analysis.
5ª		C, E	****			С		
5ª		C, E			_	С		
5ª		C, E		-		С	1 - 1	
_	_	N	-	_		N		
5ª	-	I,E				С		
		H	-	-	_	D	-	
34 ⁸	-	C, E	-		=	C, D		
38ª		H	-	_	_	F		
45.0	7-10-46	C, E		_ 1	_	D		Measured depth of well 78.6 feet.
-	-	-		9	7-12-46	D	60	Flowing well. Equipped with hydrau ram. See chemical analysis.
28.1	7-12-46	H				D		turni oce chemical analysis.
32ª	7-14-47	C.E	4	4	7-14-47	C		See well log.
31ª	3-31-48	C, E	8	8	3-31-48	D		Do.
01	0 01 10	0,11	0	0	0-01-10	17		
	-	Н	-			F	-	
28.14	7-10-46	C, E			10-10-10	D		Measured depth of well 50 feet.
30	7-10-46	H				D		
32.6	7-10-46	I, E		-	_	D		
I5 ^a	_	C, E	-	-		D		
-	-	В		-		F		
13.5	7-12-46	C, E				D	-	Measured depth of well 64 feet.
18ª	-	В	-	-		D		
	-	H	-			D,F		
A BELLET	-	C, E	1	15+		S		
35.58	7-29-46	В	-		_	D	-	Measured depth of well 49 feet.
-	—	C, E		-	-	S	100	
-	_	I,E		200	5-17-49	S		See well log and chemical analysis
15ª	_	I,E	100	41		F		
6ª		I,E	4	30	—	C, D	-	
-		N	-			N	60.5	Flowing well. Measured depth of well
		I,E						feet. Used for camp supply. Flowing well.
5.80	7-30-46	H H			_	D	-	osed for camp suppry, riowing wen,
53.60	7-30-46	В	2		2	D	-	
1.37	7-30-46	H			-	D		
	-	N	-	18.75		N	60	Flowing well. See chemical analysis.
30 ^a	-	H and I, E	_			D	-	
	n 20 46	H	-		-	D		
1.48	7-30-46	N	-	-		N	F ()	
1.08	Alana	I,E		-	A1	D	59	W. II O
10 ^a	About 1900	I, E	-	5	About 1900	D		Well flows at high tide.
_		I.E	· · · · ·			D	59	Do. See chemical analysis.
19.04	7-31-46	I,E				D		

TABLE 2-

Weli	Owner or name	Driller	Date completed	Altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Water-bearing formation
Fe 16	Tacaro Farm	Leatherbury	1937	15	Drilled	222	11	Aquia
Fe 17	Do	do	1943	20	do	_	6	
Fe 18	Do	do	1938	20	do	- 1	11	-
Fe 19	Do	do	1939	70	do	165	15	Nanjemoy
Fe 20	Do	do	1941	140	do	165	11	Calvert or Nanjemoy
Fe 21	Do	do	1940	160	do	166.4	15	Calvert (?)
Fe 22	Do	do	1946	100	do	167.35	2	Nanjemoy (?)
Fe 23	Philip Ettlestein	Wilde	1946	18	do	-	11	_
Fe 24	Allison-Marshall	Leatherbury	1947	10	do	210	11	Aquia (?)
Fe 25	A. Edwards	do	1947	4	do	200	2	Aquia
Fe 26	J. Anderson	do	19-7	10	do	180	11	do
Fe 27	A. Euike	do	1947	5	do	210	11	do
Fe 28	G. G. August	do	1947	5	do	200	11	do
Fe 29	G. E. Frazier	Ward	1949	10	do	270	11	do
Ge 1	H. P. LeClair	Leatherbury	1936	140	Drilled	420	3	Aquia
Ge 2	J. E. Rose	Washington Pump & Well Co.	1948	5	do	325	8	do
Ge 3	N. J. Fauble	Ward	1949	30	do	315	21-11	do
Ge 4	E. S. Summerfield	do	1949	60	do	354	11	do

"Water level reported.

Concluded

Static water level			of pump min.)	3	lield		EL.		
Below land surface (feet)	Date of measure- ment	Pumping equipment	Capacity of (gal. a mir	Rate (gal. a min.)	Date of measure- ment	Use of waler	Temperature	Remarks	
_	_	N	_	4	_	F	59	Flowing well.	
0	7-31-46	C, E	-		—	D,F	-		
_	7-31-46	N	_		—	N		Well formerly flowed.	
		C, E				D,F	-		
_	-	C,G	-	_		D	_		
_	_	C, E	_	_	_	D,F			
84.34	7-31-46	N	_	_	_	D	_		
16.88	7-31-46	II				D			
4.73	7-48	H	_		_	D	-	See well log.	
6ª	-	H	4	8		D	-	Do.	
6.43	7-48	H	-	—	—	C	-	Do.	
3.73	8-13-48	H	4	8	-	D		Do.	
3*	-	Н	-	8	-	D	-	Do.	
6ª	3-29-49	С	5	12	3-29-49	D	-		
140 ⁿ	_	C,E	_	5	-	D	-		
2 ⁿ	2-25-48	I,E	200	125	2-25-48	Р	61.5	See well log and chemical analysis.	
18	3-23-49	C,E	3	3	3-23-49	D			
50	5- 5-49	-			-	D	-	See well log.	

TABLE 3

Drillers' Logs of Wells in Anne Arundel County

	Thickness (feet)	Depth (feet)
Well AA-Ac 4	(++)	(1000)
Pleistocene deposits:		
Soil.	6	6
Yellow clay	19	25
Patapsco formation:		
Dry sand and gravel	125	150
Fine water-bearing sand.	5	155
Medium-coarse water-bearing sand	10	165
Well AA-Ac 10		
Pleistocene deposits:		
Yellow clay and gravel	15	15
Arundel formation:	10	*0
Red clay	15	30
Yellow mixed clay		85
Patuxent formation:	00	00
Yellow sand and clay (water)	10	95
Red clay	10	105
Yellow and red clay	25	130
Yellow sand and clay and gravel	23	153
Vell AA-Ad 1 Pleistocene deposits: Sand	15	15
Patapsco formation:		
Red clay	23	38
Conglomerate	2	40
Medium sand	23	63
Gravel (well plugged back to 65 feet)	2	65
Sand rock	6	71
Fine sand	22	93
Sand rock	18	111
Vell AA-Ad 2 Pleistocene deposits:		
Top soil and sand.	6	6
Sandy clay and gravel.	4	10
Patapsco formation:	т	10
Hard red clay	6	16
Fine white sand	2	18
Soft white clay	12	30
Hard white sandy clay	17	47
Brown sand	18	65
Sand and gravel; water-bearing	30	95
White clay	12	107
Silty white sand	12	119

	Thickness (feet)	Depth (feet)
Well AA-Ad 8	(,	()
Patapsco formation:		
Sandy loam	35	35
Sand	6	41
Sand and gravel	39	80
White clay	50	130
Arundel formation:		
Red clay	24	154
Patuxent formation:		
Brown clay, dark and drab, very stiff and tough	46	200
Brown clay and sand	75	275
Brown clay, sand and gravel	20	295
Sand and gravel	6	301
Sand	4	305
Brown clay	25	330
Red clay	2	332
Brown clay.	18	350
White clay, sand, and gravel.	27	377
Brown sandstone	8	385
Sand and gravel.		390.5
Well AA-Ad 9		
Patapsco formation:		
Sandy loam	34	34
Clay and gravel	14	48
White clay.	15	63
Red clay	14	77
Blue clay	13	90
Sand and clay		149.5
Well AA-Ad 10		
Patapsco formation:		
Sandy loam	20	20
Sand	9	29
Sand and gravel	9	38
White clay	9	47
Sand.	55	102
Iron cemented gravel	6.5	108.5
Well AA-Ad 11		
Patapsco formation:		
Sandy loam.	20	20
Coarse sharp sand		30
Gravel.		34
White clay.		47
		95
Sand and clay		106
Fine sand (water)	11	100

	Thickness (feet)	Depth (feet)	
White clay, sand and gravel	22	128	
Sand	23	151	
Arundel formation:			
Red clay	9	160	
Patuxent formation:			
Brown clay.	83	243	
Sand.	12	255	
Red clay	7	262	
Unrecorded .	38	300	
Cincoluci	50	300	
Well AA-Ad 14			
Water	9	9	
Recent deposits:			
Soft river muck	8	17	
Patapsco formation:			
Clay	5	22	
Fine sand, trace clay.	13.5	35.5	
	1010	0010	
Well AA-Ad 15			
Water	24	24	
Recent deposits:			
Soft river muck	8	32	
Patapsco formation:			
Sand, medium to hard	9	41	
Well AA-Ad 16			
Patapsco formation:			
Sandy loam.	12	12	
	58	70	
Sand and clay Red clay	50 5	70	
Coarse sharp sand (water)	10	85	
Sand and red clay	43	128	
Arundel formation:	10	170	
Red clay	42	170	
Not reported	12	182	
Well AA-Ad 20			
Potomac group:			
Soil.	4	4	
Sand and gravel.	68	72	
Mud and sand	13	85	
Sandy white clay.	40	125	
Fine sand and mud.	8	133	
Red and white clay.	12	145	
Very fine sand	15	160	
	90	250	
Muddy sand		260	
Red clay	10	200	

TABLE 3—Continued

TABLE 3-Continued

	Thickness (feet)	Depth (feet)
Red and blue clay, tough		332
White clay		_ 340
Green sandy clay		364
Fine water-bearing sand		380
Medium water-bearing sand		392
Well AA-Ad 29		
Pleistocene (?) deposits:		
Sand and gravel.	19	19
Patapsco formation:		
White clay, hard and soft spots	39.5	58.5
White clay and brown sand	4	62.5
Brown sand and gravel; good water-bearing formation	9	71.5
Hard white clay.		74
Sandy white clay	7	81
Sandy gray clay.	10	91
Sandy white clay		112
Sandy white clay (a little finer)	17	129
Hard white clay with very thin layers of sand		144.9
Gravel and varicolored clay		149.5
Arundel formation:		
Hard red clay		160
Yellow clay with spots of white clay		186
Sandy red clay, hard		212
Sandy white clay, some very hard spots		268
Hard white clay and sandstone in streaks	26	294
Patuxent formation:		
Fine white sand		313
Fine white sand, packed tight; drilled slowly		330
Fine gray sand and clay in streaks.		375
Medium coarse gray sand with some clay		387
Blue clay and sand; slow drilling		395
Coarse gray sand; fast drilling		400
Sandy blue-red clay with some gravel in it; slow drilling		426
Sandy blue clay; fast drilling		448
Sand and red clay; fast drilling	9	457
Blue clay and some sand	13	470
Gray sand, rather fine; fast drilling		489
Gray sand, with more sandstone than sand; slow drilling	14	503
Patuxent formation and pre-Cambrian rocks:		
Sandstone slowly changing to what appears to be rotten		
granite and getting harder and slower to drill	. 27	530
Well AA-Ad 32		
Pleistocene deposits:		
Sand	15	15

	Thickness (feet)	Depth (feet)	
Patapsco formation:	(1000)	(1002)	
Yellow clay	10	25	
White clay	5	30	
Coarse sand	6	36	
Fine sand.	12	48	
White clay	10	58	
Fine water sand	10	68	
White clay	10	80	
Coarse water sand			
Coarse water saint		80	
Well AA-Ad 33			
Pleistocene deposits:			
Red sand.	10	10	
Patapsco formation:			
White sand	10	20	
Coarse sand.	10	30	
Fine gravel.	10	40	
Red clay	10	50	
White clay.	10	62	
Red clay	8	70	
Red sand.	10	80	
Coarse gravel	25	105	
White sandy clay	40	145	
Water sand	2	147	
Well AA-Ad 34			
Patapsco formation:			
Yellow loam	20	20	
White clay	5	25	
Large gravel	5	30	
Water-bearing sand		30	
77 11 4 4 4 4			
Well AA-Ae 4			
Pleistocene deposits:			
Sandy clay	28	28	
Patapsco formation:			
Hard white clay	34.6	62.6	
Sandy clay, brown streaks	20	82.6	
White sand; drilled hard	5.4	88	
Hard clay	1.5	89.5	
Hard sand	2.5	92	
Very hard clay	5	97	
Fine sand	16	113	
Hard and soft streaks	10	123	
Sand and gravel, good	11	134	
Hard white clay	6	140	
Free brown sand	3.6	143.6	

TABLE 3—Continued

TABLE	3-Contin	rued

	Thickness (feet)	Depth (feet)
Hard brown sand	2.4	146
Hard white clay	1	147
Hard sand.	5	152
Sandy clay	2	154
Hard white clay	7	161
Sandy clay	3.7	164.7
Sandy clay; hard place	3.1	167.8
Sandy clay	1.4	169.2
Hard clay	9.5	178.7
Sand	.3	179
Hard clay		179.5
Free brown sand		182.2
Very hard red clay		184
Sand and gravel; water-bearing.	9	193
Arundel (?) formation:		
Clay	2	195
Well AA-Ae 5		
Pleistocene deposits:		
Soft yellow clay	5	5
Soft yellow sand	7	12
Soft blue clay.	4	16
Soft yellow sand	3	19
Soft black mud	7	26
Patapsco formation:		
Soft white sand	9	35
Hard red and white clay	25	60
Hard red clay.	18	78
Soft white sandy clay	10	88
Free white sand	34	122
Free brown sand	3	125
Free white sand	10	135
Soft white sandy clay	5	140
Hard white sandstone	4	144
Soft and hard white sandy clay	26	170
Very hard rock (sandstone).	2	172
Soft white sandy clay	5	177
Very hard rock	4	181
Hard white clay	2	183
Free sand and gravel	6	189
Well AA-Ae 11		
Pleistocene deposits and Patapsco formation:		
Blue clay.	40	40
Sandy loam		69
Sand and gravel.		75

TABLE 3—Continued		
	Thickness (feet)	Depth (feet)
Well AA-Ae 12		
Water	21	21
Recent deposits:		
Soft river muck	6	27
Patapsco formation:		
Fine sand, clay and gravel		30
Sand and clay, medium-hard		36
Hard white clay	2.5	38.5
XX7.11 A A A. 17		
Well AA-Ae 13	01 5	04 5
Water	21.5	21.5
Recent deposits:		0.0
Soft river muck	6.5	28
Patapsco formation:	-	
Fine sand		30
Fine sand, medium-hard		35
Hard white clay	4	39
Well AA-Ae 14		
Water	22	22
Recent deposits:	22	22
Soft river muck	15	37
Patapsco formation:	10	57
Fine sand	6	43
Moderately stiff clay.		52
moderately still elay	,	54
Well AA-Ae 15		
Water	21.5	21.5
Recent deposits:		21.0
Soft river muck.	9.5	31
Patapsco formation:		
Fine sand, medium-hard	20.5	51.5
Well AA-Ae 16		
Water	20	20
Recent deposits:		
Soft river muck	7	27
Patapsco formation:		
Fine sand and clay		30
Sand and white clay		32
Fine sand	8	40
TT II A A A AO		
Well AA-Ae 18		
Pleistocene deposits and Patapsco formation:		_
Clay	5	5
Sand		11
Clay	4	15

	Thickness (feet)	Depth (feet)
Sand	5	20
Clay	8	28
Sand	7	35
Clay	53	88
Sand.	47	135
Sandy clay	5	140
Sand	3	143
Sandy clay	35	178
Clay	4	182
Gravel	8	190
Well AA-Ae 19		
Pleistocene deposits:	20	28
Sandy clay	28	28
Patapsco formation:	2.4	60
Clay	34	62 72
Sandy clay	10	
Sand	12	84
Clay	4	88 112
Sand		112
Sandy clay, hard and soft	12	124
Sand and gravel		
Sandy clay		140 142
Sand		
Sandy clay		178
Sand		183
Sand and gravel	11	194
Well AA-Ae 20		
Pleistocene deposits and Potomac group:		10
Sandy clay		60
Clay	65	125
Sandy clay, to clay at bottom		165
Clay		176
Sand	-	188
Clay		195
Sand		225
Sandy clay		245
Sand and gravel.		267
Sandy clay		280
Sand		302
Sandy clay		355
Sand		364
Clay	5	369
Sand, gravel and boulders	21	390
Clay	10	400

	Thickness (feet)	Depth (feet)
Well AA-Ae 26	(1005)	(ICCL)
Raritan and Patapsco formations:		
Topsoil	1	1
Subsoil	3	4
Yellow sand	10	14
Yellow clay	4	18
Yellow sand	16	34
Rock	1	35
White clay	2	37
Yellow clay.	4	41
White sand	2	43
White clay	7	43 50
White sand	5	
white sand	3	55
Vell AA-Ae 27		
Patapsco formation:		
Topsoil	1	1
Yellow sand	10	11
White clay	5	16
Light gray clay	6	22
White clay and sand	10	32
White sand	12	44
White clay and sand	10	54
Vell AA-Ae 28		
Patapsco formation:		
Topsoil	1	1
Yellow sand	5	6
Yellow clay.	1	7
Yellow sand	6	13
White clay	12	25
Red clay	1	26
Fine sand	7	33
White clay	18	51
Coarse sand.	13	64
Red clay	1	65
Red and white clay	90	155
Gray clay	15	170
Red clay	30	200
Red clay and sand	30	230
Sand	8	238
Vell AA-Bb 5		
Pleistocene (?) deposits:		
Soil	3	3
Sand and gravel	27	30

	Thickness (feet)	Depth (feet)
Patuxent formation:	()	()
Blue clay with streaks of white clay	20	50
White clay.	14	64
White sandy clay, some water	24	88
White clay		90
Red clay		132
Light blue clay		142
Stiff blue clay		148
Fine sand; water-bearing		152
Blue and pink clay		157
Medium-fine sand; water-bearing	21	178
Blue clay	12	190
Rock	9	199
Well AA-Bb 19		
Pleistocene deposits:		
Yellow clay	25	25
Arundel (?) and Patuxent formations:	20	20
Blue clay.	5	30
Red clay		35
Blue clay.		38
Red clay.		58
Gray clay		62
White clay		63
Water-bearing sand		72
Well AA-Bb 20		
Patapsco formation:		
Red sand and gravel	18	1.0
Soft white clay	2	18 20
Arundel formation:	Z	20
	20	10
Hard red clay	29	49
Hard sand	10	59
Hard red clay	21	80
Patuxent formation:		
Soft white sandy clay	43	123
Hard red clay.	22	145
White sand, gravel	63	208
Pre-Cambrian rocks:		
Bed rock		208
Vell AA-Bb 21		
Pleistocene deposits:		
Sandy clay and gravel	15	15
Sand and gravel, water-bearing	5	20
Patuxent formation:		
Mixed clays, different colors	25	45

TABLE 3-Continued		
	Thickness (feet)	Depth (feet)
Blue clay	10	55
Fine sand silt, water-bearing.	5	60
White clay. Fine sand, some gravel, white clay; layers of irony rock;	15	75
Fine sand, gravel and clay; irony layers of rock, all red;	10	85
water-bearing	5	90
Red clay	35	125
Streak of mixed sand and clay	2	127
Red clay	8	135
Mixed clays	8	143
Gray shaly rock	10	153
Sand and gravel, some peat, water-bearing.	7	160
Well AA-Bb 22		
Patuxent formation:		
Topsoil and surface sand	5	5
Hard gray and white clay with sand		41
Brown sand, fine at top, coarser at bottom		51.5
Coarse sand and gravel.		60.5
Granite		60.5
Well AA-Bc 1		
Raritan and Patapsco formations:		
Loose yellow sand	48	48
Free sand and clay streaks		52.5
Light gray clay		58
Hard red and white clay		71
Softer red and white clay.		95
Softer red and white clay.		124
Very free fine yellow sand		134
Clay.		139.5
Free sand		170
		170.5
Clay		173.5
Very free sand	-	174.5
Clay	. 1	1/4.5
Well AA-Bc 11		
Raritan and Patapsco formations:		
Clay		32
Brown sand	. 3	35
Red clay		85
Fine sand		117
Coarse sand; water-bearing	. 6	123
Fine sand	. 4	127

TABLE 3-Continued

96

	Thickness (feet)	Depth (feet)
Well AA-Bc 21		
Raritan and Patapsco formations:		
Sand		30
Clay		60
Sand; water-bearing		75
Clay		85
Sand; water-bearing	11	96
Well AA-Bc 28		
Pleistocene deposits:		
Sandy soil, gravel	5	5
Arundel and Patuxent formations:		
Varicolored clays	10	15
Red clay	9	24
Varicolored clays	6	30
Sandy layers and clay	5	35
Red clay		50
Mixed clays	5	55
Red clay	5	60
Brown and white clay	5	65
Yellow sandy clay		70
Red and brown clay	4	74
Red clay; some coarse sand	21	95
Brown and yellow clay	15	110
Yellow loam	15	125
Fine sands and clays; water-bearing.	7	132
Mixed clays, mostly red	58	190
Yellow and white sand and clay	14	204
White sand, sand crust; water-bearing.	6.5	210.5
Well AA-Bc 30		
Pleistocene deposits, Raritan and Patapsco (?) formations:	,	
Sand	6	6
Yellow clay	20	26
White clay and gravel	24 30	50 80
White clay	30	
Coarse sand.	30 25	110 135
Yellow clay		
Water-bearing sand.	10 3	145 148
Hard white clay	3	148
Well AA-Bc 31		
Pleistocene deposits:		
Sand and gravel	10	10
Patapsco formation:		
Iron ore	15	25

TABLE 3-Continued		
	Thickness (feet)	Depth (feet)
Yellow sand and gravel	10	35
Yellow sand	40	75
Red clay	10	85
Water-bearing sand	6	91
Well AA-Bd 1		
Patapsco formation:		
Clay	42	42
Fine sand	23	65
Well AA-Bd 2		
Pleistocene deposits:		
Sandy (surface)	7	7
Patapsco formation:		
Clay	1	8
Sand, streaks of clay		31
White clay	5	36
Sand, white		61
Sand, some gravel	2	63
White clay	9	72
Free sand, reddish		91
Well AA-Bd 5 Pleistocene (?) deposits and Patapsco formation:		
	40	40
Red clay Pink clay		52
		59
Blue clay		65
Blue sand, water-bearing		66
Brown clay		85
Green clay and sand		98
Black clay.	1 /	105
Brown clay		121
Red clay		123
Red sand.		124
White clay.	-	127
Hit white sand; water-bearing.		131
Well AA-Bd 8		
Pleistocene deposits:		
Gravel and sand.	9	9
Patapsco formation:		
Red clay	2	11
Gray water-bearing sand		35
Blue clay.		59
Brown clay		63
Pink clay	-	71

TABLE 3-Continued

98

	Thickness (feet)	Depth (feet)
Red clay	4	75
White clay	1	76
Water sand, white	1	77
Hard sand	3	80
Yellow sand; water-bearing	1	81
Well AA-Bd 20		
Patapsco formation:		
Sand	20	20
Yellow clay.	20	40
Water sand.	5	45
White clay	15	60
Coarse sand; water-bearing	15	75
Well AA-Bd 23		
Patapsco formation:		
Surface soil	2	2
Light brown clay	4	6
Red clay mixed with gravel	26	32
Red clay	8	40
White chalky clay	23	63
Blue clay.	7	70
Red clay.	12	82
Red clay mixed with white	19	101
Coarse water-bearing sand	11	112
White clay	1	113
Coarse water-bearing sand.	12	125
Red clay	13	138
Blue clay.	12	150
White clay	53	203
Red and white clay; gravel in streaks.	33	236
Blue clay.	34	270
Sand and gravel.	8	278
Arundel formation:	0	210
Yellow clay	20	298
Red clay and streaks of sand	32	330
Red clay and brown clay mixed	81	411
Patuxent formation:	01	TII
Fine water-bearing sand	31	442
Fine white water-bearing sand	25	467
Red clay	9	476
Fine water-bearing sand.	20	496
Blue and brown clay.	26	522
Fine mucky gray sand	10	532
Blue and red clay.	5	537
Coarse sand	5	537 544
Sand	11	555

TABLE 3—Continued		
	Thickness (feet)	Depth (feet)
Blue and red clay	5	560
Sand and gravel	8	568
Coarse water-bearing sand.	24	592
Red clay	4	596
Coarse sand and gravel	11	607
Red clay	10	617
Well AA-Bd 24		
Raritan and Patapsco formations:		
Surface sand	17	17
White clay	10	27
White sand	5	32
Red clay	30	62
Blue slate	14	76
Red clay	20	96
Blue slate		106
Sand		120
Sant	17	120
Well AA-Bd 25		
Raritan and Patapsco formations:		
Yellow clay	18	18
White clay	5	23
Sandy clay	5	28
Water sand	2	30
Sandy clay	8	38
White clay	4	42
Heavy sand	10	52
White clay	7	59
Rock	1	60
Gravel	3	63
White clay	11	74
Coarse water-bearing sand	2	76
Well AA-Bd 26		
Raritan and Patapsco formations:		
Red clay	30	30
White clay.	11	41
Sandy loam	19	60
White clay	11	71
Coarse sand	2	73
Well AA-Bd 27		
Magothy, Raritan and Patapsco formations:		
Coarse sand	20	20
Loam	5	25
Sand	10	35
Water sand.	5	40

Yellow clay. 10 50 Ref clay. 30 80 Dark brown clay. 10 90 Sand rock. 5 95 Not reported. 10 105 Well AA-Bd 28 Pleistocene deposits, Raritan and Patapsco formations: 5 Surface sand. 5 5 Hard gray sand. 12 17 White clay. 8 25 Loose sand. 12 18 Hard sand. 12 52 White clay. 12 64 Water sand. 4 68 Well AA-Be 4 73 90 Sand 17 17 Red clay. 2 92 Clay. 25 117 Sand 2 92 Clay. 25 117 Sand 2 92 Clay. 35 95 Well AA-Be 6 8 125 Well AA-Be 6 10 60 60 Red clay. 3 129 12		Thickness (feet)	Depth (feet)
Red clay. 30 80 Dark brown clay. 10 90 Sand rock. 5 95 Not reported. 10 105 Well AA-Bd 28 Pleistocene deposits, Raritan and Patapsco formations: 5 5 Surface sand. 5 5 14 12 17 White clay. 8 25 100 40 Hard gray sand. 12 64 40 Hard sand. 12 54 40 Hard sand. 12 64 468 Well AA-Be 4 Patapsco formation: 3 30 80 Sand. 17 17 17 7 Red clay. 73 90 202 217 23 117 5 107 3 30 292 21 21 5 117 5 100 8 125 117 Sand. 2 25 117 Sand. 2 25 117 Sand. 3 125 117 Sand. 3 125 117 Sand. 3 125 <td< th=""><th>Yellow clay.</th><th>10</th><th></th></td<>	Yellow clay.	10	
Dark brown clay		30	80
Sand rock 5 95 Not reported 10 105 Well AA-Bd 28 Pleistocene deposits, Raritan and Patapsco formations: 5 5 Surface sand 5 5 5 Hard gray sand. 12 17 White clay 8 25 Loose sand. 15 40 Hard sand. 12 52 White clay 12 64 Water sand 4 68 Well AA-Be 4 Patapsco formation: 2 Sand 17 17 Red clay 25 117 Sand 2 92 Clay 25 117 Sand 60 60 Red relay 35 95 Well AA-Be 6 Raritan and Patapsco formations: 60 60 Not reported 60 60 60 60 Red clay 35 95 95 White sand; water-bearing 5 100 Blue clay 3 126 126 126 126			90
Not reported 10 105 Well AA-Bd 28 Pleistocene deposits, Raritan and Patapsco formations: 5 5 Hard gray sand 12 17 White clay 8 25 Loose sand 15 40 4 68 White clay 12 64 4 68 Well AA-Be 4 12 64 68 Well AA-Be 4 73 90 5 117 Red clay 73 90 5 117 Sand 2 25 117 Sand 2 25 117 Sand 2 5 117 Sand 2 5 117 Sand 2 5 117 Sand 2 5 100 Raritan and Patapsco formations: 60 60 60 Red clay 2 125 125 125 Well AA-Be 6 3 125 125 125 125			
Well AA-Bd 28 Pleistocene deposits, Raritan and Patapsco formations: Surface sand. 5 5 Hard gray sand. 12 17 White clay. 8 25 Loose sand. 15 40 Hard sand. 12 52 White clay. 12 52 White clay. 12 64 Water sand. 4 68 Well AA-Be 4 73 90 Sand. 2 92 Clay. 25 117 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 8 125 Well AA-Be 6 8 125 Well AA-Be 6 1 126 Muite sand; water-bearing. 5 100 Blue clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129			
Pleistocene deposits, Raritan and Patapsco formations: Surface sand. 5 5 Hard gray sand. 12 17 White clay. 8 25 Loose sand. 12 54 Hard sand. 12 52 White clay. 12 64 Water sand. 12 64 Water sand. 4 68 Well AA-Be 4 73 90 Sand. 2 92 Clay. 25 117 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 1 126 White sand; water-bearing. 5 100 Blue clay. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand,		10	105
Pleistocene deposits, Raritan and Patapsco formations: Surface sand. 5 5 Hard gray sand. 12 17 White clay. 8 25 Loose sand. 12 54 Hard sand. 12 52 White clay. 12 64 Water sand. 12 64 Water sand. 4 68 Well AA-Be 4 73 90 Sand. 2 92 Clay. 25 117 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 1 126 White sand; water-bearing. 5 100 Blue clay. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand,	Well AA-Bd 28		
Surface sand. 5 5 Hard gray sand. 12 17 White clay. 8 25 Loose sand. 15 40 Hard sand. 12 52 White clay. 12 52 White clay. 12 64 Water sand. 4 68 Well AA-Be 4 73 90 Sand. 2 92 Clay. 25 117 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 3 129 Sand. 2 12 Well AA-Be 6 3 129 Sand. 1 126 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 <td></td> <td></td> <td></td>			
Hard gray sand. 12 17 White clay. 8 25 Loose sand. 15 40 Hard sand. 12 52 White clay. 12 64 Water sand. 4 68 Well AA-Be 4 Patapsco formation: 73 Sand. 17 17 Red clay. 73 90 Sand. 2 92 Clay. 25 117 Sand. 2 92 Clay. 25 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported. 60 60 Blue clay. 3 126 White sand, water-bearing. 1 126 White clay. 3 129 <		5	5
White clay. 8 25 Loose sand. 15 40 Hard sand. 12 52 White clay. 12 64 Water sand. 4 68 Well AA-Be 4 73 90 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 Raritan and Patapsco formations: 60 60 Not reported. 60 60 60 60 Red clay. 25 125 1700 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red 131 Sandy clay. (Sample bailed out at 132 feet consisted of red 14 145			
Loose sand	0		
Hard sand 12 52 White clay 12 64 Water sand 4 68 Well AA-Be 4 9 90 Sand 17 17 Red clay 73 90 Sand 2 92 Clay 25 117 Sand 8 125 Well AA-Be 6 8 125 Well AA-Be 7 60 60 Raritan and Patapsco formations: 1 126 White clay 3 129 3 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sandy clay. (Sample bailed out at 132 feet consisted of red sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 8 17 17 Raritan and Patapsco (?) formations: 3 3 3 Loam 6			=0
White clay. 12 64 Water sand. 4 68 Well AA-Be 4 Patapsco formation: 17 17 Red clay. 73 90 Sand. 2 92 Clay. 25 117 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 Raritan and Patapsco formations: 60 60 60 Red clay. 35 95 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 3 Loam. 3 3 3 3 3 Yellow clay. 6 9 9 6		12	52
Water sand. 4 68 Well AA-Be 4 Patapsco formation: 17 17 Sand 17 17 17 Red clay. 73 90 90 Sand 2 92 21 Clay. 25 117 5 90 Sand 2 92 22 117 Sand 8 125 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 60 Raritan and Patapsco formations: 60 60 60 Not reported. 60 60 60 60 Red clay. 25 125 175 125 170 126 White sand; water-bearing. 5 100 126 126 White clay. 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 77 8 17 14 145 Well AA-Be 7 8 17<		12	64
Well AA-Be 4 Patapsco formation: Sand 17 17 Red clay. 73 90 Sand 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported. 60 60 Red clay. 25 125 Iron-crusted. 3 5 Muite sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 7 7 7 7 Raritan and Patapsco (?) formations: 3 3 3 Loam. 3 3 3 3 Yellow clay. 6 9		4	68
Patapsco formation: 17 17 Sand 17 17 Red clay 73 90 Sand 2 92 Clay 25 117 Sand 8 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported 60 60 Red clay 35 95 White sand; water-bearing 5 100 Blue clay 25 125 Iron-crusted sand 1 126 White clay 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red 3 sand, balls of red and blue clay, and small pieces of 14 lignite.) 14 145 Well AA-Be 7 8 17 Raritan and Patapsco (?) formations: 1 14 Loam 3 3 3 Yellow clay 6 9 9 Fine sand		-	
Patapsco formation: 17 17 Sand 17 17 Red clay 73 90 Sand 2 92 Clay 25 117 Sand 8 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported 60 60 Red clay 35 95 White sand; water-bearing 5 100 Blue clay 25 125 Iron-crusted sand 1 126 White clay 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red 3 sand, balls of red and blue clay, and small pieces of 14 lignite.) 14 145 Well AA-Be 7 8 17 Raritan and Patapsco (?) formations: 1 14 Loam 3 3 3 Yellow clay 6 9 9 Fine sand	Well AA-Be 4		
Sand 17 17 Red clay 73 90 Sand 2 92 Clay 25 117 Sand 8 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported 60 60 Red clay 35 95 White sand; water-bearing 5 100 Blue clay 25 125 Iron-crusted sand 1 126 White clay 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 7 8 17 Raritan and Patapsco (?) formations: 1 14 145 Well AA-Be 7 8 17 14 145 Well AA-Be 7 8 17 14 145 Keritan and Patapsco (?) formations: 10 3 3 Loam			
Red clay. 73 90 Sand. 2 92 Clay. 25 117 Sand. 8 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported. 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 7 8 17 Raritan and Patapsco (?) formations: 3 3 3 Loam. 3 3 3 9 Fine sand. 8 17 9 6 9 Fine sand. 9 26 6 9 5 Coarse sand. 10 36 <t< td=""><td></td><td>17</td><td>17</td></t<>		17	17
Sand 2 92 Clay 25 117 Sand 8 125 Well AA-Be 6 8 125 Well AA-Be 6 60 60 Raritan and Patapsco formations: 60 60 Not reported 60 60 Red clay 35 95 White sand; water-bearing 5 100 Blue clay 25 125 Iron-crusted sand 1 126 White clay 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 7 7 8 17 Raritan and Patapsco (?) formations: 3 3 3 Loam 3 3 3 3 Yellow clay 6 9 9 9 Fine sand 8 17 9 26 Coarse sand 10 36 36 36 Fine sand 10 36			~ *
Clay. 25 117 Sand. 8 125 Well AA-Be 6 Raritan and Patapsco formations: 60 60 Not reported. 60 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 3 Loam. 3 3 3 3 3 Yellow clay. 6 9 9 6 9 Fine sand. 9 26 6 9 26 Coarse sand. 10 36 36 36 Fine sand. 10 46 8 48			
Sand. 8 125 Well AA-Be 6 Raritan and Patapsco formations: 60 60 Not reported. 60 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 3 Loam. 3 3 3 3 3 Yellow clay. 6 9 9 26 6 9 Fine sand. 9 26 6 9 26 6 9 26 Coarse sand. 10 36 10 36 4 46 Red clay. 2 48 10 46 8 17		_	
Well AA-Be 6 Raritan and Patapsco formations: Not reported. 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Itam. 3 3 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 9 26 26 Coarse sand. 10 36 10 36 Fine sand. 10 46 8 17	-		
Raritan and Patapsco formations: 60 60 Not reported. 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48	Sano	0	120
Raritan and Patapsco formations: 60 60 Not reported. 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48	Well AA-Be 6		
Not reported. 60 60 Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand 1 126 White clay. 3 129 Sand 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48			
Red clay. 35 95 White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 3 Loam. 3 3 3 3 Yellow clay. 6 9 9 26 Coarse sand. 10 36 10 36 Fine sand. 10 46 Red clay. 2 48		60	60
White sand; water-bearing. 5 100 Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 8 17 White sand. 9 Coarse sand. 10 36 10 36 Fine sand. 10 46 Red clay. 2 48		35	95
Blue clay. 25 125 Iron-crusted sand. 1 126 White clay. 3 129 Sand. 2 131 Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 36 Fine sand. 10 46 Red clay. 2 48	2		100
Iron-crusted sand1126White clay3129Sand2131Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.)14Well AA-Be 714145Well AA-Be 733Raritan and Patapsco (?) formations: Loam33Yellow clay69Fine sand926Coarse sand1036Fine sand1046Red clay248			125
White clay.3129Sand.2131Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.)14145Well AA-Be 7 Raritan and Patapsco (?) formations: Loam.33Yellow clay.69Fine sand.817White sand.926Coarse sand.1036Fine sand.1046Red clay.248		1	126
Sand2131Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.)14145Well AA-Be 7 Raritan and Patapsco (?) formations: Loam.33Yellow clay.69Fine sand.817White sand.926Coarse sand.1036Fine sand.1046Red clay.248		3	129
Sandy clay. (Sample bailed out at 132 feet consisted of red sand, balls of red and blue clay, and small pieces of lignite.)		2	131
sand, balls of red and blue clay, and small pieces of lignite.)14145Well AA-Be 7 Raritan and Patapsco (?) formations: Loam.33Yellow clay.69Fine sand.817White sand.926Coarse sand.1036Fine sand.1046Red clay.248			
lignite.) 14 145 Well AA-Be 7 Raritan and Patapsco (?) formations: 3 3 Loam. 3 3 3 Yellow clay. 6 9 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48			
Well AA-Be 7Raritan and Patapsco (?) formations:Loam.3Yellow clay.69Fine sand.817White sand.926Coarse sand.1036Fine sand.1046Red clay.248		14	145
Raritan and Patapsco (?) formations: Loam. 3 3 Yellow clay. 6 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48			
Raritan and Patapsco (?) formations: Loam. 3 3 Yellow clay. 6 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48	Well AA-Be 7		
Loam. 3 3 Yellow clay. 6 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48			
Yellow clay. 6 9 Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48		3	3
Fine sand. 8 17 White sand. 9 26 Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48			9
White sand 9 26 Coarse sand 10 36 Fine sand 10 46 Red clay 2 48	<i>•</i>	~	17
Coarse sand. 10 36 Fine sand. 10 46 Red clay. 2 48			A 1
Fine sand 10 46 Red clay 2 48			10
Red clay			00
		_	

TABLE 3—Continued		
	Thickness (feet)	Depth (feet)
White clay	3	57
Fine sand		67
Yellow clay		70
Fine sand	10	80
Yellow clay		81
Fine sand		92
Coarse sand	7	99
Well AA-Be 8		
Patapsco formation:		
Sand	17	17
White clay	1	18
Red clay and sand	2	20
Bright red clay	8	28
Terra cotta clay	5	33
Bright red clay	2	35

	Bright red clay	
	Red and white clay mixed	
	Bright red clay	
	Red and white clay mixed	
	White clay	
	Bright red clay	
	Sand and clay mixed	
	Fine sand	
	Not reported	
Wel	AA-Be 9	
Pa	tapsco formation:	
	Fopsoil	
	Sandy loam	
	White sand	
	Yellow sand	
	Sand, red clay, and gravel.	
	Yellow sand (3 inch charcoal)	
	White clay	
	Red clay	
	Yellow clay	
	Yellow sand and clay Fan clay	
	Light vellow clay.	
	LIXIL YOLOW CLAY	

Red clay.....

Fine sand.

Tan clay.....

Fine sand.....

Red clay.....

Pink clay.....

Red clay.....

Tan clay.....

	0	\sim
т	í I	12
1	v	<u></u>

	Thickness (feet)	Depth (feet)
Bright red clay	15	80
Fine sand	5	85
Bright red clay.	20	105
Fine sand	5	110
Tan clay	3	113
Bright red clay	2	115
Fine white sand	30	145
Coarse sandy gravel	1	146
Well AA-Be 10		
Raritan and Patapsco formations:		
Yellow clay.	10	10
Fine sand	10	20
Gray clay	7	27
White clay	4	31
Red clay	2	33
Dark-yellow clay	2	35
Yellow clay	1	36
White clay	2	38
Yellow clay.	1	39
Red clay.	2	41
Fine sand	9	50
White clay	2	52
Coarse sand	2	54
White clay.	2	56
Yellow clay	4	60
Yellow sand	10	70
White clay.	5	75
Red clay	3	78
Sand	1	79
White clay.	3	82
	1	83
Yellow sand	4	87
White clay	3	90
Coarse sand	2	?
Well AA-Be 11		
Patapsco formation:		
Topsoil.	1	1
Sandy loam	2	3
	6	9
Yellow sand	2	11
Red clay and sand	18	29
Red clay		29 35
Brown clay and sand	6	
Red clay	4	39
Gray clay	4	43
Red and white clay	6	49

1110000 000000000		
	Thickness (feet)	Depth (feet)
Red clay	12	61
Bright red clay	8	69
Yellow sand	1	70
Fine white sand	26	96
Well AA-Be 19		
Raritan and Patapsco (?) formations:		
Yellow sand	20	20
Yellow clay	2	22
Yellow sand	4	26
Yellow clay.	1	27
Yellow sand	5	32
White clay	3	35
Yellow clay.	5	40
Reddish coarse sand	2	42
Well AA-Be 35		
Patapsco formation:		
Red and white clay mixed	19	19
Red clay	15	34
Pink clay	11	45
Bright red clay	5	50
Tan clay	7	57
Bright red clay.	3	60
Fine sand	1	61
Red clay	4	65
Tan clay	5	70
Fine sand.	1	71
Red clay	3	74
Tan clay	4	78
Fine sand.	21	99
Coarse sand	1	100
Well AA-Be 44		
Patapsco formation:		
Not reported		70
Fine white sand		90
Red clay		94
Coarse sand	4	98
Well AA-Be 47		
Patapsco formation:		
Topsoil		1
Brown sand and clay		16
White clay		18
Gravel and red clay		24
Bright red clay	50	74

	Thickness (feet)	Depth (feet)	
Tan clay	6	80	
Fine sand.	1	81	
Gray clay and sand	13	94	
Red clay	2	96	
Rock	1	97	
Sand	1	98	
Rock	1	99	
Sand and gray clay	30	129	
Red clay and sand	2	131	
Bright red clay and sand	1	132	
Sand	15	147	
Well AA-Be 48			
Patapsco formation:			
Topsoil	1	1	
Red clay and sand	3	4	
Yellow clay and sand.	2	6	
Light gray clay	3	9	
Dark gray clay	6	15	
Red and white clay	6	21	
Tan clay.	7	28	
Yellow clay and sand	4	32	
Red clay	8	40	
Tan clay	4	44	
Red and white clay.	16	60	
Red clay	5	65	
Tan clay	2	67	
Gray clay	2	69	
Gray clay, sand, and charcoal.	71	140	
Tan clay	7	147	
Gray clay	6	153	
Red clay	4	157	
Red clay and sand	2	159	
Tan clay	1	160	
Bright red clay and sand	4	164	
Fine sand	2	166	
Red clay	16	182	
Fine sand.	11	193	
Coarse sand.	1	194	
White clay.	4	198	
Light yellow clay.	1	199	
Pink clay.	3	202	
White clay and sand	10	212	
White sand	8	220	
Red clay	1	220	
Orange clay.	1	222	
Bright red clay.	3	225	
might fed eldy	0	223	_

106 Water Resources of Anne Arundel County

II W -	Thickness (feet)	Depth (feet)	
Fine sand.	1	226	
White clay and sand	5	231	
Tan clay	1	232	
Red clay	2	234	
White clay and sand	10	244	
White sand	10	254	
Well AA-Be 50			
Raritan and Patapsco formations:			
Not reported	15	15	
Gray clay.	13	28	
Rock	1	29	
Yellow sand	4	33	
Rock	1	34	
Coarse sand and gravel.	15	49	
Rock.	10	59	
Yellow sand.	2	61	
White clay and sand	8	69	
Red clay	1	70	
White clay and sand	14	84	
Red clay.	1	85	
White sand	12	97	
Well AA-Be 51			
Raritan and Patapsco (?) formations:			
White sand	5	5	
Brown clay, sand	18	23	
White clay	4	27	
Yellow sand; water-bearing	1	28	
White clay.	7	35	
Yellow sand	5	40	
Blue clay	8	48	
White clay.	5	53	
Yellow sand; water-bearing	4	57	
Well AA-Be 52			
Pleistocene deposits:			
Topsoil	1	1	
Yellow sand	3	4	
Rock	1	5	
Patapsco formation:	10	15	
Red and white clay	10	15	
Bright red clay	25	40	
White clay	4	44	
Pink clay	13	57	
Bright red clay	3	60	
Tan clay and sand	4	64	
Red clay	4	68	

	Thickness (feet)	Depth (feet)
Tan clay	18	86
Gray clay and sand	28	114
Rock		115
Brown clay.		134
Fine sand		140
Bright red clay.		142
Fine sand		158
Well AA-Be 53		
Magothy formation:		
Sand	. 20	20
Raritan and Patapsco (?) formations:		
Fuller's earth	. 6	26
Sand	. 30	56
White mud	. 20	76
Sand	. 24	100
White mud	. 15	115
Coarse sand	. 15	130
Water sand	. 15	145
Well AA-Be 55		
Raritan and Patapsco (?) formations:		
Sand	20	20
Red clay.		50
Water-bearing sand		63
Well AA-Be 56		
Raritan and Patapsco (?) formations:		
Sand and fuller's earth	. 80	80
Clay.		94
Sand.		108
Sand	. 17	100
Well AA-Be 57		
Patapsco formation:		
Red clay	. 88	88
Sand	. 4	92
White clay	. 28	120
Water sand	. 8	128
Well AA-Be 58		
Magothy formation:		
Surface clay and stone	. 5	5
Raritan and Patapsco formations:		
Brown sand	60	65
White clay		100
White sandy clay.		118
White hard clay		130

1-1. P-1	Thickness (feet)	Depth (feet)
Sandy white clay.	7	140
Hard red clay	20	160
Red clay, soft in spots.	55	215
Fine water-bearing sand in streaks and white clay, mixed	25	240
White clay and sandstone in streaks	65	305
Fine water-bearing sand and some gravel mixed	21	326
Hard red clay.	42.5	368.5
Blue clay, soft in spots	18.5	387
Medium hard blue clay	25	412
White and red streaks in spots	54	466
Water-bearing sand and gravel	28	494
Arundel (?) formation:		
Hard red clay.		494+
Vell AA-Bf 2		
Raritan and Patapsco formations:		
Yellow fine sand	40	40
Red and brown clay.	235	275
Coarse sand.	80	355
Fine sand	5	360
Vell AA-Bf 6		
Pleistocene deposits:		
Sand.	4	4
Raritan and Patapsco formations:		
Clay	19	23
Iron ore	2	25
Sand	9.5	34.5
Sandy clay	40.3	74.8
Sand; water-bearing	3	77.8
White clay	23.2	101
Sand.	10	111
Clay	4	115
Free sand.	6	121
Yellowish clay	26	147
Clay, some sand	14	161
Water-bearing sand	19	180
Clay	9	189
Sand	1	190
Clay	23	213
Sandy clay	11	224
Sand; water-bearing (2 feet free)	9	233
Red clay	26	259
Water-bearing sand, free	17	276
Vell AA-Bf 10		
Raritan and Patapsco formations:		20
Hard white sand	20	20

	Thickness (feet)	Depth (feet)	
Hard white clay	2.5	22.5	
Coarse vellow sand	2	24.5	
Free white sand.	5.5	30	
Yellow sand, not free.	24	54	
Hard white sandy clay	18	72	
Free yellow and white sand	8	80	
Hard white sandy clay	15	95	
	5	100	
Hard dark gray clay Hard white sandy clay	5	105	
	20	125	
Hard red sandy clay		141	
Free red sand	16 2	141	
Hard white clay	7	143	
Red sand, not free.	1	150	
Hard red clay	3	154	
Yellow sand, not free	6	160	
	75	235	
Tough red clay	31	266	
Soft brown clay	9	275	
Soft red sandy clay	2	275	
Free red sand	2	279	
Soft red clay	2	279	
Soft hrown clay	-	288	
Tough red clay			
Hard white sand	95	390	
Free white sand	41	431	
Vell AA-Bf 13			
Raritan formation:			
Not reported	33	33	
Hard white clay		33	
Not reported	7	40	
White clay	12	52	
Sand; water-bearing	4	56	
Vell AA-Bf 18			
Raritan formation:	/	,	
Mud		6	
Coarse sand		9	
Yellow clay		29	
Fine sand	2	31	
Yellow clay		37	
White clay	4	41	
Yellow clay	15	56	
Fine sand	2	58	
Yellow clay.	4	62	
Fine sand	2	64	
Yellow clay	3	67	
Fine sand.	3	70	

	Thickness (feet)	Depth (feet)	
White clay	10	80	
Coarse sand	5	85	
Well AA-Bf 19			
Raritan formation:			
Topsoil	1	1	
Light cream-colored clay	5	6	
Bright yellow clay	1	7	
White sand and yellow clay.	27	34	
White sand	8	42	
Yellow clay and sand	10	52	
White sand	4	56	
Well AA-Cc 6			
Monmouth (?) and Matawan formations:			
Sand and gravel	20	20	
Soft black clay	40	60	
Magothy formation:	10	00	
Brown sand and gravel.	62	122	
Raritan formation:	01	100	
Red and white clay	4	126	
Brown sand and gravel	17	143	
Fine yellow sand	20	163	
White clay	2	165	
Brown and gray medium water-bearing sand	6	171	
Well AA-Cc 20			
Patapsco formation:			
Blue clay	30	30	
Yellow sand	10	40	
Red clay	50	90	
Yellow clay	5	95	
Red clay	33	128	
Fine sand	5	133	
White clay	2	135	
Water-bearing sand	8	143	
Well AA-Cc 22			
Matawan formation:			
Rusty rock in layers	6	6	
Brown sand, dry	6	12	
Rusty sand, dry	5	17	
Dark blue clay, soft	33	50	
Magothy formation:			
Coarse sand	15	65	
Coarse sand and gravel; water-bearing	19	84	
White clay, medium	6	90	
Coarse sand	15	105	

TABLE 3-Continued

110

	Thickness (feet)	Depth (feet)
Raritan and Patapsco (?) formations:	(1000)	(1000)
White and red clay, sand in streaks	12	117
Coarse water-bearing sand	13	130
Fine sand		148
Light blue sand, white streaks, blue clay	18	166
Well AA-Cd 5		
Magothy formation:		
Not reported	4.4	4.4
Layer of rock	.6	5
Sandy	16	21
Raritan and Patapsco formations:		
Streaks of white clay	2	23
Sand; seeping water at 65 and 100 feet	95	118
Red clay	3	121
Mixed clay and loan	15	136
Water-bearing sand.	6	142
Well AA-Cd 6		
Monmouth and Matawan formations:		
Sandy clay	47	47
Yellow sand	5	52
Black marl	26	78
Mud and sand	5	83
Black marl	9	92
Iron pyrites	10	102
Magothy formation:		
Yellow sand and gravel.	40	142
Raritan formation:		
White clay.	5	147
Water-bearing sand and gravel	6	153
Well AA-Cd 7		
Matawan and Magothy formations:		
Brown sand	42	42
Raritan formation:		
White clay	6	48
Brown sand	15	63
White clay	2	65
Brown sand	11	76
Yellow sand	11	87
White clay	3	90
Water-bearing sand	7	97
	,	
Well AA-Cd 10		
Pleistocene deposits and Aquia formation:		
Yellow sandy clay	50	50

	Thickness (feet)	Depth (feet)	
Monmouth and Matawan formations:			
Lead colored sandyclay.	90	140	
Magothy, Raritan and Patapsco formations:			
Sand, gravel, with hard places	92	232	
Clay.		248	
Sandy	-	255	
White hard clay with gravel in it		279	
		308	
Not reported	-		
Hard clay	7	315	
Softer clay	9	324	
Sand	6	330	
White clay	5	335	
Sandy	10	345	
Hard sand	3	348	
Clay	1	349	
Sand; water-bearing.	39	388	
Hard		401	
Red clay.	6	407	
Iron ore		452	
Drilled like rock.		541	
Hard, then sand		544	
		636	
Red, changing to gray, clay		648	
Rock 2 inches, then sand		650	
Hard clay			
Soft clay		652	
Coarse sand and water	16	668	
Well AA-Cd 11			
Aquia (?) formation:			
Yellow or tan sandy clay	18	18	
Monmouth and Matawan formations:	10	10	
Soft black mud	20	38	
		48	
Gray sand		131	
Slate colored clay	83	131	
Magothy and Raritan Formations:	-	1.27	
Hard sandy clay.		136	
Sand and gravel, hard streaks.		155	
White gravel and sand		159	
Hard streaks of white clay with streaks of gravel and sand		167	
Hard gravel and clay, almost rock		169	
White sand and gravel, tight		178	
Hard white clay	3	181	
Sand, free	2	183	
Gravel, not free		185	
White clay		186	
White sand		188	
Hard white clay.		191	

	Thickness (feet)	Depth (feet)
White free sand	2	193
Hard white clay	1	194
Free white sand mixed with gravel	37	231
Clay	1	232
Well AA-Cd 12		
Aquia (?) formation:		
Yellow sandy clay	17	17
Monmouth and Matawan formations:		
Black soft clay.	22	39
Gray sandy clay	11	50
Dark clay	55	105
Gray sand	2	107
Hard sandy clay	25	132
Hard clay	5	137
Magothy and Raritan formations:		
Hard white sand and gravel	18	155
Hard white sand and gravel with clay streaks	12	167
White sand and gravel.	13	180
Hard white clay.	2	182
Free sand	2	184
Gravel	2	186
White clay.	.5	186.5
White sand	1.5	188
Hard white clay.	3	191
Free white sand	2.1	193.1
Hard white clay	.9	193.1
Free white sand and gravel.	25	219
Well AA-Cd 25		
Raritan and Patapsco formations:		
Surface.	3	3
Hard sand	17	20
White mud	22	42
Sand	5	47
White mud	10	57
Sand	15	72
Red sand.	12	84
White mud.	14	98
Sand	15	113
Water sand	12	125
White mud	1	126
Well AA-Cd 26		
Raritan and Patapsco formations:		
Hard sand	35	35
White mud	11	46
where man internet is a second s	11	10

	Thickness	Depth
	(feet)	(feet)
Coarse blue sand	5	51
Gravel bed	9	60
Settling sand.	12	72
White mud	15 3	87 90
Sand	3	90 97
White mud Coarse water-bearing sand	13	110
Coarse water-bearing sand	15	110
Well AA-Cd 27		
Magothy formation:		
Yellow clay.	16	16
Rock	11	27
Gravel	4	31
White clay	8	39
Sand	10	49
Raritan formation:		
Red clay	10	59
Water sand	5	64
Fine gravel.	4	68
Well AA-Cd 28		
Pleistocene deposits:		
Yellow loam	12	12
Magothy, Raritan and Patapsco (?) formations:		
Sand, rock.	8	20
Yellow sand	20	40
White clay	5	45
Fine sand	5	50
Coarse sand	20	70
White clay	30	100
Coarse sand and gravel	7	107
White clay	18	125
Water		125
Well AA-Cd 29		
Magothy formation:		
Clay	5	5
Sand.	18	23
Raritan formation:		
Black clay	24	47
Sand	23	70
White clay	19	89
Water sand	4	93
White clay	2	95
Well AA-Ce 4		
Raritan and Patapsco formations:		
Sandy clay	7	7

	Thickness (feet)	Depth (feet)
Sandy	23	30
Loam	40	70
White clay	15	85
Loam, fine sand	2	87
Medium sand	5	92
Coarse sand	6	98
Fine sand	8	106
Well AA-Ce 5		
Matawan formation:		
Yellow sandy soil.	22	22
Black marl	46	68
Magothy (?) formation:		
Black sand	17	85
Magothy formation:		
White water-bearing sand	7	92
Well AA-Ce 6		
Matawan and Magothy formations:		
Topsoil	1	1
Light brown sand.	5	6
Greenish gray sand	21	27
Bright yellow sand	8	35
Greenish white sand.	8	43
Brown sand and charcoal.	2	45
Rock.	.5	45.5
Dark gray clay	7	52.5
Gray clay	8	60.5
Rock	.5	61
Raritan and Patapsco (?) formations:		
Brown and white sand	1	62
White sand	3	65
White clay	2	67
Coarse sand and clay	13	80
White sand	21	101
Gray sand	2	103
White clay.	3	106
White sand	15	121
Green sand	4	125
White clay	2	127
White sand	13	140
White clay	2	142
White sand	13	155
White clay	2	157
White sand	13	170
WE HEAR OF TO		
Well AA-Ce 50		
Pleistocene deposits and Magothy formation:	4	4
Loam	4	t

TABLE 3—Continued		
	Thickness (feet)	Depth (feet)
Red sand	6	10
Yellow sand	7	17
Red sand	2	19
Gray clay	6	25
Fine sand	10	35
Blue clay	10	45
Sandstone	3	48
Black clay	1	49
Sandstone	3	52
Fine gray sand	6	58
Coarse gray sand	1	59
Gray clay	7	66
Coarse sand	2	68
Well AA-Ce 51		
Matawan formation:		
Sandy yellow clay	12	12
Gray clay.	18	30
Soft blue clay.	10	40
Hard blue clay	7	47
Magothy formation:		
Coarse sand; water-bearing	13	60
Well AA-Ce 52		
Pleistocene (?) deposits and Aquia formation:		
Hard yellow clay	17	17
Hard yellow clay, soft in spots	8	25
Brown sandstone, hard in spots	20	45
Brown sandy clay, soft in spots	33	78
Monmouth and Matawan formations:		
Fine blue mucky sand	122	200
Magothy, Raritan and Patapsco formations:		_
Very hard sandstone	9	209
Soft, fine, mealy sand	79	288
Blue clay and streaks of rock	4	292
White clay and streaks of rock	12	304
White sand and streaks of white clay	14	318
Sandy clay, hard in spots	19	337
Hard red clay	33	370
Soft white clay	19	389
Red clay	6	395
White sand and streaks of red clay	31	426
Red clay streaked with white	11	437
Fine white sand; water-bearing	32	469
Medium coarse sand; water-bearing	8	477
Hard red clay.	15.5	492.5

	Thickness (feet)	Depth (feet)	
Well AA-Cf 1			
Matawan and Magothy formations:			
Light red clay	15	1.5	
Sandy clay	28	43	
Hard red clay	10	53	
Sandy white clay.	27	80	
Raritan and Patapsco formations:			
Red clay	5	85	
White sand	5	90	
White sandy clay	30	120	
Red clay	32	152	
Hard sand	7	159	
Sandy clay with wood	7	166	
Red clay	4	170	
Hard sand	11	181	
Sandy clay with gravel.	16	197	
White clay	23	220	
Yellow clay	11	231	
Sandy white clay	29	260	
Red clay	15	275	
Fine sand	10	285	
Red clay	1	286	
White clay	8	294	
White sand	28	322	
Well AA-Dc 5			
Pleistocene deposits:			
Top soil.	5	5	
Yellow clay.		17	
Aquia, Monmouth and Matawan formations:	14		
Hard brown sandy clay.	9	26	
Soft muddy sand.	32	58	
Brown sandy clay	10	68	
Dark gray sandy mud	16	84	
Hard black gumny mud	68	152	
Magothy formation:			
Fine gray sand	3	155	
Hard rough streak	1	156	
Hard coarse gray sand; trace of rotten wood and chunks of	*	100	
	26	182	
gray clay	4.0	104	
Hard coarse gray sand and small gravel with thin layers of	18	200	
gray clay	15	200	
Hard coarse gray sand		215	
Hard fine gray sand	8	223	
Raritan formation:	2	225	
Hard white clay.	2 10	225	
Medium to fine gray sand	10	233	

IABLE 5-Communed		
	Thickness (feet)	Depth (feet)
Hard white clay.	2	237
Medium coarse gray sand	19	256
White clay	7	263
Well AA-Dd 17		
Aquia formation:		
Sandy with brown clay	40	40
Brown clay.	13	53
Brown sand with some iron ore lenses; water-bearing	25	78
Well AA-De 3		
Monmouth and Matawan formations:		
Red sand	3	3
Fine black sand	12	15
Fine gray sand; water-bearing	31	46
Black muck.	26	72
Gray sand.	8	80
Soft clay	11	91
Hard black clay.	17	108
Muck	7	115
Magothy and Raritan formations:	,	115
Fine sand	18	133
Sand and wood	5	138
Sand; water-bearing	25	163
Hard sand	4	167
Sand, hard streaks.	49	216
Sand and clay.	17	233
Sand	11	244
Well AA-De 44		
Monmouth and Matawan formations:		
Surface sand and clay	5	5
Gray sand	15	20
Sandy blue clay	20	40
Blue clay with imbedded gravel	21	61
Sandy blue clay	30	91 .
Soft sandy blue silt	22	113
Brown and yellow sandy clay	2	115
Sand and gravel with streaks of blue clay	7	122
Gray sand	9	131
Blue clay	6	137
Magothy, Raritan and Patapsco formations:		
Gray sand and wood	14	151
Gray sand and more wood	20	171
Gray sand and less wood	13	184
Coarse gray sand	17	201
Coarse gray sand and wood	11	212

	Thickness (feet)	Depth (feet)
Coarse gray sand.	22	234
Fine gray sand	8	242
Sand and gravel; water-bearing	29	271
Varicolored clay; hard slow drilling	148	419
Gray sand with layers of red clay; water-bearing	69	488
Hard sandstone; iron pyrite.	7	495
Red clay imbedded with sand and gravel.	12	507
Red clay	15	522
Varicolored clay	50	572
Gray sand and streak of clay.	18	590
	44	634
Red clay	10	034 644
Brown sandy clay	18	662
Varicolored sandy clays.	64	726
Varicolored clays.	24	720
Sand and gravel; water-bearing.	42	792
Hard rock. "Granite"	42	792
Hard tock. Granite	1	193
Well AA-De 46		
Monmouth and Matawan formations:		
Red sandy clay	8	8
Yellow sandy clay	13	21
Fine gray sand	14	35
Fine blue sand	39	74
Blue mucky clay	56	130
Magothy and Raritan formations:		
Coarse sand and gravel. Wood	30	160
Fine mucky sand	34	194
Coarse sand	48	242
Hard coarse sand	6.7	248.7
Fine yellow sand	11.3	260
White, blue-gray, and some reddish-brown clay	15	275
White, gray, and red clay, sand and gravel	25	300
Well AA-De 47		
Monmouth and Matawan formations:	50	
Sand and muck	50	50
Hard clay	20	70
Black muck and wood	20	90
Fine sand	30	120
Clay	8	128
Magothy and Raritan formations:		
Sand	16	144
Sand	25	169
Sand rock	3	172
Sand	18	190
Hard sand	26	216

TABLE 3—Continued		
	Thickness (feet)	Depth (feet)
Soft sandy clay	22	238
Sand and gravel	20	258
Well AA-Df 2		
Recent Deposits:		
Made ground	20	20
Aquia, Monmouth and Matawan formations:		
Dark sand and clay	120	140
Tough clay	40	180
Magothy formation:		
Sand; water-bearing	40	220
Raritan and Patapsco formations:		
Tough clay	30	250
Fine sand; water-bearing	20	270
Coarse sand	36	306
Sand with water.	109	415
Crust of iron ore.	20	435
Sand and water.	30	465
Hard shell of iron ore	00	465
Sand with water; hard crust of iron ore at 510 feet	45	510
Dark blue clay; hard crust of iron ore at 524 feet	6	516
Red or pink clay; hard crust of iron ore at 545 feet	32	548
Yellow sand and water.	18	566
Coarse sand and water	17	583
Pink clay.	4	587
Coarse sand and gravel, pebbles $\frac{1}{2}$ inch in diameter	14	601
Coarse sand and graver, peoples 2 men in diameter	11	001
Well AA-Df 3		
Recent deposits:		
Made ground, brown, soft	10	10
Aquia formation:		
Soft black clay	2	12
Soft black and brown sand.	8	20
Soft brown clay	30	50
Monmouth and Matawan formations:		
Soft nearly black sand	4	54
Soft dark gray clay	76	130
Tough dark gray clay	7	137
Soft gray sand rock.	10	147
Soft dark gray sand	1	148
Soft dark gray clay	4	152
Magothy, Raritan and Patapsco formations:		
Free, white sand; water-bearing	28	180
Coarse, white sand, free; water and wood, streaks of clay at		
217 feet	20	200
Gray sandy clay; hard and soft	35	235
Free gray sand; water with wood	45	280
I to gray sand, water with word		

	TAF	SLE	3-	Continued	
--	-----	------------	----	-----------	--

	Thickness (feet)	Depth (feet)
Tough red clay	26	306
Tough pink clay	10	316
Tough yellow clay	4	320
White very sandy clay, soft; flowing water	5	325
White very sandy clay; not so soft	21	346
Free, white sand; flowing water	4	350
Free red sand	20	370
Tough red clay	5	375
Drab clay	6	381
Tough gray clay	3	384
Soft pink sandy clay	9	393
Free white sand	11	404
Soft white clay; water-bearing.	9	413
Soft red clay; a tough streak at 418 feet	5	418
Free white sand	5	423
White sand; not so free	11	434
Soft pink sandy clay	15	449
Soft white sandy clay.	5	454 464
Very sandy clay; a crust of iron ore at 462 feet.	10 4	404 468
Hard red clay Soft red and white sandy clay	4	408
Hard red clay	1	479
Free white sand	13	492
Soft and hard white sandy clay.	12	504
Free and coarse drab sand; water-bearing	38	542
Free reddish sand	7	549
Soft white sandy clay; mostly sand with hard streaks	24	573
Soft pink clay	1	574
Free pink sand	10	584
Tough red clay	3	587
Hard sand; iron and boulders	7	594
Free reddish sand; water-bearing	8	602
Well AA-Df 4		
Recent deposits:		
Fill	10	10
Aquia formation:		
Reddish clay with streaks of iron ore	50	60
Monmouth and Matawan formations:	50	00
Black sand	15	75
	50	125
Green sandy marl, hard in places		
Dark gray clay	28.7	153.7
Hard sandstone	.3	154
Soft dark green clay	1	155
Tough dark green clay	20	175
Sandy dark green clay	13	188

-01

	Thickness	Depth
	(feet)	(feet)
Magothy, Raritan and Patapsco formations:		
White free sand with water	62	250
Gray clay	10	260
White sand with streaks of clay	48	308
Tough red clay	12	320
Pink clay	10	330
Sandy white clay	45	375
Sandy red clay	5	380
Tough red clay	10	390
Sandy pink clay	56	446
Red clay	9	455
Sandy pink clay	5	460
Tough white clay	6	466
Tough red clay	2	468
Red clay	4.5	472.5
Iron ore	. 2	472.7
Sandy red clay	3.3	476
Tough red clay	3	479
Hard white sand	1	480
Soft sandy pink clay, almost free sand	32	512
White clay	8	520
Free drab sand; water-bearing.	15	535
Pink clay	6	541
Pink sand	4	545
Pink clay	2	547
Purple sand	3	550
Sandy pink clay	21.5	571.5
Iron ore	.5	572
Free drab sand, water runs away freely	12	584
Pink clay	2.5	586.5
Hard boulders with gravel and sand in between	6.5	593
Reddish sand with water; rock	9.7	602.7
Well AA-Df 7		
Aquia formation:		
Soft black sand	15	15
Soft river mud	5	20
Sand and clay	30	50
Monmouth and Matawan formations:		
Sand and clay, tough	40	90
Fine gravel, hard	10	100
Dark clay and sand, hard.	5	105
Blue clay and sand, hard.	30	135
Black sand, some clay, tough.	2	137
	1	137
Iron pyrites, hard	-	160
Blue clay, some sand, tough	22	100

	Thickness (feet)	Depth (feet)
Magothy, Raritan and Patapseo formations:		
Sand	10	170
Water-bearing sand; easy drilling.	26	196
Water-bearing sand and wood; flowing 100 g.p.m. at 217 feet.	23	219
Pink sand and clay; easy drilling, small flow of water	3	222
Soft gray sand	8	230
Hard dark sand and wood	26	256
Hard dark sand	41	297
Coarse yellow sand,	3	300
Red elay and some sand, tough	4	304
Yellow clay and some sand, tough	26	330
Soft yellow elay	17	347
Soft yellow sand.	13	360
Tough red clay	16	376
Hard red and brown elay.	8	384
Tough red elay	6	390
Drab clay and sand	26	416
Soft white clay and water sand	24	440
Extremely hard red clay	6	446
Hard light brown sand	14	460
Hard red elay	13	473
Chocolate colored sand	14.7	487.7
Hard red sand.	3.3	491
Water sand, soft	19	510
Red clay and sand, hard.	11	521
Red sand, soft	16	537
Light brown sand; water-bearing.	10	547
Hard red sandy elay	9	556
Light colored sand; water-bearing	12	568
Salt-and-pepper sand; water-bearing	14	582
Extremely hard solid rock	3.5	585.5
Well AA-Df 8		
Recent deposits:		
Black sand and cinders	35	35
Aquia formation:		
Soft brown sand	45	80
Monmouth and Matawan formations:		
Soft dark sand	5	85
Light eoarse sand	23	108
Dark eoarse sand	12	120
Dark clay, some sand	31	151
Dark eoarse sand, some elay	15	166
Sand and mud.	11	177
Tough blue clay	6	183
Magothy, Raritan and Patapseo formations:	0	.00
Blue clay and sand	72	255

TABLIE 5-Commune		
	Thickness (feet)	Depth (feet)
Salt-and-pepper sand; water-bearing	43	298
White sand	9	307
Very hard buff clay	10	317
Red clay and some sand, hard	6	323
Buff clay and sand, hard	47	370
Salt-and-pepper sand; water-bearing	5	375
Very hard buff clay	35	410
White sand and little clay	30	440
Hard red clay.	36	476
Extremely hard iron ore	2	478
Red clay, some sand, tough	82	560
Water-bearing sand	23	583
Hard solid rock	5	588
Hard solid rock	5	500
Well AA-Df 9		
Aquia formation:		
Brown sandy clay	13	13
Soft blue sandy mud	10	23
Blue sandy mud	16	39
Fine blue sand; water-bearing	6	45
Fine blue sandy clay; water-bearing	2	47
Brown sandy clay	3	50
Brown sandy clay, (trace red).	12	62
Monmouth and Matawan formations:		
Gray and black clay and sand, soft	7	69
Green sand and clay, soft	5	74
Brown and black clay and sand, medium	4	78
Brown and black clay and sand; fine-grained	24	102
Brown and black clay and sand	1	103
Gray and black coarse sand; water-bearing	2	105
Gray fine sand and mud, soft		120
Black mud and little sand, soft	6	126
Soft black mud	14	140
Black clay and sand, soft	20	160
Blue clay and fine sand	14	174
Black clay and sand, fine sand	6	180
Magothy and Raritan formations:	9	189
Gray sand; water-bearing.		213
Gray coarse sand; water-bearing		218
Gray sand; water-bearing		221
		224
Tough gray clay		235
Gray sand; water-bearing, water flowing	• ~	249
Gray sand; water flowing		270
Tough gray clay.		295
Dark gray quicksand; water-bearing		306.5
Gray coarse sand; water-bearing Tough white clay		306.5+

	TABLE	30	ontinued
--	-------	----	----------

	Thickness (feet)	Depth (feet)
Well AA-Df 10		
Aquia formation:		
Brown sandy clay	20	20
Blue sandy mud		48
Brown sandy clay	13	61
Monmouth and Matawan formations:		
Brown clay, black sand	11	72
Hard brown clay	17	89
Blue mud and black sand, water	3	92
Brown sandy clay	3	95
Green sandy clay	5	100
Gray coarse sand and gravel	5	105
Brown clay and sand	22	127
Tough blue mud	13	140
Soft brown sandy clay	7	147
Tough blue clay.	27	174
Magothy and Raritan formations:		
Soft gray sand and clay	12	186
Coarse water-bearing sand; flowing 35 g.p.m	4	190
Particles of wood and coarse gray sand	9	199
Fine water-bearing sand; flowing	10	209
Fine sand, wood and mud	8	217
Sand, wood, and little clay		222
Tough gray clay	3	225
Gray water-bearing sand; flowing, 20 g.p.m	27	252
Gray clay		270
Fine gray sand (quicksand)	30	300
Gray water-bearing sand; flowing 20 g.p.m.	7	307
Red clay	30	337
Fine gray sand and clay, white clay	13	350
Well AA-Df 11		
Recent deposits:		
Made ground	10	10
Green sandy marl	12	22
Soft green sandy marl		42
Yellow sandy marl		64
Soft green sandy marl		68
Soft light green sandy marl		107
Very soft dark green sandy marl		150
Black and tough sandy marl		173
Black, sandy marl		181
Magothy, Raritan and Patapsco formations:	0	
Soft, gray sand; water-bearing	6	187
Gray sand (quicksand)		219
Tough dark gray clay		221
a ough dank gray only	_	

TITITITI 5 COMMINUE		
	Thickness (feet)	Depth (feet)
Dark gray coarse sand; water-bearing.	52	275
Soft white clay.		282
Coarse white sand	8	290
Pepper and salt sand; water-bearing		307
Hard red and white clay		325
Soft buff clay		327
Hard red clay		374
Soft dark gray clay, sticky.		386
Soft brown clay		415
Brown water-bearing sand .		425
Tough brown clay.		440
0		483
Tough red clay		
Fine red sand; water-bearing		543
Coarse brown sand; water-bearing.		545
Brown water-bearing sand		547
Tough gray clay		552
Brown water-bearing sand		562
Clay and sand, gray, tough		572
Sticky gray clay.	16	588
Vell AA-Df 13 Aquia formation: Surface sand and clay		28.2
Monmouth and Matawan formations:	20.2	40,4
Sandy green clay.	99	127.2
Hard gray sandy clay		176.7
Soft green sandy clay		182.7
Magothy, Raritan and Patapsco formations:		104.1
Water-bearing sand	25.5	208.2
Medium water-bearing sand and clay streaks		250
Coarse sand and green clay, hard		250
Coarse sand and green clay.		302.6
Water-bearing coarse sand, green clay		314.9
Water-bearing coarse sand, green clay		369.5
Fine sand and shell with clay streaks		379.9
Fine sand and gravel, streaks of clay, hard		385.9
Gray clay and small gravel.		431.2
Blue clay and gravel in layers		453.8
		462.1
Red clay		474.8
Red and blue clay and fine gravel, hard		474.0
Red and white clay and fine gravel, hard		487.5
Red clay and sand.		
Fine water-bearing sand		539.8
Clay, hard		545.8
Fine water-bearing sand		551.8
	. 16	567.8
Water-bearing gravel	-	
Water-bearing gravel Clay, hard Water-bearing gravel	. 5	572.8 587.8

TABLE	3-	Continued

Layers of rock and red clay (hard), also fine gravel. 13.5 601.3 Not reported. 4.8 606.1 Well AA-Df 16		Thickness (feet)	Depth (feet)
Well AA-Di 16 Recent deposits: Top fill 6 Aquia formation: Red sand. 19 Sand. Iron pyrite. 30 Sand. Iron pyrite. 30 Carse sand and clay. 14 Cores seand and clay. 22 Gray sand and blue clay. 35 Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 10 136 Blue clay and fine sand. 10 137 15 Oarse sand, with some fine sand. 10 138 10 Magothy, Raritan and Patapsco formations: 10 Very coarse sand, with spots of iron: 10 Coarse sand, with spots of iron: 10 Coarse sand, streaks of white clay. 22 Coarse sand, streaks of white clay. 22 Coarse sand, fine gravel, blue clay and wood. 43 Sand, ed and white clay, cut ward. 27 Sand, ed and white clay, cut ward. 27 Sand, ed and white clay, cut ward. 33 Soft granite and soft streaks of iron ore. 14 <	Layers of rock and red clay (hard), also fine gravel	13.5	601.3
Recent deposits:66Top fill.66Aquia formation:925Sand. Iron pyrite.3055Monmouth and Matawan formations:1469Coarse sand and clay.2291Gray sand and blue clay.1469Coarse sand and clay.2291Gray sand and blue clay.35126Blue clay, with some fine sand.10136Blue clay and fine sand.53189Magothy, Raritan and Patapsco formations:7241Very coarse sand, with spots of iron:10214Coarse sand, with spots of iron:10214Coarse sand, with spots of iron:22292Coarse sand, with spots of iron:23315Sand, fine gravel, blue clay and sand27241Fine sand mixed with white clay.27241Fine sand nixed with white clay and iron.23315Sand, fine gravel, white clay and wood.45360Sand, red and white clay.17377Sand, clay (red and white) clut very hard.27404Red and white sany clay.50498Very coarse sand, drilled soft; water-bearing.57580Granite.1581507Soft granite and soft streaks of iron ore.14459Aquia formation:1581Not reported.4040Yellow sand, fine.1060Yellow sand, fine.1575 <tr< td=""><td>Not reported</td><td>4.8</td><td>606.1</td></tr<>	Not reported	4.8	606.1
Top fill 6 6 Aquia formation: 19 25 Sand. Iron pyrite 30 55 Monmouth and Matawan formations: 14 69 Coarse sand and clay 22 91 Gray sand and blue clay 35 126 Blue clay, with some fine sand 10 136 Blue clay, and fine sand 10 136 Blue clay, and fine sand 53 189 Magothy, Raritan and Patapsco formations: Very coarse sand, with spots of iron: 10 214 Coarse sand, with spots of iron: Water-bearing 10 214 Coarse sand, streaks of white clay 22 220 270 Coarse sand, fine gravel, blue clay and sand 27 241 Fine sand mixed with soft clay 22 222 222 Coarse sand, fine gravel, and wood 45 360 3315 Sand, clay (red and white clay and wood 45 360 3415 Sand, clay (red and white, cut very hard 27 404 3315 Sand, clay (red and white, cut very hard 27 404 Sand, clay (red an	Well AA-Df 16		
Aquia formation: 19 25 Sand. Iron pyrite 30 55 Monmouth and Matawan formations: 30 55 Fine sand and clay 14 69 Coarse sand and clay 22 91 Gray sand and blue clay 35 126 Blue clay, with some fine sand 10 136 Blue clay, and fine sand 53 189 Magothy, Raritan and Patapsco formations: Very coarse sand, with iron pyrite: 15 204 Coarse sand, fine gravel, blue clay and sand 27 241 241 Coarse sand, fine gravel, blue clay and sand 27 241 241 25 Coarse sand, fine gravel, blue clay and iron 23 315 360 360 Sand, with fine gravel and white clay 17 377 377 Sand, clay (red and white clay and iron 23 315 360 Sand, clay (red and white clay, cut hard 44 448 360 380 Red and white sand, clay, cut hard 44 448 38 360 360 380 Very coarse sand, drilled hard 6 523 <td>Recent deposits:</td> <td></td> <td></td>	Recent deposits:		
Red sand. 19 25 Sand. Iron pyrite 30 55 Monmouth and Matawan formations: 14 69 Coarse sand and clay. 14 69 Coarse sand and clay. 22 91 Gray sand and blue clay. 35 126 Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: Very coarse sand, with sopts of iron: 10 214 Coarse sand, site gravel, blue clay and sand 27 241 241 Fine sand mixed with soft clay. 20 270 270 Coarse sand, streaks of white clay. 22 292 270 Coarse sand, fine gravel, and wood. 45 360 Sand, fine gravel and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, clay (red and white), cut very hard. 44 448 Red and white sandy clay. 50 498 Very coarse sand, drilled soft; water-bearing. 19 517 Clay and sand, drilled soft; water-bearing. 10	Top fill	6	6
Sand. Iron pyrite. 30 55 Monmouth and Matawan formations: Fine sand and clay. 14 69 Coarse sand and clay. 22 91 Gray sand and blue clay. 35 126 Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: 10 214 Coarse sand, with spots of iron: 10 214 Coarse sand, fine gravel, blue clay and sand. 27 241 Fine sand mixed with soft clay. 22 292 Coarse sand, fine gravel, blue clay and iron. 23 315 Sand, time gravel, white clay and iron. 23 315 Sand, with fine gravel and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay, cut hard. 44 448 Red and white clay, cut hard. 44 448 Red and white clay, cut hard. 6 523 Very coarse sand, drilled soft; water-bearing. 57 580 Granite. 1 581 501 <tr< td=""><td>Aquia formation:</td><td></td><td></td></tr<>	Aquia formation:		
Monmouth and Matawan formations: 14 69 Fine sand and clay 22 91 Gray sand and blue clay 35 126 Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: 15 204 Very coarse sand with ron pyrite: water-bearing 10 214 Coarse sand, fine gravel, blue clay and sand 27 241 Fine sand mixed with soft clay 22 292 Coarse sand, fine gravel, blue clay and sand 27 241 Fine sand mixed with soft clay 22 292 Coarse sand, fine gravel, white clay and wood 45 360 Sand, fine gravel, white clay and wood 45 360 Sand, red and white (clay 17 377 Sand, clay (red and white), cut very hard 27 404 Sand, red and white clay 17 377 Sand, drilled soft; water-bearing 19 517 Clay and sand, drilled soft; water-bearing 19 517 Clay and sand, drilled soft; water-bearing 57 580	Red sand	19	25
Fine sand and clay. 14 69 Coarse sand and clay. 22 91 Gray sand and blue clay. 35 126 Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: Very coarse sand with iron pyrite: 15 204 Coarse sand, with spots of iron: Water-bearing. 10 214 Coarse sand, suith spots of iron: Water-bearing. 10 214 Coarse sand, suith spots of iron: Water-bearing. 10 214 Coarse sand, suith spots of iron: Water-bearing. 10 214 Coarse sand, streaks of white clay. 22 29 270 Coarse sand, streaks of white clay. 22 292 270 Coarse sand, streaks of white clay. 23 315 5 5 500 Sand, tine gravel, white clay and iron. 23 315 5 500 5 500 5 500 5 500 5 500 5 5 500 5 501 501 501 501 501 <td></td> <td>30</td> <td>55</td>		30	55
Coarse sand and clay 22 91 Gray sand and blue clay 35 126 Blue clay, with some fine sand 10 136 Blue clay and fine sand 53 189 Magothy, Raritan and Patapsco formations: 15 204 Very coarse sand with iron pyrite: 15 204 Coarse sand, ire gravel, blue clay and sand 27 241 Fine sand mixed with soft clay 29 270 Coarse sand, streaks of white clay 22 292 Coarse sand, ine gravel, blue clay and iron 23 315 Sand, fine gravel, white clay 17 377 Sand, clay (red and white), cut very hard 27 404 Sand, red and white clay, cut hard 44 448 Red and white sandy clay 50 498 Very coarse sand and gravel; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 10			
Gray sand and blue clay. 35 126 Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: 15 204 Very coarse sand with iron pyrite: 15 204 Coarse sand, fine gravel, blue clay and sand. 27 241 Fine sand mixed with soft clay. 29 270 Coarse sand, streaks of white clay. 22 292 Coarse sand, fine gravel, white clay and iron. 23 315 Sand, fine gravel, white clay and wood. 45 360 Sand, fine gravel and white clay. 17 377 Sand, red and white clay. 17 377 Sand, red and white clay. 50 498 Very coarse sand, drilled baft; water-bearing. 19 517 Clay and sand, drilled hard. 6 523 Very coarse sand and gravel; water-bearing. 19 517 Clay and sand, drilled hard. 6 523 Very coarse sand and gravel; water-bearing. 10 50 Granite. 1 581 501 Sof			
Blue clay, with some fine sand. 10 136 Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: Very coarse sand with iron pyrite: 15 204 Coarse sand, with spots of iron: Water-bearing. 10 214 Coarse sand, fine gravel, blue clay and sand. 27 241 Fine sand mixed with soft clay. 29 270 Coarse sand, streaks of white clay and iron. 23 315 Sand, fine gravel, white clay and wood. 45 360 Sand with fine gravel and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay. 27 404 Sand, red and white clay. 10 51 Clay and sand, drilled soft; water-bearing. 19 517 Clay and and, drilled soft; water-bearing. 19 517 Clay and sand, drilled soft streaks of iron ore. 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Aquia formation: 10 50 Not reported. 40 40 <td></td> <td></td> <td>- *</td>			- *
Blue clay and fine sand. 53 189 Magothy, Raritan and Patapsco formations: Very coarse sand with iron pyrite: water-bearing 15 204 Coarse sand, with spots of iron: water-bearing 10 214 Coarse sand, fine gravel, blue clay and sand 27 241 Fine sand mixed with soft clay 29 270 Coarse sand, streaks of white clay 22 292 Coarse sand mixed with white clay and iron 23 315 Sand, fine gravel, white clay and wood 45 360 Sand with fine gravel and white clay 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay, cut hard 44 448 Red and white sandy clay 50 498 Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled soft; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Vellow sand, fine 10 50 57			
Magothy, Raritan and Patapsco formations:15204Very coarse sand, with iron pyrite:water-bearing10214Coarse sand, fine gravel, blue clay and sand27241Fine sand mixed with soft clay29270Coarse sand, streaks of white clay22292Coarse sand mixed with white clay and iron23315Sand, fine gravel, white clay and wood45360Sand with fine gravel and white clay17377Sand, clay (red and white), cut very hard27404Sand, clay (red and white), cut very hard27404Sand, clay (red and white clay, cut hard4448Red and white sandy clay50498Very coarse sand, drilled soft; water-bearing19517Clay and sand, drilled hard6523Very coarse sand and gravel; water-bearing57580Granite1581Soft granite and soft streaks of iron ore14595Hard granite2597Well AA-Df 191050Yellow sand, fine1060Yellow sand, fine1893Rock, hard295Monmouth and Matawan formations:196Blue clay, hard9105Gray sand, fine80185Rock1186			200
Very coarse sand, with iron pyrite: Coarse sand, with spots of iron: 15 204Coarse sand, with spots of iron: 10 214Coarse sand, fine gravel, blue clay and sand.27241Fine sand mixed with soft clay.29270Coarse sand, streaks of white clay.22292Coarse sand, fine gravel, white clay and iron.23315Sand, fine gravel, white clay and wood.45360Sand, fine gravel and white clay.17377Sand, clay (red and white), cut very hard.27404Sand, red and white sandy clay.50498Very coarse sand, drilled soft; water-bearing.19517Clay and sand, drilled hard6523Very coarse sand and gravel; water-bearing.57580Granite.1581Soft granite and soft streaks of iron ore.14595Hard granite.2597Well AA-Df 191050Yellow sand, fine1050Yellow sand, fine1893Rock, hard.295Monmouth and Matawan formations:196Blue clay, hard.19105Gray sand, fine80185Rock.1186		53	189
Coarse sand, with spots of iron:Water-bearing.10214Coarse sand, fine gravel, blue clay and sand27241Fine sand mixed with soft clay.29270Coarse sand, streaks of white clay.22292Coarse sand, streaks of white clay and iron.23315Sand, fine gravel, white clay and wood.45360Sand with fine gravel and white clay.17377Sand, clay (red and white), cut very hard.27404Sand, red and white clay, cut hard.44448Red and white sandy clay.50498Very coarse sand, drilled soft; water-bearing.19517Clay and sand, drilled hard6523Very coarse sand and gravel; water-bearing.57580Granite.1581Soft granite and soft streaks of iron ore.14595Hard granite.2597Well AA-Df 194040Aquia formation:4040Yellow sand, fine.1893Rock, hard.295Monmouth and Matawan formations:19Blue clay, hard.9105Gray sand, fine.9105Gray sand, fine.80185Rock.1186		1.5	004
Coarse sand, fine gravel, blue clay and sand 27 241 Fine sand mixed with soft clay. 29 270 Coarse sand, streaks of white clay. 22 292 Coarse sand, streaks of white clay and iron. 23 315 Sand, fine gravel, white clay and wood. 45 360 Sand, fine gravel and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white sandy clay. 50 498 Very coarse sand, drilled soft; water-bearing. 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing. 57 580 Granite. 1 581 Soft granite and soft streaks of iron ore. 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Aquia formation: 10 50 50 50 Vellow sand, fine. 18 93 75 75 Yellow sand, fine.	> water_hearing		
Fine sand mixed with soft clay 29 270 Coarse sand, streaks of white clay and iron 22 292 Coarse sand mixed with white clay and wood 45 360 Sand, fine gravel, white clay and wood 45 360 Sand with fine gravel and white clay 17 377 Sand, clay (red and white), cut very hard 27 404 Sand, red and white clay 50 498 Red and white sandy clay 50 498 Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 S97 Well AA-Df 19 40 40 Yellow sand, fine 10 50 50 57 580 Yellow sand, fine 10 50 50 57 57 Very coarse said and gravel; water-bearing 15 75 57 580 Granite 10 50 <td< td=""><td></td><td></td><td></td></td<>			
Coarse sand, streaks of white clay and iron. 22 292 Coarse sand mixed with white clay and iron. 23 315 Sand, fine gravel, white clay and wood			
Coarse sand mixed with white clay and iron. 23 315 Sand, fine gravel, white clay and wood. 45 360 Sand with fine gravel and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay, cut hard. 44 448 Red and white sandy clay. 50 498 Very coarse sand, drilled soft; water-bearing. 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing. 57 580 Granite 1 581 Soft granite and soft streaks of iron ore. 14 595 Hard granite. 2 597 Well AA-Df 19 40 40 Yellow sand, fine. 10 50 Yellow sand, coarse, with iron pyrites. 15 75 Yellow sand, fine. 2 95 Mornouth and Matawan formations: 1 9 Blue clay, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186	Fine sand mixed with soft clay.		
Sand, fine gravel, white clay and wood			
Sand with fine gravel and white clay. 17 377 Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay, cut hard. 44 448 Red and white sandy clay 50 498 Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Yellow sand, fine 10 50 Yellow sand, fine 10 50 Yellow sand, fine 2 95 Monmouth and Matawan formations: 1 9 Not clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			0
Sand, clay (red and white), cut very hard. 27 404 Sand, red and white clay, cut hard. 44 448 Red and white sandy clay 50 498 Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 10 50 Aquia formation: 40 40 Yellow sand, fine 10 50 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 9 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Sand, red and white clay, cut hard. 44 448 Red and white sandy clay 50 498 Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Aquia formation: 40 40 Yellow sand, fine 10 50 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 9 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Red and white sandy clay 50 498 Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Aquia formation: 40 40 Yellow sand, fine 10 50 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 9 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Very coarse sand, drilled soft; water-bearing 19 517 Clay and sand, drilled hard 6 523 Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 40 40 Aquia formation: 40 40 Yellow sand, fine 10 50 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Clay and sand, drilled hard6523Very coarse sand and gravel; water-bearing57580Granite1581Soft granite and soft streaks of iron ore14595Hard granite2597Well AA-Df 192597Aquia formation:4040Yellow sand, fine1050Yellow sand, coarse, with iron pyrites1060Yellow sand, fine1893Rock, hard295Monmouth and Matawan formations:196Blue clay, hard196Rock, hard9105Gray sand, fine80185Rock1186			
Very coarse sand and gravel; water-bearing 57 580 Granite 1 581 Soft granite and soft streaks of iron ore 14 595 Hard granite 2 597 Well AA-Df 19 2 597 More reported 40 40 Yellow sand, fine 10 50 Yellow sand, coarse, with iron pyrites 10 60 Yellow sand, fine 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Granite1581Soft granite and soft streaks of iron ore14595Hard granite2597Well AA-Df 192597Aquia formation:4040Not reported4040Yellow sand, fine1050Yellow sand, coarse, with iron pyrites1060Yellow sand, fine1893Rock, hard295Monmouth and Matawan formations:196Blue clay, hard19105Gray sand, fine80185Rock1186		-	
Soft granite and soft streaks of iron ore.14595Hard granite.2597Well AA-Df 192Aquia formation:40Not reported.40Yellow sand, fine10Soft granite.10Yellow sand, coarse, with iron pyrites.15Yellow sand, fine.18Yellow sand, fine.2Yellow sand, fine.18Yellow sand, fine.2Yellow sand, fine.19Rock, hard.2Yellow sand, fine.10Rock, hard.1Yellow sand, fine.1Blue clay, hard.1Yellow sand, fine.1Yellow sand,			
Hard granite. 2 597 Well AA-Df 19 Aquia formation: 40 40 Not reported. 40 40 40 Yellow sand, fine 10 50 50 Yellow sand, medium, with iron pyrites 10 60 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine. 18 93 Rock, hard. 2 95 Monmouth and Matawan formations: 1 96 Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186			
Aquia formation: 40 40 Not reported. 40 40 Yellow sand, fine 10 50 Yellow sand, medium, with iron pyrites 10 60 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine. 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186	0		
Aquia formation: 40 40 Not reported. 40 40 Yellow sand, fine 10 50 Yellow sand, medium, with iron pyrites 10 60 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine. 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186	Well AA Df 10		
Not reported. 40 40 Yellow sand, fine. 10 50 Yellow sand, medium, with iron pyrites. 10 60 Yellow sand, coarse, with iron pyrites. 15 75 Yellow sand, fine. 18 93 Rock, hard. 2 95 Monmouth and Matawan formations: 1 96 Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186			
Yellow sand, fine. 10 50 Yellow sand, medium, with iron pyrites. 10 60 Yellow sand, coarse, with iron pyrites. 15 75 Yellow sand, fine. 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Rock, hard 9 105 Gray sand, fine. 80 185 Rock 1 186	A	40	40
Yellow sand, medium, with iron pyrites 10 60 Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Yellow sand, coarse, with iron pyrites 15 75 Yellow sand, fine. 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Rock, hard 9 105 Gray sand, fine. 80 185 Rock. 1 186			
Yellow sand, fine. 18 93 Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine. 80 185 Rock 1 186	/ **		
Rock, hard 2 95 Monmouth and Matawan formations: 1 96 Blue clay, hard 1 96 Rock, hard 9 105 Gray sand, fine 80 185 Rock 1 186			
Monmouth and Matawan formations: 1 96 Blue clay, hard. 1 96 Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186			
Blue clay, hard. 1 96 Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186		-	20
Rock, hard. 9 105 Gray sand, fine. 80 185 Rock. 1 186		1	96
Gray sand, fine. 80 185 Rock. 1 186			
Rock		-	
	Black sand and clay.		

	Thickness (feet)	Depth (feet)
Magothy, Raritan and Patapsco formations:		
Hard clay (wood)	6	214
Fine gravel and coarse sand	26	240
Light hard clay	20	260
Clay and sand	10	270
Coarse sand	6	276
Light hard clay	4	280
Medium sand	13	293
Black clay.	15	308
Light sandy clay	8	316
Medium sand.	20	336
White clay.	5	341
	17	358
Fine gray sand	7	365
Gray to red clay	7	372
Medium sand		-
Red clay	8	380 390
Coarse sand.	10	390 470
Hard red sandy clay	80	
Rock	2	472
Red clay strata	13	485
Very tough red clay, traces of gray clay	8	493
Rock	2	495
Very fine gray sand	18	513
Very hard rock	2	515
Semi-hard rock	2.3	517.3
Very hard rock	12.7	530
Sand and red clay	52	582
Rock	3	585
Red clay strata	5	590
Red clay	25	615
Rock	3	618
Red clay	6	624
Rock	2.5	626.5
Well AA-Df 20		
Aquia formation:		
Yellow clay and fine sand	7	7
Hard brown clay	15	22
Clay, fine sand, and iron pyrites	19.5	41.5
Yellow clay, medium sand and pyrites	29.5	71
Very little clay, gray and brown sand and pyrites	12	83
Monmouth and Matawan formations:		
Blue clay and sand	8	91
Brown clay and fine sand	7.5	98.5
Soft blue clay	4	102.5
Hard rock	1	103.5
Blue sandy clay	1.5	105
Dark gray sandy clay. 40 g.p.m. water at 125 feet	72.5	177.5

	Thickness (feet)	Depth (feet)
Rock, not hard.	39.5	217
Dark gray clay, like putty.	2	219
Dark gray sand, very little clay	3	222
Dark gray sand	7	229
Black clay and wood	10	239
Magothy (?), Raritan and Patapsco formations:		
Coarse, gray, water-bearing sand	12	251
Fine gray sand	6	257
Medium sand and wood.	23	280
Grav sand and rock.	3	283
Gray clay.	17	300
Gray clay and sand	3	303
Rock, hard	2	305
Gray sand.	53	358
Gray clay	3	361
Gray clay and sand	9	370
Fine white sand	20	390
Gray sand	8	398
White clay and sand	4	402
Light brown sandy clay	10	412
Gray and red sandy clay	7	419
Gray sandy clay	8	427
Gray water-bearing sand	19	446
Gray sand	29	475
Brown water-bearing sand	5	480
Iron pyrites.	7	487
Brown clay	12	499
Iron pyrites	3	502
Red clay	39	541
Iron pyrites.	6	547
Red clay	[4	561
White clay and gravel.	1.5	562.5
Brown and gray water-bearing sand.	4.5	567
Red clay	36	603
Red sandy clay.	77	680
ited sandy enzy		000
Well AA-Df 29		
Pleistocene deposits and Aquia formation:		
L A	40	40
Sandy clay		40
Clay	5	2.0
Water-bearing sand	25	70
WE 11 4 A TOE 20		
Well AA-Df 30		
Pleistocene deposits:	0.7	25
Sand and gravel—no water	35	35
Aquia formation:		0.7
Water-bearing sand and mud	50	85
Water-bearing sand	7	92

TABLE 3—Continued		
	Thickness (feet)	Depth (feet)
Well AA-Df 31	()	(,
Aquia formation:		
Clay	5	5
Water-bearing sand and mud.	45	50
Rock.	10	60
Water-bearing sand	10	70
Water-bearing band		
Vell AA-Df 32		
Aquia formation:		
Soil. No water	5	5
Water-bearing sand and mud	41	46
Rock	9	55
Water-bearing sand	10	65
Vell AA-Df 33		
Pleistocene deposits:		
Sand and gravel; no water	12	12
Aquia formation:		
Water-bearing sand and mud	60	72
Rock	18	90
Water-bearing sand	10	100
Vell AA-Df 34		
Pleistocene deposits:	* 2	12
Sand and gravel. No water	13	13
Aquia formation:	57	70
Water-bearing sand and mud	20	90
Rock	10	100
Water-bearing rock	10	100
Vell AA-Df 35		
Pleistocene deposits:		
Sand and gravel. No water	20	20
Aquia formation:		
Water-bearing sand and mud	50	70
Rock	20	90
Water-bearing sand	10	100
Vell AA-Df 36		
Pleistocene (?) deposits and Aquia formation:		
Hard mixture of sand and clay. No water	20	20
Sand and mud, water-bearing	28	48
Rock	12	60
Water-bearing sand	15	75
Vell AA-Df 37		
Pleistocene deposits:		
Sand and gravel. No water	20	20
Aquia formation:		
Water-bearing sand and mud	57	77

TABLE 3-Continued

Thickness Depta (feet) (feet) Rock. 13 90 Water sand..... 10 100 Well AA-Df 38 Pleistocene deposits: Sand and gravel. No water..... 25 25 Aquia formation: Water-bearing sand and mud..... 48 73 Rock 83 10 95 12 Well AA-Df 39 Pleistocene deposits Sand and gravel. No water..... 25 25 Aquia formation: Water-bearing sand and mud..... 50 75 Rock..... 85 5 90 Water sand Well AA-Df 40 Aquia formation: Sand. No water 5 5 Water-bearing sand and mud..... 46 51 Rock 9 60 73 Water-bearing sand 13 Well AA-Df 59 Aquia, Monmouth and Matawan formations: Not reported..... 116 116 124 Yellow sandy clay..... 8 Soft clay..... 14 138 Firm clay.... 32 170 Clay..... 40 210 Magothy formation: 254 Coarse gray sand and wood..... 44 Raritan and Patapsco formations: Clay with some sand streaks..... 374 120 Firm clay..... 42 416 105 521 Gray clay, soft in spots..... Sand, gravel, and wood..... 12 533 Boulder or ledge..... .5 533.5 55.5 Red and white clay, some sand 589 Fine sand..... 14 603 Clay and rock..... 28 631 Sandy rock..... 36 667 119 786 Hard gray clay, soft in spots..... 22 808 Tan clay..... Hard red and gray clay with few soft spots..... 128 936

	Thickness (feet)	Depth (feet)	
Sand and clay	9	945	
Black clay	5	950	
Gray, tan, and brown clay with wood	50	1000	
Well AA-Ed 16			
Pleistocene deposits:			
Light clay and gravel Calvert and Nanjemoy formations:	24	24	
Blue marl.	79	103	
Aquia formation:		200	
Fuller's earth, brown	17	120	
Salt-and-pepper sand, water-bearing	70	190	
Well AA-Ee 3			
Pleistocene deposits and Nanjemoy formation:			
Sand	25	25	
Clay	14	39	
Aquia formation:	71	110	
Water-bearing sand	71	110	
Well AA-Ee 4			
Nanjemoy formation:			
Brown clay.	28	28	
Sand and gravel	5	33	
Blue marl	15	48	
Brown clay	25	73	
Aquia formation:			
Green sandy marl	16	89	
Rock	4	93	
Blue marl	6	99	
Rock	3	102	
Black marl	9	111	
Rock	3	114	
Black marl	4 5	118	
Rock	-	123	
Marl	6	129	
Rock.	5	134	
Water-bearing sand	6	140	
Well AA-Ee 15			
Pleistocene deposits and Nanjemoy formation:			
Brown sandy top soil.	4	4	
Yellow sandy marl.	18	22	
Green sandy marl.	25	47	
Gray clay.	9	47 56	
Black marl	17	50 73	
Aquia formation:	11	15	
1	11	Q.4	
Gray rock and shells.	11	84	

	Thickness (feet)	Depth (feet)
Black sandy marl	13	97
Brown water-bearing sand	10	107
Well AA-Ee 21		
Pleistocene deposits and Nanjemoy formation:		
Soft clay and top soil	10	10
Marl.	50	60
Aquia formation:		
Very fine black sand	10	70
Rock.	1	71
Brown clay.	-	75
Rock.	-	77
Brown clay	-	83
Water-bearing sand.		95
water-bearing sand	12	93
Well AA-Ee 34		
Pleistocene deposits:		
Clay	12	12
Calvert formation:		
Fine white sand	8	20
Nanjemoy formation:		
Marl	45	65
Sand with clay.	30	95
Aquia formation:		
Fine sand	15	110
Sand	50	160
Well AA-Ee 35		
Pleistocene deposits and Calvert formation:		
*	1.2	13
White clay		20
Fine sand	4	20
Nanjemoy formation:		
Blue marl	50	70
Aquia formation:		
Sand and clay, rock layers.		135
Salt-and-pepper sand	25	160
Well AA-Ee 36		
Pleistocene deposits, Calvert and Nanjemoy formations:		
Clay	8	8
Sandy clay		25
Marl.		57
Sand	46	103
Aquia formation:	22	110
Salt-and-pepper sand with rock layers	37	140
Well AA-Ee 38		
Calvert and Nanjemoy formations:		
Yellow clay.	10	10

IRDLE 5-Communed			
	Thickness (feet)	Depth (feet)	
Sandy clay	25	35	
Blue marl	70	105	
Aquia formation:			
Salt-and-pcpper sand	75	180	
Well AA-Ee 39			
Pleistocene deposits:			
Yellow clay	15	15	
Nanjemoy formation:			
Blue marl	50	65	
Aquia formation:			
Salt-and-pcppcr sand; lenses of rock	53	118	
Salt-and-pcpper sand with rock	42	160	
Well AA-Fc 6			
Pleistocene deposits and Nanjemoy formation:			
Sand	42	42	
Blue marl	28	70	
Aquia formation:			
Water-bearing salt-and-pepper sand	35	105	
Well AA-Fc 7			
Pleistocene deposits:			
Sand and gravel	5	5	
Nanjemoy formation:	16	21	
Blue marl	30	51	
Aquia formation:			
Salt-and-pepper sand, water-bearing	74	125	
Lens of rock			
Well AA-Fd 13			
Recent dcposits:			
Brown sandy clay (fill)	10	10	
Calvert formation:			
Blue marly clay with shell fragments.	134	144	
Nanjemoy formation:	4	145	
Black sandstone with dark glauconite	1 75	145 220	
Dark green sandy clay with glauconite	20	240	
Light gray clay with little sand Dark green sandy clay with glauconite	5	240	
Pink clay.	20	245	
	20	200	
Aquia formation: Green sandy clay with glauconite; some hard layers	15	280	
Green sand in hard layers, slow drilling	45	325	
Green glauconitic fine sand with clay.	85	410	
Monmouth and Matawan formations:	00	110	
Black or dark gray clay with some glauconite.	95	505	
aradia of data Bray day mett borno Bradoonto,			

INDEL 5-Committee		
	Thickness (feet)	Depth (feet)
Magothy formation:	(reet)	(leet)
Medium to light brown clay	29	534
Light gray coarse sand with some lignite	26	560
Raritan formation:		
Brown to red clay	25	585
Well AA-Fe 24		
Pleistocene deposits and Calvert formation:		
Clay and marl	126	126
Nanjemoy and Aquia Formation:		
Salt-and-pepper sand	84	210
Well AA-Fe 25		
Pleistocene deposits:		
Clay	10	10
Sandy clay	10	20
Calvert formation:	10	20
Blue marl	50	70
Nanjemov and Aquia formations:	00	10
Salt-and-pepper sand	75	145
Salt-and-pepper sand with rock layers, 1 inch		200
Well AA-Fe 26		
Pleistocene deposits:		
Clay	12	12
Sand and clay	8	20
Calvert formation:		
Marl	50	70
Nanjemoy and Aquia formations:		
Sand and small amount of clay	75	145
Salt-and-pepper sand	35	180
Vell AA-Fe 27		
Pleistocene deposits:		
White clay	12	12
Fine sand	8	20
Calvert formation:	0	20
Blue marl, a little sand	105	125
Nanjemoy and Aquia formations:		
Salt-and-pepper sand	45	170
Salt-and-pepper sand, some rock layers	40	210
Vell AA-Fe 28		
Pleistocene deposits:		
Light clay	25	25
Calvert formation:	20	23
Black sand and clay (no water)	35	60

	Thickness (feet)	Depth (feet)
Nanjemoy and Aquia formations:		
Sand	75	135
Good water-bearing sand	65	200
Well AA-Ge 2		
Pleistocene deposits:		
Yellow clay	20	20
Calvert formation:		
Marl	30	50
Nanjemoy and Aquia formations:		
Gray sandy clay	190	240
Brown clay	15	255
Fine black sand	20	275
Coarse sand, water-bearing	39	314
Well AA-Ge 4		
Pleistocene deposits:		
Very pale orange argillaceous fine sand	10.5	10.5
Weak yellowish orange argillaceous fine sand	10.5	21
Calvert formation:		
Pale brown argillaceous very fine sand. Pieces of blue marl	10.5	31.5
Weak yellow clay, a little very fine sand	10.5	42
Weak yellow slightly sandy clay, some brown clay lumps	10.5	52.5
Weak yellow diatomaceous clay, some lumps of brown clay	21	73.5
Weak yellow diatomaceous clay, some lumps of brown clay	,	
thick mud	10.5	84
Nanjemoy formation:		
Light olive gray diatomaccous earth, glauconite, shell		
fragments	10.5	94.5
Argillaceous green sand, black glauconite, shell fragments	10.5	105
Argillaceous green sand, black glauconite, fine mica Argillaceous green sand, black glauconite, green-stained	84	189
quartz	31.5	220.5
Argillaceous green sand and clay, pieces of pink clay	10.5	231
Clay, water of brownish tinge, pieces of pink clay	10.5	241.5
Aquia formation:		
Clay, some rock at bottom, yellow grains abundant	10.5	252
Not reported	6	258
Hard shell.		258
Much hard shell, much less glauconite; yellow grains		
abundant	25.5	283.5
Yellowish green argillaceous green sand; yellow grains		
abundant	10.5	294
Yellowish green argillaceous green sand, little hard shell	21	315
Yellowish green argillaceous green sand; a few hard streaks—		
last 5 feet soft	10.5	325.5
Yellowish green argillaceous green sand, soft; glauconite		
abundant, chiefly yellow brown	28.5	354

TABLE 3-Concluded

TABLE 4

Logs of Wells in Anne Arundel County, from Which Well-cuttings Samples Were Obtained

Description	Thickness (feet)	Depth (feet)
Well Bd 23		
Patapsco formation:		
Clay, rcd to white; few rounded chert pebbles; some lignite		101
Sand, orange-pink, medium to coarse, arkosic, clean, slightly gravel	~	112
Clay, white, sandy, plant fragments		113
Sand, orange-pink, clean, medium to coarse		125
Clay, red to white, slightly sandy		203
Sand, pink, medium-grained, some iron oxide	4	207
Clay, red to gray, slightly sandy, some plant fragments		278
Arundel formation:		
Clay, pink to red, slightly lignitic	133	411
Patuxent formation:		
Sand, clean, finc-grained, white, well sorted		467
Clay, rcd, sandy, plant fragments common		476
Sand, red to pink, medium to coarse, clean		496
Clay, red, slightly sandy, lignite and plant fragments		537
Sand, red, medium to coarse, lignite and hematite common		555
Clay, red, sandy	. 5	560
Sand, light gray, coarse, angular, clean, arkosic, some lignite present	t. 47	607
Clay, red, sandy, lignitic Samples do not indicate this well reached bedrock	. 10	617
Well Cc 6		
Monmouth and Matawan formations:		
Sand, tan to buff, fine, micaceous, glauconitic. Base of oxidized zor	ne	
at 20 feet	. 20	20
Sand, silty, very fine, clayey, micaceous, dark gray	. 30	50
Magothy formation:		
Sand, coarse, and silt, dark gray, lignitic, clayey	. 10	60
Clay, sandy, tan, fincly micaceous, contains associated coars	se	
quartz sand	. 10	70
Raritan (?) formation:		
Gravel and sand, angular and subangular, yellow; pebbles of iro	n	
oxide and hydroxide		90
Sand, coarse, gravelly, composed of clear translucent quartz, opaqu	le	
white quartz, and tan chert; lignitic material present	. 20	110
Sand, medium to coarse, ycllow-pink	. 10	120
Raritan formation:		
Clay, gray-pink, finely micaceous, sandy		130
Sand, pink-orange, medium, slightly claycy: contains plant frag	y	
ments	. 30	160
Sand, coarse, clean, vitreous, slightly gravelly	. 11	171
Well Cd 5		
Magothy (?) formation:		
Sand, tan, some clay, medium to finc, contains some plant fragment		
and mica	. 25	25

Description	Thickness (feet)	Depth (feet)
Well Cd 5-Continued		
Raritan and Patapsco formation:		
Clay, white to buff, silty in spots		60
Sand, fine, buff pink and white, some clay		75
Sand, coarse to medium, white to pink		110
Clay, white to red, sandy, silty		140
Sand, medium-grained, pink-white, dull, angular to subangular	2	142
Well Ce 6		
Matawan and Magothy formations:		
Sand, white, clean, medium-grained, slightly glauconitic	21	21
Sand, light gray, slightly feldspathic, glauconite rare, some lignite Sand, chocolate brown, clayey, medium-grained, angular to su		41
angular	. 4	45
Sand, fine, dark-gray, clayey, slightly micaceous, contains a few	v	
plant fragments; glauconite rare, limonite and pyrite common Raritan and Patapsco (?) formations:	16	61
Sand, light gray, medium to coarse, slightly limonitic; some pyri	te	
and lignite.	-	141
Sand, very fine, light-gray and pinkish, arkosic, liminitic		170
Well Ed 16		
Pleistocene deposits:		
Sand, gravel, tan, poorly sorted, clayey, contains some reworked		
glauconite Calvert formation:	40	40
Sand, gray, fine, silty, clayey Nanjemoy formation:	20	60
Sand, green, fine, glauconite abundant, quartz grains transparen	nt,	
few phosphate fragments	20	80
Clay, pink-buff, with glauconite	20	100
Sand, fine, clayey, green, botryoidal, glauconite; some pink cl	ay	
balls present	30	130
Sand, fine, green, glauconite, slightly clayey sand somewhat coars	ser	
from 160 feet down	60	190
Well Fd 13		
Recent deposits:		
No sample	10	10
Calvert formation:		
Clay and silt, dark gray, diatomaceous, some shell fragments	110	120
Clay, gray, bleaches to white, many diatoms	25	145
Nanjemoy formation:		
Sand, green, glauconitic; some gray clay, some foraminifera a	nd	
shell fragments		220
Clay, gray, some sand	20	240
Sand, green, glauconitic	5	245
Clay, pink, even-textured		265

TABLE 4—Continued

TABLE 4-Concluded

	hickness	Depth
Description Well Fd 13—Continued	(feet)	(feet)
Aquia formation:		
Sand, fine, green, glauconitic, some foraminifera and shell frag-		
ments, some clay present		410
Monmouth and Matawan formations:		
Sandy clay, some glauconite, mica flakes, phosphate nodules, few		
foraminifera	90	500
Sand and silt, gray with shell fragments	10	510
Magothy formation:		
Clay, brown, some sand and lignite		535
Sand, coarse, clean, light gray, subangular to subrounded, lignite and		
pyrite present	43	578
Raritan formation:	_	
Clay, red and gray, contains many small siderite pellets	7	585
Well Ge 2		
Pleistocene deposits:		
Clay, tan, gray, sandy	20	20
Calvert formation:	20	20
Clay, blue green, diatomaceous, silty	30	50
Nanjemoy formation:	50	50
Silt, dark gray, sandy, contains fine mica flakes and some glauconite	20	70
Sand, clayey, dark gray, glauconitic, quartz rounded to subrounded.		
some foraminifera		180
Clay, sandy, pink-buff, some glauconite		220
Aquia formation:		
Sand, green, glauconitic, medium to coarse, shell and bryozoan frag-		
ments, some foraminifera. Glauconite changes to brown at 250		
feet. Some fish teeth below 290 feet	100	320
Well Ge 4		
Pleistocene deposits:		
Sand, fine, tan, clayey, some plant fragments	21	21
Calvert formation:		
Clay, gray, diatomaceous, with a few shell fragments	63	84
Nanjemoy formation:		
Sand, green, with clay, gray, glauconitic, some foraminifera		220
Clay, pink-gray.	20	240
Aquia formation:		
Sand, dark green, glauconitic, medium grained, with a small amount of clay, some mollusk and bryozoan fragments. Foraminifera		
common	64	304
Sand, brown, glauconitic, coarse, clean, large botryoidal grains	43	347
Sand, fine, brown, some clay.	40	354
owing mo, orowing come city		334

JaylanA	E	Y	V	В	A	A	A	Y	(L)	Y	A	Y	(III	A	A	В	A	V	A	V	A	V	V
Specific conductance (K X 10 ⁶ at 25°C.)		1	3.1	1	4.0	5.3	5.7	4.4	1	1	4.2	4.0	1	2.7	2.7	1	2.4	1	2.7	20.6	26.9	6.4	50.6
Hq	6.0	6.7	5.2	5.1	6.0	6.9	5.1	6.8	4.5	6.4	5.7	6.4	4.6	5.1	5.0	1	.2	1.7	-1-	5.6 2	6.3 2		6.8 5
CaCO3	20.0		.3		16.0		14.0	18.0				18.0	5.2	12.0		6.0	1.3	4.3	12.0	0.8	0.	0	0
Vitrate (NOs) Total hardness as	0.0 2(5.6 10	6.0	0.0	8.6 10	-	12.0 1.	8.4 18		4.2 18	5.00	6.1 18	1	0.0 11	0.0	-		0.0		9.1 68	0.1 87		59.0 149.
Fluoride (F)			0.0	-	00	- 10	0.1 12	1	1	+T 	0.0	-	1	-	0.0 0			0.1	-	1	1	-	0.0 55
	0	00	6.		3.5	5.5	6.1 0	5.0	-	13.0 -	5.5 0	5.0	14.2	2.0 -	4	9.4	.4 6	.2	0.	0	17.C -	- 0.	0
Chloride (Cl)	4.	0 2	0 2				2 6.		28.4				14.		1	6	9 1	9 1	0 2	0 14.	0 17.	0 4.	.0 40.
(1008) sulfate (SO4)		1.0	1.0		1.0	1.0	-	1.0		1.0	0.6	1.0		7.0	6.5	I		6.9		46.0	70.		70.
Bicarbonate (HCO ₃)	[]	4.0	2.0	1	4.0	6.0	4.0	6.0	1	6.0	6.0	5.0	1	1.0	2.0	1	3.0	1.0	4.0	22.0	35.0		68.0
Potassium (K)			0.5	1		1	0.7				1.0	1	1		0.7		0.8	1.0	1		I	1	5.4
(RN) muibol			2.1			1	4.1			I	3.5	I		ļ	1.8		2.0	1.5	I	I	I	ł	37.0
(3M) muisənyaM	trace		0.8	0.3	1		1.3		1	I	0.9		1		0.5	1	0.5	0.5	1	I			7.1
Calcium (Ca)	1.1	I	1.6	1.2		1	3.3	1	1		2.2	I	1		1.3		0.9	0.9	1	I	1		48.0
Iron (Fe)	1.2		0.28	0.04		1	0.09		1		0.04	0.35		0.57	0.04		1.8	2.2	0.4	0.79	0.2		0.46
(sOi2) (SiOis)	1.0	1	6.3	0.7	I	1	6.4	ļ		ļ	7.7		I		9.3		9.5	11.0	I	ł	I	i	4.4
sbiloz bəvləzsiU	52	1	25	-	ļ		42	I	34	1	36	1	12	1	23	ļ	24	24	I		ļ	ł	329
Date collected	Nov. 24, 1945	June 21. 1943	Apr. 1, 1946	July 30, 1941	June 21, 1943	June 21, 1943	Apr. 1, 1946	Aug. 19, 1943	Apr. 6, 1945	Aug, 2, 1943	June 15, 1945	Aug. 19, 1943	Apr. 6, 1945	Aug. 19, 1943	June 15, 1945	Mar. 31, 1914	June 15, 1945	May 13, 1948	Aug. 26, 1943	Aug. 26, 1943	Aug. 26, 1943	Jan. 31, 1944	Jan. 14, 1946
Depth (feet)	128	65	65	95	95	623	621	16	94	127	127	157	157	312	312	06	392	530	350	23	65	195	150
Owner	C. E. Duckworth	County Sanitary Comm.	do	do	do	do	do	C. S. Walton Co.	do	do	qo	do	do	do	do	E. Linthicum Heights	Kavanaugh Products Co.	County Sanitary Comm	Armour Fertilizer Co.	Cooperative Fertilizer Co.	do	U. S. Coast Guard	Zamostny's Amoco
Well No. AA-	Ac 8	Ad 1	do	Ad 2	do	Ad 3	do	Ad 4	op	Ad 5	do	Ad 6	do	Ad 7	op	Ad 17	Ad 20	Ad 29	Ae 1		Ae 3	Ae 4	Ae 22

TABLE 5 Analyses of Ground Waters in Anne Arundel County

Bb 8	Md. House of Correction	675	Aug. 17, 1927	176	I	0.1				1	I	4.0	1	1	0.0	0.00	1	1	â
Bc 1	National Plastic Prod-	175	July 24, 1944	26	I	0.28	1	1	1		1	T	1		10.0	19.2	4.9		U
Bd 6	Rae	84	Mar. 28, 1946	19	8.0	0.08	1.1	0.5	1.2	0.3	2.0	4.6	1.5	0.1	0.1	4.8	5.0	2.1	A
Bd 7	Geo. B. Furman	80	May 20, 1946	i	1	1		1	1		0.0	3.0	3.0		0.1	6.0	4.5	2.9	A
Bd 23	County Sanitary Comm.	617	Aug. 23, 1948	50	23.0	3.0	6.0	0.05	I	1		I	1	1	0.04	I	5.4	1	р
Be 3	Board of Education	385	Sept. 17, 1935	56	1	0.0	1		i		1	I	4.2		0.0	16.0	5.8		щ
Be 21	G. Bryce	150	Jan. 16, 1946	25	8.1	0.59	1.0	0.5	2.0	0.6	0.0	9.4	1.8	0.0	1.6	10.0	3.9	6.4	A
Be 32	W. Griebel	160(?)	Feb. 15, 1946	1	1	2.9	1	1			1	0.0	4.0	1	0.1	0.6	3.8	6.7	A
Be 33	G. H. Mank	180	Feb. 15, 1946	1		3.7			1		1	10.0	4.0	1	0.0	0.0	3.9	0.8	A
Be 36	Board of Education	120	Feb. 26, 1946	I	1	0.85	1	1	I	1	6.0	1.0	6.0	1	3.2	10.0	5.2	4.8	A
Be 42	W. R. Young	110(?)	Feb.	1	1	1		1	1		1	12.0	64.0	1	0.3	27.0	4.3	27.1	A
Be 45	H. Bunker	67	Apr. 16, 1946	75	2.8	0.35	6.2	2.3	6.1	1.4	2.0	14.0	7.0	0.2	21.0	25.0	4.7	11.4	A
Be 46	Appleton	24	Apr. 16, 1946	41	3.5	0.08	3.1	1.6	3.9	0.8	1.0	15.0	3.2	0.1	4.2	14.0	4.9	6.5	A
Bf 1	Fort Smallwood	377	Aug. 2, 1932	58	I	6.4		1	1			1	5.2	1	0.0	20.0	6.4		щ
qo	qo	377	Aug. 3. 1043	I	i	18.0	1	1			20.0	0 0	3.0		0.0	16.0	6.1	7.1	A
Bf 2	qo	378	Aug. 3, 1943	1	I	2.5	1			1	2.4	2.0	1.5		0.0	18.0	4.2	5.6	V
Bf 4	Rogers Townsend Boat	140	Aug. 3, 1943	I	1		1	1		1	3.0	6.0	4.2	ļ	1.0	12.0	6.0	3.2	Y
	Co.						0												
Cc 1	U. S. Naval Academy Dairy	245	Apr. 15, 1946	28	5.00	0.33	1.6	1.2	3.2	0.6	5.0	1.4	4.6	0.0	5.5	0.0	5.7	3.9	A
Cc 7	A. D. Riden Co.	300	Apr. 23, 1946	18	7.2	2.1	0.5	0.3	1.4	0.3	5.0	0.7	2.1	0.1	0.5	3.3	5.1	1.8	V
Cc 12	J. W. Wagner	92	May 1, 1946		1	0.15	1	1			32.0	1.0	2.0	[1.8	22.0	6.3	6.2	¥
Cc 15	J. Chowanetz	21	May 6, 1946	I	I	0.42	I	1	I		7.0	1.0	4.0		16.0	15.0	5.6	6.9	V
Cd 3	Board of Education	146	Feb. 10, 1930	52	I	0.0	I			1	1	Ī	3.4	1	0.4	48.0			В
op	do	146	Jan. 12, 1938	15			I		1	1			5.0	1	0.3	2.0	3.8		g
Cd 6	M. W. Schaul	153	Mar. 14, 1946	Ι	1	1.1	1	1	i	1	40.0	3.0	16.0		3.9	30.0	6.5	16.6	¥
Cd 11	Crownsville State Hospi-	232	Apr. 18, 1946	52	18.0	2.0	0.9	0.7	2.6	0.8	0.0	26.0	1.0	0.1	0.0	22.0	3.8	6.7	¥
0110	tal M D uttit-11	000		ł	6		0	•	0		0	0		0		• • • • • • • • • • • • • • • • • • •		•	~
Cd IV	MIS. K. WDILDALL	208	May 6, 1946	11	9.3	1.2	6.0	1.5	7.0	1.0	0.0	0.47	7.1	0.0	0.1	13.0	4.0	0.9	¥.
Cd 23	F. Kaczyrski	107	May 7, 1946	1	l	8 .3	1			1	0.0	36.0	4.0		0.3	26.0	2.6	10.4	V
Ce 1	County Sanitary Comm.		Apr. 1, 1946	53		30.0	6.0	3.6	2.2	1.4	10.0	26.0	1.8	0.3	0.1	30.0	5.3	8.6	A
Ce 4	C. A. Ernest	106	Jan. 17, 1946	25	0.7	2.2	1 0	20	1 2	9 0		10 0	8 0	0 0	0	10.01	2 0	V V	<

	Analyst	VV	V.		V	V	V	V.	V .	V	A	A	A	V	V	Q	E	A	V	V	A	V	V	A	V
	Specific conductance (K × 10 ⁶ at 25°C.)	1		5.4			.2	<u>ت</u> ،	9			.2	8.3		12.5	1		1	00.20		10.1	4.8			10.4
	Hq			4.0		3.9		3.9			3.8 1	6.1	4.9	4.3	4.4	+		6.6	5.3	1	5.9 1	5.7	6.1	-	5.5 1
	Total hardness as CaCO3	9.4		14.0	_	_	0.0	ŝ		34.0		6.0	26.0	30.0	42.0	37.0	0.	255.0	9.0	42.0	34.0	20.0	15.0	40.0	28.0
	Nitrate (NOs)	0.1		1.0		· · ·	0.0			0.0		0.1	0.0 2	0.0	0.1 4			23	4.6	F 0.0	0.0	2.2 2	9.4	56.0 4	
	(Fluoride (F)	0.1	1	0.1	0.1	0.1	1		0.0	0.3	0.1	[0.3	0.2	0.2	1	1	1	I	1		1		0.0	-
	Chloride (Cl)	3.0	2.0	4.0	0.8	1.8	2.5	1.0	1.1	0.2		0.2	1.5	0.8	1.8	1.0	150.0	146.0	8.0	2.0	2.0	4.0	3.0	12.0	8.0
	(102) sisilad	20.0	50.0	15.0	12.0	16.0	15.0	22.0	16.0	0.02	19.0	1	25.0	31.0	42.0	34.0			1.0	11.0	13.0	2.0	1.0	1.0	1.0
	Bicarbonate (HCO ₃)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.12	0.0	0.9	5.0	0.0	0.0	Ī		1	5.0	44.0	29.0	16.0	14.0	3.0	12.0
	Potassium (K)	0.3		0.3	0.3	0.5		.	1.2	1.7	0.7		1.8	1.3	1.6	1	1			2.6	I	1	1	5.0	I
p	(aN) muibol	1.6	[1.8	1.1	1.8	I	,	1.5	7.7	1.6	I	1.8	1.8	2.9	I	1	1	1	2.3	I	1	I	7.7	I
minne	(3M) muisənyaM	0.3		0.6	0.3	0.5	1		1.2	0.0	1.2	ļ	2.5	3.1	4.4	4.0	10.0	41.0		4.2		1	1	5.3	
TABLE 5-Continued	Calcium (Ca)	0.7		0.8	0.4	1.2	ł		0.7	0.1	1.4	ł	6.2		8.7	33.0	90.06	I	I	6.9	1	1		7.3	1
BLE	Tron (Fe)	7.3	00.3	4.0	2.8	2.9	0.4	5.8	1.5	11.0	9.4	17.0	21.0	30.0	29.0	15.0	20.0	32.0	0.3	26.0	8.8	0.1	0.9	0.7	0.44
TA	Silica (SiO,)	- 8	I	8.1	11.0	9.5			11.0	13.0	6.7	1	9.1	7.4	7.8	1	3.5	I	I	16.0	I	Ι	1	16.0	1
	shiloz bəvlozzi U	29	I	25	28	36	I	1 1	35	70	36	1	55	56	75	I	510	I	$^{\prime }0$	99	I	ŀ	I	121	1
	Date collected		Feb. 28, 1946	17,	Apr. 17, 1946	Apr. 1, 1946	Apr. 26, 1946		May 7, 1946	ő	Apr. 11, 1946	Jan. 30, 1946	Apr. 16, 1946	Apr. 16, 1946	Apr. 17, 1946	Sept. 29, 1943	Aug. 5, 1943	Sept. 3, 1943	June 6, 1946	Apr. 25, 1932	Feb. 15, 1943	June 11, 1946	June 11, 1946	June 14, 1946	June 25, 1946
	Depth (feet)	150-200 140	220	512	200	165	100	160	208	06	319	205	95	190	280	270	138	138	45	2.44	244	85	65	32	09
	Owner	J. H. Jacobs F. McKinsey	H. B. Little	E. Clifford		County Sanitary Comm.		E. Fulton	W. Mentzel	Epping rorest	Gibson Island Corp.	L. V. Hare	F. Dipaula	L. Ruck .	W. H. Labrot	State Roads Comm.	do	qo	K. Haver	Annapolis Water Co.	do	P. A. Donald	A. J. Daniels		A. G. Fleet
	Well No.	Ce 10 Ce 14	Ce 17	Ce 18 Ce 32	Ce 33	Ce 34	Ce 36	Ce 37	Ce 38	Ce 40	Cf 1	Cf 4	Cf 11	Cf 13	Cf 15	Cg 1	Cg 2	op	Dd 12	De 3	op	De 11	De 12	De 20	De 34

De 35	G. C. Meeks	81	June 25, 1946	238	33.0	1.4	67.0	5.4	2.6	5.0	220.0	12.0	2.2	0.1	0.2	189.0	1.8	36.5	Α
	J. B. Semple, Jr.	230	July 19, 1946	ļ	I	14.0	ļ	1	1	1	78.0 .	28.0	2.0	1	0.1	82.0	6.3	18.1	A
De 43	P. Addison	48	Apr. 25, 1946	I	1	2.8	I		1		I	1	8.0	1	1	38.0	5.1	1	Ŕ
	Annapolis Water Co.	258	Apr. 25, 1932	62	13.0	11.0	10.0	2.6	2.1	1.9	28.0	17.0	2.0	I	0.0	36.0	ł	I	Y
	U. S. Naval Academy	306	Mar. 20, 1945	104	9.5	20.0	16.0	5.5	1.9	2.6	37.0	38.0	1.6	0.5	0.0	63.0	5°00	ł	A
Df 12	do	600	Mar. 20, 1945	66		19.0	7.9	3.8	1.5	1.7	0.0	32.0	1.2	0.2	0.0	35.0	5.2	I	Y
Df 13	do	606	Mar. 20, 1945	74	7.9	20.0	6.2	3.6	1.5	1.7	2.0	34.0	0.9	0.2	0.0	30.0	4.6	ł	A
Df 15	U.S. Navy Experiment	210	Mar. 20, 1945	106	8.6	26.0	15.0	5.7	1.8	2.4	32.0	45.0	1.4	0.5	0.0	61.0	5.00	I	Y
Df 16	Station U. S. Navy Experiment Station	597	July 19, 1944	111	I	24.0	4.6	3.9								25.0			C
	do	265	Mar. 20, 1945	80	00	18.0	5.7	3.6	1.8	1.9	26.0	36.0	0.9	0.1	0.0	29.0	5°.00	I	A
	F. Lankford, Jr.	265	June 28, 1946	209	17.0	1.2	50.0	7.7	4.2	7.2	190.0	15.0	2.5	0.1	1.5	156.0	7.2	34.2	Y
Ed 15	T. C. Collinson	274	July 17, 1946		1	0.6	Ĭ	I	I	1	162.0	34.0	2.0		0.1	147.0	7.5	31.4	A
-	R. L. Forest	138	June 28, 1946	285	36.0	0.8	75.0	9.1	4.0	3.3	235.0	34.0	2.2	0.1	0.4	225.0	7.4	45.1	A
10	Y.M.C.A. Camp	72	June 29, 1946	271	45.0	2.4	76.0	3.1	4.2	3.9	247.0	6.1	3.9	0.0	0.1	202.0	7.2	40.8	A
	H. R. Robey	104	June 29, 1946	I	1	1.6	ļ	1	1		189.0	0.0	2.0	I	0.0	153.0	1.9	31.7	V
_	Murray Estate	329	July 17, 1946		1	25.0	I	ļ	1	1	58.0	36.0	2.0	1	0.0	75.0	6.1	19.0	A
32	Hartges Boat Yard	150	July 29, 1946	244	20.0	0.7	58.0	6.6	5.0	3.0	162.0	61.0	1.6	0.2	0.2	185.0	7.6	37.4	Y
	ŗ	65	June 18, 1946	276	32.0	4.0	83.0	3.9	5.2	4.1	264.0	1.8	11.0	0.0	0.0	223.0	7.4	43.0	A
	H. B. Stonebraker	Ì	Nov. 20, 1945	I		1.8	ļ				1	32.0	12.0	1	I	54.0	6.1		Q
-	op	39	Nov. 20, 1945	1	I	1.3	L					27.0	18.0	1		88.0	7.0		D
	F. C. Krauss	327	July 12, 1946	200	13.0	0.9	58.0	6.3	3.3	2.6	183.0	23.0	1.9	0.0	0.3	171.0	7.4	33.7	A
Fd 13	Board of Education	585	Dec. 28, 1948	197	10.0	13.0	55.0	6.2	I	1	I	63.9	3.2	I	1	164.0	6.7	I	C
	F. Thomas	400(?)	July 27, 1946	1	1	15.0	I	I	I	I	80.0	50.0	2.0	I		100.0	6.6	24.6	A
Fe 14	R. T. Brooke	156	July 30, 1946	Ι	I	0.46	I	1]	1	166.0	13.0	1.0	I	0.9	126.0	7.5	28.9	Y
-	J. E. Rose	325	Mar. 9, 1949	166	14.0	0.37	33.0	11.0	5.6	2.0	166.0	6.8	3.5	0.2	0.9	128.0	7.6	I	A

Analyst: A, U. S. Ceological Survey B, Maryland State Health Department C, Penniman & Browne, Inc. D, Permutit Co. E, Wiley & Co. F, C. S. Walton Co.

INDEX

Acknowledgments, 31 Acre-foot, Definition, 6 Analyses of water, 41; Table, 5 Annapolis, 35, 43, 47 Gaging station near, 9 Records of discharge, 21, 26 Annapolis Junction Gaging station at, 9 Records of discharge, 14 Annapolis Water Works, 46 Antietam Creek, Stream-flow measurement station on, 5; Fig. 3; Pl. 1, fig. 1 Appalachian Plateaus, 29 Aquia formation, 33, 47; Tables 1-4; Figs. 7, 10; Pl. 6 Analyses of water from, 48 Fossils in, 48 Lithologic character of, 47 Quality of water from, 48 Structure of, 48 Thickness of, 48 Water-bearing strata in, 48 Water-level fluctuations in, 52; Fig. 10 Artesian conditions, 33 - flow, Discharge by, 35 Arundel Cove, 51 Arundel formation, 38, 41; Tables 1-3, 4; Fig. 7 Hydrologic importance of, 42 Lithologic character of, 42 Structure of, 42 Thickness of, 42 Arundel on the Bay, 52 Bacon Ridge Branch gaging station (Chesterfield), 9, 11 Records of discharge, 18, 20 Beards Creek, 49 Beaverdam Creek, 34 Benfield, 51 Bennett, R. R., 29, 34, 41 Bennion, V. R. v, 1 Berry, E. W., 31, 50 Big Patuxent River, 38 Blue Ridge, 29 Brandywine formation, 50

Brookhart, J. W. v, 28

Calvert Cliffs, 49 Calvert formation, 49; Tables 1-4 Diatomaceous earth in, 50 Fossils in, 50 Lithologic character of, 50 Structure of, 50 Thickness of, 50 Water-bearing strata in, 50 Campbell, M. R., 51 Carrs Point, 52 Chesapeake Bay, 37, 48 Chemical analyses of water, 41; Table 5 Chesterfield Gaging station at, 9 Records of discharge at, 18, 20 Choptank formation, 50; Tables 1-4 Lithologic character of, 50 Structure of, 50 Clark, W. B., 31, 44, 46, 47, 48, 50 Coastal Plain, 29 Costal Plain sediments, 38 Coefficient of permeability, 32 - - storage, 37 — — transmissibility, 37 Glen Burnie, 44; Fig. 8 Collinsons Corner, 49; Pl. 7 Computation of stream-flow measurements, 5 Conaways, 47 Cone of depression, 37 Construction of stream-flow measurement stations, 3 Contamination of wells by salt water Patapsco formation, 44 Cooke, C. W., 51 Corps of Engineers, 31 Cretaceous formations, 38; Tables 1-4; Fig. 7 Arundel formation, 41 Magothy formation, 46 Matawan formation, 46 Monmouth formation, 47 Patapsco formation, 42 Patuxent formation, 38 Potomac group, 38 Crownsville, 51, 52 Crownsville Hospital, 35 Curtis Creek, 8

INDEX

Darton, N. H., 46, 48 Davidsonville, 48, 49 Deale, 47 Diatoms in Calvert formation, 50 Diorite, 38 Discharge, Definition, 6 Discharge by evaporation and transpiration. 34 - - seepage and springs, 34 - of ground water, Artificial, 35 — — streams, Fig. 4 Dorsey Run gaging station (Annapolis), 9, 11, 14 Drainage basin, Definition, 6 Drillers logs, Tables 3, 4 Dryden, L., 51

Engineering Experiment Station, 43 Eocenc series, 47; Tables 1-4; Fig. 7 Aquia formation, 47 Nanjemoy formation, 48 Establishment of stream-flow measurement stations, 3 Evaporation, Discharge by, 34

Fairhaven, 47
Fairhaven diatomaceous earth, 50
Fall Line, 38
Fenneman, N. M., 29
Flint, R. F., 51
Fluctuations of water level, 35, 51; Figs. 6, 9, 10
Fossils in Aquia formation, 48
— Calvert formation, 50

Gabbro, 38
Gaging stations in county, 9
Gambrills, 51
Geologic formations in county, 38; Table 1; Fig. 7
Gibson Island, 47
Glebe Creek, 48
Glen Burnie, 31, 35, 41, 43, 44, 51
Glenburnie, Gaging station at, 9, 12, 13
Gneiss, 38
Governor Bridge, 47
Granite, 38
Ground water Analyses of Table 5 Definition, 1 Occurrence, 32 Recharge of, 33 Ground-water resources, 28 High Power Radio Station, 43 Hydraulic permeability, Dcfinition, 32 Hydrologic cyclc, 1; Fig. 1 Hydrostatic pressure, 33

"Ironstone" in Patapsco formation, 42

Laurel, 38 Linthicum, 51; Pl. 4 Lipins Corner, 46 Little, H. P., 31, 32, 46, 50 Little Patuxent River, 8, 38 Gaging station at Savage, 9, 11 Records of discharge, 14, 17 Location of area of report 29, Fig. 5 — — observation wells, 51 — — wells studied, 29; Pl. 3 Logs, Well Tables, 3, 4 Lyons Creek, 8

Magothy formation, 8, 33, 37, 38, 46; Tables 1-4, Fig. 7 Analysis of water from, 46 Iron in water from, 46 Lithologic character of, 46 Quality of water from, 46 Structure of, 46; Pl. 5 Thickness of, 46 Water-bearing strata in, 46 Magothy River, 46, 47 Maps used for report, Source of, 31 Marlboro clay, 48; Pl. 7 Marley, 51 Marriott Hill, 50 Martin, G. C., 48 Maryland Dept. Geology, Mines, Water Resources, v, 8, 9, 29 Maryland Geological Survey (see also Maryland Department Goology, Mines, Water Resources), 31 Matawan formation, 46; Tables 1-4; Fig. 7 Hydrologic importance of, 47 Lithologic character of, 47 Structure of, 47 Thickness of, 47 Mathews, E. B., 31, 50

Measurement stations, Stream-flow, 3 Computation and preparation of records, 5; Figs. 2, 3 Establishment and construction of, 3; Pl. 1 Operation and maintenance of, 5; Pls. 1, 2 Meinzer, O. E., 32, 33, 34 Merrels, C. W., 31 Metagabbro, 38 Methods of ground-water investigation, 29 Meyer, R. R., 34 Miller, B. L., 31 Miocene series, 49; Tables 1-4 Calvert formation, 49 Choptank formation, 50 Monmouth formation, 47; Tables 1-4; Fig. 7 Lithologic character of, 47 Structure of, 47 Thickness of, 47 Munroe, W. C., 31 Nanjemoy Creek, 48 Nanjemoy formation, 48; Tables 1-4; Pls. 6, 7 Lithologic character of, 48 Structure of, 48 Thickness of, 48 Water-bearing strata in, 49 National Plastics Corporation, 35, 43 North River gaging station (Annapolis), 9,11 Records of discharge 21, 26; Fig. 4 Odenton, 43 Operation of stream-flow measurement station, 5 Otton, E. G., 31 Overbeck, R. M., 31, 49 Patapsco formation, 33, 38, 42; Tables 1-4; Figs. 7, 9; Pl. 4 Analyses of water from, 43 Facies changes in, 42; Pl. 4 Lithologic character of, 42 Pumpage from, 43 Pumping tests, 44

Quality of water from, 43

Salt-water contamination of, 44 Section of, 42 Structure of, 42 Thickness of, 42 Water-bearing sands in, 43 Water-level fluctuations in, 52; Fig. 9 Patapsco River, 8, 37, 44, 51 - - basin, Records of discharge, 12, 13 Patuxent formation, 33, 38; Tables 1-4; Fig. 7 Chemical analyses of water from, 41; Table 5 Lithologic character of, 38 Ouality of water in, 41; Table 5 Structure of, 41 Thickness of, 41 Water-bearing sands in, 41 Patuxent River 8, 38, 44, 47, 48 - - basin, Records of discharge, 14 Pecten in Calvert formation, 50 Pegmatite, 38 Pelecypods in Calvert formation, 50 Permeability of rocks, 32 Relation to weathering, 38 Physiography of county, 29; Fig. 5 Piedmont plateau, 38 - province, 29 Piezometric surface, 33 Pleistocene series, 31, 50; Tables 1-4 Analyses of water from, 51 Quality of water from, 51 Terrace deposits, 50 Water-bearing strata in, 51 Porosity in rocks, 32 Relation to weathering, 38 Potomac group, 38; Tables 1-4; Fig. 7 Arundel formation, 41 Patapsco formation, 42 Patuxent formation, 38 Potomac River, 48, 49 Pre-Cambrian rocks, 38 Preface, v Priest Bridge, 44 Pumping, Discharge by, 35 Pumping tests, 37 Glen Burnie, 44; Fig. 8 Purpose of ground-water investigation, 29 Purpose of report, v

Quaternary system, 50

INDEX

Raritan formation, 33, 44; Tables 1-4; Fig. 7 Lithologic character of, 46 Quality of water from, 46 Structure of, 46 Thickness of, 46 Water-bearing strata in, 46 Rating curve, 7; Fig. 3 - table, 8 Recent sediments in county, 31 Recharge of ground water, 33 Records of wells, Tables 2-4 Riviera Beach, 51 Rockhole Creek, 8 Runoff of streams, 6, 9; Fig. 4 Salisbury, 34 Salt-water contamination Patapsco formation, 44 Samples, Well, Table 4 Savage, 38 Gaging station at, 9 Records of discharge, 14, 17 Sawmill Branch gaging station (Glenburnie), 9, 11 Records of discharge, 12 Sawmill Creek, Records of discharge at, 12, 13 Sayre, A. N., 29 Schumaker's dam, 34 Second-foot, Definition, 6 - day, Definition, 6 Seepage, 34 Selby Beach, 52 Serpentine, 38 Severn Crossroads, 51 Severn River, 8, 35, 37, 47 Shadyside, 47 Shattuck, G. B., 51 Shifflet, E., 48 Sillery Bay, 47 Singewald, J. T., Jr., v South River, 8, 37 - - basin, Records of discharge, 18, 20, 21, 26 Southern High School well, 48 Springs, occurrence of, 34 Stations, Stream-flow measurement, 3 Computation and preparation of records 5; Figs. 2, 3

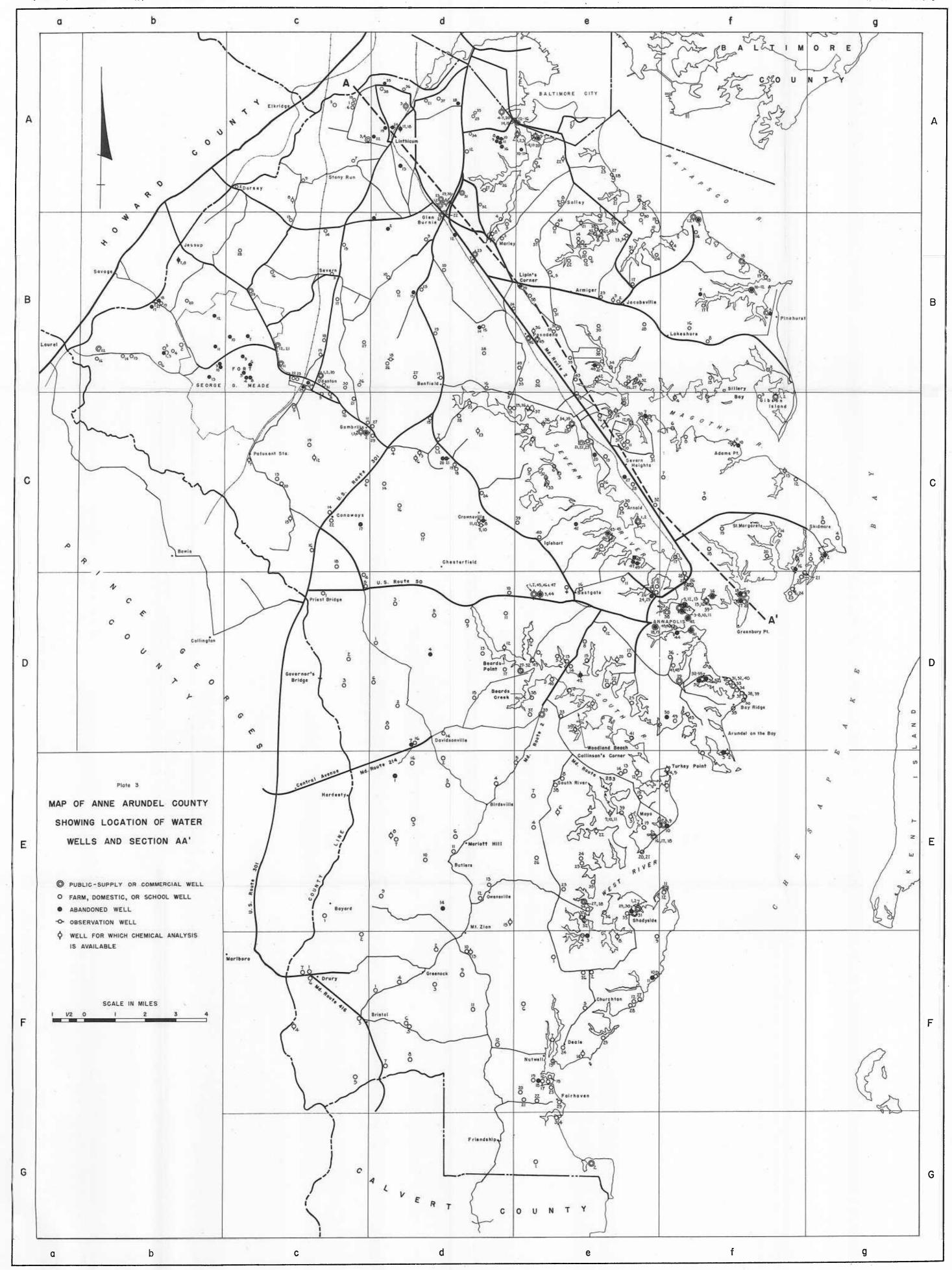
Establishment and construction, 3; Pl. 1 Operation and maintenance, 5; Pl. 1 Storage, Coefficient of, 37 Stream erosion, 31 Stream-flow measurement stations, 3 Computation and preparation of records, 5; Figs. 2, 3 Establishment and construction, 3; Pl. 1 Operation and maintenance, 5; Pl. 1 Streams, Use to community, 3 - of Anne Arundel county, 8 Sunderland formation, 50 Surface water, Definition, 1 Surface-water resources, 1, 8 Talbot formation, 51 Terrace deposits, 50 Brandywine formation, 50 Sunderland formation, 50 Talbot formation, 51 Wicomico formation, 50 Tertiary system, 47; Tables 1-4 Tests, Pumping, 37 Glen Burnie, 44; Fig. 8 Theis nonequilibrium formula, 44 Topography of county, 9, 31 Transmissibility, Coefficient of, 37 Glen Burnie, 44; Fig. 8 Transpiration, Discharge by, 34 Turkey Point, 49 Upper Marlboro, 48 U. S. Geological Survey, v, 9, 29, 31, 32

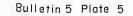
Water-Supply Papers, 8 U. S. Naval Academy, 43 U. S. Naval Academy Dairy, 35, 43 U. S. Navy Radio Station, 52

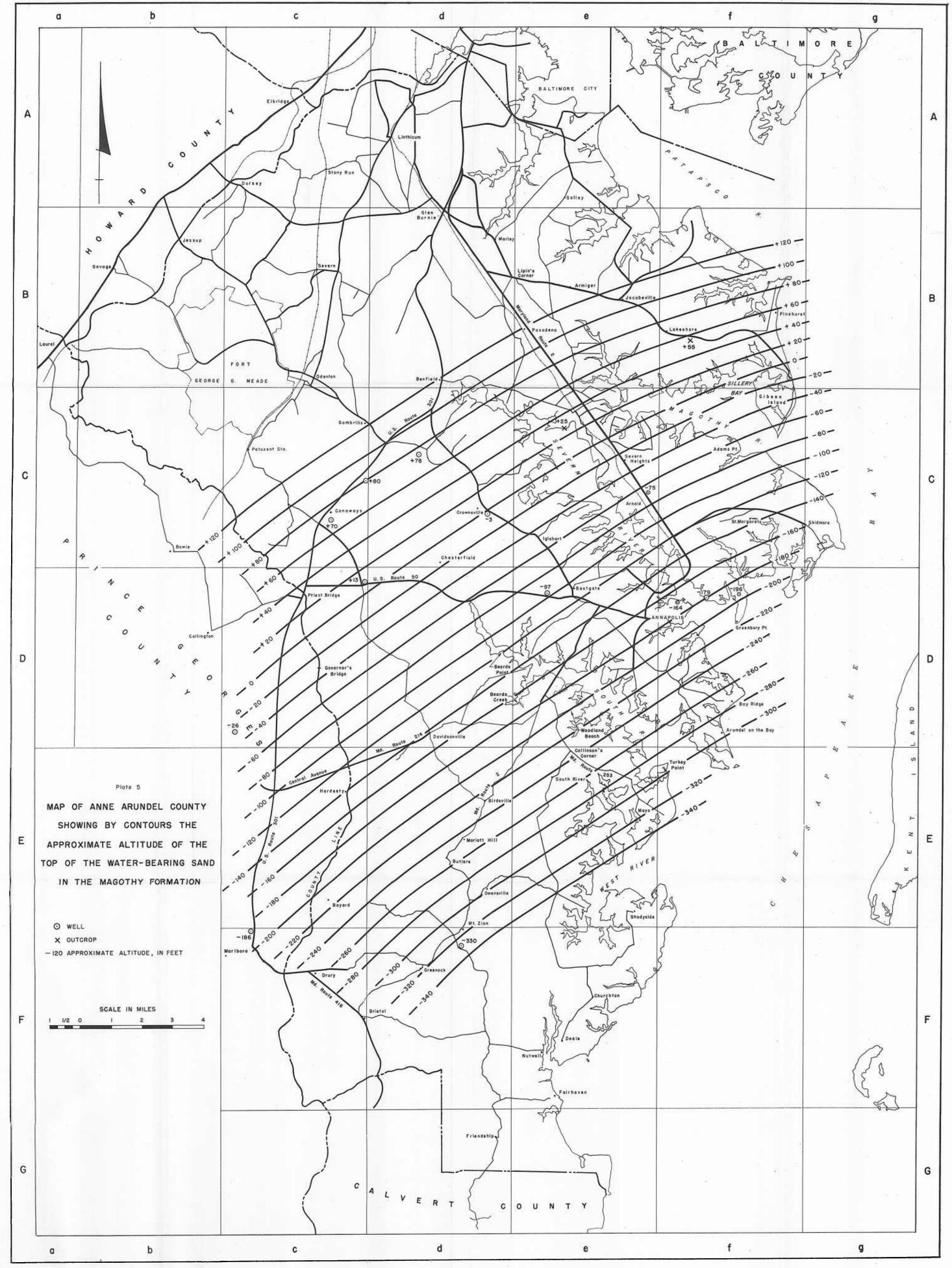
Valley and Ridge, 29

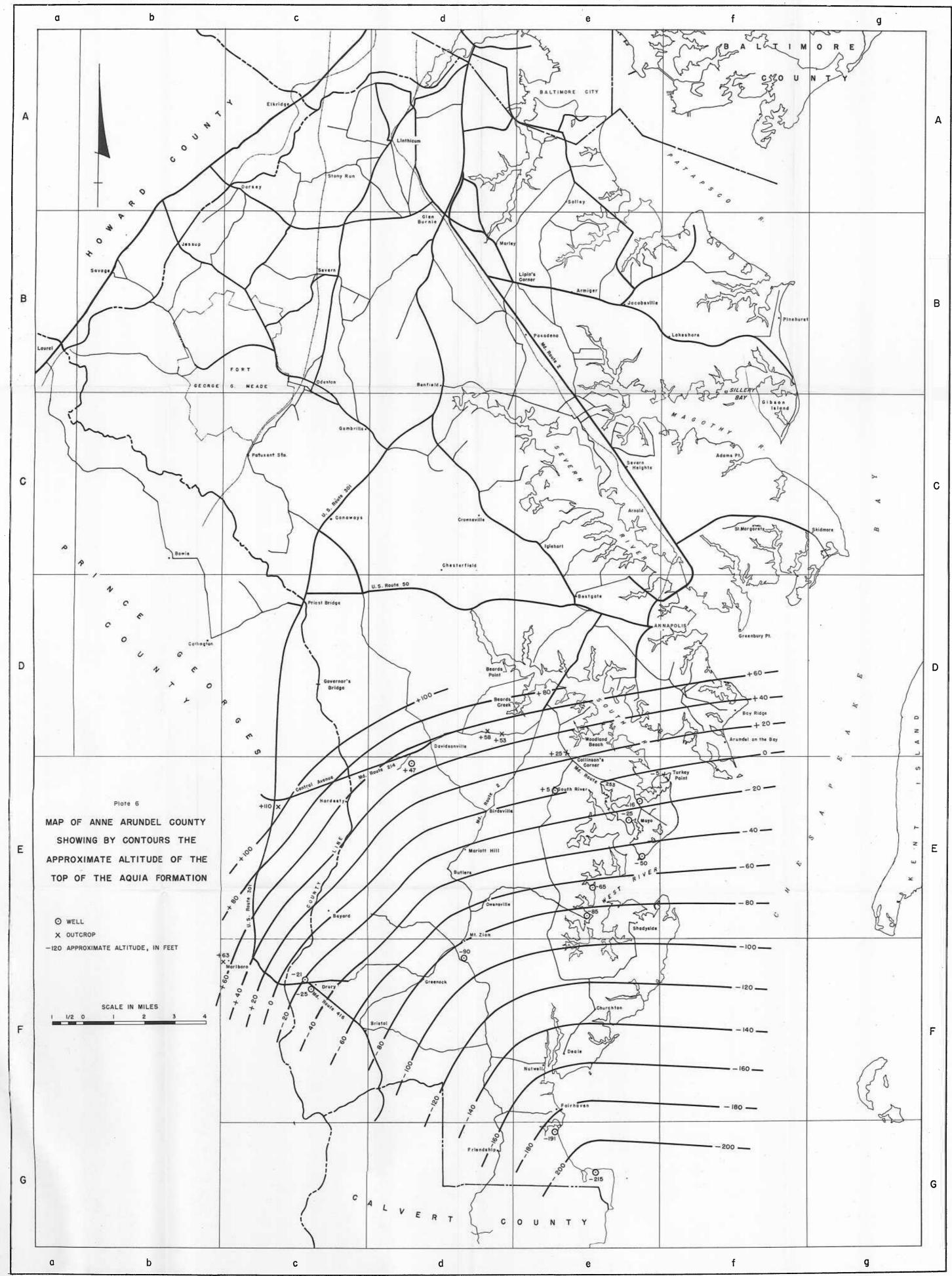

Water, Analyses of, 41; Table 5
table 32
year, Definition, 6
Water-bearing formations
Aquia formation, 48
Calvert formation, 50
Magothy formation, 46
Nanjemoy formation, 49
Patapsco formation, 42
Patuxent formation, 38

Pleistocene formations, 51	
Raritan formation, 44	
- properties of geologic formations	in
county, Table 1	
Water-level fluctuations, 35, 51; Figs.	6,
9, 10	
Watershed, Definition, 6	
Water-Supply Papers, U. S. Geolog	ica
Survey, 8	
Weathering, Influence on porosity of roo	cks,
38	
Well data, 29; Tables 2-4; Pl. 3	
- logs, Tables 3, 4	
Well-cutting samples, Table 4	
Wells (See Tables 1-4)	
Ad 3, 35	
Ad 10, 51, 52	
Ad 24, 51	
Ad 27, 51	
Ad 29, 51, 52	
Ad 30, 51, 52	
Ae 4, 51	
Bb 7, 38	
Bb 8, 38	
Bn 18, 51, 52	
Bc 8, 38	
Bd 23, 41	
Be 13, 51	
Be 54, 51	
Be 59, 52	
Cc 2, 51	
Cc 15, 51	
Cd 8, 51	


Cd 10, 51, 52 Cd 11, 46 Cd 12, 46 Cd 21, 51 Ce 24, 52 Ce 49, 35, 52; Fig. 6 De 45, 46 De 46, 46 Df 9, 46 Df 14, 52 Df 15, 46 Df 17, 52 Ee 14, 52 Ef 3, 52 Fd 13, 48, 49 Fd 16, 49 Ge 2, 48 Ge 3, 49 Ge 4, 48, 49 Flowing, 35 Key to location of, 29; Pl. 3 List of observation, 51 Location of observation, 51 Records of, Tables 2-4 Wenzel, L. K., 32, 37 West Annapolis, 52 West River, 8 White, W. N., 34 Wicomico formation, 50 Woodland Beach, 49






Maryland Department of Gealagy, Mines and Water Resources

Marylond Department af Geolagy, Mines and Water Resources

Marylond Department of Geology, Mines and Water Resources

Bulletin 5 Plote 6