

PPRP-160 DNR Publication No. 12-5212013-646

Long-Term Electricity Report for Maryland

Reference Case Update

May 2013

MARYLAND POWER PLANT RESEARCH PROGRAM

MARTIN O'MALLEY, GOVERNOR ANTHONY G. BROWN, LT. GOVERNOR

"The Maryland Department of Natural Resources (DNR) seeks to preserve, protect, and enhance the living resources of the state. Working in partnership with the citizens of Maryland, this worthwhile goal will become a reality. This publication provides information that will increase your understanding of how DNR strives to reach that goal through its many diverse programs."

> Joseph P. Gill, Secretary Maryland Department of Natural Resources

This document is available in alternative format upon request from a qualified individual with a disability.

The facilities and services of the Maryland Department of Natural Resources are available to all without regard to race, color, religion, sex, sexual orientation, age, national origin, or physical or mental disability.

Long-Term Electricity Report for Maryland

Reference Case Update

Prepared for:

Susan T. Gray Maryland Department of Natural Resources Power Plant Research Program

Prepared by:

Exeter Associates, Inc.

May 2013

ABSTRACT

On July 23, 2010, Governor Martin O'Malley signed Executive Order 01.01.2010.16 ("EO") directing the Maryland Department of Natural Resources' Power Plant Research Program ("PPRP") to develop a long-term electricity report for the State of Maryland. The central purpose of the Long-term Electricity Report ("LTER") was to provide a comprehensive assessment of approaches to meet the long-term electricity needs of Marylanders through clean, reliable, and affordable power. In the two years since the LTER assumptions were formulated, more recent information has become available that suggests that some of the assumptions relied upon in the LTER warrant revision. The LTER Reference Case Update ("RCU") incorporates a reduced natural gas price, the increased number of announced power plant retirements, the addition of the Mt. Storm to Doubs transmission line upgrade and the Competitive Power Ventures St. Charles natural gas generation project. The RCU uses the PJM 2013 Load Forecast, which projects slightly lower electricity usage through 2020 but a slightly higher growth rate in demand during the last ten years of the study period as compared to the 2011 PJM Forecast that was used in the LTER Reference Case ("RC"). The RCU results reflect the changes in demand and the reduction in the natural gas price projections. RCU energy prices are lower than the energy price projections in the RC by between \$15 and \$25 per MWh in real terms throughout the forecast period, and capacity prices tend to be higher. Very little generic natural gas capacity is constructed in Maryland, as increased transmission capacity allows the State to meet a larger portion of its energy needs through increased imports. Additionally, Maryland and Delaware are now the only states in PJM that belong to the Regional Greenhouse Gas Initiative ("RGGI"); New Jersey withdrew in 2011. Therefore, the RGGI allowance prices affect both Maryland generic builds and coal generation, which is reduced in the RCU compared to the RC. Emissions of SO₂, NO_x, and CO₂ from Maryland power plants are correspondingly lower than shown in the RC since coal and natural gas generation in Maryland is reduced in the RCU.

TABLE OF CONTENTS

				PAGE NO.
1.	Introd	uction		
2.	LTER	Referen	nce Case Update Inputs	
	2.1		entyx Model	
	2.2		Assumptions	
		2.2.1	Transmission Topology	
		2.2.2	Power Plant Retirements	
		2.2.3	Fuel Costs and Capital Costs	
		2.2.4	Environmental Assumptions	
		2.2.5	Renewable Energy Assumptions	
		2.2.6	Load Forecast	
3	Refere	ence Cas	se Update Results	20
0.	3.1		ic Power Plant Builds and Net Imports	
	3.2		ation Mix	
	3.3		y Prices	
	3.4		ity Prices	
	3.5		ions	
	3.6		able Energy Certificate Prices	
	3.7		sis of Modified RGGI Budget	
	5.7	rinarys	515 01 WIOUIIIOU KOOI DUUget	

LIST OF TABLES

PAGE NO.

Table 1	Summary of Input Assumptions	4
Table 2	PJM Zones in the Ventyx Model	6
Table 3	PJM Cumulative Retirements by Fuel Type (MW)	7
Table 4	Cumulative Retirements in PJM and MISO (MW)	8
Table 5	Conventional Plant Characteristics Fall 2012 VRC1	0
Table 6	Renewable Energy Plant Characteristics	1
Table 7	LTER RC Plant Characteristics 1	1
Table 8	Cumulative Generic Renewable Capacity Additions (MW) 1	3
Table 9	EmPOWER Maryland 2015 Cumulative Reduction Projections 1	6
Table 10	Annual Energy Reductions Resulting from Energy Efficiency & Conservation	
	Initiatives in PJM States with EE&C Programs (MWh) 1	7
Table 11	Total Weekday Hourly Demand from PEVs in Maryland and PJM (MW) 1	7
Table 12	PJM & LTER Reference Case Forecasts 1	8
Table 13	PJM January 2013 Load Forecast Demand Response (MW) 1	9
Table 14	Cumulative Demand Reductions from Advanced Metering Initiatives (MW) 2	0
Table 15	REC Prices	1
Table 16	RCU REC Model Inputs	2

LIST OF FIGURES

PAGE NO.

Ventyx 2012 Fall Reference Case Transmission Topology	5
Henry Hub Natural Gas Price Forecast	9
Coal Price Differentials	9
LTER RC Maryland Renewable Energy Capacity	13
RCU Maryland Renewable Energy Capacity	14
Unadjusted PJM Load Forecast Summer Peak Demand	
Unadjusted PJM Load Forecast Energy	15
PJM-SW Net Imports	21
RCU Generic Natural Gas Capacity Additions	22
RC Generic Natural Gas Capacity Additions	
RC Generation Mix in Maryland	
LTER RC Maryland Renewable Energy Generation	
RC Capacity Prices	
1 0	
1 7	
-	
•	
·	
	Henry Hub Natural Gas Price Forecast Coal Price Differentials LTER RC Maryland Renewable Energy Capacity RCU Maryland Renewable Energy Capacity Unadjusted PJM Load Forecast Summer Peak Demand Unadjusted PJM Load Forecast Energy PJM-SW Net Imports. RCU Generic Natural Gas Capacity Additions RCU Generic Natural Gas Capacity Additions RCU Generation Mix in Maryland RCU Generation Mix in Maryland RCU Generation Mix in Maryland RCU Maryland Renewable Energy Generation RCU Maryland Renewable Energy Generation. RCU Maryland Renewable Energy Generation. RCU Maryland Renewable Energy Generation. RCU Maryland Renewable Energy Generation. RCU Energy Prices

1 Introduction

On July 23, 2010, Governor Martin O'Malley signed Executive Order 01.01.2010.16 ("EO") directing the Maryland Department of Natural Resources' Power Plant Research Program ("PPRP") to develop a long-term electricity report for the State of Maryland. The central purpose of the Long-term Electricity Report ("LTER") was to provide a comprehensive assessment of approaches to meet the long-term electricity needs of Marylanders through clean, reliable, and affordable power. The LTER provided policy-makers with the anticipated effects of both alternative policies (for example, environmental policies, renewable energy policies) and external (non-policy-related) factors such as high (and low) natural gas prices, high (and low) growth in electric loads, and climate change. To satisfy the purpose of the EO and to meet the requirements set forth therein, PPRP assessed future electricity and peak demand needs for Maryland over the 20-year period from 2010 through 2030. The LTER contained detailed results for a Reference Case and 38 alternative scenarios. The LTER was published on December 1, 2011 and can be obtained by visiting <u>http://www.dnr.state.md.us/bay/pprp/</u>. Pursuant to the EO, the next comprehensive update of the report will be finalized by December 1, 2016.

The assumptions relied upon in the LTER Reference Case are inherently uncertain over the course of a 20-year study period. Major areas of uncertainty include assumptions related to fuel prices; the build-out of the transmission system; future policy implementation regarding renewable energy, energy conservation, energy efficiency; emissions; load growth; and potential in-State power plant construction. Because these assumptions can significantly affect projections future energy and capacity prices, the overall generation mix, power supply price variability, and emission levels, the LTER explored these uncertainties through the alternative scenarios. For example, to address the uncertainty in natural gas price projections, a "high natural gas price" scenario and a "low natural gas price" scenario were developed in addition to the natural gas price projection contained in the Reference Case.

In the two years since the LTER assumptions were formulated, more recent information has become available that suggests that some of the assumptions relied upon in the LTER warrant revision. As a result, PPRP has undertaken this update to the LTER Reference Case ("RC") incorporating identified changes to the input assumptions. The most significant change is the natural gas price forecast. The LTER Reference Case Update ("RCU") incorporates a reduced natural gas price forecast that is a blend of forward prices and the Energy Information Administration's ("EIA's") latest natural gas price forecast as presented in the 2013 Annual Energy Outlook. This forecast is on average about 35 to 40 percent lower than the natural gas price forecast used in the RC. Another big change in the RCU is the increased number of power plant retirements that have been announced since the RC assumptions were formulated in early 2011. Other significant changes include the addition of the Mt. Storm to Doubs transmission line

upgrade and the Competitive Power Ventures St. Charles natural gas generation project. The RCU uses the PJM 2013 Load Forecast, which projects slightly lower electricity usage through 2020 but a slightly higher growth rate in demand during the last ten years of the study period as compared to the 2011 PJM Forecast that was used in the LTER RC. The RCU takes these new developments into account with updated reference case assumptions.

The RCU results reflect the changes in demand and the reduction in the natural gas price projections. RCU energy prices are lower than the RC energy price projections by between \$15 and \$25 per MWh in real terms throughout the forecast period. Given the lower projected energy prices, capacity prices are higher in the RCU as compared to the RC.¹ Very little generic natural gas capacity is constructed in Maryland, as increased transmission capacity allows the State to meet a larger portion of its energy needs through increased imports. Additionally, Maryland and Delaware are now the only states in PJM to belong to the Regional Greenhouse Gas Initiative ("RGGI"); New Jersey withdrew in 2011. Therefore, the RGGI allowance prices affect both Maryland generic builds and coal generation, which is reduced in the RCU compared to the RC. Emissions of SO₂, NO_x, and CO₂ from Maryland power plants are correspondingly lower than shown in the RC since coal and natural gas generation in Maryland is reduced in the RCU.

Pursuant to the EO, the next comprehensive LTER analysis will be conducted not later than during 2016. The RCU is intended to help provide policy makers with insight during the interim years between 2011 and 2016. During this interim period, the 38 alternative scenarios examined for the initial LTER analysis can be utilized by evaluating the direction and the approximate magnitude of changes relative to the RC.

Chapter 1 of this report provides an overview of the EO, the changes in assumptions, and a short summary of the main RCU results. Chapter 2 discusses the Ventyx model and the assumption in detail and Chapter 3 presents the RCU results as they compare to the RC.

2 LTER Reference Case Update Inputs

The LTER Reference Case Update once again makes use of the Ventyx Midwest regional model. The LTER Reference Case was based upon Ventyx's Fall 2010 Reference Case while the RCU incorporates the Ventyx Fall 2012 Reference Case ("Fall 2012 VRC"). This chapter gives a brief description of how the Ventyx model works and then discusses the input assumptions used for the RCU model run and how they compare to the RC.

¹ This is primarily due to the way the Ventyx model projects capacity prices. Capacity prices are calculated as a "make-whole" generator payment. See section 3.4 of this report for a more detailed discussion.

2.1 The Ventyx Model

The results presented in this report are based on modeling conducted using the Ventyx Integrated Power Model ("IPM"). Developed by Abb/Ventyx, IPM is a set of models designed to reflect the market factors affecting power prices, emissions, generation, power plant development (and retirements), fuel choice, and other power market characteristics. The Ventyx reference case is the platform used in both the RC and RCU. The IPM contains a detailed database about current generation capacity in the U.S., including capacity, heat rate, fixed operation and maintenance ("O&M") costs, variable O&M costs, fuel costs, and emissions rates. Ventyx also incorporates information about the transmission transfer capabilities within the market areas, or "zones", that Ventyx uses to model the Eastern U.S. Ventyx uses zonal energy and peak demand forecasts by zone and its production cost model to meet the zonal load requirement through within-zone generation capacity and transfers across zones. Generation units are dispatched on a least-cost basis to meet load and energy flows across zones up to the constraints of inter-zonal transmission capacity.

The IPM also simulates emissions markets, including demand outside of the electric power sector, to estimate emission allowance prices for SO_2 and NO_x . Finally, IPM estimates capacity prices based on a make-whole payment concept whereby marginal generators either delay retirement or a new generator enters and capacity prices are set such that the revenues the generator earns in the energy and capacity markets just cover its costs. See Chapter 2 of the 2011 LTER Report for a detailed description of the Ventyx model.

2.2 Input Assumptions

Certain modeling inputs (i.e., assumptions) originally developed for the RC have been modified for use in this update. These changes includes power plant retirements, load growth, energy efficiency and demand response impacts, environmental regulations, fuel prices, power plant capital costs, and renewable energy project development. Table 1 provides a summary and comparison of the input assumptions used in the RC and the RCU. These are discussed in greater detail later in this chapter.

	Table 1 Sum	mary of Input Assum	ptions
ltem	2011 LTER RC	2013 LTER RCU	Comments
Load growth	2011 PJM Forecast with adjustments for energy efficiency programs in PJM states	2013 PJM Forecast with adjustments for energy efficiency programs in PJM states	Largely applying the same methodology but updating the underlying state energy efficiency and PJM Forecasts
Callable Demand Response	DR projected to be developed in PJM by 2015	Callable DR cleared in 2012 PJM RPM Auction	RCU represents a slight decrease in DR
Natural gas prices	Ventyx's Fall 2010 Reference Case natural gas price forecast	Hybrid between near- term NYMEX forwards and the EIA's 2013 Annual Energy Outlook	Near-term natural gas futures are the best-indicators of market expectations o near-term natural gas prices. The EIA's AEO natural gas price forecast is a publically available, well-documented and commonly relied upon forecast
Coal prices	Ventyx Fall 2010 Reference Case	Ventyx Fall 2012 Reference Case	· ·
Other fuel prices	Ventyx Fall 2010 Reference Case	Ventyx Fall 2012 Reference Case	
Generic biomass capacity constructed in Maryland by 2030	40 MW	82 MW	Increased to include additional poultry litter capacity on Maryland's Eastern Shore
Generic landfill gas capacity constructed in Maryland by 2030	80 MW	80 MW	
Generic land-based wind capacity constructed in Maryland by 2030	80 MW	250 MW	Increased land-based wind capacity to reflect two utility-scale Maryland wind projects in PJM Interconnection Queue
Generic off-shore wind capacity constructed in Maryland by 2030	0 MW	200 MW	Increased to reflect expected enactmen of off-shore wind incentive legislation
Generic solar PV capacity constructed in Maryland by 2030	498 MW	515 MW	Adjusted for projected load growth to meet 50% of Maryland's solar RPS by 2020
Solar RPS achievement in Maryland	50%	50%	
Wind capacity factor	30%	30%	
Solar PV capacity factor	15%	14%	New capacity factor is consistent with MEA's estimates
Overnight construction costs for new renewable generation	Ventyx Fall 2010 Reference Case except for land-based and off- shore wind	Ventyx Fall 2012 Reference Case and EIA 2013 Annual Energy Outlook estimates	Some of the Ventyx's overnight construction cost estimates for renewable capacity (solar, biomass, and wind) differed from other industry estimates. EIA estimates or an average of the EIA and Ventyx estimates were used instead.
Overnight construction costs for new non-renewable generation	Ventyx Fall 2010 Reference Case	Ventyx Fall 2012 Reference Case	
RGGI Prices	\$2/ton through 2030	\$2/ton through 2030	
EPA SO ₂ and NO _x rules	Cross-State Air Pollution Rule	Clean Air Interstate Rule	US Federal Court of Appeals vacated the Cross-State Air Pollution Rule in August 2012

2.2.1 Transmission Topology

The Ventyx model has undergone certain changes since 2010 including the addition of new transmission capacity to account for new transmission line development. Most notable for Maryland is the inclusion of the Mt. Storm to Doubs transmission upgrade project, which increases the transfer capacity between zones in Western and Eastern Maryland (denoted by PJM-APS and PJM-SW, respectively, by Ventyx). Figure 1 shows the Fall 2012 VRC Summer 2015 transmission topology for the Midwest region.

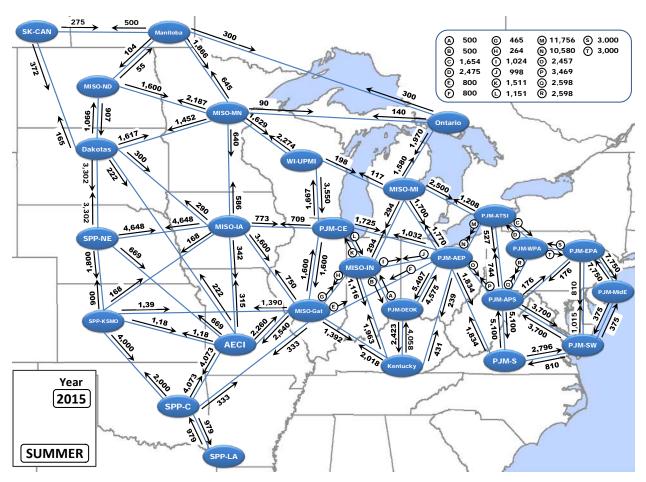


Figure 1 Ventyx 2012 Fall Reference Case Transmission Topology

In 2012, Duke Energy Kentucky, Duke Energy Ohio, and East Kentucky Power Cooperative joined PJM, therefore, the pricing zones defined by Ventyx have also changed slightly. The 2010 model contained a Cinergy hub for PJM. This has now been replaced by a price zone called PJM-DEOK that includes the new Kentucky and Ohio territories. PJM is represented by ten zones in the Ventyx model. Table 2 lists the ten PJM zones along with the utility service territories included within each zone.

	Table 2 PJM Zones in the Ventyx Model
Zone	Utility Territories Covered
PJM-AEP	American Electric Power, Dayton Power & Light
PJM-APS	Allegheny Power
PJM-ATSI	FirstEnergy American Transmission Systems
PJM-CE	Commonwealth Edison
PJM-DEOK	Duke Energy Kentucky, Duke Energy Ohio, East Kentucky Power Cooperative
PJM-S	Virginia Power Company
PJM-MidE	Atlantic Electric, Delmarva Power & Light ("DPL"), Jersey Central Power & Light, PECO Energy, Public Service Electric & Gas, Rockland Electric
PJM-EPA	Metropolitan Edison, Pennsylvania Power & Light, UGI Corporation
PJM-SW	Baltimore Gas & Electric and Potomac Electric Power Company
PJM-WPA	Pennsylvania Electric

The 2011 LTER examined an alternative scenario as an addendum which included a new natural gas plant in PJM-SW to explore the impact of a potential Maryland Public Service Commission ("PSC") Request for Proposals ("RFP") to supply new generation capacity within Maryland. The PSC ultimately issued an RFP and selected Competitive Power Ventures ("CPV") to build a combined cycle natural gas unit in Charles County. This plant has been included in the RCU with an expected online date of January 2017.

2.2.2 Power Plant Retirements

Announced power plant retirements have increased since the Fall 2010 Ventyx Reference Case was developed. The RCU projects 35 GW of generation unit retirements in PJM by 2030, compared to the 21 GW of retirements in the RC. The majority of the retirements (59 percent) are coal units, followed by petroleum units (20 percent), natural gas (15 percent), and nuclear (7 percent). RCU retirements are summarized in the top panel of Table 3, below. The capacity-weighted average age of the retired plants is 53 years, implying an average online year of 1959.

					-51-0	,
	Natural Gas	Petroleum	Coal	Nuclear	Biomass	Total
		20	13 LTER RC	Update		
2015	3,403	1,885	17,990	0	16	23,294
2020	4,329	3,955	18,317	0	16	26,617
2025	4,863	7,021	18,337	0	16	30,237
2030	5,185	7,045	20,685	2,364	16	35,295
		2	2011 LTER R	С		
2015	719	1,206	3,601	0	0	5,526
2020	2,874	3,607	4,294	0	0	10,775
2025	3,731	6,243	5,031	0	0	15,005
2030	3,909	6,379	9,635	1,451	0	21,374

Table 3 PJM Cumulative Retirements by Fuel Type (MW)

Sixty five percent (23.2 GW) of the cumulative PJM retirements by 2030 are announced retirements; 12 GW of the PJM retirements are age-based retirements, which means that the generation unit is automatically retired due to age, and 184 MW (less than one percent) of the capacity is retired due to the Mercury Air Toxics Standard ("MATS") rule. The bottom panel of Table 3 summarizes retirement projections from the RC. The RC included just over 21 GW of retirements in PJM by 2030.² The RCU projects just over 35 GW of retirements by 2030, therefore, projected PJM retirements have increased by 13.9 GW, or 65 percent. The majority of the "new" retirements in the RCU are coal units (20.7 GW), with the RCU projecting the retirement of an additional 11 GW of coal capacity compared to the RC.

Table 4, below, summarizes the total retirements for the RC and RCU in PJM and Midwest Independent Transmission System Operator ("MISO"), which exports power to PJM. The RCU projects total PJM and MISO retirements of 54.6 GW by 2030, compared to 32.9 GW in the RC. Thus, projected PJM and MISO retirements have increased by 21.7 GW, or 66 percent. New PJM retirements account for 13.9 GW of this increase and new MISO retirements account for 7.8 GW.

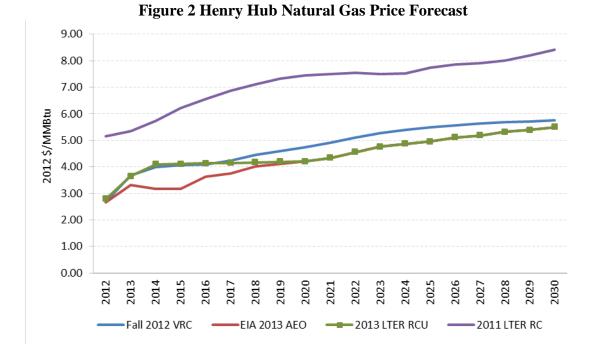
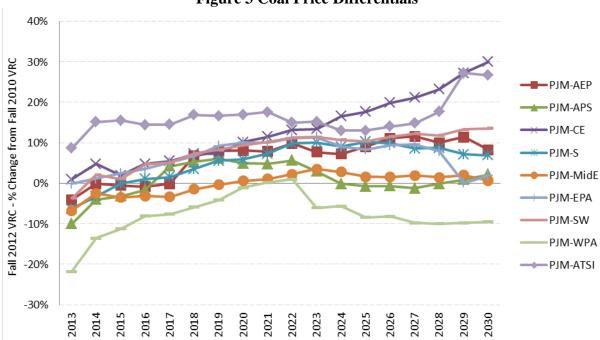

² See Table 4.3 of the 2011 LTER Report for further details.

Table 4 Cumulative Retirements inPJM and MISO (MW)						
	2013 LT	ER RC Upda	te			
	PJM	MISO	Total			
2015	23,294	7,068	30,362			
2020	26,617	10,611	37,228			
2025	30,237	14,497	44,734			
2030	35,295	19,308	54,603			
	201	1 LTER RC				
	РЈМ	MISO	Total			
2015	5,526	1,988	7,514			
2020	10,775	4,833	15,608			
2025	15,005	8,385	23,390			
2030	21,374	11,541	32,915			


2.2.3 Fuel Costs and Capital Costs

The revised assumptions about future natural gas prices have a large impact on the RCU results. The natural gas price forecast is lower than was forecast two years ago. Both Ventyx and the Energy Information Administration's 2013 Annual Energy Outlook ("AEO") project that low natural gas prices will persist throughout the 20 year forecast period.³ Short-term natural gas projections in the RCU are based on NYMEX futures contracts while the longer-term forecasts are based on the 2013 AEO Reference Case. Figure 2 compares the natural gas price forecasts used in the RC and RCU and also includes the 2013 AEO and Ventyx Fall 2012 Reference Case projections for purposes of comparison.

³ The 2013 AEO Reference Case natural gas projections were provided in the EIA's Early Release Reference Case in Table 13 of that document, "Natural Gas Supply, Disposition, and Prices."

The coal price forecasts have also changed in the update, with some regions experiencing higher prices and some lower (see Figure 3, below). The relationship between coal prices and natural gas prices affect the dispatch order of some plants and consequently, the projected capacity factors of the plants.

Figure 3 Coal Price Differentials

Certain plant characteristics in the Ventyx model have also changed since the Fall 2010 LTER. Table 5, below, shows the assumptions for new conventional power plant characteristics used in the RCU. Ventyx now includes different classes of combined-cycle ("CC") natural gas units to account for new, more efficient turbine technologies (classes F, G, and H). From 2020 onwards, all of the generic CC natural gas plant additions consist of the more efficient H class. Construction costs and O&M costs have also been updated. Renewable energy plant characteristics have similarly been updated. For the RCU, some of the assumptions used are from the Fall 2012 VRC and some were drawn from the latest EIA data. Table 6 shows the renewable energy plant characteristics adopted for the RCU. For purposes of comparison, the 2011 RC assumptions are included in Table 7, escalated to 2012 dollars.⁴

Unit Characteristics	Units	Gas Turbine	CC F Class	CC G Glass	CC H Class	Nuclear
Online Year		2014	2014	2014	2020	2018
Summer Capacity	MW	160	450	350	400	1,000
Winter Capacity	MW	180	490	375	425	1,000
Full Load Heat Rate	HHV, Btu/kWh	10,500	6,800	6,625	6,400	10,400
SO ₂ Emission Rate	(lb/MMBtu)	0	0	0	0	0
NO _X Emission Rate	(lb/MMBtu)	0.03	0.01	0.01	0.01	0
CO ₂ Emission Rate	(lb/MMBtu)	120	120	120	120	0
Fixed O&M	2012 \$/kW-yr	11.67	12.96	13.07	13.17	99.77
Variable O&M	2012 \$/MWh	3.51	2.21	2.15	2.01	0.55
Forced Outage Rate	%	3.60%	5.50%	5.20%	5.00%	3.80%
Maintenance Outage Rate	%	4.10%	9.70%	9.60%	9.50%	6.10%
Overnight Construction Cost	2012 \$/kW	680	1,010	1,025	1,035	6,000

Table 5 Conventional Plant Characteristics Fall 2012 VRC

Source: Ventyx.

⁴ In the 2011 LTER, construction costs were presented in constant 2010 dollars.

	Table 6 New	Renewable 1	Energy P	lant Char	acteristi	CS	
Unit Characteristics	Units	Geothermal Steam Turbine	Landfill Gas	Biomass	Photo- voltaic	Land-Based Wind Turbine	Off-Shore Wind Turbine
Full Load Heat Rate	HHV, Btu/kWh	0	8,910	13,648	0	0	0
SO ₂ Emission Rate	(lb/MMBtu)	0	0	0	0	0	0
NO _x Emission Rate	(Ib/MMBtu)	0	0	0	0	0	0
CO ₂ Emission Rate	(Ib/MMBtu)	0	0	0	0	0	0
Fixed O&M	2012 \$/kW-yr	53.35	54.00	103.01	22.00	28.77	28.77
Variable O&M	2012 \$/MWh	0	3.19	1.54	0	0	0
Forced Outage Rate	%	20.00%	30.00%	30.00%	0.00%	0.00%	0.00%
Maintenance Outage Rate	%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Overnight Construction Cost	2012 \$/kW	4,245	2,950	3,772	3,709	1,770	4,482

Sources: Ventyx, 2013 EIA Annual Energy Outlook.

Table 7 LTER RC Plant Characteristics								
Unit Type	Fixed O&M	Variable O&M	Fuel Costs	Overnight Construction Cost				
	(2012 \$/kW-yr)	(2012 \$/MWh)	(2012 \$/MWh)	(2012 \$/kW)				
Pulverized Coal Steam Turbine	\$28.35	\$4.21	\$22.79-\$23.85	\$2,798				
Combustion Gas Turbine	\$13.26	\$3.95	\$49.27-\$88.48	\$694				
Aero derivative Gas Turbine	\$11.52	\$3.47	\$42.23-\$75.84	\$1,073				
Combined Cycle Natural Gas	\$13.68	\$2.26	\$31.91-\$57.30	\$1,020				
Integrated Coal Gasification Combined Cycle	\$49.76	\$4.89	\$22.00-\$23.02	\$3,535				
Nuclear	\$74.22	\$0.58	\$7.11-\$8.86	\$6,175				
Pulverized Coal Steam Turbine with Carbon Capture and Sequestration	\$33.82	\$6.47	\$29.68-\$31.07	\$5,354				
Combined Cycle Natural Gas with Carbon Capture and Sequestration	\$23.25	\$3.31	\$41.75-\$75.00	\$2,245				
Integrated Coal Gasification CCNG with Carbon Capture and Sequestration	\$59.33	\$7.47	\$28.61-\$29.95	\$5,943				
Geothermal Steam Turbine	\$178.68	\$0.00	\$0.00	\$1,999				
Landfill Gas	\$125.95	\$0.01	\$0.00	\$2,683				
Biomass	\$73.88	\$7.58	\$21.85-\$27.65	\$3,472				
Photovoltaic	\$13.20	\$0.00	\$0.00	\$5,260				
Wind Turbine – Land-Based (2010)	\$31.09	\$0.00	\$0.00	\$2,314				
Wind Turbine – Land-Based (2011-2030)	\$31.09	\$0.00	\$0.00	\$1,894				
Wind Turbine - Off-Shore	\$77.72	\$0.00	\$0.00	\$4,482				

Source: Long Term Electricity Report for the State of Maryland, December 2011.

2.2.4 Environmental Assumptions

The Ventyx model inputs used to estimate the RCU have changed from those used for the 2011 LTER RC in light of new environmental regulations that govern SO₂, NO_x, and ozone emissions. The RC assumed that the Clean Air Transport Rule ("CATR"), which had been approved by the Environmental Protection Agency ("EPA"), would be implemented. However, federal courts vacated the EPA replacement for CATR, the Cross-State Air Pollution Rule ("CSAPR") in August 2012. As a result, the current rule for SO₂, NO_x, and ozone emissions is the Clean Air Interstate Rule ("CAIR"), which was the rule in place prior to CATR. Accordingly, power plant emissions in the RCU are governed by CAIR. Most states have already been in compliance with CAIR for several years, resulting in a depressed market for SO₂ and NO_x allowances. The RCU retains this assumption, however, as with the RC, Maryland power plants are subject to the Maryland Healthy Air Act ("HAA"). The HAA imposes emission restrictions on power plants more stringent than the EPA restrictions.

The RC also included the Tailoring Rule for greenhouse gases as a constraint on coal facilities. Ventyx assumed the Tailoring Rule effectively prohibited construction of, or major modifications to, coal units without CO₂ controls, therefore no new coal plants were constructed, as it was not economically feasible. This assumption also resulted in compliance with the New Source Performance Standards ("NSPS") with respect to coal plants. Ventyx reevaluated the impact of these rules along with EPA's new MATS rule for its Fall 2012 VRC and concluded that the large number of coal plant retirements, from both the increased amount of announced retirements and the plants retired by the modeling due to economic factors, effectively negates the need for imposing even more retirements from the environmental rules. No modifications to this assumption were made for the RCU.

The states that are still party to the RGGI recently announced they have agreed to lower the RGGI allowance cap by 45 percent. The previous assumption of RGGI allowance prices remaining at the floor price was maintained for the RCU, as it was unknown at the time the analysis was performed what the new RGGI budget for Maryland would be.

2.2.5 Renewable Energy Assumptions

Both the RC and the RCU assume full compliance with the Maryland Renewable Energy Portfolio Standard ("RPS") Tier 1 non-solar renewable energy requirement and 50 percent achievement of the solar set-aside by 2020. However, in-State renewable energy capacity has increased in the last two years and the Maryland legislature passed an off-shore wind energy bill in the 2013 session. This has resulted in an increase in the total renewable energy capacity assumed to be built in Maryland. The RCU includes additional biomass capacity to account for poultry litter generation on the Eastern Shore, more land-based wind, and 200 MW of off-shore wind power. Additionally, in the RCU, non-solar renewable capacity was added gradually over the study period rather than within the first few years, as was the case in the RC. Table 8 shows the cumulative generic renewable energy capacity additions (i.e., new renewable energy capacity built in the model) for the RC and the RCU. Solar energy in the RCU is slightly higher in the last decade of the study period compared to the RC due to the slightly higher load growth assumed in the PJM 2013 load forecast in that time period and the slightly lower solar capacity factor and in the RCU relative to the RC.

Table 8 Cumulative Generic Renewable Capacity Additions (MW)								
Resource	20)15	20)20	20)25	20)30
	RC	RCU	RC	RCU	RC	RCU	RC	RCU
Land-based Wind	80	100	80	200	80	250	80	250
Biomass	40	49	40	82	40	82	40	82
Landfill Gas	80		80	40	80	70	80	80
Solar	294	130	445	471	472	512	498	559
Off-shore Wind				200		200		200

Figure 4 shows the assumed total renewable energy capacity in Maryland from the RC, while Figure 5 shows the assumed total renewable capacity in Maryland in the RCU.

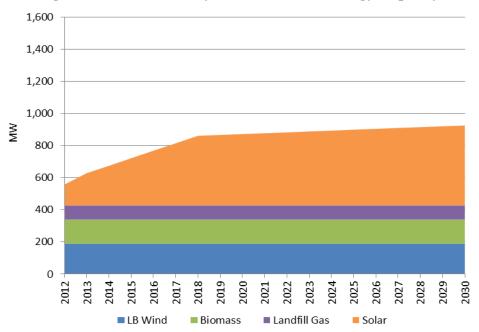
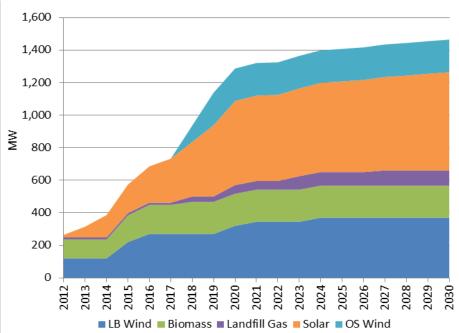
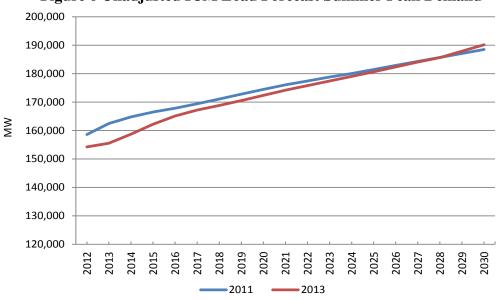
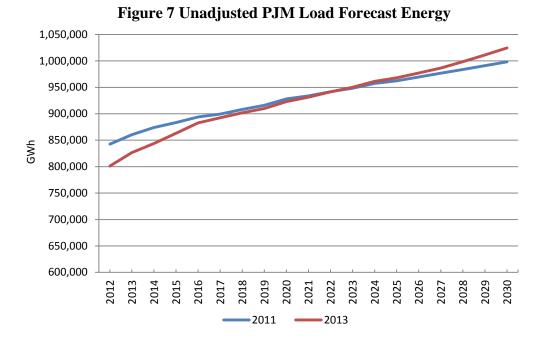


Figure 4 LTER RC Maryland Renewable Energy Capacity


Figure 5 RCU Maryland Renewable Energy Capacity

2.2.6 Load Forecast

The RC utilized the PJM 2011 Load Forecast as its base forecast for peak demand and energy in the PJM region.⁵ The RCU incorporates the latest PJM January 2013 Load Forecast. The 2013 PJM forecast of peak demand and energy is lower in the first half of the study period than the 2011 forecast, but shows a slightly higher growth rate in the later years. Figure 6 and Figure 7, below, show the unadjusted peak demand and energy for the 2011 and 2013 PJM load forecasts (including both the ATSI and DEOK zones) respectively.

⁵ While both the RC and RCU relied on PJM load forecasts, those forecasts were adjusted to account for additional factors affecting load growth, including energy conservation and efficiency programs and growth in the use of plug-in electric vehicles.

As was done for the RC, the RCU's load forecast was adjusted to account for impacts associated with energy efficiency/conservation and plug-in electric vehicles. The EmPOWER Maryland program was in its initial stages when the RC assumptions were formulated and, therefore, the estimated projected reductions were based on relatively little actual achievement data. In developing the RCU adjustments to the PJM forecast, three years of energy and demand reduction data provide for a better estimate of what will be achieved by 2015, the current program end year. Table 9 shows actual reductions through 2012 and projected EmPOWER Maryland reductions in Maryland through 2015. The energy and peak load reductions in Table 9

were used to adjust PJM's 2013 Load Forecast along with additional information on energy efficiency and conservation for other PJM states. The 2011 RC assumption for EmPOWER Maryland energy reductions totaled four million MWh and peak demand reductions totaled 2,170 MW.⁶

	Table 9 EmPOWER Maryland 2015 CumulativeReduction Projections							
Year	Projected Energy Reduction (MWh)	Projected Peak Demand Reduction (MW)						
2010	628,929	715						
2011	1,316,987	932						
2012	1,944,247	1,142						
2013	2,706,992	1,460						
2014	3,553,637	1,893						
2015+	4,386,963	2,361						

Source: Maryland Energy Administration.

The PJM 2013 Load Forecast, as noted above, was adjusted (reduced) to account for the energy efficiency and conservation programs that have been implemented in other PJM states. Similar adjustments were made in the RC but these adjustments have been updated to reflect the last two years of achievement data. The updated energy reduction estimates used in the RCU are shown in Table 10. Total annual energy reductions (i.e., reductions from the 2011 PJM load forecast) in the other PJM states were projected to reach about 31 GWh in the RC in 2020 compared to 18 GWh in the RCU. The RCU annual reduction is lower because the projected energy usage in all PJM states is forecast to be lower (see Figure 6, above) than previously expected. Also, the PJM 2013 Load Forecast contains utility load data to 2011 and, therefore, already incorporates reductions realized to the end of 2011. The projected energy reductions from energy efficiency programs have been adjusted to reflect achievements-to-date and the overall drop in energy consumption.

⁶ For both the RC and the RCU, a portion of the demand reduction is allocated to a permanent reduction in peak demand and a portion is allocated to demand response.

Table 10 Estimated Annual Energy Reductions Resulting from Energy Efficiency &Conservation Initiatives in PJM States with EE&C Programs (MWh)							
State	2015	2016	2017	2018	2019	2020	2021-2030
Delaware	540,035	540,035	540,035	540,035	540,035	540,035	540,035
Illinois	1,618,415	2,274,582	2,947,927	3,628,688	4,315,143	4,315,143	4,315,143
Indiana	334,977	463,728	611,305	776,273	949,977	949,977	949,977
Michigan	103,186	129,577	156,272	182,994	182,994	182,994	182,994
New Jersey	1,517,698	1,897,123	2,276,547	2,655,972	3,035,397	3,414,821	3,414,821
North Carolina	84,112	104,986	127,211	149,182	163,076	177,382	194,347
Ohio	3,735,403	4,773,874	5,825,705	6,879,595	6,879,595	6,879,595	6,879,595
Pennsylvania	1,634,337	1,634,337	1,634,337	1,634,337	1,634,337	1,634,337	1,634,337
Total	9,568,163	11,818,242	14,119,339	16,447,076	17,700,554	18,094,284	18,111,249

Note: the annual energy reductions represent the MWh removed from PJM's 2013 Load Forecast of annual energy consumption in PJM.

Plug-in electric vehicle ("PEV") adoption rates have not changed significantly in the last two years. Therefore, the PEV assumptions in the RCU remain unchanged. Table 11 shows the PEV demand assumptions.

Table 11 Total Weekday Hourly Demand from PEVs in Maryland and PJM (MW)				
2020	Manyland	Total On-Peak	3.5	
	Maryland	Total Off-Peak	63	
	PJM	Total On-Peak	33	
		Total Off-Peak	589	
2030	Maryland	Total On-Peak	23.6	
		Total Off-Peak	424	
	PJM	Total On-Peak	222	
	FJIVI	Total Off-Peak	4,003	

The peak demand and energy forecast used as the input to the RCU update is comprised of the PJM 2013 unadjusted Load Forecast modified to include energy and associated demand reductions from EmPOWER Maryland, energy efficiency and conservation programs in other PJM states, and the energy and demand increases from PEVs. Table 12 shows the original PJM 2013 Load Forecast and the RCU forecast of energy and peak demand through 2030.

Year PJM Forecast* Case Update PJM Forecast* Case Update 2012 154,235 153,361 801,302 798,173 2013 155,553 153,693 826,562 820,140 2014 158,717 153,964 843,697 834,472 2015 162,216 157,091 863,161 850,901 2016 165,128 159,472 882,669 868,363 2017 167,211 161,238 892,369 876,024 2018 168,813 162,954 901,824 883,481 2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 174,175 169,037 931,411 912,994 2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647						
Year PJM Forecast* Case Update PJM Forecast* Case Update 2012 154,235 153,361 801,302 798,173 2013 155,553 153,693 826,562 820,140 2014 158,717 153,964 843,697 834,472 2015 162,216 157,091 863,161 850,901 2016 165,128 159,472 882,669 868,363 2017 167,211 161,238 892,369 876,024 2018 168,813 162,954 901,824 883,481 2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 176,791 170,719 941,369 923,748 2022 175,791 170,719 941,369 923,646 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394		Base Peak I	Demand (MW)	Energy (GWh)		
2013 155,553 153,693 826,562 820,140 2014 158,717 153,964 843,697 834,472 2015 162,216 157,091 863,161 850,901 2016 165,128 159,472 882,669 868,363 2017 167,211 161,238 892,369 876,024 2018 168,813 162,954 901,824 883,481 2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 18	Year				LTER Reference Case Update	
2014158,717153,964843,697834,4722015162,216157,091863,161850,9012016165,128159,472882,669868,3632017167,211161,238892,369876,0242018168,813162,954901,824883,4812019170,521165,001910,089890,9092020172,368167,264923,064904,0142021175,791170,719941,369923,7482023177,439172,480950,374933,6162024179,042174,457961,429945,6892025180,647176,539968,056953,5002026182,394178,502977,292964,0652027184,079180,256986,388974,6252028185,671181,860998,488988,3062029187,899183,4821,011,4681,002,9452030190,154185,1141,024,6171,017,802Average Annual Growth Rates2012 - 20201.4%1.1%1.8%1.6%	2012	154,235	153,361	801,302	798,173	
2015162,216157,091863,161850,9012016165,128159,472882,669868,3632017167,211161,238892,369876,0242018168,813162,954901,824883,4812019170,521165,001910,089890,9092020172,368167,264923,064904,0142021174,175169,037931,411912,9942022175,791170,719941,369923,7482023177,439172,480950,374933,6162024179,042174,457961,429945,6892025180,647176,539968,056953,5002026182,394178,502977,292964,0652027184,079180,256986,388974,6252028185,671181,860998,488988,3062029187,899183,4821,011,4681,002,9452030190,154185,1141,024,6171,017,802Average Annual Growth Rates2012 - 20201.4%1.1%1.8%1.6%2021 - 20301.0%1.0%1.0%1.2%	2013	155,553	153,693	826,562	820,140	
2016 165,128 159,472 882,669 868,363 2017 167,211 161,238 892,369 876,024 2018 168,813 162,954 901,824 883,481 2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 174,175 169,037 931,411 912,994 2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 <t< td=""><td>2014</td><td>158,717</td><td>153,964</td><td>843,697</td><td>834,472</td></t<>	2014	158,717	153,964	843,697	834,472	
2017 167,211 161,238 892,369 876,024 2018 168,813 162,954 901,824 883,481 2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 174,175 169,037 931,411 912,994 2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 1.4%	2015	162,216	157,091	863,161	850,901	
101,101 101,101 101,101 101,101 101,101 2018 168,813 162,954 901,824 883,481 2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 174,175 169,037 931,411 912,994 2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 1.4%	2016	165,128	159,472	882,669	868,363	
2019 170,521 165,001 910,089 890,909 2020 172,368 167,264 923,064 904,014 2021 174,175 169,037 931,411 912,994 2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2017	167,211	161,238	892,369	876,024	
2020 172,368 167,264 923,064 904,014 2021 174,175 169,037 931,411 912,994 2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2% 1.2%	2018	168,813	162,954	901,824	883,481	
2021174,175169,037931,411912,9942022175,791170,719941,369923,7482023177,439172,480950,374933,6162024179,042174,457961,429945,6892025180,647176,539968,056953,5002026182,394178,502977,292964,0652027184,079180,256986,388974,6252028185,671181,860998,488988,3062029187,899183,4821,011,4681,002,9452030190,154185,1141,024,6171,017,802Average Annual Growth Rates2012 - 20201.4%1.1%1.8%1.6%2021 - 20301.0%1.0%1.0%1.2%	2019	170,521	165,001	910,089	890,909	
2022 175,791 170,719 941,369 923,748 2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2% 1.2%	2020	172,368	167,264	923,064	904,014	
2023 177,439 172,480 950,374 933,616 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2% 1.2%	2021	174,175	169,037	931,411	912,994	
2020 111,100 112,100 000,011 000,010 2024 179,042 174,457 961,429 945,689 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2% 1.2%	2022	175,791	170,719	941,369	923,748	
2021 100,002 100,002 100,002 2025 180,647 176,539 968,056 953,500 2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2% 1.2%	2023	177,439	172,480	950,374	933,616	
2026 182,394 178,502 977,292 964,065 2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2024	179,042	174,457	961,429	945,689	
2027 184,079 180,256 986,388 974,625 2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2025	180,647	176,539	968,056	953,500	
2028 185,671 181,860 998,488 988,306 2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2026	182,394	178,502	977,292	964,065	
2029 187,899 183,482 1,011,468 1,002,945 2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2027	184,079	180,256	986,388	974,625	
2030 190,154 185,114 1,024,617 1,017,802 Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2028	185,671	181,860	998,488	988,306	
Average Annual Growth Rates 2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.2%	2029	187,899	183,482	1,011,468	1,002,945	
2012 - 2020 1.4% 1.1% 1.8% 1.6% 2021 - 2030 1.0% 1.0% 1.0% 1.2%	2030	190,154	185,114	1,024,617	1,017,802	
2021 - 2030 1.0% 1.0% 1.2%	Average Annual Growth Rates					
	2012 - 2020	1.4%	1.1%	1.8%	1.6%	
2012 - 2030 1.2% 1.1% 1.4% 1.4%	2021 - 2030	1.0%	1.0%	1.0%	1.2%	
	2012 - 2030	1.2%	1.1%	1.4%	1.4%	

Table 12 PJM & LTER Reference Case Forecasts

*PJM's 2013 Load Forecast extends only to 2028. For years 2029 and 2030, the forecast values were obtained through extrapolation. The values above are for the unadjusted 2013 forecast.

The RC included projected demand reductions from demand response and advanced metering initiatives ("AMI"). The RC demand response reduction estimates were based on the then-available data, taking actual amounts that had been bid into PJM Reliability Pricing Model ("RPM") capacity markets with an escalation based on what the utilities had predicted they would be able to achieve by 2015. Demand response, as a whole, has increased significantly in

the PJM RPM auctions, and PJM has indicated that demand response may be reaching a limit that should not be exceeded for reliability purposes.⁷ Therefore, for the RCU, the actual demand response auction data was utilized up to what was bid into the 2015/2016 RPM Base Residual Auction, and then held flat thereafter. Table 13 shows the PJM 2013 demand response bid amounts.

Table 13	PJM Januar	y 2013 Load	Forecast Den	and Respo	nse (MW)
Year	BGE	DPL*	PEPCO*	APS*	Total PJM
2013	1,085	292	638	644	10,739
2014	1,294	394	876	866	14,220
2015-2030	1,101	418	837	903	14,651

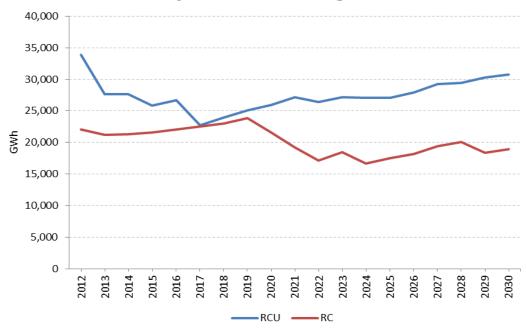
*Reductions for entire zone, only a portion of which is in Maryland.

As with energy efficiency programs, AMIs are now well underway compared to two years ago and more information about peak demand reductions due to AMI is available. Utilities in several PJM states have implemented peak demand reduction programs in concert with AMI to incentivize consumers to reduce demand during peak periods. Table 14 outlines the projected peak demand reductions from AMI. The Ventyx model treats both demand response and AMI as dispatchable supply-side resources that are included in the supply stack and, therefore, though both ultimately serve to reduce demand, they are not treated as adjustments to the load forecast.

⁷ See PJM Markets Implementation Committee, Demand Response Saturation Analysis.

Advanced Metering Initiatives (MW)				
State	2015	2020	2025	2030
DC	139	212	223	233
DE	142	147	151	155
IL	34	159	168	177
IN	7	36	38	40
MD	388	705	734	761
MI	3	7	7	7
NC	75	276	286	296
NJ	3	35	37	39
ОН	59	487	508	530
PA	188	382	402	422
VA	49	349	372	394
WV	13	95	99	103
Total	1,100	2,890	3,025	3,157

Table 14 Cumulative Demand Reductions from


3 **Reference Case Update Results**

The Ventyx model has three zones that contain parts of Maryland: PJM-SW, PJM-MidE, and PJM-APS. PJM-SW is comprised of the service territories of BGE and Pepco and, therefore, also includes the District of Columbia. PJM-MidE includes all of the Delmarva Peninsula including Delaware, all of New Jersey, and Philadelphia. As such, Maryland's DPL territory is only a very small portion of the zone. Similarly, PJM-APS includes all of Allegheny Power, of which Maryland is only a small portion.

3.1 Generic Power Plant Builds and Net Imports

To satisfy the demand in a zone, the Ventyx model either imports energy from other zones or builds generic power plants based on least-cost principles. Maryland has historically been a large importer of energy and has imported approximately 30 to 40 percent of its energy requirements in recent years. Maryland is also a relatively high-priced zone for power plant construction, compared to some of the other PJM zones. Power plant operating costs in Maryland are also higher than in most other PJM states since Maryland and Delaware are the only states in PJM that are a party to RGGI (New Jersey withdrew in 2011). Accordingly, the Ventyx model builds power plants outside Maryland (PJM-SW in particular) and the PJM-SW zone imports energy from other zones in PJM. This effect can be observed in Figure 8 which shows that net imports into PJM-SW are higher in the RCU compared to the RC. The greater volume of imports is facilitated by the addition of the Mount Storm to Doubs transmission upgrade. The temporary

drop in imports between 2017 and 2018 is due to the CPV power plant (located in Charles County in Maryland) coming on-line.

Figure 8 PJM-SW Net Imports

Total new generic natural gas capacity builds in PJM as a whole reach 40,547 MW by 2030. This is a significant increase over the 30,101 MW built in PJM in the RC. The increase is mainly to compensate for the greater number of power plant retirements in the RCU relative to the RC. As noted earlier, PJM-SW is now one of the higher-priced power plant construction zones and coupled with the increased transfer capacity from the new transmission, very little generic capacity is built in the zone. Figure 9 shows the generic natural gas capacity additions for the three Maryland zones in the RCU.

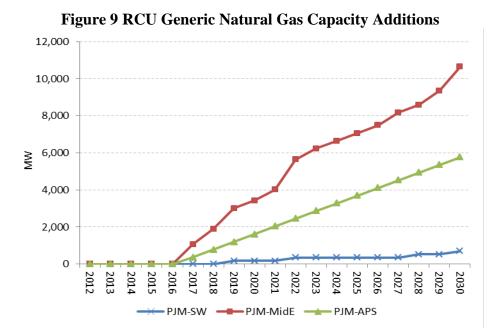
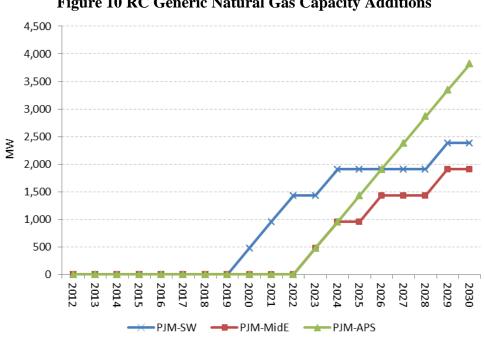



Figure 10 shows the generic natural gas capacity additions that were added to the Maryland zones in the RC. Only 696 MW are added in PJM-SW in the RCU compared to the 2,385 MW added to the zone in the RC. The zone with the largest increase in capacity additions is PJM-MidE, where 10,644 MW are added in the RCU compared to the 1,908 MW in the RC. This is largely attributable to New Jersey's withdrawal from RGGI, which makes the zone preferential for capacity additions to serve eastern loads.

Figure 10 RC Generic Natural Gas Capacity Additions

3.2 Generation Mix

Generation mix is a function of how much electricity the various types of generation (e.g., coal, natural gas, nuclear, wind, etc.) generate within a given time period. Figure 11 and Figure 12 show the projected generation mix in Maryland for the RCU and RC, respectively. Projected natural gas generation in Maryland was higher in the RC than the RCU because more generic natural gas plants were added in Maryland in the RC (plants in PJM-MidE are assumed to be constructed in New Jersey). Very few natural gas plants are built in Maryland in the RCU. The increase in natural gas generation in 2017 in the RCU is due to the CPV power plant coming on-line, but it slowly reduces output as imports rise in the last decade of the forecast period. Coal generation is also lower in the RCU compared to the RC, as imports are serving more of Maryland's energy requirements.

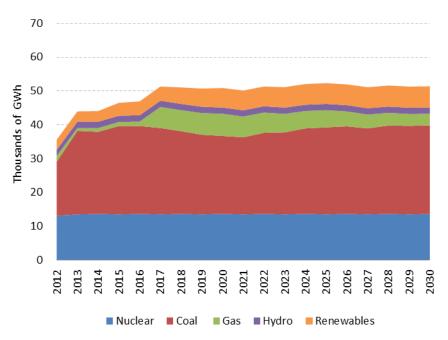
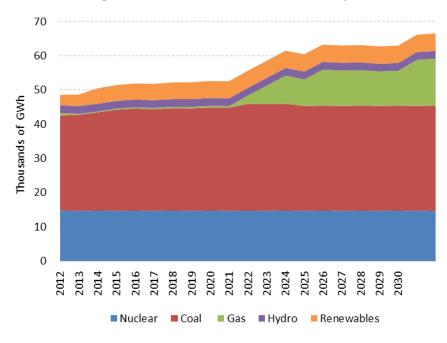
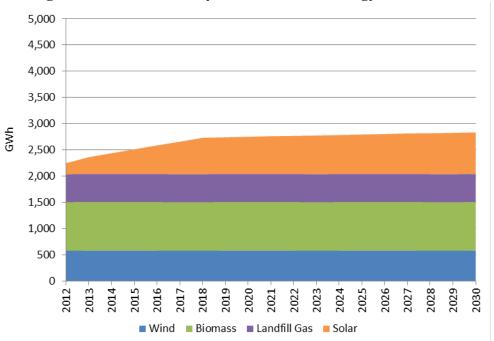



Figure 11 RCU Generation Mix in Maryland

Figure 12 RC Generation Mix in Maryland

Total renewable energy generation in Maryland is higher in the RCU compared to the RC as more renewable capacity has been developed in the State. Figure 13 and Figure 14 show the total renewable energy generation in Maryland in the RC and the RCU, respectively.



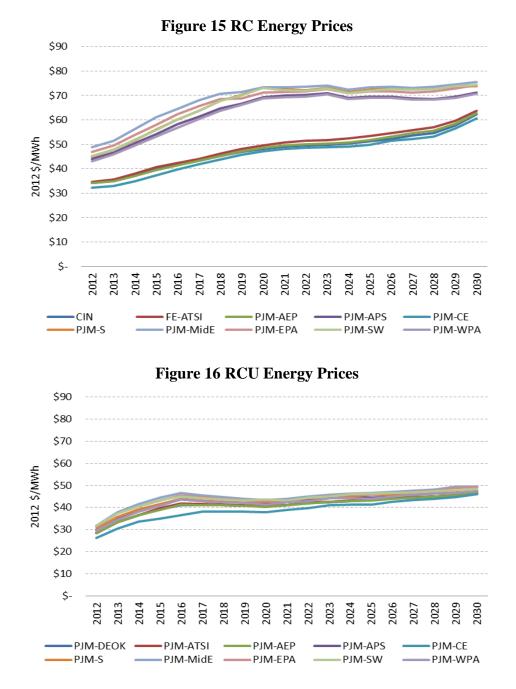
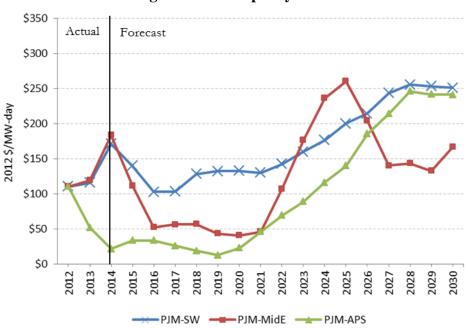
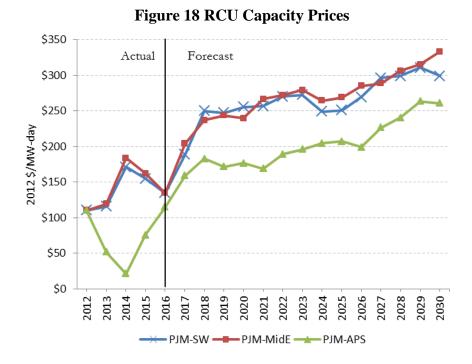


Figure 13 LTER RC Maryland Renewable Energy Generation

Figure 14 RCU Maryland Renewable Energy Generation

3.3 Energy Prices


Natural gas prices are the dominant driver of projected energy prices. With the lower natural gas price forecast, energy prices in the RCU (see Figure 16) are significantly lower throughout the analysis period compared to the RC (see Figure 15). There is also much less regional differential in energy prices in the RCU, with the eastern and western zones being closely aligned. This likely results from natural gas units setting the price (i.e., natural gas units being on the margin) more often in both the coal-heavy western zones of PJM and the eastern zones.

3.4 Capacity Prices


RCU incorporates actual PJM RPM capacity prices through 2016 whereas the RC estimated prices after 2013 because the 2014 and 2015 RPM auctions were held after the LTER report was released. While PJM is in a supply surplus overall, capacity prices in the Ventyx model are estimated as "make-whole" payments for the marginal unit until load growth requires new generation additions. As new generation is built, capacity prices can be calculated by the model using a cost-of-entry variable and thus capacity costs adjust to levels more in line with the cost of new entry. The capacity prices generated by the Ventyx model can vary significantly from year to year and are highly sensitive to new generation, transmission system expansion, and load levels.

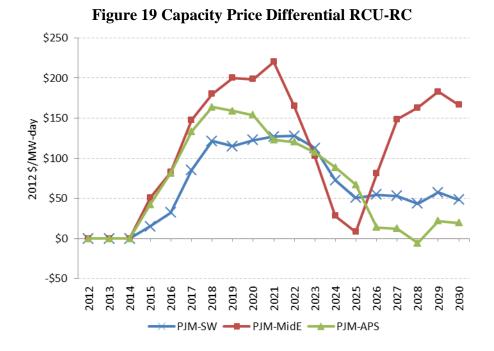
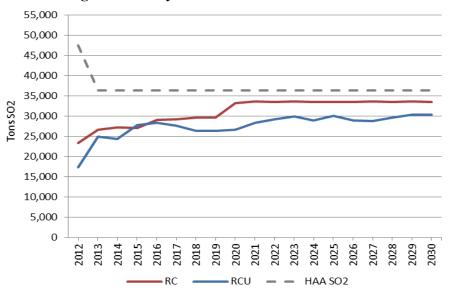
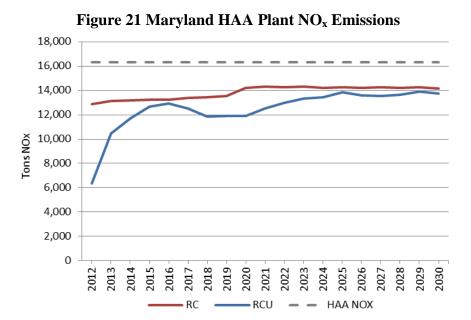
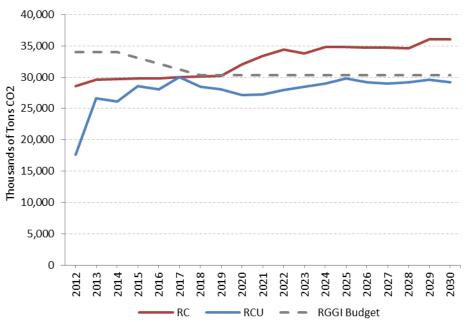

Capacity prices in the first decade of the RC were relatively low because PJM had excess generating capacity (see Figure 17) and energy revenues were providing a major portion of funding to the marginal units. As new generation was required to maintain reliability, capacity prices in PJM were projected to increase.

Figure 17 RC Capacity Prices


Capacity prices in the RCU, however, remain consistently high throughout the analysis period (see Figure 18). This is principally due to the lower energy prices providing less revenue to generation units, therefore requiring higher capacity revenues in order for the marginal generation unit to be "made whole." The capacity price differential between the RC and the RCU narrows in the last five years of the study period for PJM-SW and PJM-APS zones because these zones no longer have excess supply in either the RC or the RCU (see Figure 19).



3.5 Emissions


Coal-fired power plants in Maryland are subject to the Maryland Healthy Air Act ("HAA"). To date, coal plants that expect to continue operation in Maryland have installed the pollution abatement technologies necessary to comply with the HAA. Since no new coal plants are projected to be built in Maryland over the course of the analysis period, emissions from existing plants remain below HAA limits throughout the study period for both the RC and the RCU. Emissions of both SO₂ and NO_x are lower in the RCU as coal generation is lower.

Maryland CO_2 emissions from power plants are also lower in the RCU than in the RC and remain below the original RGGI budget throughout the study period. The increase in CO_2 emissions in the RC results from the addition of natural gas capacity built in Maryland. In the RCU, however, only a small amount of natural gas capacity is added in Maryland and, therefore, CO_2 emissions remain low (see Figure 22). Impacts of the recent modifications to the RGGI budget are discussed in Section 3.7.

3.6 Renewable Energy Certificate Prices

The Renewable Energy Certificate ("REC") prices for the RCU were developed by determining the REC prices necessary to sustain new wind investment in Maryland.⁸ The analysis is based on the principle that for a new wind facility to be economically viable, it must be able to fully recover its costs, including a return, through three revenue streams: energy market revenues, capacity market revenues, and REC revenues. The resultant REC prices for the RCU are shown below in Table 15, along with the REC prices from the LTER RC. The RC REC prices were originally developed by Ventyx, which used a different methodology. The large

⁸ Wind energy is assumed to be the least-cost resource for new renewable energy facilities eligible for Tier 1 RPS compliance in Maryland.

difference in REC prices arises primarily from the new REC modeling methodology, lower installed cost assumptions for wind, and the inclusion of capacity revenues in projecting RECs prices.⁹

	Table	15 REC Prices			
	Reference Case Update LTER Reference Case				
Year	(nominal \$/MWh)	(2012 \$/MWh)	(2012 \$/MWh)		
2012	3.23	3.23	3.16		
2013	3.93	3.93	16.83		
2014	5.24	5.08	29.46		
2015	6.98	6.57	27.35		
2016	9.30	8.50	26.30		
2017	12.39	10.99	25.25		
2018	16.50	14.23	25.25		
2019	16.05	13.50	25.25		
2020	15.61	12.81	26.30		
2021	15.18	12.15	25.25		
2022	14.76	11.53	26.30		
2023	14.35	10.94	25.25		
2024	13.62	10.13	23.14		
2025	12.93	9.38	18.94		
2026	12.27	8.68	17.88		
2027	11.65	8.04	16.83		
2028	11.05	7.44	14.73		
2029	11.38	7.66	13.68		
2030	11.72	7.89	12.62		

The RCU REC price model assumes the marginal resource that establishes the Tier 1 REC price in Maryland is a 200 MW land-based wind facility with a 25-year useful life. The technical and financial assumptions used to develop REC prices in the RCU are summarized in Table 16 below. PJM allows wind facilities to bid into the capacity market but only 13 percent of installed capacity can be bid, therefore, this derate was used to estimate capacity revenues. The capacity revenue of the marginal wind plant is based on capacity prices from the RCU Ventyx

⁹ For a more detailed discussion of how Ventyx derived the LTER RC REC prices see the 2011 LTER report.

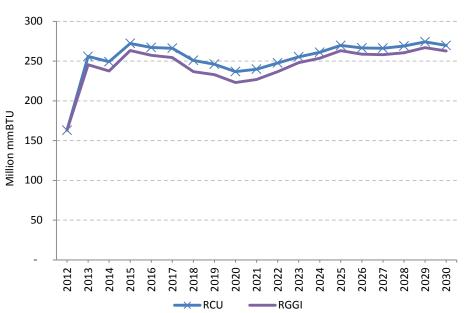

model forecast for the PJM-MidE and PJM-SW zones. Energy market revenue for the wind plant is based on the average RCU on- and off-peak energy prices in the PJM-MidE, PJM-SW, and PJM-APS zones as forecast by the RCU modeling run. Based on revenue sufficiency for the year, an RCU REC price was estimated for three distinct years – 2018, 2023, and 2028. RCU REC prices outside of those years were estimated through a straight-line interpolation.

Table 16 RCU REC Model Inputs				
Technical Inputs				
Size of Wind Facility (MW)	200			
Useful Life of Project (years)	25			
Capacity Factor	30.0%			
Annual Degradation Rate of Wind Output (after first year)	0.3%			
Financial Inputs				
Rate of Inflation	2.5%			
Project Costs:				
Overnight Construction Costs (2012 \$/kW)	\$1,740			
Project Financing Parameters				
Equity Ratio	50.0%			
Cost Rate of Equity	12.0%			
Cost Rate of Debt	7.0%			
Weighted Average Cost of Capital	9.5%			
Effective Tax Rate	40.2%			
Fixed O&M Costs (2012 \$/kW-year)	\$28.77			
Variable O&M Costs (2012 \$/kW-year)	\$0.00			
Sources of Revenues (for Developer):				
Energy Market Revenue	Average of PJM-MidE, PJM-SW, and PJM-APS energy prices			
Capacity Market Revenue	Average of PJM-MidE and PJM-SW capacity prices			
PJM Capacity Derate for Wind Resources	13.0%			
Wind Capacity Eligible for PJM Capacity Market	26 MW			

3.7 Analysis of Modified RGGI Budget

At the time of the analysis, the newly adopted revisions to the Maryland RGGI budget amount had not been announced and, therefore, are not reflected in the figures included in this report. However, the latest RGGI auction resulted in higher allowance prices due to the announcement that the cap would be reduced by 45 percent overall. A supplemental run setting the RGGI allowance price at \$2.90 per ton starting in 2014 was conducted. The \$2.90 per ton assumption is based on most recent reported market price data.

This relatively modest price change resulted in a reduction in coal generation in Maryland (see Figure 23) and a small reduction in generic natural gas power plant construction in PJM-SW: 522 MW are constructed compared to 696 MW in the RCU.

The reduction in generation is made up for by an increase in net imports as shown in Figure 24.

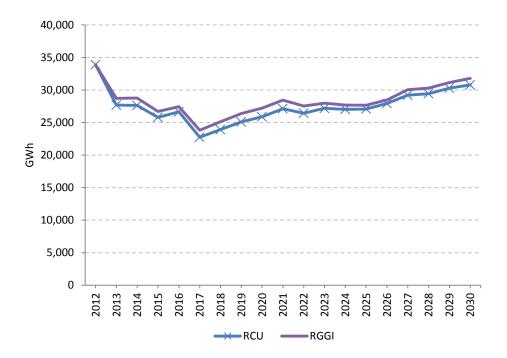


Figure 24 PJM-SW Net Imports (RGGI vs. RCU)

The increased allowance price also results in slightly higher energy prices in the Maryland zones for most years (see Figure 25), while the reduction in Maryland generation reduces power sector emissions. Figure 26 shows the Maryland power plant CO_2 emissions.

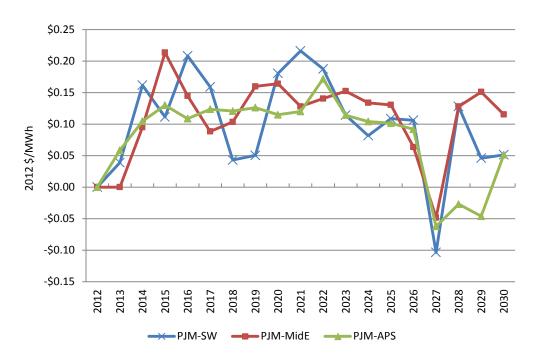
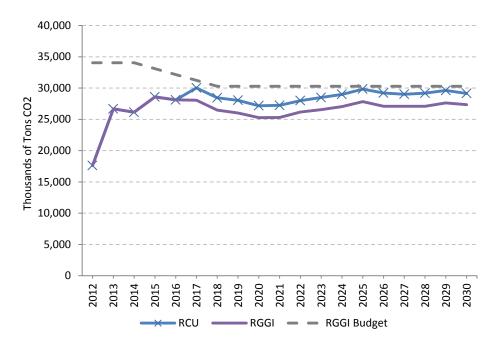



Figure 25 Maryland Zone Energy Price Differentials (RGGI vs. RCU)

Figure 26 Maryland Power Plant CO₂ Emissions (RGGI vs. RCU)

While the modeling results might indicate that Maryland's participation in RGGI is simply resulting in regional leakage where CO_2 emissions are higher in other PJM zones due to Maryland importing more of its energy, further examination of the modeling results do not show this to be the case. Figure 27 shows the average price differential for all PJM zones.

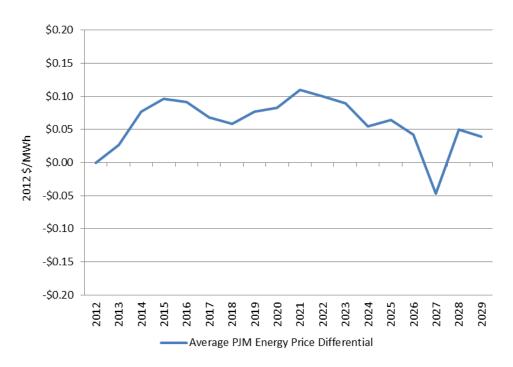


Figure 27 Average PJM Zonal Price Differential (RGGI vs. RCU)

The RGGI allowance price increase induces a slight increase in all regional power prices in most years. This causes small changes in how power plants are constructed and the dispatch order of all power plants. In PJM as a whole, coal generation is reduced. Natural gas capacity additions are slightly reduced with 40,025 MW of generic natural gas capacity being built in PJM by 2030 under the scenario that includes the updated Reference Case plus the higher RGGI prices compared to 40,547 MW in the RCU. The shortfall is met by other generation types running more often, i.e. running at higher capacity factors. Throughout the study period, PJM uses 149 million mmBtu less of coal and 194 million mmBtu more of natural gas. The end effect of these changes leads to lower CO_2 emissions in PJM as a whole in most years (see Figure 28).

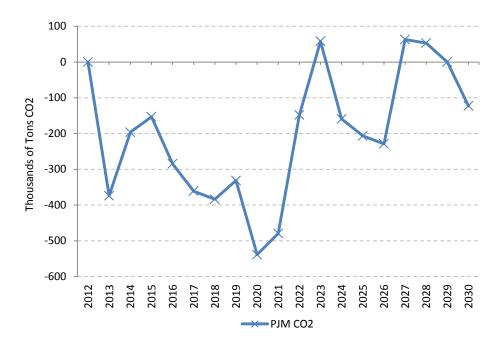


Figure 28 PJM CO₂ Emissions Differential (RGGI vs. RCU)

Prepared by the Maryland Department of Natural Resources Power Plant Research Program

Tawes State Office Building, B-3 580 Taylor Avenue Annapolis, Maryland 21401-2397 Toll Free in Maryland: 1-877-620-8DNR, ext. 8660 Outside Maryland: 1-410-260-8660 TTY users call via the Maryland Relay www.dnr.Maryland.gov/Bay/pprp

